当前位置:文档之家› 课上练习题_随机变量 327

课上练习题_随机变量 327

课上练习题_随机变量 327
课上练习题_随机变量 327

1、An airline knows that 5 percent of the people making reservations

on a certain flight will not show up. Consequently, their policy is to sell 52 tickets for a flight that can hold only 50 passengers. What is the probability that there will be a seat available for every passenger who shows up?

2、Suppose that two teams are playing a series of games, each of

which is independently won by team A with probability p and by team

B with probability 1-p. The winner of the series is the first team to win

i games. If i = 4, find the probability that a total of 7 games are played.

Find the p that maximizes/minimizes this probability.

3、 A fair coin is independently flipped n times, k times by A and n-k

times by B. Find that the probability that A and B flip the same number of heads.

4、Let X1, X2, …, Xn be independent random variables, each having

a uniform distribution over (0,1). Let M = maximum(X1, X2, …, Xn).

Find the distribution function of M.

5、An urn contains n+m balls, of which n are red and m are black.

They are withdrawn from the urn, one at a time and without replacement. Let X be the number of red balls removed before the first black ball is chosen. We are interested in determining E[X].

6、Show that the sum of independent identically distributed

exponential random variables has a gamma distribution.

7、Let X and Y be independent normal random variables, each

having parameters \mu and \sigma^2. Show that X+Y is independent of X-Y.

8、An unbiased die is successively rolled. Let X and Y denote,

respectively, the number of rolls necessary to obtain a six and a five.

Find (a) E[X], (b) E[X|Y=1]

9、A coin having probability p of coming up heads is successively flipped until two of the most recent three flips are heads. Let N denote the number of flips. (Note that if the first two flips are heads, then N = 2). Find E[N].

10、You have two opponents with whom you alternate play. Whenever you play A, you win with probability pA; whenever you play B, you win with probability pB, where pB>pA. If you objective is to minimize the number of games you need to play to win two in a row, should you start with A or with B?

高中数学随机变量分布列知识点

第二章随机变量及其分布 内容提要: 一、随机变量的定义 设是一个随机试验,其样本空间为,若对每一个样本点,都有唯一确定的实数 与之对应,则称上的实值函数是一个随机变量(简记为)。 二、分布函数的概念和性质 1.分布函数的定义 设是随机变量,称定义在上的实值函数 为随机变量的分布函数。 2.分布函数的性质 (1) , (2)单调不减性:, (3) (4)右连续性:。 注:上述4个性质是函数是某一随机变量的分布函数的充要条件。在不同的教科书上,分布函数的定义可能有所不同,例如,其性质也会有所不同。 (5) 注:该性质是分布函数对随机变量的统计规律的描述。 三、离散型随机变量 1.离散型随机变量的定义 若随机变量的全部可能的取值至多有可列个,则称随机变量是离散型随机变量。 2.离散型随机变量的分布律 (1)定义:离散型随机变量的全部可能的取值以及取每个值时的概率值,称为离散型随机变量的分布律,表示为 或用表格表示:

或记为 ~ (2)性质:, 注:该性质是是某一离散型随机变量的分布律的充要条件。 其中。 注:常用分布律描述离散型随机变量的统计规律。 3.离散型随机变量的分布函数 =,它是右连续的阶梯状函数。 4.常见的离散型分布 (1)两点分布(0—1分布):其分布律为 即 (2)二项分布 (ⅰ)二项分布的来源—重伯努利试验:设是一个随机试验,只有两个可能的结果 及,,将独立重复地进行次,则称这一串重复的独立试验为重伯努利试验。 (ⅱ)二项分布的定义 设表示在重伯努利试验中事件发生的次数,则随机变量的分布律为 ,, 称随机变量服从参数为的二项分布,记作。 注:即为两点分布。

随机变量分布列练习题二套

随机变量及分布训练一 1. 某群体中的每位成员使用移动支付的概率都为,各成员的支付方式相互独立.设为该群体的位成员中使用移动支付的人数,,,则 A. B. C. D. 2. 设,随机变量的分布列是 则当在内增大时,() A.减小 B.增大 C.先减小后增大 D.先增大后减小 3. 已知甲盒中仅有个球且为红球,乙盒中有个红球和个蓝球,从乙盒中随机抽取 个球放入甲盒中. 放入个球后,甲盒中含有红球的个数记为; 放入个球后,从甲盒中取个球是红球的概率记为. 则() A., B., C., D., 4. 如图,将一个各面都涂了油漆的正方体,切割为个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为,则的均值 A. B. C. D. 5. 已知离散型随机变量的分布列为 则的数学期望

A. B. C. D. 6. 已知台机器中有台存在故障,现需要通过逐台检测直至区分出台故障机器为止.若检测一台机器的费用为元,则所需检测费的均值为() A. B. C. D. 7. 某班级有男生人,女生人,现选举名学生分别担任班长、副班长、团支部书记和体育班委.男生当选的人数记为,则的数学期望为() A. B. C. D. 8. 某种种子每粒发芽的概率都为,现播种了粒,对于没有发芽的种子,每粒需再补种粒,补种的种子数记为,则的数学期望为() A. B. C. D. 9. 某工厂的某种产品成箱包装,每箱件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为,且各件产品是否为不合格品相互独立. (1)记件产品中恰有件不合格品的概率为,求的最大值点. (2)现对一箱产品检验了件,结果恰有件不合格品,以(1)中确定的作为的值.已知每件产品的检验费用为元,若有不合格品进入用户手中,则工厂要对每件不合格品支付元的赔偿费用. 若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为,求; 以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?

高二数学《随机变量的方差(第2课时)》教案

§2.3.2离散型随机变量的方差(第2课时) 一、教材分析: 数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平,表示了随机变量在随机实验中取值的平均值,所以又常称为随机变量的平均数、均值.今天,我们将对随机变量取值的稳定与波动、集中与离散的程度进行研究.其实在初中我们也对一组数据的波动情况作过研究,即研究过一组数据的方差. 回顾一组数据的方差的概念:设在一组数据1x ,2x ,…, n x 中,各数据与它 们的平均值x 得差的平方分别是21)(x x -,2 2)(x x -,…,2)(x x n -,那么 [1 2n S = 21)(x x -+2 2)(x x -+…+])(2x x n -叫做这组数据的方差 。 二、学情分析: 学生学习本节应该比较轻松,定义比较简单,初中已经接触过方差,高中阶段是将原先学得知识进一步提升。主要学生能将离散型随机变量的分布列列出来,进行套公式运算就可以,应注意的是要求学生在计算过程中细心。有过探究、交流的课堂教学的尝试。 三、教学目标: 1、知识与技能 了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差。 2、过程和方法: 通过教师指导下的探究活动,经历数学思维过程,熟悉理解“观察—归纳—猜想—证明”的思维方法,养成合作的意识,获得学习和成功的体验.了解方差公式“D (a ξ+b )=a 2 D ξ”,以及“若ξ~Β(n ,p ),则D ξ=np (1—p )”,并会应用上述公式计算有关随机变量的方差 。 3、情感和价值: 承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。

随机变量及其分布练习题

随机变量及其分布练习 题 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

第二章随机变量及其分布练习题 1.甲、乙两人各进行一次射击,甲击中目标的概率是,乙击中目标的概率是,则两人都击中目标的概率是( ) A. B. C. D. 2.设随机变量1 ~62X B ?? ??? ,,则(3)P X =等于( ) A. 516 B. 316 C.5 8 D. 716 3.设随机变量X 的概率分布列为 X 1 2 3 P 则E (X +2)B . 4.两台相互独立工作的电脑,产生故障的概率分别为a ,b ,则产生故障的电脑台数的均值为( ) A.ab B.a b + C.1ab - D.1a b -- 5.某普通高校招生体育专业测试合格分数线确定为60分.甲、乙、丙三名考生独立参加测试,他们能达到合格的概率分别是,,,则三人中至少有一人达标的概率为( ) A . B . 6.设随机变量~()X B n p ,,则2 2 ()()DX EX 等于( ) A.2p B.2(1)p - C.np D.2(1)p p - 7.对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出 2件.在第一次摸出正品的条件下,第二次也摸到正品的概率是( ).

8.从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)=(). 9.设随机变量ξ服从正态分布N(0,1),P(ξ>1)=p,则P(-1<ξ<0)等于(). p B.1-p C.1--p 10.已知随机变量X服从正态分布N(μ,σ2),且P(μ-2σ

高中理科数学离散型随机变量及分布列

理科数学复习专题 统计与概率 离散型随机变量及其分布列 知识点一 1、离散型随机变量:随着实验结果变化而变化的变量称为随机变量,常用字母,X,Y ,表示,所有取值可以一一列出的随机变量,称为离散型随机变量。 2、离散型随机变量的分布列及其性质: (1)定义:一般的,若离散型随机变量X 可能取的不同值为12,,,,,,i n x x x x X 取每一个值(1,2,,)i x i n 的概率为()i i P X x p ,则表 (2)分布列的性质:①0,1,2,,i p i n ;②11n i i p (3)常见离散型随机变量的分布列: ①两点分布:若随机变量X 的分布列为, 则称X 服从两点分布,并称(1)p P x 为成功概率 ②超几何分布:一般的,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则()(0,1,2,,k n k M N M n N C C P X k k m C 其中min{,}m M n ,且*,,,,)n N M N n M N N ,称分布列为超几何分布列。如果随机变量X 的分布列题型一 由统计数据求离散型随机变量的分布列 【例1】已知一随机变量的分布列如下,且E (ξ)=6.3,则a 值为( ) A. 5

【变式1】某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;一旦失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实施结果: 则该公司一年后估计可获收益的期望是________. 题型二由古典概型求离散型随机变量的分布列(超几何分布) 【例2】在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求: (1)该顾客中奖的概率; (2)该顾客获得的奖品总价值X元的概率分布列. 【变式2】某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料.若4杯都选对,则月工资定为3 500元;若4杯选对3杯,则月工资定为2 800元;否则月工资定为2 100元.令X表示此人选对A饮料的杯数.假设此人对A和B两种饮料没有鉴别能力. (1)求X的分布列;(2)求此员工月工资的期望. 知识点二 1.条件概率及其性质 对于两个事件A和B,在已知事件B发生的条件下,事件A发生的概率叫做条件概率,用 符号P(A|B)来表示,其公式为P(A|B)=P(AB) P(B) (P(B)>0). 在古典概型中,若用n(B)表示事件B中基本事件的个数,则P(A|B)=n(AB) n(B) . 2.相互独立事件 (1)对于事件A、B,若事件A的发生与事件B的发生互不影响,称A、B是相互独立事件. (2)若A与B相互独立,则P(AB)=P(A)P(B). (3)若A与B相互独立,则A与B,A与B,A与B也都相互独立. (4)若P(AB)=P(A)P(B),则A与B相互独立. 3.二项分布

随机变量及其分布列与独立性检验练习题附答案

数学学科自习卷(二) 一、选择题 1.将三颗骰子各掷一次,记事件A =“三个点数都不同”,B =“至少出现一个6点”,则条件概率()P A B ,() P B A 分别是( ) A.6091,12 B.12,6091 C.518,6091 D.91216,12 2.设随机变量ξ服从正态分布()3,4N ,若()()232P a P a ξξ<-=>+,则a 的值为 A .73 B .53 C .5 D .3 3.已知随机变量ξ~)2,3(2N ,若23ξη=+,则D η= A . 0 B . 1 C . 2 D . 4 4.同时拋掷5枚均匀的硬币80次,设5枚硬币正好出现2枚正面向上,3枚反面向上的次数为ξ,则ξ的数学期望是( ) A .20 B .25 C. 30 D .40 5. 甲乙两人进行乒乓球比赛, 约定每局胜者得1分, 负者得0分, 比赛进行到有一人比对方多2分或打满6局时停止, 设甲在每局中获胜的概率为 23,乙在每局中获胜的概率为13 ,且各局胜负相互独立, 则比赛停止时已打局数ξ的期望()E ξ为( ) A .24181 B .26681 C .27481 D .670243 6.现在有10奖券,82元的,25元的,某人从中随机无放回地抽取3奖券,则此人得奖金额的数学期望为( ) A .6 B .395 C .415 D .9 7.一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c ,,,(0,1)a b c ∈,且无其它得分情况,已知他投篮一次得分的数学期望为1,则ab 的最大值为 ( ) A .148 B .124 C .112 D .16 8.位于数轴原点的一只电子兔沿着数轴按下列规则移动:电子兔每次移动一个单位,移动的方向向左或向右,并且向左移动的概率为 23,向右移动的概率为13,则电子兔移动五次后位于点(1,0)-的概率是 ( ) A .4243 B .8243 C .40243 D .80243

(完整word版)高中数学选修2-3第二章随机变量及其分布教案

第二章 随机变量及其分布 2.1.1离散型随机变量 第一课时 思考1:掷一枚骰子,出现的点数可以用数字1 , 2 ,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示呢? 掷一枚硬币,可能出现正面向上、反面向上两种结果.虽然这个随机试验的结果不具有数量性质,但我们可以用数1和 0分别表示正面向上和反面向上(图2.1一1 ) . 在掷骰子和掷硬币的随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化. 定义1:随着试验结果变化而变化的变量称为随机变量(random variable ).随机变量常用字母 X , Y ,ξ,η,… 表示. 思考2:随机变量和函数有类似的地方吗? 随机变量和函数都是一种映射,随机变量把随机试验的结果映为实数,函数把实数映为实数.在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.我们把随机变量的取值范围叫做随机变量的值域. 例如,在含有10件次品的100 件产品中,任意抽取4件,可能含有的次品件数X 将随着抽取结果的变化而变化,是一个随机变量,其值域是{0, 1, 2 , 3, 4 } . 利用随机变量可以表达一些事件.例如{X=0}表示“抽出0件次品” , {X =4}表示“抽出4件次品”等.你能说出{X< 3 }在这里表示什么事件吗?“抽出 3 件以上次品”又如何用 X 表示呢? 定义2:所有取值可以一一列出的随机变量,称为离散型随机变量 ( discrete random variable ) . 离散型随机变量的例子很多.例如某人射击一次可能命中的环数 X 是一个离散型随机变量,它的所有可能取值为0,1,…,10;某网页在24小时内被浏览的次数Y 也是一个离散型随机变量,它的所有可能取值为0, 1,2,…. 思考3:电灯的寿命X 是离散型随机变量吗? 电灯泡的寿命 X 的可能取值是任何一个非负实数,而所有非负实数不能一一列出,所以 X 不是离散型随机变量. 在研究随机现象时,需要根据所关心的问题恰当地定义随机变量.例如,如果我们仅关心电灯泡的使用寿命是否超过1000 小时,那么就可以定义如下的随机变量: ?? ≥?0,寿命<1000小时; Y=1,寿命1000小时. 与电灯泡的寿命 X 相比较,随机变量Y 的构造更简单,它只取两个不同的值0和1,是一个离散型随机变量,研究起来更加容易. 连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量 如某林场树木最高达30米,则林场树木的高度ξ是一个随机变量,它可以取(0,30]内的一切值 4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验

概率论复习题答案

一、单项选择题 1 已知随机变量X 在(1,5)之间服从均匀分布,则其在此区间的概率密度为( C ) A. B. C. D 4 2 已知二维随机变量(X ,Y )在(X>0,Y>0,X+Y<1)之间服从均匀分布,则其在此区间的概率密度为( B ) A. 0 B. 2 C. D 1 3 已知二维随机变量(X ,Y )在(X>0,Y>0,X+Y<2)之间服从均匀分布,则其不在此区间的概率密度为( A ) A. 0 B. 2 C. 1 D 4 4 已知P(A)= ,则)(A A P ? 的值为( D ) (A) (B) (C) 0 (D) 1 5 已知P(A)= ,则)(A A P 的值为( C ) (A) 1 (B) (C) 0 (D) Φ 6.,,A B C 是任意事件,在下列各式中,成立的是( C ) A. A B =A ?B B. A ?B =AB C. A ?BC=(A ?B)(A ?C) D. (A ?B)(A ? B )=AB 7 设随机变量X~N(3,16), 则P{X+1>5}为( B ) A. Φ B. 1 - Φ C. Φ(4 ) D. Φ(-4) 8 设随机变量X~N(3,16), Y~N(2,1) ,且X 、Y 相互独立,则P{X+3Y<10}为( A ) A. Φ B. 1 - Φ C. Φ(0 ) D. Φ(1) 9. 已知随机变量X 在区间(0,2)的密度函数为, 则其在此区间的分布函数为( C ) A. 2x B. C. 2x D. x 10 已知随机变量X 在区间(1,3)的密度函数为, 则x>3区间的分布函数为( B ) A. 2x B. 1 C. 2x D. 0 11. 设离散型随机变量X 的分布律为 P{X=n}=! n e n λλ, n=0,1,2…… 则称随机变量X 服从( B ) A. 参数为λ的指数分布 B. 参数为λ的泊松分布 C. 参数为λ的二项式分布 D. 其它分布 12. 设f (x )为连续型随机变量X 的密度函数,则f (x )值的范围必须( B )。 (A) 0≤ f (x ) ≤1; (B) 0≤ f (x ); (C )f (x ) ≤1; (D) 没有限制

第二章随机变量习题参考答案

第二章随机变量(习题2)参考答案 因此:p i i=2, p i 2.2 由离散型随机变量概率分布性质: ae ?k =1∞k=1, 即: a e ?k =1∞k=1, 注意到 e ?k = 1+12+?+1n +?=1 ∞ k=1 因此: a e ?1 =1, 所以:a =e ?1. 2.3 设A i ={甲第i 次投篮命中},B i ={乙第i 次投篮命中},i =1,2. 则 P A 1 =P A 2 =0.7, P B 1 =P B 2 =0.4, 且A 1, A 2, B 1, B 2相互独立,因此 (1) 两人投中次数相同的概率为: P A 1 A 2 B 1 B 2 + P A 1 A 2B 1 B 2 + P A 1 A 2B 1B 2 + P A 1A 2 B 1 B 2 + P(A 1A 2 B 1B 2 )+P(A 1A 2B 1B 2) =0.32×0.62+4×0.7×0.3×0.4×0.6+0.72×0.42=0.3124. (2) 甲比乙投中的次数多的概率为: P A 1A 2 B 1 B 2 + P A 1 A 2B 1 B 2 + P A 1A 2B 1B 2 + P A 1A 2B 1 B 2 + P A 1A 2B 1 B 2 =0.7×0.3×0.62×2+2×0.72×0.4×0.6+0.72×0.62=0.5628. 2.4 由于P X =k = k 15 , k =1,2,3,4,5. 因此 (1) P 1≤X ≤3 =P X =1 +P X =2 +P{X =3}=1 15+2 15+3 15=0.4. (2) P 0.5

高中数学《随机变量及其分布》单元测试

数学选修2-3第二章《随机变量及其分布》单元测试 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分 第Ⅰ卷60分,第Ⅱ卷90分,共150分,考试时间120分钟 第Ⅰ卷(选择题共60分) 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一 项是符合题目要求的) 1.设X~B(n,p),E(X)=12,D(X)=4,则n,p的值分别为() A.18, B.36, C.36, D.18, 2.10张奖劵中只有3张有奖,若5个人购买,每人1张,则至少有1个人中奖的概率为() A. B. C. D. 3.设随机变量X等可能地取值1,2,3,…,10.又设随机变量Y=2X-1,则P(Y<6)的值为() A.0.3 B.0.5 C.0.1 D.0.2 4.在区间(0,1)内随机取一个数x,若A=,B=,则P(B|A)等于() A. B. C.D. 5.若离散型随机变量X的分布列为 X123 P

则X的数学期望E(X)=() A. B.2 C. D.3 6.已知某离散型随机变量X的分布列如下表,则随机变量X的方差D(X)等于() X01 P m2m A. B. C. D. 7.同时抛掷两枚质地均匀的硬币10次,设两枚硬币出现不同面的次数为X,则D(X)=() A. B. C. D.5 的值分别为() 8.已知随机变量ξ服从正态分布N(3,4),则E(2ξ+1) 与D(2ξ+1) A.13,4 B.13,8 C.7,8 D.7,16 9.盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4个,那么概率是的事件为() A.恰有1只是坏的 B.4只全是好的 C.恰有2只是好的 D.至多有2只是坏的 10.节日期间,某种鲜花进货价是每束 2.5元,销售价是每束5元,节日后没卖出的鲜花以每束1.6元的价格处理.根据前五年销售情况预测,节日期间这种鲜花的需求量X的分布列为 X200300400500 P0.200.350.300.15 若进这种鲜花500束,则利润Y的均值是() A.706 B.690 C.754 D.720 11.现有甲,乙两个靶,某射手向甲靶射击一次,命中的概率为;向乙靶射击两次,每次命中的概率为.该射手每次射击的结果相互独立.假设该射手完成以上三次射击,该射手恰好命中一次的概率为()

概率与数理统计第3章多维随机变量及其分布习题及答案

第三章 多维随机变量及其分布 一、填空题 1、随机点),(Y X 落在矩形域],[2121y y y x x x ≤<≤<的概率为 ),(),(),(),(21111222y x F y x F y x F y x F -+-. 2、),(Y X 的分布函数为),(y x F ,则=-∞),(y F 0 . 3、),(Y X 的分布函数为),(y x F ,则=+),0(y x F ),(y x F 4、),(Y X 的分布函数为),(y x F ,则=+∞),(x F )(x F X 5、设随机变量),(Y X 的概率密度为 ? ? ?<<<<--=其它 04 2,20) 6(),(y x y x k y x f ,则=k 8 1 . 6、随机变量),(Y X 的分布如下,写出其边缘分布. 7、设),(y x f 是Y X ,的联合分布密度,)(x f X 是X 的边缘分布密度,则 =? ∞+∞ -)(x f X 1 . 8、二维正态随机变量),(Y X ,X 和Y 相互独立的充要条件是参数=ρ 0 . X Y 0 1 2 3 j P ? 1 0 8 3 8 3 0 86 3 81 0 8 1 8 2 ?i P 81 83 83 8 1

9、如果随机变量),(Y X 的联合概率分布为 Y X 1 2 3 1 61 91 181 2 3 1 α β 则βα,应满足的条件是 186= +βα ;若X 与Y 相互独立,则=α 184 ,=β 18 2 . 10、设Y X ,相互独立,)1.0(~),1,0(~N Y N X ,则),(Y X 的联合概率密度 =),(y x f 2 2221 y x e +- π ,Y X Z +=的概率密度=)(Z f Z 4 22 21x e - π . 12、 设 ( ξ 、 η ) 的 联 合 分 布 函 数 为 ()()()() ?? ??? ≥≥+-+-+++= y x y x y x A y x F 00,0111111,2 22则 A =__1___。 二、证明和计算题 1、袋中有三个球,分别标着数字1,2,2,从袋中任取一球,不放回,再取一球,设第一次取的球 上标的数字为X ,第二次取的球上标的数字Y ,求),(Y X 的联合分布律. 解:031 }1,1{?= ==Y X P 31 131}2,1{=?===Y X P 31 2132}1,2{=?===Y X P 3 1 2132}2,2{=?===Y X P 2、三封信随机地投入编号为1,2,3的三个信箱中,设X 为投入1号信箱的信数,Y 为投入2 号信箱的信数,求),(Y X 的联合分布律. 解:X 的可能取值为0,1,2,3 Y 的可能取值为0,1,2,3 33 1 }0,0{===Y X P 333}1,0{===Y X P 33233 3 3}2,0{====C Y X P X Y 1 2 1 0 31 2 3 1 3 1

高中数学离散型随机变量综合测试题(附答案)

高中数学离散型随机变量综合测试题(附答案)选修2-3 2.1.1 离散型随机变量 一、选择题 1.①某机场候机室中一天的旅客数量X;②某寻呼台一天内收到的寻呼次数X;③某篮球下降过程中离地面的距离X; ④某立交桥一天经过的车辆数X.其中不是离散型随机变量的是() A.①中的X B.②中的X C.③中的X D.④中的X [答案] C [解析] ①,②,④中的随机变量X可能取的值,我们都可以按一定次序一一列出,因此,它们都是离散型随机变量; ③中的X可以取某一区间内的一切值,无法按一定次序一一列出,故③中的X不是离散型随机变量. 2.一个袋子中有质量相等的红,黄,绿,白四种小球各若干个,一次倒出三个小球,下列变量是离散型随机变量的是() A.小球滚出的最大距离 B.倒出小球所需的时间 C.倒出的三个小球的质量之和 D.倒出的三个小球的颜色的种数 [答案] D

[解析] A小球滚出的最大距离不是一个随机变量,因为不能明确滚动的范围;B倒出小球所需的时间不是一个随机变量,因为不能明确所需时间的范围;C三个小球的质量之和是一个定值,可以预见,但结果只有一种,不是随机变量,就更不是离散型随机变量;D颜色的种数是一个离散型随机变量. 3.抛掷两枚骰子,记第一枚骰子掷出的点数与第二枚骰子掷出的点数之差为,则“4”表示的试验结果是() A.第一枚6点,第二枚2点 B.第一枚5点,第二枚1点 C.第一枚2点,第二枚6点 D.第一枚6点,第二枚1点 [答案] D [解析] 只有D中的点数差为6-1=54,其余均不是,应选D. 4.设某项试验的成功率是失败率的2倍,用随机变量描述1次试验的成功次数,则的值可以是() A.2 B.2或1 C.1或0 D.2或1或0 [答案] C [解析] 这里“成功率是失败率的2倍”是干扰条件,对1次试验的成功次数没有影响,故可能取值有两种0,1,故选

《离散型随机变量的概念》教学设计

离散型随机变量的概念》教学设计 一、教材分析 《离散型随机变量的概念》是人教A版《普通高中课程标准实验教科书 数学选修2-3》第二章随机变量及其分布的第一节离散型随机变量及其分布列的第一课时。本章是在必修三中学习了基本的概率统计知识的基础上,进一步学习 随机变量及其分布的知识。本节内容一方面承接了必修三的知识;另一方面,掌握好这一节课将有助于后续的学习,因此它在知识体系上起着承上启下的作用。随机变量是连接随机现象和实数空间的一座桥梁,从而使得更多的数学工具有了用武之地。离散型随机变量是最简单的随机变量。本节课主要通过离散型随机变量展示用实数空间刻画随机现象的方法。 二、学情分析 学生在必修3概率一章中学习过的随机试验、随机事件、简单的概率模型和必修1中学习过的变量、函数、映射等知识是学习、领悟和“接纳”随机变量概念的重要知识基础,教学时应充分注意这一教学条件;另外,为更好地形成随机变量和离散型随机变量两个概念,教学中可借助媒体列举和展现丰富的实例和问题,以留给学生更多的时间思考和概括。 三、教学策略分析 学生是教学的主体,本节课要给学生提供各种参与机会。本课以情境为载体,以学生为主体,以问题为手段,激发学生观察思考、猜想探究的兴趣。注重引导帮助学生充分体验“从实际问题到数学问题”的建构过程,培养学生分析问题、解决问题的能力。 四、目标分析 1、知识与技能目标:理解随机变量和离散型随机变量的概念,能够运用随机变量表示随机事件,学会恰当的定义随机变量; 2、过程与方法目标:在教学过程中,以不同的实际问题为导向,弓I导学生分析问题的特点,归纳问题的共性,提高理解分析能力和抽象概括能力;

高中数学选修2-3随机变量及其分布综合测试题

高中数学选修2-3随机变量及其分布综合测试题 一、选择题 1.①某寻呼台一小时内收到的寻呼次数X ;②长江上某水文站观察到一天中的水位X ;③某 超市一天中的顾客量X 其中的X 是连续型随机变量的是 A .① B .② C .③ D .①②③ 2.袋中有2个黑球6个红球,从中任取两个,可以作为随机变量的是 A .取到的球的个数 B .取到红球的个数 C .至少取到一个红球 D .至少取到一个红球的概率 3.抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为X ,则 “X >4”表示试验的结果为 A .第一枚为5点,第二枚为1点 B .第一枚大于4点,第二枚也大于4点 C .第一枚为6点,第二枚为1点 D .第一枚为4点,第二枚为1点 4.随机变量X 的分布列为P (X =k )=) 1(+k k c ,k =1、2、3、4,其中c 为常数,则P (15 22X <<) 的值为 A .54 B .65 C .32 D .43 5. 甲射击命中目标的概率是 2 1,乙命中目标的概率是 3 1,丙命中目标的概率是 4 1. 现在三 人同时射击目标,则目标被击中的概率为 10 7 D. 5 4C. 3 2 B. 4 3A. 6.已知随机变量X 的分布列为P (X =k )=3 1,k =1,2,3,则D (3X +5)等于 A .6 B .9 C .3 D .4 7. 口袋中有5只球,编号为1,2,3,4,5,从中任取3球,以X 表示取出球的最大号码,则EX = A .4 B .5 C .4.5 D .4.75 8.某人射击一次击中目标的概率为35 ,经过3次射击,此人至少有两次击中目标的概率为 A . 81125 B . 54125 C . 36125 D . 27125 9.将一枚硬币连掷5次,如果出现k 次正面的概率等于出现k +1次正面的概率,那么k 的值为 A. 0 B. 1 C. 2 D. 3 10.已知X ~B (n ,p ),EX =8,DX =1.6,则n 与p 的值分别是 A .100、0.08 B .20、0.4 C .10、0.2 D .10、0.8 11.随机变量2(,)X N μσ ,则随着σ的增大,概率(||3)P X μσ-<将会 A .单调增加 B .单调减小 C .保持不变 D .增减不定 12.某人从家乘车到单位,途中有3个交通岗亭.假设在各交通岗遇到红灯的事件是相互独立的,且概率都是0.4,则此人上班途中遇红灯的次数的期望为: A .0.4 B .1.2 C .3 4.0 D .0.6

常微分 练习题

习题四 随机变量的数字特征 一、填空题 1.若随机变量X 服从区间[a,b]的均匀分布,则E X =______, D X =_____ 2.若随机变量X 服从参数为λ的泊松分布,且已知E[(X-1)( X-2)]=1,则λ=___ 3.设随机变量X 服从正态分布N (μ,σ2),k,b 为常数,则有E(k X+b )=_______ D(k X+b )=__________ 4.若随机变量X 服从二项分布B(n,p ),且EX=6,DX=3.6,则n =______, p =____ 5.设随机变量X 1,X 2,X 3互相独立,且X 1~U(0,6),X 2~N(0,),X 2 23~P(3),记Y= X 1-2X 2+3X 3,则E(Y)=__,D (Y )=___. 6*.设X 与的联合分布律为: 则Y X 与Y 的联合相关系数 XY ρ=____________ 7. 设随机变量X 在区间[-1,2]上服从均匀分布,则随机变量 1,0,,Y ?? =??? 若X>0若X=0-1若X<0,则方差D(Y)= . 8*.设随机变量X 和Y 的相关系数为0.9,若Z=X-0.4,则Y 与Z 的相关系数为 。 9*.设随机变量X 和Y 的相关系数为0.5,EX=EY=0,EX 2=EY 2=2,则E(X+Y)2= . 10.随机变量X 服从参数为λ的指数分布,则{P X > = 。 二、选择题 1.设随机变量X 的概率密度函数为f (x )=0.10.100 0x e x x ??>??≤?? ,则E (2X+1)=【 】 A 1.2 B 41 C 21 D 20 2. 设X 是随机变量,EX=1,DX=3,则E[3(X ?2+2)]= 【 】 A 18 B 9 C 30 D 36 3.设X 是随机变量,EX=μ,DX=σ2,则对任意常数C ,必有 【 】 A E(X-C)2=EX 2-C 2 B E(X-C)2=E(X-μ)2 C E(X-C)2≤E(X-μ)2 D E(X-C)2≥E(X-μ)2

随机变量练习题(答案)

随机变量练习题(答案) 1.袋中有2个黑球6个红球,从中任取两个,可以作为随机变量的是(B ) (A )取到的球的个数 (B )取到红球的个数 (C )至少取到一个红球 (D )至少取到一个红球的概率 提示:(A )的取值不具有随机性,(C )是一个事件而非随机变量,(D )是概率值而非随机变量,而(B )满足要求. 2.抛掷两颗骰子,所得点数之和记为ξ,那么ξ=4表示的随机试验结果是(D ) (A )一颗是3点,一颗是1点 (B )两颗都是2点 (C )两颗都是4点 (D )一颗是3点,一颗是1点或两颗都是2点 提示:对(A )、(B )中表示的随机试验的结果,随机变量均取值4,而(D )是ξ=4代表的所有试验结果.掌握随机变量的取值与它刻划的随机试验的结果的对应关系是理解随机变量概念的关键. 提示(A )、(D )不满足分布列的基本性质②,(B )不满足分布列的基本性质①,正确选择是(C ). 4.在三次独立重复试验中,若已知A 至少出现一次的概率等于1927 ,则事件A 在一次试验中出现的概率为 31 。 提示:1927 =1-(1-p )3, ?P (A )=p =31. 5.设随机变量ξ的分布列为P (ξ=k )=(1) c k k +,k =1,2,3,c 为常数,则P (0.5<ξ<2.5)= 98 . 提示:1=c ·(111122334++???)=43c , 故c =34. 所以P (0.5<ξ<2.5)=p (1)+p (2)=32+92=9 8. 6.设随机变量ξ~B (2,p ),η~B (4,p ),若 P (ξ>1)=9 5,则 P (η≥1)= 6581 · 提示:95=P (ξ≥1)=1-P (ξ=0)=1-(1-p )2, 即(1-p )2=9 4, p =31,

随机变量附其分布列概念公式总结

随机变量及其分布总结 1、定义:随着试验结果变化而变化的变量称为随机变量 .随机变量常用字母 X , Y ,ξ,η,… 表示. 2、定义:所有取值可以一一列出的随机变量,称为离散型随机变量 3、分布列:设离散型随机变量ξ可能取得值为 x 1,x 2,…,x 3,…, ξ取每一个值x i (i =1,2,…)的概率为()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列 4. 分布列的两个性质: (1)P i ≥0,i =1,2,…; (2)P 1+P 2+…=1. 5.求离散型随机变量ξ的概率分布的步骤: (1)确定随机变量的所有可能的值x i (2)求出各取值的概率p(ξ=x i )=p i (3)画出表格 6.两点分布列: 7超几何分布列: 一般地,在含有M 件次品的 N 件产品中,任取 n 件,其中恰有X 件次品 数,则事件 {X=k }发生的概率为(),0,1,2,,k n k M N M n N C C P X k k m C --===,其中 mi n {,}m M n =,且,,,,n N M N n M N N *≤≤∈.称分布列

为超几何分布列.如果随机变量 X 的分布列为超几何分布列,则称随机变量 X 服从超几何分布 8.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是 k n k k n n q p C k P -==)(ξ, (k =0,1,2,…,n ,p q -=1). 于是得到随机变量ξ的概率分布如下: ξ 1 … k … n P n n q p C 00 111-n n q p C … k n k k n q p C - … q p C n n n 称这样的随机变量ξ服从二项分布,记作ξ~B (n ,p ),其中n ,p 为参数。 9.离散型随机变量的均值或数学期望: 一般地,若离散型随机变量ξ的概率分布为 则称 =ξE +11p x +22p x …++n n p x … 为ξ的均值或数学期望,简称期望. 10.离散型随机变量的均值或数学期望的性质: (1)若ξ服从两点分布,则=ξE p . (2)若ξ~B (n ,p ),则=ξE np . (3)()c c E =,c 为常数 (4)ξ~N (μ,2σ),则=ξE μ (5)b aE b a E +=+ξξ)( 11.方差: 对于离散型随机变量ξ,如果它所有可能取的值是1x ,2x ,…,n x ,…,且取这些值的概率分别是1p ,2p ,…,n p ,…,那么, ξD =121)(p E x ?-ξ+222)(p E x ?-ξ+…+n n p E x ?-2)(ξ+…

第二章随机变量及其分布练习题

第二章随机变量及其分布练习题 1.甲、乙两人各进行一次射击,甲击中目标的概率是0.8,乙击中目标的概率 是0.6,则两人都击中目标的概率是( ) A.1.4 B.0.9 C.0.6 D.0.48 2.设随机变量1~62X B ?? ???,,则(3)P X =等于( ) A.516 B.316 C.5 8 D.716 3.设随机变量X 的概率分布列为 X 1 2 3 P 1 6 1 3 1 2 则E (X +2) ( ). A.113 B .9 C.133 D.73 4.两台相互独立工作的电脑,产生故障的概率分别为a ,b ,则产生故障的电脑 台数的均值为( ) A.ab B.a b + C.1ab - D.1a b -- 5.某普通高校招生体育专业测试合格分数线确定为60分.甲、乙、丙三名考生 独立参加测试,他们能达到合格的概率分别是0.9,0.8,0.75,则三人中至少有 一人达标的概率为( ) A .0.015 B .0.005 6.设随机变量~()X B n p ,,则22 ()()DX EX 等于( ) A.2p B.2(1)p - C.np D.2(1)p p - 7.对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出 2件.在第一次摸出正品的条件下,第二次也摸到正品的概率是 ( ). A.35 B.25 C.110 D.59 8.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶 数”,事件B =“取到的2个数均为偶数”,则P (B |A )= ( ). A.18 B.14 C.25 D.12

9.设随机变量ξ服从正态分布N(0,1),P(ξ>1)=p,则P(-1<ξ<0)等于(). A.1 2p B.1-p C.1-2p D. 1 2-p 10.已知随机变量X服从正态分布N(μ,σ2),且P(μ-2σ

相关主题
文本预览
相关文档 最新文档