当前位置:文档之家› -合理药物设计

-合理药物设计

-合理药物设计
-合理药物设计

合理药物设计

合理药物设计(rational drug design)是依据与药物作用的靶点即广义上的受体,如酶、受体、离子通道、抗原、病毒、核酸、多糖等,寻找和设计合理的药物分子。主要通过对药物和受体的结构在分子水平甚至电子水平上全面准确地了解,进行基于结构的药物设计和通过对靶点的结构功能与药物作用方式及产生生理活性的机理的认识进行基于机理的药物设计。合理药物设计是化学、生物学、数学、物理学以及计算机科学交叉的产物,是在社会对医药需求的强大推动下逐步发展起来的,主要应用各种理论计算方法和分子图形模拟技术来进行合理药物设计。合理药物设计方法包括3类:①基于配体的药物设计②基于受体结构的药物设计③基于药物作用机理的药物设计。

1.基于配体的药物设计方法

合理药物分子设计必须在已知受体结构模型的条件下才能进行但到目前为止许多已知药物作用的受体结构是未知的在未知受体结构时应用合理药物设计的原理和概念开始药物设计也有了不少的尝试,这方面的研究大致可分为两类;探索系列小分子药物三维结构与活性的关系---主要有3D-QSAR;根据已知药物结构反推受体结构模型,再行合理药物设计,如药效团模型(Pharmacophore Modeling)方法。

1.1定量构效关系(3D-QSAR)

从对药物与受体相互作用的研究可以知道药物的作用是依赖自身空间形状的,其与受体的作用一般为非共价性质虽然在未知受体结

构时无法进行常规意义上的合理药物设计,但可以在对已知药物研究的基础上进行受体形状推测(receptor-mapping),将与药物本身形状有关的参数引入到定量构效关系中,称之为3D-QSAR。该方法是基于被研究的分子结合在同一个靶标生物大分子的相同部位的基本假定,将药物的结构信息、理化参数与生物活性进行拟合计算,建立合理的定量关系的数学模型,再以此关系设计新的化合物。不同方法采用不同的结构性质来确定构效关系。

利用小分子三维结构作为参数的三维定量构效关系方法在预测小分子与生物大分子的相互作用时非常有用,各种在化合物三维结构基础上进行三维定量构效关系研究的方法(3D-QSAR),在药物研究中己经越来越广泛地应用。主要方法为距离几何(Distance Geometry, DG)、分子形状分析(Molecular Shape Analysis, MSA)、比较分子场分析(Comparative Molecular Field Analysis, CoMFA)以及虚拟受体(Pseudo Receptor)方法。

在3D-QSAR中,CoMFA是目前应用最为广泛的方法,它采用化合物周围的静电场、范德华力场等的空间分布作为化合物结构描述变量,通过最小二乘法建立化合物的生物活性与化台物周围各种力场空间分布之间关系的模型。CoMFA是在不了解受体结构的情况下,通过将分子势场图示到网格点上来表示分子的周围环境,比较它们与药物分子的生物活性定量关系,用以推测受体的某些性质,并可依次建立起作用模型来设计新的化合物,定量地预测其活性强度。

1.2药效基团模型方法

药效基团模型方法是另一种重要的间接药物合理设计方法。所谓“药效团”是对一系列活性化合物具有的共同特征(包括特定的化学基团、氢键基团、正负电荷基团和疏水基团等)。药效基团模型方法结合这些药效团信息,总结出一些对活性至关重要的原子和基团以及空间关系,反推出与之结合的受体的立体形状、结构和性质,推测得到靶点物质信息,即得到虚拟受体模型,来设计新的配基分子。它主要被应用于先导化合物的发现。

2.基于受体结构的药物设计

基于受体的合理药物设计是指一般应用由X_射线衍射、核磁共振或分子模拟(同源蛋白建模法等)提供的受体三维结构信息,来辅助寻找、设计能够与它发生相互作用并调节其功能的小分子化合物的过程。随着人类基因组计划的完成、蛋白组学迅猛发展,大量的疾病相关基因被发现,使得药物作用的受体生物大分子急剧增加,越来越多的三维结构被测定,有些具有重要药理作用的药物靶点的三维结构虽然目前还没有被测定,但他们的一级结构已被阐明,这时可以采用同源蛋白建模的方法建立其三维结构模型,从而进行直接药物设计。

在药物分子设计中,基于受体的合理药物设计占有极其重要的地位。计算机辅助药物设计成为合理药物设计中的重要工具。一般来说,在通过x_单晶衍射技术或多维NMR获得受体生物大分子结合部位的结构后,就可以采用分子模拟软件分析结合部位的结构性质,特别是静电场、疏水场、氢键作用位点等分布信息,然后再运用数据库搜寻或运用全新药物分子设计技术,识别得到分子形状和理化性质与受体

作用位点相匹配的分子结构,合成并测试这些分子的生物活性。

经过几轮循环,可发现新的先导化合物。基于受体结构的药物设计包括活性位点分析法(Active Site Analysis)、数据库搜寻法(Database Searching)和全新药物设计。

2.1活性位点分析方法

活性位点分析方法用来探测与生物大分子的活性具有较好作用的原子或基团。用于分析的探针可以是一些简单的分子或碎片,例如水或苯环,通过分析探针与活性位点的相互作用情况,最终可找到这些分子或碎片在活性部位中的可能结合位置。这也说明活性位点分析法通常不能直接产生完整的配体分子,但它得到的有关受体结合的信息对后面的全新药物设计、分子对接等都有很好的指导意义。

2.2数据库搜寻法

数据库搜寻法,又称计算机虚拟药物筛选(Drug Screeningin Silico),是目前发展比较快的计算机辅助药物设计方法之一。它利用计算机人工智能的模式识别技术,把三维结构数据库中的小分子数据逐一与搜寻标准进行匹配,寻找符合特定性质和三维结构形状的小分子,从而发现合适的药物分子。目前数据库搜寻方法分为两类:一类是基于配体的,即根据药效基团模型进行三维结构数据库搜寻。该类方法一般需先建立一系列活性分子的药效构象,提出共有的药效基团,进而在现有的数据库中寻找符合药效基团模型的化合物,主要的软件有Catalyst和Unity。另一类方法是基于受体结构的搜寻,也称为分子对接法,即将小分子配体对接到受体的活性位点,并搜寻其

合理的取向和构象,使得配体与受体的几何形状和相互作用的匹配最佳。在药物设计中,分子对接方法主要用来从化合物数据库中搜寻与受体生物大分子有较好亲和力的小分子,从而发现全新的先导化合物。分子对接由于从整体上考虑配体与受体的结合效果,所以能较好地避免方法中容易出现的局部作用较好、整体结合欠佳的情况。数据库搜寻技术发现的化合物大多可以直接购买得到,即使部分化合物不能直接购买得到,其合成路线也较为成熟,可以从专利或文献中查到,可大大加快先导化合物的发现速度。目前,基于超级计算机的计算机虚拟药物筛选方法已成为新药开发的一种重要策略和方法。

2.3全新药物设计

全新药物设计是指根据受体结合区域的分子表面性质,如空间性、电性、疏水性及氢键等,搜索分子碎片库,让计算机自动构建出与受体结合区域性质互补的虚拟分子片断,然后对产生的系列虚拟分子片断按与受体相互作用能和结构匹配情况来生长虚拟分子,所得到的虚拟分子可以直接当作配体作为数据库搜索的模板或是配合组合化学方法以减少需要合成化合物的数目。

构建药物分子的主要方法有模板定位法、原子生长法、分子碎片法等,其中分子碎片法又包括分子连接法和分子生长法。不管采用何种药物分子构建模式,其方法基本上都要经过3个步骤:①分析靶标分子活性部位,确定活性位点各种势场和关键功能残基的分布。②采用不同的策略把基本构建单元放置在活性位点中,并生成完整的分子。③计算生成的新分子与受体分子的结合能,预测分子的生物活性。

计算机辅助全新药物设计是药物设计向前发展的一个新的阶段,目前尚存在以下问题需要解决:①蛋白质受体三维结构的真实性问题;②设计出来的药物分子能否顺利地化学合成以及合成的成本问题;③药物在体内的稳定性问题;④药物的毒副作用问题。但是,它为新药开发提供了一种新的思维模式,并且可行性很强,其发展前景是非常广阔的。

基于受体结构的药物设计方法的最大优势在于它是基于靶点的“有的放矢”型,能够很快设计和优化出高效配体。但它仍然属于定向合成和筛选,即使目标化合物有很强的受体亲和活性,一旦在生物利用度、体内代谢感毒性测试中落选,基本上将意味着药物开发的失败。而且近年来的研究发现,ADME/TOX分析在开发新药的早期阶段是一个关键的因素。所以,在基于受体结构进行先导物分子设计的过程中,必须要把设计的化合物在体内的吸收、分布、代谢、排泄和毒理方面的性质同时考虑进去。将基于结构和基于药物作用机制的计算机辅助药物设计方法相结合,将会在新药的发现中发挥更大的作用。

这种方法的优势在于有可能构造出全新结构的先导化合物,局限性在于设计的化合物在化学合成上可能存在困难,分子设计的成功率较低。

3.基于药物作用机理的药物设计

基于药物作用机理的药物设计是在基于结构的药物设计基础上,进一步考虑了药物与受体的动态结合过程,药物对受体构象的调节以及药物在体内的传输、分布和代谢。基于机制的药物设计兼顾了药物

在体内作用的各个方面,可以选择性地阻止疾病发生和发展过程中最关键的病理环节,设计出高效、低毒副作用的特异性药物。

在过去,对药物作用机理的认识往往滞后于药物的发现,而现在药物研发的重心已经转到了探寻分子机理并据此设计药物上。而药物设计技术是基于对介导疾病病理生理过程的蛋白质分子结构和功能认识基础之上的。目前投入临床使用的某些药物,不少是基于对治疗该种特定病理条件的靶向代谢过程的认识开发而成的,其中较为成功例子就是抗抑郁药氟西汀。此药被开发用于替代单胺氧化酶抑制剂(MAOI)和19世纪50年代出现的三环类抗抑郁药,因为这两类药物相对来说作用不特异,临床应用会导致明显的副作用。当时研究人员普遍认为,只要增加5-羟色胺的神经释放、研制某些可以抑制神经突触处5-羟色胺摄入的抗组胺药物或提高5-羟色胺的有效浓度,即可起到有效抗抑郁作用。基于这一理论,由抗组胺药物盐酸苯海拉明衍生而来的候选化合物被先后合成,并发现了选择性5-羟色胺再摄取抑制(SSRI)氟西汀,现在氟西汀正被礼来公司以商品名Proxac上市。氟西汀的发现和成功说明了当前以理论为基础的药物研发工作的重要性。

合理药物设计不仅用于先导化合物的优化,更重要的是能进行先导化合物的人工设计,这为突破现有先导化合物框架,发现新的、更高效的药物提供了工具。但是,并不能因此片面夸大合理药物设计的作用,在药物设计的道路上仍然存在一系列问题需要解决,如蛋白质受体三维结构的真实性问题;受体一配体相互作用的方式问题;设计

各类设计流派与风格(名词解释)

【艺术设计流派】 【古典主义】17世纪一种艺术思潮,由法国流传世界。它以古希腊、罗马为典范和样板而被称为“古典主义”。代表作品:马拉之死、佩劳的卢浮宫东立面建筑设计。 【新古典主义】又称“典雅主义”“形式美主义”“新复古主义”。兴起于18世纪。资本主义初期一种设计思潮。把希腊罗马的古典建筑作为创作源泉。追求古典风格和简洁、典雅。追求合理的结构和简洁的形式。代表人物:杰弗逊的维吉尼亚大学校园。英国大笨钟。美国建筑师菲利普·约翰逊。 【折衷主义】任意模仿历史上的各种风格,或自由组合各种式样而不拘泥于某种特定风格。也被称为“集仿主义”。 【形式主义】或“形式主义设计”。对形式而非内容的重视。20世纪形式主义美学,形式主义强调艺术的形式因素具有独立的审美意义,将文本的形式结构作为艺术的核心。 【现代主义】兴起于20世纪初。最初发端于建筑领域。在建筑设计表现最为充分。特点是功能主义,形式上非装饰性的几何造型,重视空间的考虑,重视设计对象费用开支,具有高度理性化。幕墙架构,梁柱支撑。代表人物:瑞士勒·柯布西埃的钢管座椅。米斯·凡德罗的“少则多”。美国的弗兰克·赖特。芬兰的阿尔瓦·阿图的伊马特拉教堂。德国格罗佩斯的法古斯鞋楦厂和包豪斯校舍。 【粗野主义】也就“野性主义”“朴野主义”。以柯布西埃的粗犷的建筑风格为设计倾向。以表现建筑自身为主,讲究建筑形式美。以毛糙、粗鲁为建筑美的标准。只有钢筋混泥土,没有涂抹和装饰。马赛公寓是粗野主义达到成熟阶段的标志。代表人物:柯布西埃。路易康的达卡政府大楼。 【纯粹主义】属于现代主义风格的一个分支。以新帕拉图哲学为基础,涉及到所有塑性表现的造型设计倾向。由建筑师兼画家勒?柯布西埃和画家奥占芳发展起来的。1920年以后,在柯布西埃的力主下,建筑领域出现了纯粹主义创作思潮。它以“数学”即秩序为基础建立新

药物设计学复习资料

名词解释 1、合理药物设计:根据药物发现过程中基础研究所揭示的药物作用靶点,即受体,再参考 其内源性配体或天然药物的化学结构特征,根据配体理化性质寻找和设计合理的药物分子,以便有效发现、到达和选择性作用与靶点的又具有药理活性的先导物;或根据靶点3D结构直接设计活性配体。 2、高通量筛选:HTS,以分子水平和细胞水平的实验方法为基础,以微板形式作为实验工具 载体,以自动化操作系统执行实验过程,以灵敏快速的检验仪器采集实验数据,以计算机分析处理实验数据,在同一时间检测数以万计的样品并以得到的相应数据库支持运转的技术体系。 3、药物的体内过程即A、D、M、E的中文名称及各自定义:分别为 吸收:药物从用药部位进入体循环的过程。 分布:药物在血液、组织及器官间的可逆转运过程。 代谢:药物在吸收过程或进入体循环后,在体内酶系统、体液的PH或肠道菌从的作用下,发生结构转变的过程,此过程也称为生物转化。 排泄:药物或其代谢物排除体外的过程。 4、基于靶点的药物设计:TBBD,以生命科学为基础,根据疾病特异的功能、症状和机制, 发现和研究药物作用靶点以及与预防相关的调控过程。 5、基于性质的药物设计:PBBD,运用计算机辅助设计软件,根据配体的理化性质对设计的 先导物结构预测它们的吸收、分布、代谢、排泄和毒性(ADME/T),估计药物在体内的释放度和生物利用度,判断类药性 6、基于结构的药物设计:SBDD,以计算机辅助药物设计为手段,其方法分为基于靶点的直 接药物设计和基于配体的简介药物设计两类,运用受体学说和分子识别原理,设计对受体进行调控的先导物,或根据已有药物作用力大小和构效关系判断来推测新化合物的药效,达到发现活性分子的目地。 7、定量构效关系:QSAR,研究的是一组化合物的生物与其结构特征之间的相互关系,结构特 征以理化参数、分子拓扑参数、量子化学指数和结构碎片指数表示,用数理统计的方法进行数据回归分析,并以数学模型表达和概括量变规律。 8、三维定量构效关系:3D-QSAR,以配体和靶点的三维结构特征为基础,根据分子的内能变 化和分子间相互作用的能量变化,将已知一系列药物的理化参数和三维结构参数与药效拟合出定量关系,再以此化合物预测新化合物的活性,进行结构的优化和改造。 1、简述基于靶点结构的药物设计的基本流程。 定义活性位点→产生配体分子→配体分子打分→合成及活性测定→先导物 2、根据设计来源不同软药可以分为几种类型?软药和前药的区别有几个方面? 软类似物;活化的软类似物;用控释内源物设计天然软药;活性代谢物;无活性代谢物等类型。区别:①先导物不一样,前药是以原药为先导物的,软药的先导物既可以是原药也可以是原药的代谢物;②作用方式不一样,前药在体外无活性,只有到达靶点释放出原药才有活性,而软药在体外是有活性的,它们到达靶点发挥治疗作用后一步代谢失活。 3、简述先导物发现的可能途径。 ①筛选途径:从众多的化合物中运用生物筛选模型挑选有生物活性的先导物。现代筛 选途径涉及组合化学、组合库和高通量高内含筛选。 ②合理药物设计:基于靶点和配体的作用机制、三维结构和识别过程以及与药物理化

虚拟药物筛选与药物分子设计教程与实战

药物分子设计前沿 摘要:近些年来,各种各样的新型疾病依次出现。因此,寻找可以治愈这些疾病的药物对人们来说至关重要。随着计算机技术的高速发展,运用计算机进行新药的模拟实验已经成为一种新的方法。本文就对这些方法做一个总的综述来介绍这些方法在新药设计过程中的应用过程。计算机辅助药物设计方法(CADD)是药物分子设计的基础。从2O世纪6O年代构效关系方法(QSAR)提出以后.经过40多年的努力和探索,CADD方法已经发展成为一门完善和新兴的研究领域。计算机辅助药物设计是应用量子力学、分子动力学、构效关系等基础理论数据研究药物对酶、受体等作用的药效模型,从而达到药物设计之目的。计算机辅助药物设计方法(CADD)大体可以分为三类:基于小分子的药物分子设计方法、基于受体结构的药物分子设计方法、计算组合方法。计算机辅助药物设计是研究与开发新药的一种崭新技术,它大大加快了新药设计的速度,节省了创创新药工作的人力和物力,使药物学家能够以理论作指导,有目的地开发新药。 关键词:药物分子设计计算机模拟分子模拟活性位点分析法 ABSTRACT:In those past years, a variety of new diseases were appeared. So, it’s vary essential for us to find the drugs that can cure these diseases. And with the fast development of computer technology, the applying of computer in the simulations of these new drugs has become a new method. In this paper, I will draw a general overview of those methods to introduce the applications in the design process of the new drugs. The method of Computer Aided Drug Design(℃ADD)was the basis 0f drugs molecule design which was proposed in 1960.During the last 40 years,the CADD method has been widely applied as a burgeoning and potential research area.The aim of CADD is to design drug according to the pharmacodynamic model between the drugs and the enzyme or receptor which is applied the quantum mechanics.molecular dynamics,and quantitative structure—activity relationship.The CADD includes three methods:method basing on the ligand,method basing on the receptor,and combinatorial chemistry method.The CADD is a new technology to research drug which can accelerate the speed of drug design,economize the manpower and material resources. KEY WORDS:Drug molecular design;computer simulation; molecular simulation;active site analysis 引言 传统药物设计从总体上来讲,缺乏成熟完善的发现途径,具有很大的盲目性,一般平均要筛选10000种以上的化合物才能得到一种新药,因此开发效率很低。随着计算机技术及计算化学、分子生物学和药物化学的发展,药物设计进入了理性阶段,其中药物分子设计是目前新药发现的主要方向。它是依据生物化学、酶学、分子生物学以及遗传学等生命科学的研究成果,针对这些基础研究中所揭示的包括酶、受体、离子通道及核酸等潜在的药物设计靶点,并参考其它类源性配体或天然产物的化学结构特征,设计出合理的药物分子。运用计算机模拟来进行新药的分子结构设计主要有三种方法:分子对接设计、遗传算法以及计算机辅助

有关计算机参与药物设计的综述

有关计算机参与药物设计的综述 天津市汉沽医院药剂科潘秋霞【摘要】 利用计算机辅助药物设计正离我们越来越近。无需很久,包括癌症、关节炎、艾滋病在内的众多疾病相关药物将完全产生于计算机,以往所依靠的经验式重复筛选法将被抛弃。将设计工具和设计方法进行集成是提高效率最有效途径。表现在药物研发领域即是创意问题解决理论与计算机辅助药物设计之间的结合。专家称这使新药开发全速奔向一个新时代,而这一时代正是科学界期待已久的。 从1894年Emil Fischer[1]提出药物作用的“锁钥原理”[2]开始,药物设计一直是药物研发人员的一个梦想。经过科学家多年的努力探索,特别是计算机和信息科学等学科的发展,计算机辅助药物设计方法[3]日趋成熟,技术日益丰富。通过与实验紧密结合,计算机辅助药物设计在药物研究中正发挥越来越重要的作用,已成为药物研究的核心技术之一。药物设计的梦想正在逐步实现[4]。 【关键词】计算机药物化学药物设计分析法 计算机辅助药物设计(computer aided drug design)是以计算机化学为基础,通过计算机的模拟、计算和预算药物与受体生物大分子之间的关系,设计和优化先导化合物的方法[5]。受体是指生物体的细胞膜上或细胞内的一种具有特异性功能的生物大分子,与内源性激素、递质或外源性药物结合后,发生一定的特定功能,如开启细胞膜上的离子通道,或激活特殊的酶,从而导致特定的生

理变化。能与受体产生特异性结合的生物活性物质称为配体(ligand)。配体与受体结合能产生与激素或神经递质等相似的生理活性作用的称为激动剂;若与受体集合后阻碍了内源性物质与受体结合,从阻断了其产生生理作用的,则称为拮抗剂。计算机辅助药物设计实际上就是通过模拟和计算受体与配体的这种相互作用,进行先导化合物的优化与设计[6]。 计算机辅助药物设计根据受体的结构是否已知,分为直接药物设计和间接药物设计。 计算机辅助药物设计的方法始于1980年代早期。当今,随着人类基因组计划的完成、蛋白组学的迅猛发展,以及大量与人类疾病相关基因的发现,药物作用的靶标分子急剧增加;同时,在计算机技术推动下,计算机药物辅助设计在近几年取得了巨大的进展[7]。 计算机辅助药物设计的一般原理是,首先通过X-单晶衍射技等技术获得受体大分子结合部位的结构,并且采用分子模拟软件分析结合部位的结构性质,如静电场、疏水场、氢键作用位点分布等信息[8]。然后再运用数据库搜寻或者全新药物分子设计技术[9],识别得到分子形状和理化性质与受体作用位点相匹配的分子,合成并测试这些分子的生物活性,经过几轮循环,即可以发现新的先导化合物。因此,计算机辅助药物设计大致包括活性位点分析法、数据

中外设计史名词解释

中外设计史名词解释 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

中外设计史名词解释 1.雕漆:(1)相传始于唐的漆器品类。(2)制作方法,将已做好的木胎或者金银胎上层层髹漆,以至上百道大漆,待到一定厚度时,再于漆地上雕刻花纹。其纹饰具有层次分明,主题突出的浮雕效果。(3)因所雕漆颜色不同,雕漆又分为剔红、剔黄、剔黑、剔彩、剔犀等多种。(4)元代以后,以剔红为典型的雕漆成为中国漆器的代表。 2.技近乎道:(1)根据《庄子》里面的一些内容提炼出来的道理,如《庄子—养生篇》,“庖丁解牛,技近乎道”。(2)意思是,无论是哪一种技巧,当它发展到极致时到会符合自然界的规律,也就是“道”。(3)即纯粹的技术,单纯的手艺,却蕴含有接近于哲理的微言大义。 3.可持续设计:(1)Sustainabile Design,是一种构建及开发可持续解决方案的策略设计活动。(2)均衡考虑经济、环境、道德和社会问题,以在思考的设计引导和满足消费需求,维持需求的持续满足。可持续的概念不仅包括环境与资源的可持续,也包括社会、文化的可持续。(3)一个好的设计不但要考虑到它的使用期间不为环境带来伤害,还要考虑到当它的生命结束后是否能回归大自然,甚至回馈大自然。这样的一个设计就叫做“可持续设计”。 :(1)时尚的意思,也有流行款式,时新式样的意思。(2)所谓时,乃时间,时下,即在一个时间段内;尚,则有崇尚,高尚,高品位,领先的意思。即在特定的时间内流行,随后就可能发生变化的各种行为方式。(3)时尚的产生是个性追求的结果,是人们求新求异心理的反映。时尚与当时的社会文化尤其是与当时的主要社会思潮有着极为密切的关系,体现了当时的经济、政治、文化环境,反映的是当时人们的审美倾向以及心理诉求。(4)时尚具有前沿性,新奇性,变化性,优越性,抒情性,大众性的特点。 5.乌尔姆设计学院:(1)德国战后最重要的设计学院,爱歇*舒尔建立。(2)学院以理性主义设计,技术美学思想为核心,倡导系统设计原则,培养了一批新一代的设计师。(3)乌尔姆设计学院的教育思想和教学体系的核心内容是:把现代设计完全建立在科学技术的基础之上,培养科学型的现代设计师,提高工业产品设计、建筑设计、平面设计等的总体水平,为德国的工业发展服务。乌尔姆设计学院在设计理论方面的最大贡献是系统设计原则,该理论的提出为德国工业设计史树立了新的里程碑。(4)代表人物:1.汉斯*古格洛特,乌尔姆教员,最早基于模数体系的音响系统设计,成为德国的设计特征之一。 2.迪特*兰姆斯,首创录音机与扬声器分离的音响系列产品,是现代组合音 响的最初尝试。(5)20世纪50到60年代,乌尔姆设计学院在设计人才的培养上获得了极大的成功,学院的设计思想及设计风格对德国工业设计领域内的渗透和影响更是举足轻重,使功能主义的设计思想在德国工业设计中得到广泛传播,真正实现了设计艺术教育服务于工业生产的教育宗旨,其艺术设计思想,设计方法以及设计审美对德国设计界的影响还是很大的。

维生素C药物分析设计性实验综述

药物分析设计性实验综述 维生素C 及其制剂的含量测定 2015 年 4 月 摘要:本文简要介绍了维生素C 的结构、性质,详述了维生素C 的 鉴别及含量测定的方法,如滴定分析法,分光光度法,电极法,薄层色谱法和高效液相色谱法等,并讨论各种方法的优缺点。 关键词:维生素C;鉴别;含量测定; 前言:维生素C 作为维持机体正常生理功能的重要维生素之一,不仅广泛参与机体氧化、还原等复杂代谢过程,还能促进体内胶原蛋白和粘多糖的

药物分析设计性实验综述 合成,增加机体抵抗力。缺乏时可引起造血机制障碍、贫血、微血管壁通透

性增加,脆性增强,容易出血等坏血病症状,故其对人体健康有着重要的意义。维生素C 是一种酸性己糖衍生物,具有烯醇式己糖内酯立体结构,分D 和L 两种立体构型,但只有L 型有生理功效。维生素C 具有较强的还原性, 在一定条件下氧化型和还原型可以互变,两者均具有生物活性。其C2 和C3 位上两个相邻的烯醇式羟基极易解离而释放出H+,故维生素C虽然不含自 由羧基,仍具有有机酸的性质。维生素 C 呈无色无臭的片状结晶体,易溶于水,不溶于脂。在酸性环境中稳定,遇空气中氧、热、光、碱性物质,特别是有氧化酶及痕量铜、铁等金属离子存在时可促进其破坏速度。 维生素c 的剂型主要有片剂、颗粒剂、泡腾剂、注射剂等 维生素C 分子结构图 1 鉴别 鉴别方法有:与氧化剂反应、薄层色谱法、紫外光谱法、红外光谱法等,本综述只讲述其中具有代表性的两种。 1.1 与硝酸银反应:: 除维生素C 钙、维生素C 钠、维生素注射液、维生素 C 银翘片,其余制剂均可用此方法。 1.1.1原理

设计学概论-名词解释

设计学概论-名词解释

手工艺设计: 主要指农业社会条件下大量存在的手工业行业中的设计活动。在工业社会中仍有部分遗存,但已不是生产活动的主流。是靠手工艺人以专门技术创造产品的,往往集设计、生产、销售于一身。手工艺设计风格可分为二,即宫廷风格和民间风格。宫廷风格以追求奢侈豪华为荣,往往使用昂贵的材料,代表了当时手工艺最高水平,艺术成熟而完美。民间风格注重实用功能,材质普通易得,装饰简单朴素,虽有时失之粗朴,但却使纯真感情自然流露。 工业设计: 指工业生产领域内的设计活动。它是在现代化大工业生产条件下对工业产品进行创新的社会实践形态。工业设计过程中,包含着技术的,艺术的,生理的,心理的,经济的,社会的各种因素的综合作用。工业设计必然反映着其所产生的特定社会时代精神,价值观念和审美趣味。就批量生产的工业产品而言,凭借训练技术知识,经验及视觉感受而赋予材料,结构,构造,形态,色彩,表面加工以及装饰以新的品质和规格,叫工业设计。主要工作领域有:产品设计,视觉传达设计,环境设计和企业形象设计。 绿色设计: 又称环境设计,生态设计,是人类环保意识给设计提出的新课题。在生产活动中把环保利益放在首位,改变了原来把经济利益放在首位的做法。在设计生产中必须尽量使用可重复使用,不造成污染的“绿色材料”。绿色材料要满足“整体、和谐、循环、再生”的生态原理。绿色设计是人类生存环境和有限的生存资源密切相关的设计理念,是未来每一个设计师需要深刻考虑的。 仿生设计: 仿生设计是设计与仿生学结合,进行创造和设计的过程。仿生学的最终目的是通过生物的物质结构,功能,能量和信息原理及其作用机理的研究,实现新的设计,或解决设计中存在的问题,满足人类生产、生活需要。仿生设计主要包括:①名称的模仿②形态的模仿③功能与结构的模仿④信息传递方式的模仿。在未来设计中,对优化设计,解决设计中的疑难问题,仿生设计是一把重要的钥匙。 设计要素: 设计以物为媒介完成物与物,人与人,物与环境的协调关系。 设计受四种要素的限制:材料的性能,材料加工方法所起的作用,整体上各部件的紧密结合,整体对于观赏者,使用者或受其影响所产生的效果。 设计要素细分内容包括:①功能要素——实用功能,认知功能,象征功能,审美功能。②形式要素——形态、色彩、肌理。③技术要素——生产技术、产品技术、操作技术。④经济要素——效率、价格、销售、服务。 设计风格: 设计风格是设计作品以造型样式为主要特征的风貌和格调,借此同其他设计作品相区别。设计风格的产生与自然环境,社会文化背景以及科学技术的发展有直接关系。设计风格的形成,发展,衰落与社会文化,科学技术的发展,以及自然环境的差异息息相关。设计管理: 广义的设计管理包括通过立法对设计行业进行的法律和行政管理,以及企业内部的设计管理。设计是一种群体行为。在公司或企业的整个经营战略,设计管理只是这个战略的一部分。 皮特:从管理的角度看,设计是一种合作性的为使产品达到某种目标的计划过程。因此,设计管理是这个过程最核心的地方。从其内容看,它是一门多层次,多学科的新兴交叉学科。“科学技术是第一生产力”,而设计则是把科学物化与市场结合的桥梁。设计是企业,国家竞争力高低的直接体现。 设计程序: 设计程序是设计从策划,实施生产到销售的整个过程。L·B·阿嘉分为十个阶段:①基本方针的确定②预备调查③可行性研究④设计展开⑤式样展开⑥销售调查⑦面向生产的展开⑧生产计划⑨机械设备及市场准备⑩生产和销售。A·F·欧兹本的程序:①决定方针②准备③分析④构想⑤综合⑥传达。 我国通用设计程序:①计划②调查③分析④构想⑤表达⑥评价⑦试产⑧试销⑨反馈⑩调整。 设计与文化: 文化是“人类生活方式的总和”。人类一切文化都始于造物,人类文化产生于人类的造物活动(设计、生产)中,人类的造物思想的物化又记载、传承了人类造物活动积累的文化成果,人类的文化积淀又促进了人类造物活动的发展。现代工业设计要求充分考虑产品使用的文化环境和要有文化内涵。文化是人类造物活动的产物,文化在人类造物活动中得以发展和传承。设计与文化相辅相成,文化在人类设计活动中不断丰富、发展、传承,设计的民族文化内涵必然会增加设计的文化品位和世界性。 设计生活: 产品设计是为人类生活服务,不同时期的产品设计还是人类生活方式的载体。人类不同历史时期的生活方式,会直接由他们当时使用的产品反映出来。产品设计的发展史又是人类生活方式的发展史,通过人类个时期的产品研究,可以艺术的了解某一时期人类的生活方式。 设计与社会: 设计的社会性是设计成败的关键因素。设计的目的是供人进行消费,人具有社会性和文化属性。“设计—生产—消费”是一个共生的社会生态体系。设计的目的是为了企业合理的生产,使设计在市场中得到承认,设计的一切都是在一定社会和自然环境中进行的。“设计”是社会生态体系中的有机的一环。设计还必须具有一种社会责任感,如产生安全性、环保性、文化性等。

药物分子设计基础论文

药物分子设计的基本学识论文 摘要 近些年来,各种各样的新型疾病依次出现。因此,寻找可以治愈这些疾病的药物对人们来说至关重要。随着分子生物学和药物化学的发展,药物设计进入了理性阶段,其中药物分子设计是目前新药发现的主要方向。它是依据生物化学、酶学、分子生物学以及遗传学等生命科学的研究成果,针对这些基础研究中所揭示的包括酶、受体、离子通道及核酸等潜在的药物设计靶点,并参考其它类源性配体或天然产物的化学结构特征,设计出合理的药物分子。本文介绍了几种药物设计的方法。关键词:药物;分子设计;靶点。 ABSTRACT In recent years a variety of new disease appeared in turn. Therefore, looking for drugs that c an cure the disease to people is very important. With the development of molecular biology and pharmaceutical chemistry, entered the stage of rational drug design of drug molecular design is t he main direction of drug discovery. It is on the basis of biochemistry, enzymology, molecular biol ogy and genetics biological scientific research achievements, such as iron to these basic research reveals the including enzyme, receptors, ion channels and nucleic acids such as potential targets f or drug design, and refer to other types of source sex ligand or chemical structure characteristics of natural products, design a reasonable drug molecules. Original meaning, this paper introduces several kinds of drug design methods. Keywords: drugs; Molecular design; Targets. 一.药物分子生物学重点。 1.分子生物学:是在分子水平研究生命现象的科学,是现代生命科学的共同语言。核心内容是通过生物的物质基础——核酸、蛋白质、酶等生物大分子的结构、功能及其相互作用等运动规律的研究来阐明生命分子基础,从而探讨生命的奥秘。 2.药学分子生物学:由于分子生物学的新理论、新技术渗入到药学研究领域,从而使药物学研究以化学、药学的培养模式转化为以生命科学、药学和化学相结合的新药模式。 3.分子生物学的主要研究对象:核酸、蛋白质、酶等生物大分子的结构、功能及相互作用。 4.分子生物学在医药工业中的应用: ①DNA重组技术与新药研究 ②药物基因组学、药物蛋白质组学与现代药物研究 ③药物蛋白质组学是基因、蛋白质、疾病三者相连的桥 二.药物设计的发展 1.药物设计是随着药物化学学科的诞生相应出现的。早在20世纪20年代以前,就开始进行天然有效成分的结构改造。直到1932年,欧兰梅耶发表了将有机化学的电子等排原理和环状结构等价概念用于药物设计,首次出现具有理论性的药物分子结构的修饰工作。随后,药物作用的受体理论、生化机制、药物在体内转运等药物设计的理论不断出现。在60年代初出现了构效关系的定量研究,1964年汉希和藤田稔夫提出定量构效关系的汉希分析。药物设计开始由定性进入定量研究阶段,为定量药物设计奠定理论和实践基础。药物设计逐渐形成一门独立的分支学科。70年代以后药物设计开始综合运用药物化学、分子生物学、量子化学、统计数学基础理论和当代科学技术以及电子计算机等手段,开辟了药物设计新局面。随着分子生物学的进展,对酶与受体的理解更趋深入,对有些酶的性质、酶反应历程、药物

新药设计作业

三种药物设计原理在新药设计中的应用综述摘要:新药设计的主要任务是药物先导化合物的发现以及先导化合物的结构优化。而结构拼合、软药原理和前药原理越来越成为设计和开发新药物先导化合物的重要方法,为新药的研制工作开创了一个新的局面。就目前有关结构拼合、软药原理和前药原理研究的基本理论、基本方法分类、发展趋势及其在研制新药的先导化合物中的应用进行了综述。 关键词:药物设计原理;先导化合物;新药设计 拼合原理 1药效结构拼合的发展 早在19世纪中叶,研究人员就将两个药物的基本结构拼合在一个分子中,以期获得毒副作用小、药理效应相加的新药的设想。当时受到科学水平的限制,可用于临床的例子不多。随着有机化学、生物化学、分子药理学的发展,这一“拼合”设想,逐渐得到完善,且已成为“拼合原理”、广泛用于新药设计之中。拼合原理主要是指将两种药物的药效结构单元拼合在一个分子中,或将两者的药效基团通过共价键兼容于一个分子中,使形成的药物或兼具两者的性质,强化药理作用,减少各自相应的毒副作用,或是两者取长补短,发挥各自的药理活性,协同完成治疗作用[1]。目前国内外许多制药公司和研究所,正致力于应用拼合原理研发新药。由于应用已知疗效的药物拼合新药,基于原料药的药理作用不难预测出拼合出的新药的药理活性,这就使新药研发具有一定的目的性和基础,从而缩短了新药研发的进程。药物拼合已经作为发现新药的快速和有效手段,成功地应用在多种药物的合成中。 2药效结构拼合分类

2·1按药理分类 2·1·1将两个作用类型相同的药物或同一药物的两个分子拼合在一起 这类药物的合成是为了产生更强的作用,或降低毒副作用,或改善药代动力学性质等,构成的两个原分子具有相同的药理作用类型。 2·1·2将两个不同药理作用的药物拼合在一起 如苯丁酸氮芥是抗肿瘤药,但其毒性较大,副作用较多,严重影响了其临床应用。罗氏公司设计以甾体为其载体,增加其靶向性,来减少它的毒副作用,这种思路指导下将泼尼松龙和苯丁酸氮芥拼合形成抗肿瘤药泼尼莫司汀,其对前列腺癌的选择性显著提高,降低了苯丁酸氮芥的毒性。 2·2按结合方法分类 在Perez的论文中,两种药效团之间的拼合分为“重叠式”和“链接式”两种类型。 2·2·1“重叠式”类型 是将两种药效团之间共同存在的结构单元(一般为氮原子)杂交在一起,两种药效团结构变化不大,新生成的杂交分子充分利用了两种药效团之间的结构部分相似性。 2·2·2“链接式”类型 是将两种药效团之间的两个氮原子用一种合适的连接基团杂交在一起,分子结构变化较大,这个连接基团称之为“连接体”,不同的连接体构成了不同的设计策略。 2·3按反应类型分类 2·3·1成酯拼合 这一类型目前在药物拼合中应用最广,一种药物分子中羧基与另一种药物分子

药物设计答案(总)

作业 0 导论 1. 名词解释 ①药物发现 就是新药研究和开发的过程,包括以生命科学为基础的某种疾病和治疗靶点确定的基础和可行性分析研究;与药理学有关的先导物体内外检测的生物模型和方法学的建立,以及药代血河安全性研究;制剂学;专利申请以及人体Ⅰ、Ⅱ、Ⅲ、Ⅳ试验和上市销售。 ②药物设计 仅包括基础研究和可行性分析涉及的先导化合物发现过程,即通常所讲的药物设计。 ③受体 生物体的细胞膜上或细胞以内能与某些外来物质结合并产生某种生物作用的特异性大分子结构。 ④配基 能 与受体产生特异性结合(分 子识别)的生物活性物质(包 括信息分子和药物)。 ⑤合理药物设计 根据药物发现过程中基础研究所揭示的药物作用靶点(受体),再参考其内源性配体或天然药物的化学结构特征,根据配体理化性质寻找和设计合理的药物分子,以便有效发现、达到和选择性作用于靶点的又具药理活性的先导物;或根据靶点3D结构直接设计活性配体。 ⑥组合化学 用数学组合法或均匀与混合交替轮作方式,顺序同步地共价连接结构上相关构件,批量合成不同分子实体,不需确证单一化合物的结构而建立有序变化的化合物库。

⑦高通量筛选 运用计算机控制的高敏化和专一性筛选模型,对大量化合物的药效进行微量样品的自动化测定。 ⑧高内涵筛选 在保持细胞结构和功能完整性的前提下,尽可能同时检测被筛样品对细胞的生长、分化、迁移、凋亡、代谢途径及信号传导等多个环节的影响,从单一实验中获取多种相关信息,确定其生物活性和潜在毒性。 ⑨外消旋转换 将已上市的外消旋体药物再开发成为单一对映体药物。 2. 简答题 ①简述药物发现的基本阶段。 共包括6个阶段。 基础研究阶段:对疾病进行生命科学的基础研究,发现致病机理确定疾病的多种靶点及相关的新化学实体(NCE); 可行性分析:考察基础研究成果的可靠性、有效性及适应市场的价格能力;项目研究(临床前):以先导化合物为候选药物,进行药学、药理和毒理学等方面的研究,以求发现可进行临床研究的研究中新药(IND); 非临床开发:是根据项目研究判断候选药物能否做研究中新药,并向药物管理法定部门申请临床研究的总体评价,也是一个决策过程。 临床研究:以人体为试验对象,确证IND的实际应用价值,确定该IND能否被新药审评中心批准投产及进入市场。进行人体Ⅰ、Ⅱ、Ⅲ、Ⅳ试验。 注册申请:临床试验确证有效后,进入注册申请阶段,获得国家法定机构的批准,才能上市销售。 第一章 1. 简答题 (1)化合物的三个来源。 ①天然产物的提取物; ②通过组合化学合成的化合物,常以化合物组合库的形式提供;

合理药物设计综述

合理药物设计 杨敏 2010113201 摘要:合理药物设计包括基于靶点合理药物设计、基于性质的合理药物设计和基于结构的合理药物设计。通过对药物结构和体内靶点的研究,使药物达到需要的目的。抑制酶的活性、促进某种物质的释放、阻碍通道等。本文主要对基于结构的合理药物设计进行综述. 基于靶点的合理药物设计 基于靶点的合理药物设计就是通过对药物作用的靶点进行 研究,找到新的、合适的药物来治疗某些疾病。发现一个的靶点往往就能设计出一类新药,在新药研究领域也是极受重视的。药物的靶点一般可分为以下几类:细胞膜受体酶、细胞因子和激素、核酸、核受体、离子通道、酶等。 以酶为靶点的合理药物设计:血管平滑肌细胞异常的增殖和迁移在动脉硬化和血管损伤后再狭窄中起着重要的作用。表皮生长因子( epithelialgrowth factor, EGF)是已知重要的血管平滑肌细胞异常增殖与迁移的刺激因子。EGF和EGF受体(E GFR)接到的信号通路在血管重塑和血管损伤后新生内膜形成中起着极其重要的作用。因此, 在病变形成过程中,它常被作为一

个药物治疗战略的靶点。藤黄树产自中国及东南亚地区,中医药文献报道藤黄树脂具有较强的止血、抗炎、抗氧化和抗感染作用。藤黄酸( gambogic acid,GA)是藤黄树脂中提取的有效成分,既往研究报道藤黄酸可通过抑制AKT、ERK、c2Src、FAK和VEG2FR2等起到较强的抗癌、抗炎和抑制血管新生的作用。(tyrosinekinaseinhibitor,TKI) 以其高选择性和低毒性的优势在肿瘤临床治疗中令人目。蛋白质酪氨酸激酶(PTK)包括四大家族:表皮生长因子家族、胰岛素家族、血小板家族、纤维细胞生长因子家族。表皮生长因子受体酪氨酸激酶抑制许多肿瘤组织同时表达表皮生长因子受体(epidermalgrowthfactor re ceptor,EGFR) 及其配体,EGFR及其配体网络已经明确为肿瘤治疗的重要靶点。通过对酪氨酸激酶的研究,可研发出一类抗多种癌症的药物。 以离子通道为靶点的药物设计:钾离子通道开放剂。钾离子通道复杂,多样及分布广泛,在介导多种生理生化反应中扮演着重要角色。在动脉平滑肌中存在的四种主要的钾离子通道中,研究的最为广泛的是ATP酶激活的钾离子通道,其开放和关闭将直接影响血管平滑肌的功能。I kATP的开放概率与ATP以及ADP、GD P以及GTP有关。IkATP也是某些扩血管物质以及某些抗高血压物质的作用靶点,一些内源性的扩血管物质如神经肽、降钙素基因相关肽等可通过激活I kATP而发挥松弛血管的作用。其中应用较为广泛的药物有吡那地尔。吡那地尔通过开放平滑肌细胞中的钾

计算机辅助药物设计(完整版)

计算机辅助药物设计完整版 第1章概论 一、药物发现一般过程 新药的研究有三个决定阶段:先导化合物的发现,新药物的优化研究,临床与开发研究。计算机辅助药物设计的主要任务就是先导化合物的发现与优化。 二、合理药物设计 1、合理药物设计(rational drug design)是依据与药物作用的靶点,即广义上的受体,如酶、受体、离子通道、病毒、核酸、多糖等,寻找和设计合理的药物分子。通过对药物和受体的结构在分子水平甚至电子水平的全面准确了解进行基于结构的药物设计和通过对靶点的结构、功能、与药物作用方式及产生生理活性的机理的认识基于机理的药物设计。CADD通过内源性物质或外源性小分子作为效应子作用于机体的靶点,考察其形状互补,性质互补(包括氢键、疏水性、静电等),溶剂效应及运动协调性等进行分子设计。 2、方法分类 (1)合理药物设计有基于靶点结构的三维结构搜索和全新药物设计等方法。后者分为模板定位法、原子生长法、分子碎片法。 (2)根据受体是否已知分为直接药物设计和间接药物设计。前者即通过结构测定已知受体或受体-配体复合物的三维结构,根据受体的三维结构要求设计新药的结构。受体结构测定方法:同源模建(知道氨基酸序列不知道空间结构时),X射线衍射(可结晶并得到晶体时),多维核磁共振技术(在体液即在水溶液环境中)。后者通过一些配体的结构知识(SAR,计算机图形显示等)推测受体的图像,提出假想受体,采用建立药效团模型或3D-QSAR和基于药效团模型的三维结构搜索等方法,间接进行药物设计。 三、计算化学 计算化学包括分子模型、计算方法、计算机辅助分子设计(CAMD)、化学数据库及有机合成设计。 计算方法基本上可分为两大类:分子力学(采用经典的物理学定律只考虑分子的核而忽略外围的电子)和量子力学(采用薛定谔方程考虑外围电子的影响,分为从头计算方法和半经验方法)。 常用的计算应用有:(1)单点能计算:根据模型中原子的空间位置给出相应原子坐标的势能;(2)几何优化:系统的修改原子坐标使原子的三维构象能量最小化;(3)性质计算:预测某些物理化学性质,如电荷、偶极矩、生成热等;(4)构象搜索:寻找能量最低的构象;(5)分子动力学模拟:模拟分子的构象变化。 方法选择主要有三个标准:(1)模型大小;(2)可用的参数;(3)计算机资源 四、计算化学中的基本概念 1、坐标系统 分为笛卡尔坐标(三维空间坐标)和内坐标(Z矩阵表示,参数为键长、键角、二面角数据)。前者适合于描述一系列的不同分子,多用于分子力学程序,有3N个坐标;后者常用于描述单分子系统内各原子的相互关系,多用于量子力学程序,有3N-6个坐标。 2、原子类型:用来标记原子属性。 3、势能面 体系能量的变化被认为能量在一个多维的面上运动,这个面被称为势能面。坐标上能量的一阶导数为零的点为定点(原子力为零,局部或全局最稳定)。 4、面积 Van der Waals面积:原子以van der Waals为半径的球的简单堆积。

药物设计学复习资料

药物设计学复习资料

名词解释 1、合理药物设计:根据药物发现过程中基础研究所揭示的药物作用靶点,即受体,再参考其内源性配体或天然药物的化学结构特征,根据配体理化性质寻找和设计合理的药物分子,以便有效发现、到达和选择性作用与靶点的又具有药理活性的先导物;或根据靶点3D结构直接设计活性配体。 2、高通量筛选:HTS,以分子水平和细胞水平的实验方法为基础,以微板形式作为实验工具载体,以自动化操作系统执行实验过程,以灵敏快速的检验仪器采集实验数据,以计算机分析处理实验数据,在同一时间检测数以万计的样品并以得到的相应数据库支持运转的技术体系。 3、药物的体内过程即A、D、M、E的中文名称及各自定义:分别为 吸收:药物从用药部位进入体循环的过程。分布:药物在血液、组织及器官间的可逆转运过程。

代谢:药物在吸收过程或进入体循环后,在体内酶系统、体液的PH或肠道菌从的作用下,发生结构转变的过程,此过程也称为生物转化。 排泄:药物或其代谢物排除体外的过程。 4、基于靶点的药物设计:TBBD,以生命科学为基础,根据疾病特异的功能、症状和机制,发现和研究药物作用靶点以及与预防相关的调控过程。 5、基于性质的药物设计:PBBD,运用计算机辅助设计软件,根据配体的理化性质对设计的先导物结构预测它们的吸收、分布、代谢、排泄和毒性(ADME/T),估计药物在体内的释放度和生物利用度,判断类药性 6、基于结构的药物设计:SBDD,以计算机辅助药物设计为手段,其方法分为基于靶点的直接药物设计和基于配体的简介药物设计两类,运用受体学说和分子识别原理,设计对受体进行调控的先导物,或根据已有药物作用力大小和构效关系判断来推测新化合物的药效,达到发现活性分子的目地。

课程名称:药物设计

课程名称:药物设计 一、课程编码:1000033 课内学时:32 学分: 2 二、适用学科专业:制药工程 三、先修课程:药物化学、有机化学 四、教学目标 通过本课程的学习,使学生掌握药物设计的基本概念和基础理论知识,熟悉分子的多样性、互补性和相似性在药物设计中的地位和作用。通过学习先导化合物的优化、前药设计与应用、构效关系、计算机辅助药物设计等内容,能够从总体上把握常用的药物设计方法的特征、应用范围和内在联系,为学生从事药物设计与开发工作奠定基础;通过文献阅读与交流、撰写综述性文章提高学生进行药物研究的能力。 五、教学方式 课堂讲授28学时,文献报告与交流4学时。 六、主要内容及学时分配 1.绪论 2学时 1.1药物研究与开发的基本流程 1.2药物设计的发展及前沿领域 2.药物设计的生命科学基础 2学时 2.1药物与生物大分子的相互作用 2.2药物的代谢及药代动力学基础 3. 基于分子多样性的药物设计 5学时 3.1 分子多样性概念 3.2 天然产物与药物设计 3.3 组合化学与药物设计 3.4 多组分反应与药物设计 4. 基于药物代谢原理的药物设计 5学时 4.1 前药的原理及设计方法 4.2 软药的概念及其应用 4.3 孪药的概念及其应用 5. 基于分子相似性的药物设计 5学时 5.1 生物电子等排的概念及其应用 5.2 药效团的概念及其应用 5.3 优势结构的概念及其应用 5.4 肽模拟物的基本设计方法 6. 计算机辅助药物设计 6学时 6.1 基于生物大分子靶点结构的药物设计:分子对接与虚拟筛选 6.2 反向对接与多药药理学 6.3 计算机辅助药物设计研究进展 7 药物设计新方法 3学时 7.1 基于波谱学的药物设计方法 7.2 多维度模式下的药物设计 8. 药物设计案例分析与讨论 4学时

医药行业的发展=综述

医药行业概要 一、我国医药产业的发展现状 医药行业是我国国民经济的重要组成部分,是传统产业和现代产业相结合,一、二、三产业为一体的产业。其主要门类包括:化学原料药及制剂、中药材、中药饮片、中成药、抗生素、生物制品、生化药品、放射性药品、医疗器械、卫生、制药机械、药用包装及医药商业。医药行业对于保护和增进人民健康、提高生活质量,为生育、救灾防疫、军需战备以及促进经济发展和社会进步均具有十分重要的作用。 新中国成立以来,特别是改革开放20多年,我国已经形成了比较完备的医药工业体系和医药流通网络,发展成为世界制药大国。据统计口径:我国现有医药工业企业3613家,可以生产化学原料药近1500种,总产量43万吨,位居世界第二。 改革开放以来,随着人民生活水平的提高和对医疗保健需求的不断增长,医药工业一直保持着较快的发展速度,1978年至2000年,医药工业产值年均递增16.6%,成为国民经济中发展最快的行业之一。 二、我国医药产业在国民经济中的地位 自1997年以来,医药工业在国民经济中的地位稳步提高,主要经济指标占全部工业总额的比重,呈现稳步增长态势。医药行业在国民经济中所占比重不大,以资产为主的规模比重仅为2%-3%,效益指标相对高一些也仅为3%-4%,是我国实现经济效益的稳定来源产业之一,但并未进入支柱产业之列。医药行业与人民群众的日常生活息息相关,是为人民防病治病、康复保健、提高民族素质的特殊产业。在保证国民经济健康、持续发展中,起到了积极的、不可替代的“保驾护航”作用。 三、药品质量管理的三个重要标准 质量是药品的生命,质量无法保证的药品在某种意义上可以说是毒品,不但不能治疗人体疾病,反而贻误治病时机,危及患者生命。要想做好药店里的质量管理工作需要不断地查遗补缺,必须掌握三个标准。这三个标准是其他工作的基础,基础性工作如果做不好,就很难保证药品质量,也就难以达到方便顾客,保证人民用药安全有效的根本目的。 1.购进验收标准。连锁药店的门店没有购进环节,只是接受总部的配送,按照来货跟踪单和零售拨货单验收即可。而单体药店在购进药品时,应注意对供货单位和从业人员的资质进行审核,索取相关资料,包括供货单位的药品经营许可证复印件、营业执照复印件、gsp 或gmp证书复印件,以上均须盖有供货单位的公章;对供货单位销售人员应索取身份证复印件、毕业证复印件、授权委托书原件;另外还有双方签订的质量保证协议。以上资料齐全,才可签订合同,实施采购行为。从资质审查上把好关,不能完全提供以上资料的单位一般资信较差,门店不应与这样的单位发生业务。验收药品时,须逐批对照实货进行外观性状检查,对品名、规格、批号、数量、生产日期、有效期、生产厂家、批准文号等内容进行检查,发现外观异常者,不能验收入店。 2.在店养护标准。出厂的药品经检测合格后即可进入流通领域,在流通环节最重要的工作就是养护,若不注意养护,合格的药品可能就会变成不合格药品。如部分药品需储存在4~6℃,若温度过高或过低都会造成药物物理或化学成分的改变,造成药品失去治疗作用,成为不合格品;部分药品需要遮光密闭保存;有些需要常温状态下保存,温度过高就会发生危险,高浓度的双氧水溶液在强光照射下,会发生快速分解,造成爆炸。因此,做好药品养护,不只是能够避免不合格药品出现,也是保证营业安全的实际需要。 要做好定期养护工作,质管人员应对每一种药品的储存条件心中有数,严格按照储存要求将药品放在相应区域储存或陈列,店内相对湿度应保持在45%~75%之间,过高过低都要采取措施。若温度过高,一些栓剂就容易溶化,温度过低,一些液体就可能冻结或破裂;湿度过大,易吸湿药品就会吸水分解;湿度过低,过于干燥,药品包装如铝塑包装就容易干

相关主题
文本预览
相关文档 最新文档