当前位置:文档之家› 4.1.2圆的一般方程 (2).pdf

4.1.2圆的一般方程 (2).pdf

4.1.2圆的一般方程 (2).pdf
4.1.2圆的一般方程 (2).pdf

《圆的一般方程》教学设计

《圆的一般方程》教学设计 ●教学目标 1.掌握圆的一般方程的形式特点及与标准方程互化; 2.掌握二元二次方程表示圆的充要条件; 3.进一步熟悉并掌握待定系数法. ●教学重点 圆的一般方程应用 ●教学难点 待定系数法 教学过程 一、设置情境: 1、求下列各圆的标准方程 ⑴圆心在直线y =-x 上,且过两点(2,0),(0,-4); ⑵圆心在直线2x +y =0上,且与直线x +y -1=0相切于点(2,-1); ⑶圆心在直线5x -3y =8上,且与坐标轴相切。 ⑴(x -3)2+(y +3)2=10;⑵(x -1)2+(y +2)2=2;⑶(x -4)2+(y -4)2=16 2、已知圆x 2+y 2=25,求: ⑴过点A(4,-3)的切线方程; 4x -3y -25=0 ⑵过点B(-5,2)的切线方程。 21x -20y +145=0或x =-5 2、圆的标准方程及其应用回顾: (x ―a)2+(y ―b)2=r 2 其中圆心坐标为(a,b ),半径为r 变形圆的标准方程 x 2+y 2―2ax ―2by +a 2+b 2-r 2=0 由此可见,任一个圆的方程都可以写成下面的形式: x 2 + y 2 + Dx + Ey + F = 0 ① 反过来,我们研究形如①的方程的曲线是不是圆。 将①的左边配方,整理得 4 4)2()2(2222F E D E y D x -+=+++ ② ⑴当D 2+E 2-4F >0时,比较方程②和圆的标准方程,可以看出方程①表示以(―D/2,―E/2)为圆心,半径为F E D 42 122-+的圆; ⑵当D 2+E 2-4F =0时,方程①只有实数解x =―D/2,y =―E/2,所以表示一个点(―D/2,―E/2); ⑶当D 2+E 2-4F <0时,方程①没有实数解,因而它不表示任何图形。 二、解决问题 1、圆的一般方程: x 2 + y 2 + Dx + Ey + F = 0(D 2+E 2-4F >0),其中圆心(―D/2,―E/2),半径为F E D 42 122-+。 2、二元二次方程表示圆的充要条件:

人教版高中数学必修二圆与方程题库完整

(数学2必修)第四章 圆与方程 [基础训练A 组] 一、选择题 1.圆22(2)5x y ++=关于原点(0,0)P 对称的圆的方程为 ( ) A .22(2)5x y -+= B .22(2)5x y +-= C .22(2)(2)5x y +++= D .22(2)5x y ++= 2.若)1,2(-P 为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是( ) A. 03=--y x B. 032=-+y x C. 01=-+y x D. 052=--y x 3.圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( ) A .2 B .21+ C .2 21+ D .221+ 4.将直线20x y λ-+=,沿x 轴向左平移1个单位,所得直线与 圆22 240x y x y ++-=相切,则实数λ的值为( ) A .37-或 B .2-或8 C .0或10 D .1或11 5.在坐标平面,与点(1,2)A 距离为1,且与点(3,1)B 距离为2的直线共有( ) A .1条 B .2条 C .3条 D .4条 6.圆0422=-+x y x 在点)3,1(P 处的切线方程为( ) A .023=-+y x B .043=-+y x C .043=+-y x D .023=+-y x 二、填空题 1.若经过点(1,0)P -的直线与圆03242 2=+-++y x y x 相切,则此直线在y 轴上的截距是 __________________. 2.由动点P 向圆221x y +=引两条切线,PA PB ,切点分别为0 ,,60A B APB ∠=,则动点P 的轨迹方程为 。 3.圆心在直线270x y --=上的圆C 与y 轴交于两点(0,4),(0,2)A B --,则圆C 的方程为 . 4.已知圆()4322 =+-y x 和过原点的直线kx y =的交点为,P Q 则OQ OP ?的值为________________。

圆的标准方程与一般方程教案

圆的标准方程 【自主预习】 1、在平面直角坐标系中,确定一个圆的要素有哪些? 2、①若一个圆的圆心是(0,0),半径是2,圆的方程是什么? ②若一个圆的圆心是(-2,1),半径是3,圆的方程是什么? ③若一个圆的圆心是(a ,b ),半径是r(y>0),圆的方程是什么? 3、分析圆的标准方程有何特点? 4、写出下列圆的方程 ⑴圆心在原点,半径为3 ⑵圆心在点C(3,4),半径为5 ⑶经过点P (5,1),圆心在点C(8,-3) ⑷已知点A(-4,-5),B(6,-1),求以AB 为直径的圆的方程。 特殊的:过直径两端点A (x 1,y 1)、B(x 2,y 2)的圆的方程为(x-x 1)(x-x 2)+(y-y 1)(y-y 2)=0 5、根据圆的方程写出圆心和半径 ⑴ 5)3()222=-+-y x ( ⑵2 222()2)(-=++y x 【典例探究】 (点与圆的位置关系)例题1 已知圆心在C(-3,-4),且经过原点,求该圆的标准方程,并判 断点)4,3(),1,1(),0,1(321---p p p 和圆的位置关系。

的条件呢?的条件是什么?在圆外内 在圆(思考:点)0()()),(22200>=-+-r r b y a x y x M 判定方法 1、几何法 2、代数法 (三角形外接圆)例题2、△ABC 的三个顶点的坐标分别是A(-2,4),B(-1,3),C(2,6),求 它的外接圆的方程。 变式:已知四点A (0,1)、B (2,1)、C (3,4)、D (-1,2),这四点是否在同一个圆上,为什 么? (圆的标准方程)例题3 已知一个圆C 经过两个点A (2,-3),B (-2,-5),且圆心在直线 032:=--y x l 上,求此圆的方程。

人教课标版高中数学必修2基础训练:圆的一般方程

4.1.2 圆的一般方程 1.方程064222=--++y x y x 表示的图形是【 】 A.以)2,1(-为圆心,11为半径的圆 B.以)2,1(为圆心,11为半径的圆 C.以)2,1(--为圆心,11为半径的圆 D.以)2,1(-为圆心,11为半径的圆 2.方程224250x y x y m ++-+=表示圆的条件是【 】 A. 114 m << B. 1m > C. 14m < D. 1m < 3.已知圆的方程为086222=++-+y x y x ,那么通过圆心的一条直线方程是【 】 A.012=--y x B.012=++y x C.012=+-y x D.012=-+y x 4.圆222430x y x y +-++=的圆心到直线1x y -=的距离为【 】 A . 2 B. C. 1 D. 5.与圆0352:22=--+x y x C 同圆心,且面积为其一半的圆的方程是【 】 A.3)1(22=+-y x B.6)1(22=+-y x C.9)1(22=+-y x D.18)1(22=+-y x 6.圆x 2+y 2-4x -5=0的弦AB 的中点为P (3,1),则直线AB 的方程是 . 7.已知方程042422=--++y x y x ,则22y x +的最大值是 . 8.已知圆C :(x -1)2+y 2=1,过坐标原点O 作弦OA ,则OA 中点的轨迹方程是 . 9.求经过三点(1,1)A -,(1,4)B ,(4,2)C -的圆的方程,并求出圆的圆心与半径.

参考答案 1. D 2. D 3. B 4. D 5. D 6. x +y -4=0 7. 14+ 8. 2211()24x y -+=(x ≠0) 9. 设所求圆的方程为220x y Dx Ey F ++++=, ∵ (1,1)A -、(1,4)B 、(4,2)C -三点在圆上,代入圆的方程并化简,得 24174220D E F D E F D E F -+=-??++=-??-+=-?,解得D =-7,E =-3,F =2. ∴ 所求圆的方程为227320x y x y +--+=.

高一数学必修二《圆与方程》知识点整理

《圆与方程》知识点整理 一、标准方程()() 222 x a y b r -+-= 1.求标准方程的方法——关键是求出圆心(),a b和半径r ①待定系数:往往已知圆上三点坐标,例如教材 119 P例2 ②利用平面几何性质 往往涉及到直线与圆的位置关系,特别是:相切和相交 相切:利用到圆心与切点的连线垂直直线 相交:利用到点到直线的距离公式及垂径定理 二、一般方程 () 2222 040 x y Dx Ey F D E F ++++=+-> 1.220 Ax By Cxy Dx Ey F +++++=表示圆方程则 22 22 00 00 40 40 A B A B C C D E AF D E F A A A ? ? =≠=≠ ? ? ?? =?= ?? ??+-> ? ???? ?+-?> ? ? ????? ? 2.求圆的一般方程一般可采用待定系数法: 3.2240 D E F +->常可用来求有关参数的范围 三、圆系方程: 四、参数方程: 五、点与圆的位置关系 1.判断方法:点到圆心的距离d与半径r的大小关系 d r ?点在圆外 2.涉及最值: (1)圆外一点B,圆上一动点P,讨论PB的最值 min PB BN BC r ==- max PB BM BC r ==+ (2)圆内一点A,圆上一动点P,讨论PA的最值 m i n P A A N r A C ==- max PA AM r AC ==+ 思考:过此A点作最短的弦?(此弦垂直AC)

六、直线与圆的位置关系 1.判断方法(d 为圆心到直线的距离) (1)相离?没有公共点?0d r ? (2)相切?只有一个公共点?0d r ?=?= (3)相交?有两个公共点?0d r ?>?< 这一知识点可以出如此题型:告诉你直线与圆相交让你求有关参数的范围. 2.直线与圆相切 (1)知识要点 ①基本图形 ②主要元素:切点坐标、切线方程、切线长等 问题:直线l 与圆C 相切意味着什么? 圆心C 到直线l 的距离恰好等于半径r (2)常见题型——求过定点的切线方程 ①切线条数 点在圆外——两条;点在圆上——一条;点在圆内——无 ②求切线方程的方法及注意点... i )点在圆外 如定点()00,P x y ,圆:()()222x a y b r -+-=,[()()22 200x a y b r -+->] 第一步:设切线l 方程()00y y k x x -=- 第二步:通过d r =k ?,从而得到切线方程 特别注意:以上解题步骤仅对k 存在有效,当k 不存在时,应补上——千万不要漏了! 如:过点()1,1P 作圆22 46120x y x y +--+=的切线,求切线方程. 答案:3410x y -+=和1x = ii )点在圆上 1) 若点()00x y ,在圆222x y r +=上,则切线方程为200x x y y r += 会在选择题及填空题中运用,但一定要看清题目. 2) 若点()00x y ,在圆()()22 2x a y b r -+-=上,则切线方程为 ()()()()200x a x a y b y b r --+--= 碰到一般方程则可先将一般方程标准化,然后运用上述结果. 由上述分析,我们知道:过一定点求某圆的切线方程,非常重要的第一步就是——判断点与圆的位置关系,得出切线的条数. ③求切线长:利用基本图形,222AP CP r AP =-?= 3.直线与圆相交 (1)求弦长及弦长的应用问题 垂径定理....及勾股定理——常用

(完整版)高中数学必修2圆与方程典型例题(可编辑修改word版)

标准方程(x - a )2 + (y - b )2 = r 2 ,圆心 (a , b ),半径为 r 11 11 11 11 0 0 第二节:圆与圆的方程典型例题 一、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。二、圆的方程 (1) ; 点 M (x , y ) 与圆(x - a )2 + ( y - b )2 = r 2 的位置关系: 当(x - a )2 + ( y - b )2 > r 2 ,点在圆外 当(x - a )2 + ( y - b )2 = r 2 ,点在圆上 当(x - a )2 + ( y - b )2 < r 2 ,点在圆内 (2) 一般方程 x 2 + y 2 + Dx + Ey + F = 0 当 D 2 + E 2 - 4F > 0 时,方程表示圆,此时圆心为?- D E ? ,半径为r = 当 D 2 + E 2 - 4F = 0 时,表示一个点; 当 D 2 + E 2 - 4F < 0 时,方程不表示任何图形。 ,- ? ? 2 2 ? 2 (3) 求圆方程的方法: 一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程, 需求出 a ,b ,r ;若利用一般方程,需要求出 D ,E ,F ; 另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。 例 1 已知方程 x 2 + y 2 - 2(m - 1)x - 2(2m + 3) y + 5m 2 + 10m + 6 = 0 . (1) 此方程表示的图形是否一定是一个圆?请说明理由; (2) 若方程表示的图形是是一个圆,当 m 变化时,它的圆心和半径有什么规律?请说明理由. 答案:(1)方程表示的图形是一个圆;(2)圆心在直线 y =2x +5 上,半径为 2. 练习: 1.方程 x 2 + y 2 + 2x - 4 y - 6 = 0 表示的图形是( ) A.以(1,- 2) 为圆心, 为半径的圆 B.以(1,2) 为圆心, 为半径的圆 C.以(-1,- 2) 为圆心, 为半径的圆 D.以(-1,2) 为圆心, 为半径的圆 2.过点 A (1,-1),B (-1,1)且圆心在直线 x +y -2=0 上的圆的方程是( ). A .(x -3)2+(y +1)2=4 B .(x +3)2+(y -1)2=4 C .(x -1)2+(y -1)2=4 D .(x +1)2+(y +1)2=4 3.点(1,1) 在圆(x - a )2 + ( y + a )2 = 4 的内部,则 a 的取值范围是( ) A. -1 < a < 1 B. 0 < a < 1 C. a < -1 或 a > 1 D. a = ±1 4.若 x 2 + y 2 + ( -1)x + 2y + = 0 表示圆,则的取值范围是 5. 若圆 C 的圆心坐标为(2,-3),且圆 C 经过点 M (5,-7),则圆 C 的半径为 . 6. 圆心在直线 y =x 上且与 x 轴相切于点(1,0)的圆的方程为 . 7. 以点 C (-2,3)为圆心且与 y 轴相切的圆的方程是 . 1 D 2 + E 2 - 4F

教师资格证面试教案模板:高中数学《圆的一般方程》(Word版)

教师资格证面试教案模板:高中数学《圆的 一般方程》 (2021最新版) 作者:______ 编写日期:2021年__月__日 一、教学目标 【知识与技能】在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径。掌握方程表示圆的条件。 【过程与方法】通过对方程表示圆的条件的探究,学生探索发现

及分析解决问题的实际能力得到提高 【情感态度与价值观】渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。 二、教学重难点 【重点】掌握圆的一般方程,以及用待定系数法求圆的一般方程。 【难点】二元二次方程与圆的一般方程及标准圆方程的关系。 三、教学过程 (一)复习旧知,引出课题 1.复习圆的标准方程,圆心、半径。 2.提问1:已知圆心为(1,-2)、半径为2的圆的方程是什么? (二)交流讨论,探究新知 1.提问2:方程是什么图形?方程表示什么图形?任何圆的方程都

是这样的二元二次方程吗?(通过此例分析引导学生使用配方法) 2.方程什么条件下表示圆?(配方和展开由学生相互讨论交流完成,教师最后展示结果) 将配方得: 3.学生在教师的引导下对方程分类讨论,最后师生共同总结出3种情况,即圆的一般方程表示圆的条件。从而得出圆的一般方程式: 4.由学生归纳圆的一般方程的特点,师生共同总结。 (三)例题讲解,深化新知 例1.判断下列二元二次方程是否表示圆的方程?如果是,请求出圆的圆心及半径。 (1)(2) 例2.求过三点A(0,0),B(1,1),C(4,2)的圆的方程,并求这个圆的半径长和圆心坐标。

数学必修2圆与方程知识点专题讲义

必修二圆与方程专题讲义 一、标准方程 ()()2 2 2x a y b r -+-= 1.求标准方程的方法——关键是求出圆心(),a b 和半径r 2.特殊位置的圆的标准方程设法(无需记,关键能理解) 二、一般方程 ( )222 2040x y D x E y F D E F ++++=+- > 1.220Ax By Cxy Dx Ey F +++++=表示圆方程,则 2222 0004040 A B A B C C D E AF D E F A A A ? ? =≠=≠????=?=????+->??????+-?> ? ?????? ? 2.求圆的一般方程方法 ①待定系数:往往已知圆上三点坐标

②利用平面几何性质 涉及点与圆的位置关系:圆上两点的中垂线一定过圆心 涉及直线与圆的位置关系:相切时,利用到圆心与切点的连线垂直直线;相交时,利用到点到直线的距离公式及垂径定理 3.2240D E F +->常可用来求有关参数的范围 三、点与圆的位置关系 1.判断方法:点到圆心的距离d 与半径r 的大小关系 d r ?点在圆外 2.涉及最值: (1)圆外一点B ,圆上一动点P ,讨论PB 的最值 min PB BN BC r ==- max PB BM BC r ==+ (2)圆内一点A ,圆上一动点P ,讨论PA 的最值 min PA AN r AC ==- max PA AM r AC ==+ 思考:过此A 点作最短的弦?(此弦垂直AC ) 3.以1122(,),(,)A x y B x y 为直径两端点的圆方程为 1212()()()()0x x x x y y y y --+--= 四、直线与圆的位置关系 1.判断方法(d 为圆心到直线的距离) (1)相离?没有公共点?0d r ? (2)相切?只有一个公共点?0d r ?=?= (3)相交?有两个公共点?0d r ?>?<

高中数学-圆的标准方程教案

第四章 圆与方程 4.1.1 圆的标准方程 三维目标: 知识与技能:1、掌握圆的标准方程,能根据圆心、半径写出圆的标准方程。 2、会用待定系数法求圆的标准方程。 过程与方法:进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想,通过圆的标准方 程解决实际问题的学习,注意培养学生观察问题、发现问题和解决问题的能力。 情感态度与价值观:通过运用圆的知识解决实际问题的学习,从而激发学生学习数学的热情和兴趣。 教学重点:圆的标准方程 教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程。 教学过程: 1、情境设置: 在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,原是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢? 探索研究: 2、探索研究: 确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r 。(其中a 、b 、r 都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M 满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M 适合的条件 r = ① 化简可得:222 ()()x a y b r -+-= ② 引导学生自己证明2 2 2 ()()x a y b r -+-=为圆的 方程,得出结论。 方程②就是圆心为A(a,b),半径为r 的圆的方程,我们把它叫做圆的标准方程。 3、知识应用与解题研究

例(1):写出圆心为(2,3)A -半径长等于5的圆的方程, 并判断点12(5,7),(1)M M --是否在这个圆上。 分析探求:可以从计算点到圆心的距离入手。 探究:点00(,)M x y 与圆222 ()()x a y b r -+-=的关系的判断方法: (1)22 00()()x a y b -+->2r ,点在圆外 (2)22 00()()x a y b -+-=2r ,点在圆上 (3)2200()()x a y b -+-<2 r ,点在圆内 例(2): ABC V 的三个顶点的坐标是(5,1),(7,3),(2,8),A B C --求它的外接圆的方程 师生共同分析:从圆的标准方程2 2 2 ()()x a y b r -+-= 可知,要确定圆的标准方程,可用 待定系数法确定a b r 、、三个参数.(学生自己运算解决) 例(3):已知圆心为C 的圆:10l x y -+=经过点(1,1)A 和(2,2)B -,且圆心在:10l x y -+=上,求圆心为C 的圆的标准方程. 师生共同分析: 如图确定一个圆只需确定圆心位置与半径大小.圆心为C 的圆经过点(1,1)A 和 (2,2)B -,由于圆心C 与A,B 两点的距离相等,所以圆心C 在险段AB 的垂直平分线m 上,又圆心C 在直线l 上,因此圆心C 是直线l 与直线m 的交点,半径长 等于CA 或CB 。 (教师板书解题过程。) 总结归纳:(教师启发,学生自己比较、归纳)比较例(2)、 例(3)可得出ABC V 外接圆的标准方程的两种求法: ①、根据题设条件,列出关于a b r 、、的方程组,解方程组得到a b r 、、得值,写出圆的标准方程. 根据确定圆的要素,以及题设条件,分别求出圆心坐标和半径大小,然后再写出圆的标准方程. 提炼小结: 1、 圆的标准方程。 2、 点与圆的位置关系的判断方法。 3、 根据已知条件求圆的标准方程的方法。

圆的一般方程练习题

课时作业23 圆的一般方程 (限时:10分钟) 1.若圆x 2+y 2-2x -4y =0的圆心到直线x -y +a =0的距离为2 2,则a 的值为( ) A .-2或2 或32 C .2或0 D .-2或0 解析:圆的标准方程为(x -1)2+(y -2)2=5,圆心为(1,2),圆心到 直线的距离|1-2+a |12+-1 2=22,解得a =0或2. 答案:C 2.若圆x 2+y 2-2ax +3by =0的圆心位于第三象限,那么直线x +ay +b =0一定不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 解析:圆心为? ?? ??a ,-32b ,则有a <0,b >0.直线x +ay +b =0变为y =-1a x -b a .由于斜率-1a >0,在y 轴上截距-b a >0,故直线不经过第四象限. 答案:D 3.直线y =2x +b 恰好平分圆x 2+y 2+2x -4y =0,则b 的值为 ( ) A .0 B .2 C .4 D .1 解析:由题意可知,直线y =2x +b 过圆心(-1,2), ∴2=2×(-1)+b ,b =4. 答案:C 4.M (3,0)是圆x 2+y 2-8x -2y +10=0内一点,过M 点最长的弦所在的直线方程为________,最短的弦所在的直线方程是________. 解析:由圆的几何性质可知,过圆内一点M 的最长的弦是直径,最短的弦是与该点和圆心的连线CM 垂直的弦.易求出圆心为C (4,1), k CM =1-04-3=1,∴最短的弦所在的直线的斜率为-1,由点斜式,分

别得到方程:y=x-3和y=-(x-3),即x-y-3=0和x+y-3=0. 答案:x-y-3=0x+y-3=0 5.求经过两点A(4,7),B(-3,6),且圆心在直线2x+y-5=0上的圆的方程. 解析:设圆的方程为x2+y2+Dx+Ey+F=0,其圆心为? ? ? ? ? - D 2,- E 2, 由题意得 ?? ? ??42+72+4D+7E+F=0, -32+62-3D+6E+F=0, 2· ? ? ? ? ? - D 2+? ? ? ? ? - E 2-5=0. 即 ?? ? ??4D+7E+F=-65, 3D-6E-F=45, 2D+E=-10, 解得 ?? ? ??D=-2, E=-6, F=-15. 所以,所求的圆的方程为x2+y2-2x-6y-15=0. (限时:30分钟) 1.圆x2+y2+4x-6y-3=0的圆心和半径分别为() A.(2,-3);16B.(-2,3);4 C.(4,-6);16 D.(2,-3);4 解析:配方,得(x+2)2+(y-3)2=16,所以,圆心为(-2,3),半径为4. 答案:B 2.方程x2+y2+4x-2y+5m=0表示圆的条件是() 1 C.m< 1 4D.m<1 解析:由42+(-2)2-4×5m>0解得m<1. 答案:D 3.过坐标原点,且在x轴和y轴上的截距分别是2和3的圆的方程为() A.x2+y2-2x-3y=0 B.x2+y2+2x-3y=0 C.x2+y2-2x+3y=0

必修2圆与方程知识点归纳总结

圆与方程 1. 圆的标准方程:以点),(b a C 为圆心,r 为半径的圆的标准方程是222)()(r b y a x =-+-. 特例:圆心在坐标原点,半径为r 的圆的方程是:222r y x =+. 2. 点与圆的位置关系: (1). 设点到圆心的距离为d ,圆半径为r : a.点在圆内 d <r ; b.点在圆上 d=r ; c.点在圆外 d >r (2). 给定点),(00y x M 及圆222)()(:r b y a x C =-+-. ①M 在圆C 内22020)()(r b y a x <-+-? ②M 在圆C 上22020)()r b y a x =-+-? ( ③M 在圆C 外22020)()(r b y a x >-+-? (3)涉及最值: ① 圆外一点B ,圆上一动点P ,讨论PB 的最值 min PB BN BC r ==- max PB BM BC r ==+ ② 圆内一点A ,圆上一动点P ,讨论PA 的最值 min PA AN r AC ==- max PA AM r AC ==+ 思考:过此A 点作最短的弦?(此弦垂直AC ) 3. 圆的一般方程:022=++++F Ey Dx y x . (1) 当0422>-+F E D 时,方程表示一个圆,其中圆心??? ??--2,2E D C ,半径2 422F E D r -+=.

(2) 当0422=-+F E D 时,方程表示一个点??? ? ?--2,2E D . (3) 当0422<-+F E D 时,方程不表示任何图形. 注:方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件是:0=B 且0≠=C A 且0422φAF E D -+. 4. 直线与圆的位置关系: 直线0=++C By Ax 与圆222)()(r b y a x =-+- 圆心到直线的距离22B A C Bb Aa d +++= 1)无交点直线与圆相离??>r d ; 2)只有一个交点直线与圆相切??=r d ; 3)有两个交点直线与圆相交???时,直线与圆有2个交点,,直线与圆相交; (2)当0=?时,直线与圆只有1个交点,直线与圆相切; (3)当0r r d ; ② 条公切线外切321??+=r r d ; ③ 条公切线相交22121??+<<-r r d r r ;

新课标高中数学必修二第四章圆与方程-经典例题-[含答案]

习题精选精讲圆标准方程 已知圆心),(b a C 和半径r ,即得圆的标准方程222 )()(r b y a x =-+-;已知圆的标准方程222)()(r b y a x =-+-,即得圆 心),(b a C 和半径r ,进而可解得与圆有关的任何问题. 一、求圆的方程 例1 (06卷文) 以点)1,2(-为圆心且与直线0543= +-y x 相切的圆的方程为( ) (A)3)1()2(22=++-y x (B)3)1()2(2 2=-++y x (C)9)1() 2(22 =++-y x (D)9)1()2(22=-++y x 解 已知圆心为)1,2(-,且由题意知线心距等于圆半径,即2 243546+++= d r ==3,∴所求的圆方程为9)1()2(22=++-y x , 故选(C). 点评:一般先求得圆心和半径,再代入圆的标准方程222 )()(r b y a x =-+-即得圆的方程. 二、位置关系问题 例2 (06卷文) 直线1=+y x 与圆0222=-+ay y x )0(>a 没有公共点,则a 的取值围是( ) (A))12,0(- (B))12,12(+- (C))12,12(+-- (D))12,0(+ 解 化为标准方程222 )(a a y x =-+,即得圆心),0(a C 和半径a r =. ∵直线 1=+y x 与已知圆没有公共点,∴线心距a r a d =>-= 2 1,平方去分母得 2 2212a a a >+-,解得 1212-<<--a ,注意到0>a ,∴120-<r d 线圆相离;?=r d 线圆相切;?

人教版高中数学《圆的一般方程》教案导学案

圆的一般方程 一、教学目标 (一)知识教学点 使学生掌握圆的一般方程的特点;能将圆的一般方程化为圆的标准方程从而求出圆心的坐标和半径;能用待定系数法,由已知条件导出圆的方程. (二)能力训练点 使学生掌握通过配方求圆心和半径的方法,熟练地用待定系数法由已知条件导出圆的方法,熟练地用待定系数法由已知条件导出圆的方程,培养学生用配方法和待定系数法解决实际问题的能力. (三)学科渗透点 通过对待定系数法的学习为进一步学习数学和其他相关学科的基础知识和基本方法打下牢固的基础. 二、教材分析 1.重点:(1)能用配方法,由圆的一般方程求出圆心坐标和半径;(2)能用待定系数法,由已知条件导出圆的方程. (解决办法:(1)要求学生不要死记配方结果,而要熟练掌握通过配方求圆心和半径的方法;(2)加强这方面题型训练.) 2.难点:圆的一般方程的特点. (解决办法:引导学生分析得出圆的一般方程的特点,并加以记忆.) 3.疑点:圆的一般方程中要加限制条件D2+E2-4F> 0. (解决办法:通过对方程配方分三种讨论易得限制条件.) 三、活动设计 讲授、提问、归纳、演板、小结、再讲授、再演板. 四、教学过程 (一)复习引入新课

前面,我们已讨论了圆的标准方程(x-a)2+(y-b)2=r2 ,现将展开可得x2+y2- 2ax-2by+a 2+b2-r2=0 .可见,任何一个圆的方程都可以写成 x2+y2+Dx+Ey+F=0.请大家思考一下:形如x2+y2+Dx+Ey+F=0的方程的曲线是不是圆?下面我们来深入研究这一方面的问题.复习引出课题为“圆的一般方程” ( 二) 圆的一般方程的定义 1.分析方程x3+y2+Dx+Ey+F=0表示的轨迹 将方程x2+y2+Dx+Ey+F=0左边配方得: (1) (1) 当D2+E2-4F>0 时,方程(1) 与标准方程比较,可以看出方程半径的圆; (3) 当D2+E2-4F<0 时,方程x2+y2+Dx+Ey+F=0没有实数解,因而它不表示任何图形. 这时,教师引导学生小结方程x2+y2+Dx+Ey+F=0的轨迹分别是圆、 法. 2.圆的一般方程的定义 当D2+E2-4F> 0 时,方程x2+y2+Dx+Ey+F=0称为圆的一般方程. ( 三) 圆的一般方程的特点 请同学们分析下列问题:问题:比较二元二次方程的一般形式 Ax2+Bxy+Cy2+Dx+Ey+F=.0 (2)

高中数学人教A版必修2课时训练412圆的一般方程[69632]

数学·必修2(人教A版) 4.1圆的方程 4.1.2圆的一般方程 基础达标 1.方程x2+y2+4x-2y+5=0表示的曲线是() A.两直线 B.圆 C.一点 D.不表示任何曲线 答案:B 2.x2+y2-4y-1=0的圆心和半径分别为() A.(2,0),5 B.(0,-2), 5 C.(0,2), 5 D.(2,2),5 解析:x2+(y-2)2=5,圆心(0,2),半径 5. 答案:C

3.圆(x +2)2+y 2=5关于原点对称的圆的方程为( ) A .(x -2)2+y 2=5 B .x 2+(y -2)2=5 C .(x +2)2+(y +2)2=5 D .x 2+(y +2)2=5 答案:A 4.如果直线l 将圆x 2+y 2-2x -4y =0平分且不通过第四象限,那么l 的斜率的取值范围是( ) A .[0,2] B .[0,1] C.??????0,12 D.???? ??0,12 解析:l 必过圆心(1,2),0≤k ≤2(几何意义知). 答案:A 5.圆x 2+y 2-6x +4y =0的周长是________. 解析:(x -3)2+(y +2)2=13, r =13,C =2πr =213π. 答案:213π 6.一动点到A (-4,0)的距离是到B (2,0)的距离的2倍,求动点

的轨迹方程. 解析:设动点M的坐标为(x,y),则|MA|=2|MB|, 即(x+4)2+y2=2(x-2)2+y2, (x+4)2+y2=4(x-2)2+4y2, x2+8x+16+y2=4x2-16x+16+4y2, 整理得x2+y2-8x=0. ∴所求动点的轨迹方程为x2+y2-8x=0. 巩固提升 7.已知A,B是圆O:x2+y2=16上的两点,且|AB|=6,若以AB为直径的圆M恰好经过点C(1,-1),则圆心M的轨迹方程是___________________________________________________________ _____________. 答案:(x-1)2+(y+1)2=9 8.求经过两点P(-2,4),Q(3,-1),并且在x轴上截得的弦长等于6的圆的方程. 解析:设圆的方程为x2+y2+Dx+Ey+F=0,将P(-2,4),Q(3,-1)代入圆的方程得

高中数学必修2知识点总结:第四章_圆与方程

高中数学必修2知识点总结 第四章 圆与方程 4.1.1 圆的标准方程 1、圆的标准方程:2 22() ()x a y b r -+-= 圆心为A(a,b),半径为r 的圆的方程 2、点00(,)M x y 与圆2 22()()x a y b r -+-=的关系的判断方法: (1)2200()()x a y b -+->2r ,点在圆外 (2)2200()()x a y b -+-=2r ,点在圆上 (3)220 0()()x a y b -+-<2r ,点在圆内 4.1.2 圆的一般方程 1、圆的一般方程:022 =++++F Ey Dx y x 2、圆的一般方程的特点: (1)①x2和y2的系数相同,不等于0. ②没有xy 这样的二次项. (2)圆的一般方程中有三个特定的系数D 、E 、F ,因之只要求出这三个系数,圆的方程就确定了. (3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。 4.2.1 圆与圆的位置关系 1、用点到直线的距离来判断直线与圆的位置关系. 设直线l :0=++c by ax ,圆C :02 2 =++++F Ey Dx y x ,圆的半径为r ,圆心)2 ,2(E D --到直线的距离为d ,则判别直线与圆的位置关系的依据有以下几点: (1)当r d >时,直线l 与圆C 相离;(2)当r d =时,直线l 与圆C 相切; (3)当r d <时,直线l 与圆C 相交; 4.2.2 圆与圆的位置关系 两圆的位置关系. 设两圆的连心线长为l ,则判别圆与圆的位置关系的依据有以下几点: (1)当21r r l +>时,圆1C 与圆2C 相离;(2)当21r r l +=时,圆1C 与圆2C 外切; (3)当<-||21r r 21r r l +<时,圆1C 与圆2C 相交;

(完整版)人教版高中数学必修2圆与方程复习超值

第四章 圆与方程 1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心, 定长为圆的半径。 2 (1 点00(,)M x y 与圆222()()x a y b r -+-=的位置关系: 当2200()()x a y b -+->2r ,点在圆外 当2200()()x a y b -+-=2r ,点在圆上 当2200()()x a y b -+-<2r ,点在圆内 (2当042>-+F E D ? ? ? ? ?--2,2 E D ,半径为F E D r 42 122-+= 当0422=-+F E D 时,表示一个点; 当0422<-+F E D 时,方程不表示任何图形。 (3)求圆方程的方法: 一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程, 需求出a ,b ,r ;若利用一般方程,需要求出D ,E ,F ; 另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。 3、直线与圆的位置关系: 直线与圆的位置关系有相离,相切,相交三种情况: (1)设直线0:=++C By Ax l ,圆()()222:r b y a x C =-+-,圆心()b a C ,到l 的距离为 相离与C l r d ?>;相切与C l r d ?=;相交与C l r d ?< k 不存在,验证是否成立②k 存在,设点斜式方程, k ,得到方程【一定两解】 22=r 2,圆上一点为(x 0,y 0),则过此点 4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d )之间的大小比较来确定。

设圆()()221211:r b y a x C =-+-,()()222222:R b y a x C =-+- 两圆的位置关系常通过两圆半径的和(差),与圆心距(d )之间的大小比较来确定。 当r R d +>时两圆外离,此时有公切线四条; 当r R d +=时两圆外切,连心线过切点,有外公切线两条,内公切线一条; 当r R d r R +<<-时两圆相交,连心线垂直平分公共弦,有两条外公切线; 注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线 圆的辅助线一般为连圆心与切线或者连圆心与弦中点 第四章 圆与方程 一、选择题 1.若圆C 的圆心坐标为(2,-3),且圆C 经过点M (5,-7),则圆C 的半径为( ). A . 5 B .5 C .25 D .10 2.过点A (1,-1),B (-1,1)且圆心在直线x +y -2=0上的圆的方程是( ). A .(x -3)2+(y +1)2=4 B .(x +3)2+(y -1)2=4 C .(x -1)2+(y -1)2=4 D .(x +1)2+(y +1)2=4 3.以点(-3,4)为圆心,且与x 轴相切的圆的方程是( ). A .(x -3)2+(y +4)2=16 B .(x +3)2+(y -4)2=16 C .(x -3)2+(y +4)2=9 D .(x +3)2+(y -4)2=19 4.若直线x +y +m =0与圆x 2+y 2=m 相切,则m 为( ). A .0或2 B .2 C . 2 D .无解 5.圆(x -1)2+(y +2)2=20在x 轴上截得的弦长是( ). A .8 B .6 C .6 2 D .4 3 6.两个圆C 1:x 2+y 2+2x +2y -2=0与C 2:x 2+y 2-4x -2y +1=0的位置关系为( ).

《圆的一般方程》教案(公开课)

《圆的一般方程》教案 一、教学目标 (一)知识教学点 使学生掌握圆的一般方程的特点;能将圆的一般方程化为圆的标准方程从而求出圆心的坐标和半径;能用待定系数法,由已知条件导出圆的方程. (二)能力训练点 使学生掌握通过配方求圆心和半径的方法,熟练地用待定系数法由已知条件导出圆的方法,熟练地用待定系数法由已知条件导出圆的方程,培养学生用配方法和待定系数法解决实际问题的能力. (三)学科渗透点 通过对待定系数法的学习为进一步学习数学和其他相关学科的基础知识和基本方法打下牢固的基础. 二、教材分析 1.重点:(1)能用配方法,由圆的一般方程求出圆心坐标和半径;(2)能用待定系数法,由已知条件导出圆的方程. (解决办法:(1)要求学生不要死记配方结果,而要熟练掌握通过配方求圆心和半径的方法;(2)加强这方面题型训练.) 2.难点:圆的一般方程的特点. (解决办法:引导学生分析得出圆的一般方程的特点,并加以记忆.) 3.疑点:圆的一般方程中要加限制条件D2+E2-4F>0. (解决办法:通过对方程配方分三种讨论易得限制条件.) 三、活动设计 讲授、提问、归纳、演板、小结、再讲授、再演板. 四、教学过程 (一)复习引入新课 前面,我们已讨论了圆的标准方程(x-a)2+(y-b)2=r2,现将展开可得 x2+y2-2ax-2by+a2+b2-r2=0.可见,任何一个圆的方程都可以写成

x2+y2+Dx+Ey+F=0.请大家思考一下:形如x2+y2+Dx+Ey+F=0的方程的曲线是不是圆?下面我们来深入研究这一方面的问题.复习引出课题为“圆的一般方程”. (二)圆的一般方程的定义 1.分析方程x3+y2+Dx+Ey+F=0表示的轨迹 将方程x2+y2+Dx+Ey+F=0左边配方得: (1) (1)当D2+E2-4F>0时,方程(1)与标准方程比较,可以看出方程 半径的圆; (3)当D2+E2-4F<0时,方程x2+y2+Dx+Ey+F=0没有实数解,因而它不表示任何图形. 这时,教师引导学生小结方程x2+y2+Dx+Ey+F=0的轨迹分别是圆、 法. 2.圆的一般方程的定义 当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0称为圆的一般方程. (三)圆的一般方程的特点 请同学们分析下列问题: 问题:比较二元二次方程的一般形式 Ax2+Bxy+Cy2+Dx+Ey+F=0. (2) 与圆的一般方程

相关主题
文本预览
相关文档 最新文档