当前位置:文档之家› 智能PID控制算法在跟踪伺服控制中的仿真研究

智能PID控制算法在跟踪伺服控制中的仿真研究

智能PID控制算法在跟踪伺服控制中的仿真研究
智能PID控制算法在跟踪伺服控制中的仿真研究

仿人智能控制

仿人智能控制 仿人智能控制是仿效人的政行为而进行控制和决策,即在宏观结构上和功能上对人的控制进行模拟。 开展仿人智能控制的研究,是目前智能控制的一个重要研究方向。 1.仿人智能控制的原理 1.1 仿人智能控制的基本思想 传统的PID控制是一种反馈控制,存在着按偏差的比例、积分和微分三种控制作用。 比例:偏差一产生,控制器就有控制作用,使被控量想偏差减小的方向变化, 器控制作用的强弱取决于比例系数Kp 积分:它能对偏差进行记忆并积分,有利于消除静差,但作用太强,既Ti太大 会是控制的动态性能变差,以至使系统不稳定。 微分:能敏感出偏差的变化趋势, To大可加快系统响应(使超调减小),但又会 使系统抑制干扰的能力降低。 下面来分析一下PID控制中的三种控制作用的是指以及他们的功能与人的控制思维的某种智能差异,从而看出控制规律的智能化发展趋势。1)比例;PID中实质是一种线性放大或缩小的作用,它类似于人的想象能力,可以把一个量想得大一些或小一些,但人的想象力是非线性的是变的,可根据情况灵活变化。 2)积分作用:对偏差信号的记忆功能(积分),人脑的记忆功能是人类的一种基本智能,人脑的记忆是具有某种选择性的。可以记住有用的信息,而遗忘无用或长时间的信息,而PID中的积分是不加

选择的长期记忆,其中包括对控制不利的信息,同比PID中不加选择的积分作用缺乏智能性。 3)微分:体现了信号的变化趋势,这种作用类似于人的预见性,但PID中的微分的预见性缺乏人的远见卓识,且对变化快的信号敏感,对变化慢的信号预见性差 仿人智能控制的基本思想是指:在控制过程中利用计算机模拟人的控制行为能力,最大限度的识别和利用控制系统动态过程所提供的特征信息进行启发和直觉推理,从而实现对缺乏精确数学模型的对象进行有效的控制 1.2 仿人智能行为的特征变量 对系统动态特征的模式识别,主要是对动态模式的分类,根据系统偏差e及偏差变化△e以及由它们相应的组合的特征变量来划分动态特征模式,通过这些特征模式刻画动态系统的动态行为特征,以便作为智能控制决策的依据。 a b 图1 系统的典型阶跃响应曲线 图1给出了一个系统的典型阶跃响应曲线,曲线上a,b,F三处的系统输出是一样的,但他们的动态特征是不同的,a处偏差将继续偏离平衡

智能控制算法及其用于结构振动控制的实践

智能控制算法及其用于结构振动控制的实践 发表时间:2016-07-25T14:37:52.590Z 来源:《电力技术》2016年第4期作者:郝志伟[导读] 本文着重的概述智能控制领域中正在热门研究的模糊算法、人工智能算法和遗传算法等各个研究的方向。 新疆华隆油田科技股份有限公司新疆克拉玛依 834000 摘要:在智能控制的领域里有很多的研究方向可以供科研工作者们进行探索,而在土木工程的领域里结构振动的相关研究方向里,结构振动控制一直都是其中的热点。本篇文章主要是论述了智能控制算法的有关现状和发展的方向,并且还探讨了目前国内对于智能控制算法及其用于结构振动控制的实践上的发展前景。总的来说,在某种程度上智能控制算法的不断进化为土木工程的不断发展提供了充分的科学和技术支持,并且目前结构控制的热门研究方向就是结构智能控制【1】。本文着重的概述智能控制领域中正在热门研究的模糊算法、人工智能算法和遗传算法等各个研究的方向,也会对目前国内的智能控制算法在结构振动控制上的发展进行探讨。关键词:结构控制;智能算法;模糊推理;人工智能 国内的现代结构主动控制相关研究是在70年代的时候在国内刚刚兴起,目前已处于不断成熟的阶段,在国内的许多机械化的领域之内都十分的成功的应用了现代的控制理论,所以目前的结构控制的相关研究就是这样打下基础的。通过研究我们可以发现,在抗风和抗震程度上只有结构控制是能够得到的明显有效的效果。所以在国内的工程学一线领域里,结构控制是一个十分热门的研究方向。新兴的智能控制系统是一个十分新颖的理论技术,其具有十分强大的对整个局面的控制能力,即使面对复杂的系统操作也能进行有效的运算,容错能力显著,并且对于数学模型的处理能力很精通。 一、智能控制理论的起源 近百年以来各种新式技术不断的被发明发现,日新月异的更新着我们的生活和思想,而近十几年以来高新技术的迅速发展让越来越多的复杂数据需要更为精尖的科学技术理论和设备来进行操作处理,所以人工智能是顺应时代而生的产物。首次提出将人工智能和自动控制系统有效结合创新了这一领域的研究方向。从此以后,国内的相关领域便逐渐的转移到智能控制的高阶领域之中。除此之外,计算机领域的高速发展尤其是微计算机的研发和应用也为智能控制的研究提供了支持【2】。随着技术的不断进步和研究的逐渐深入,智能控制系统也在不断的完备。而智能控制算法和相关的智能控制结构也是以这个为基础得以被研究。 二、智能控制发展的相关方向 (一)模糊控制科研者通过制定一系列的控制策略和相关的数据规则总成一个控制规则并加给被操纵者和操作过程就是模糊控制的基本内容。模糊控制的鲁棒性较强,使用的时候不需要输入和建立具体的模型,在处理时滞或者时变等复杂程度较强的系统时易于给出专家的知识。然而模糊算法也有其短板,如果模糊处理的操作选择简单的处理时容易出现所控制的品质出现问题不易提高系统的精度,这种较大的局限性导致了模糊控制的系统性缺失。 (二)人工智能算法在某种程度上被称为机器智能的人工智能算法是一门较为边缘性的学科。通常被研发出来用于进行各种模拟替代人类行为,其研究前景极为广泛,在现阶段的发展范围之内,已经融入了多种学科并且涵盖了极为丰富的人文信息。并且根据现在科技的发展程度来看,其算法具有极强的可靠性和独立性。在进行运算的时候并不需要十分详细的具体参数数据和抗干扰能力十分了得。并且将人工智能算法用于产品的设计时,对于产品的设计整体性能都有更好的提升,其科学性设计理念和运算方式都对产品研发的效率大有裨益。 (三)优化算法优化算法是结合新式理论发展起来的应用前景十分广泛的热门研究,优化算法的出现成功的解决了神经网络应用中的短板和不足,对于神经网络的高效学习的有关算法和拓扑结构的优化设计的改善起到了十分关键的地步。而优化算法中的遗传算法是其中发展较为领先的方向。其通过模拟生物本身拥有的搜索功能和自身的优化算法,建立了一套独特的机制。现阶段的科研者们也在逐步的采用将遗传算法逐步的与神经网络控制和模糊控制相结合,通过将这三种各有优势和长处的智能控制算法相互取其长处的融在一起,在性能上既可以将模糊算法的推理规则和隶属的函数结构进行优化,还可以让神经控制算法的计算量得到有效的减少,对于实时控制的应用能够起到有效的实践作用【3】。 三、结构振动控制的实践 我国在早期就已经开始运用神经网络于智能控制的研究中,并且通过研究发现在非线性的建模中,神经网络算法的实际应用具有很强的作用。并且在近些年以来随着我国工业技术的不断革新,工业管理体系也在逐步的发展。在传统的研究方法之中,科研工作者们常常将神经网络和模糊算法的部分研究方向结合在一起,而在隶属函数的获取上应用更为广泛【4】。采用遗传算法来对隶属函数的参数进行操作节,可以较好的获得理想的实验数据。 到目前为止的国际上的结构振动控制相关的研究之中,智能控制一直是持续获得关注的研究热点。而目前,在无数科学家和相关科研人员们的努力之下,已经成功的将现代控制理论成功的转变为智能控制理论,该理论融合了大量的模糊识别和人工智能相关的理论知识,并且这一理论已经总结出了一系列成果例如结构智能控制等。近些年来由于智能控制系统的研发不断在进步,引起了我国许多社会部门和机械研究学科的相关领域的注意。例如在工业化生产中的油田开采就是极为重要的一项,所以现阶段国内的油田自动化技术与之前相比进步很大,尤其是油田自动化监控系统。在具体的生产运作中都是各个系统相互独立进行运作,但是彼此之间又是联系密切,共同组成一个完整综合的管理系统。基本上是可以实现从开采之前的数据采集研究到最后的生产管理都能在有效的自动体系之下进行运作【5】。除此之外还能实现数据的实时更新,方便企业对完成对数据库的完全掌握。而这些技术的革新,都会使油田的管理方式更加科学化和符合人工智能技术的要求,并且最终会带领着我国的油田工业在迈向更好更快发展的道路上,稳定前进。而现目前也有许多学者也对此提出了切实有效的研究策略和实验结果,例如以张顺宝为带头人的科研小组就实现了通过为结构的主动控制系统提供了时间差以便于能够缩短时迟的问题等。

仿人智能PID控制

仿人智能PID控制器设计 摘要:PID控制算法简单,参数调整方便,应用广泛。但是常规的PID控制器参数往往整定不良、性能欠佳,对运行工况的适应性很差。该文设计的仿人智能PID控制器用正态函数拟和模糊控制规则,辅以根据误差和误差变化率的调整,能根据实际情况调整和完善PID 参数,具有鲁棒性强,响应速度快,稳态精度高等优点。该方法在导弹自动驾驶仪的设计中有很好的应用效果。 关键词:控制器;模糊控制;自动驾驶仪;仿真 1 引言 据统计,工业控制的控制器中PID类控制器占90%上。PID控制器是最早出现的控制器类型,因其结构简单,各个控制器参数有着明显的物理意义,调整方便,所以这类控制器很受工程技术人员的欢迎。随着控制理论的发展,出现了各种分支,如专家系统、模糊逻辑、神经网络、灰色系统理论等,它们和传统的PID控制策略相结合又派生出各种新型的PID 控制器,大大改进了传统PID控制器的性能。本文设计的仿人智能PID 控制器把模糊控制规则函数化。能根据实际情况自动调整和完善PID参数的控制规则实现在线调整PID参数。 2 设计仿人智能PID控制器的参数 PID控制器的控制量的表达形式一般是: u = k p*error+k i*errori+k d*errord (1) 仿人智能 PID控制器的参数整定是找到PID控制的三个参数k p 、k i 、k d 与 误差e、误差变化率ē之间的关系,在运行中不断检测 e和ē;,根据控 制原理对k p 、k i 、k d 进行在线修改以满足不同 e和ē时对控制参数的不同 要求,而使得被控对象具有良好的动态、静态性能。 2.1 仿人智能 PID控制器参数的设计原则 从系统的稳定性、响应速度、超调量和稳态精度等方面考虑k p 、k i 、 k d 的作用如下: 1)比例系数k p的作用是加快系统的响应速度,提高系统的调节精度。k p越大,系统的响应速度越快,系统的调节精度越高,但易产生超调,甚至会

仿人与专家智能控制 (1)

第二章 仿人与专家智能控制 2.1 仿人智能控制的基本思想和概念 1.仿人智能控制(Simulating Human Intelligent Control,SHIC)的基本思想 “仿人, 仿智”, 强调对人脑的宏观结构模拟与对人控制器模拟的结合。 仿人智能控制器应具有的基本结构和功能: (1)分层的信息处理和决策的高阶产生式系统结构; (2)在线的特征辨识与特征记忆; (3)开、闭环控制,正、负反馈,定性决策与定量控制相结合的 多模态控制; (4)启发式和直觉推理逻辑的应用。 2.仿人智能控制基本特点: (1) 研究的主要目标不是控制对象,而是控制器自身如何对控制专家结构和行为的模仿; (2) 辨识和建模的目标不是对象的定量数学模型,而是系统的动态特征模型和控制器定性与定量描述相结合的知识模型; (3)基于特征辨识与特征记忆的多模态控制可实现系统动态特性变化与控制器输出的多值影射关系,因而能使系统实现多种性能指标的优化。 (4)启发式与直觉推理,分层递阶的信息处理和多CPU并行的计算机硬、软件系统为仿人智能控制提供了具有在线自整定、自学

习和自适应能力的快速实时运行条件。 2.2 仿人智能控制的基本概念 1. 特征变量(Characteristic Variable ) 用来描述控制系统的动态特征和行为的变量称为特征变量。 (1)e e Δ? 0<Δ?e e ,表明系统动态过程正向误差减小的方向变化, 0>Δ?e e ,表明系统动态过程正向误差增大的方向变化。 (2)1?Δ?Δn n e e 相邻两次误差变化之积: 01<Δ?Δ?n n e e 表示出现极值(误差反方向) ; 01>Δ?Δ?n n e e 表示无极值。 2.特征模型 (Characteristic Model ) 仿人智能控制的特征模型定义为系统动态特性的一种定性和定量相结合的描述,它是根据控制问题求解和控制指标的不同要求,对系统动态信息空间∑的一种划分。 Σ∈=i n φφφφφ}, ,...,,{21 例如: ]/0[211δδαφ>>>≥Δ?=e e e e e e ∩∩ ∩ 特征状态由一些特征基元组合而成: },......,,{21m q q q =φ q 1: 0≥?e e 或 0≤ 或 ; q 3: 1δ

智能车控制算法

智能车转角与速度控制算法 1.检测黑线中点Center:设黑、白点两个计数数组black、white,从第一个白点开始,检测到一个白点,白点计数器就加1,检测到第一个黑点,黑点计数器就加1,并且白点计数器停止,以此类推扫描每一行;黑线中点=白点个数+(黑点的个数/2) 2.判断弯直道: 找出黑线的平均位置avg (以每10行或者20…作为参照,行数待定) 算出相对位移之和(每一行黑线中点与黑线平均位置距离的绝对值之和) 然后用Curve的大小来确定是否弯直道(Curve的阀值待定)。 3.控制速度: 根据弯度的大小控制速度大小。 //*****************************弯度检测函数*******************************// Curvecontrol () { int black[N]; //黑点计数器 int white[N]; //白点计数器 int center[N]; //黑线中点位置 int avg; //黑线中点平均位置 int curve;//N行的相对位移之和 if(白点) ++white[N]; //判断黑白点的个数 else ++black[N]; center[N]=white[N]+black[N]/2; //每一行的黑线中点avg=(center[1]+center[2]+...+center[N])/N; //求出黑线中点的平均位置 curve=(|avg-center[1]|+|avg-center[2]|+...+|avg-center[N]|)/N //求出N行的相对位移之和 return curve; //返回弯度大小

锅炉炉膛负压仿人智能控制毕业论文

锅炉炉膛负压仿人智能控制毕业论文 目录 1 绪论........................................................ 错误!未定义书签。 1.1 课题背景及目的............................... 错误!未定义书签。 1.2 国外研究状况................................. 错误!未定义书签。 1.3 研究的容及要求............................... 错误!未定义书签。 1.4 设计难点及解决手段........................... 错误!未定义书签。 2 仿人智能控制系统的原理及特点........................... 错误!未定义书签。 2.1 仿人智能控制的原理........................... 错误!未定义书签。 2.1.1 仿人智能控制的基本思路.................. 错误!未定义书签。 2.1.2 仿人智能行为的特征变量.................. 错误!未定义书签。 2.2 仿人智能控制与PID控制相结合................. 错误!未定义书签。 2.2.1 PID控制的原理.......................... 错误!未定义书签。 2.4.2 仿人智能PlD控制器...................... 错误!未定义书签。 2.3 仿人智能控制系统的设计方法................... 错误!未定义书签。 2.3.1 被控对象的“类等效”简化模型............ 错误!未定义书签。 2.3.2 被控对象的模型处理...................... 错误!未定义书签。 2.4 仿人智能控制算法研究......................... 错误!未定义书签。 2.4.1 仿人比例控制算法........................ 错误!未定义书签。 2.4.2 仿人积分控制算法........................ 错误!未定义书签。 2.4.3 仿人智能控制器算法模型.................. 错误!未定义书签。 3 500t/h CFB锅炉炉膛负压仿人智能控制系统设计....... 错误!未定义书签。 3.1 500t/hCFB锅炉炉膛负压控制系统的简介.......... 错误!未定义书签。 3.1.1 炉膛压力控制系统简介.................... 错误!未定义书签。 3.1.2 炉膛压力的测量.......................... 错误!未定义书签。

仿人智能控制课题论文报告(重庆大学)

目录 1、引言 (2) 2、PID控制原理与设计 (2) (1)开环控制系统 (2) (2)闭环控制系统 (3) (3)阶跃响应 (3) (4)PID控制的原理和特点 (3) 3、仿人智能控制原理与设计 (5) 4、系统仿真设计与分析 (6) (1)伺服控制系统仿真 (6) (2)定值控制系统仿真 (7) (3)伺服控制下系统仿真结果 (8) (4)定值控制下系统仿真结果 (10) (5)系统仿真心得体会 (11)

1、引言 工业生产对象大多在不同程度上存在着纯滞后,例如流量控制系统因传输管道引起的纯滞后、流体成分在线分析引起的纯滞后等等。在这些过程中,纯τ滞后使得被调量不能及时反映控制信号的动作,控制信号的作用只有在延迟τ以后才能反映到被调量;另一方面,当对象受到干扰而引起被调量改变时,控制器产生的控制作用不能立即对干扰产生抑制作用。因此,含有纯滞后环节的闭环控制系统必然存在较大的超调量和较长的调节时间。纯滞后对象也因此而成为难控的对象,而且,纯滞后τ占整个动态过程的时间越长,难控的程度越大。纯滞后系统的控制一直受到许多学者的关注,成为重要的研究课题之一。最初,Ziegle—Nichols对纯滞后系统提出了常规PID控制器参数的整定方法,解决了τ/T = 0.15—0.6的纯滞后对象的控制问题,然而对于具有更大纯滞后的系统,该方法显得力不从心。1959年,O.J.Smith发表了题为“A Controller to Overcome Dead Time”的论文,提出了著名的Smith预估器来控制含有纯滞后环节的对象,从理论上解决了纯滞后系统的控制问题。之后,许多学者对Smith预估器进行了改进,得到了更好的结果。但由于不可能获得实际系统的精确数学模型,使得该方法很难得到实际应用。因此,研究一种适合于大纯滞后、特大纯滞后对象的实用控制方法就显得相当重要。 本文首先简要介绍了常规PID控制器控制纯滞后对象的方法,然后介绍了作者提出的仿人智能控制器在超大纯滞后对象中的应用,最后给出了τ=10,τ=20,τ=30的超大纯滞后对象的仿真结果,及作出相应对比。结果表明该方法对于超大纯滞后系统具有较好的控制性能。 2、PID控制原理与设计 自动控制系统可分为开环控制系统和闭环控制系统。一个控制系统包括控制器、传感器、变送器、执行机构、输入输出接口。不同的控制系统,其传感器、变送器、执行机构是不一样的,其中PID控制,其参数的自动调整是通过智能化调整或自校正、自适应算法得以实现。 (1)开环控制系统 开环控制系统(open-loop control system)是指被控对象的输出(被控制量)对控制器(controller)的输出没有影响。在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路。

智能车控制算法

智能车转角与速度控制算法 1. 检测黑线中点Center :设黑、白点两个计数数组 black 、white ,从第一个白点开始,检 测到一个白点,白点计数器就加 1,检测到第一个黑点,黑点计数器就加 1,并且白点计数 器停止,以此类推扫描每一行;黑线中点 =白点个数+ (黑点的个数/2) 2. 判断弯直道: 找出黑线的平均位置 avg (以每10行或者20…作为参照,行数待定) 算出相对位移之和(每一行黑线中点与黑线平均位置距离的绝对值之和 ) Curve = |Center[N]- avg| 然后用Curve 的大小来确定是否弯直道(Curve 的阀值待定) 3. 控制速度: 根据弯度的大小控制速度大小。 Curvec on trol () { int black[N]; //* **************************** 弯度检测函数 ****************************** *// //黑点计数器

int white[N]; int cen ter[N]; int avg; int curve ; if(白点)++white[N]; else ++black[N]; cen ter[N]=white[N]+black[N]/2; 占 八、、//白点计数器 //黑线中点位置 //黑线中点平均位置 //N行的相对位移之和//判断黑白点的个数 //每一行的黑线中 avg=(ce nter[1]+ce nter[2]+...+ce nter[N])/N; //求出黑线中点的平均位置 curve=(|avg _cen ter[1]|+|avg-ce nter[2]|+...+|avg _cen ter[N]|)/N 的相对位移之和 //求出N行 return curve; } //返回弯度大小

优化算法、智能算法、智能控制技术的特点和应用

优化算法、智能算法、智能控制技术的特点和应用 在建立了以频域法为主的经典控制理论的基础上,智能控制技术逐步发展。随着信息技术的进步新方法和新技术进入工程化、产品化阶段。这对自动控制理论技术提出了新的挑战,促进了智能理论在控制技术中的应用。下面介绍了优化算法、智能算法、智能控制技术的特点及应用。 优化算法特点及应用 什么是优化?就是从各种方案中选取一个最好的。从数学角度看,优化理论就是研究如何在状态空间中寻找到全局最优点。优化算法通常用来处理问题最优解的求解,这个问题有多个变量共同决定的优化算法的一个特点往往给出的是一个局部最优解,不是绝对的最优解,或者说全局最优解。一种优化算法是否有用很大程度取决问题本身,如果问题本身就是比较无序的,或许随机搜索是最有效的。常用有3种优化算法:遗传算法、蚁群算法、免疫算法等。 遗传算法是一种基于模拟遗传机制和进化论的并行随机搜索优化算法。遗传算法在控制领域中,已被用于研究离散时问最优控制、方程的求解和控制系统的鲁棒稳定问题等。遗传算法用来训练神经网络权值,对控制规则和隶属度函数进行优化,也可用来优化网络结构。 蚁群算法是群体智能的典型实现,是一种基于种群寻优的启发式搜索算法。蚁群算法小仅能够智能搜索、全局优化,而具有鲁棒性、正反馈、分布式计算、易与其它算法结合等特点。等人将蚁群算法先后应用于旅行商问题、资源二次分配问题等经典优化问题,得到了较好的效果。在动态环境下,蚁群算法也表现出高度的灵活性和健壮性,如在集成电路布线设计、电信路山控制、交通建模及规划、电力系统优化及故障分析等方面都被认为是目前较好的算法之一。 智能算法的特点及应用 智能计算也有人称之为“软计算”。是人们受生物界的启迪,根据其原理,模仿求解的算法。智能计算的思想:利用仿生原理进行设计(包括设计算法)。常用的智能算法:1)人工神经网络算法、2)遗传算法、3)模拟退火算法、4)群集智能算法。其应用领域有:神经元和局

最新智能控制技术(亲自整理的知识点)

智能控制 (1)智能控制与传统控制的区别 答:传统控制方法包括经典控制和现代控制,是基于被控对象精确模型的控制方式,缺乏灵活性和应变能力,适于解决线性、时不变性等相对简单的控制问题,难以解决对复杂系统的控制。 智能控制能解决被控对象的复杂性、不确定性、高度的非线性,是传统控制发展的高级阶段。 (2)智能控制的概念 答:智能控制是人工智能、自动控制、运筹学的交叉。 (3) 1986年美国的PDP 研究小组提出了BP 网络,实现了有导师指导下的网络学习,为神 经网络的应用开辟了广阔的发展前景。 (4) 专家系统主要由知识库和推理机构成(核心) (5)专家控制的结构 (6)按专家控制在控制系统中的作用和功能,可将专家控制器 分为以下两种类型: 答:(1) 直接型专家控制器:直接专家控制器用于取代常规控制器,直接控制生产过程或被控对象。具有模拟(或延伸,扩展)操作工人智能的功能。该控制器的任务和功能相对比较简单,但是需要在线、实时控制。因此,其知识表达和知识库也较简单,通常由几十条产生式规则构成,以便于增删和修改。 直接型专家控制器的示意图见图中的虚线所示。 (或被控对象进行间接控制的智能控制系统。具有模拟(或延伸,扩展)控制工程师智能的功能。该控制器能够实现优化适应、协调、组织等高层决策的智能控制。按照高层决策功能的性质,间接型专家控制器可分为以下几种类型: ① 优化型专家控制器② 适应型专家控制器

③ 协调型专家控制器④ 组织型专家控制器 例3.4 设 求A ∪B ,A ∩B 则 (7) 在模糊控制中应用较多的隶属函数有以下6种隶属函数。 (1)高斯型隶属函数 高斯型隶属函数由两个参数σ和c 确定:2 22)(),,(σσc x e c x f --= 其中参数b 通常为正,参数c 用于确定曲线的中心。 M a t l a b 表示为 c]),σ[gaussmf(x, (3) S 形隶属函数 S 形函数s i g m f (x ,[a c ])由参数a 和c 决定:) (11),,(c x a e c a x f --+= 其中参数a 的正负符号决定了S 形隶属函数的开口朝左或朝右,用来表示“正大”或“负大”的概念。M a t l a b 表示为sigmf(x,[a,c]) (4)梯形隶属函数 梯形曲线可由四个参数a ,b ,c ,d 确定:??? ??? ?????≥≤≤--≤≤≤≤--≤=d x d x c c d x d c x b b x a a b a x a x d c b a x f 01 ),,,,( 其中参数a 和d 确定梯形的“脚”,而参数b 和c 确定梯形的“肩膀”。 M a t l a b 表示为: d])c,b,[a,trapmf(x, (5)三角形隶属函数 三角形曲线的形状由三个参数a ,b ,c 确定???? ???? ?≥≤≤--≤≤--≤=c x c x b b c x c b x a a b a x a x c b a x f 00 ),,,( 其中参数a 和c 确定三角形的“脚”,而参数b 确定三角形的“峰”。 M a t l a b 表 示为c])b,[a,trimf(x, (6)Z 形隶属函数 4 3 2 15.04.01.03.0u u u u B A +++=I 43216.08.02.09.0u u u u B A +++=Y 4 3215.08.02.09.0u u u u A +++= 43216.04.01.03.0u u u u B +++=

相关主题
文本预览
相关文档 最新文档