当前位置:文档之家› 中考数学平行四边形综合题及答案

中考数学平行四边形综合题及答案

中考数学平行四边形综合题及答案
中考数学平行四边形综合题及答案

一、平行四边形真题与模拟题分类汇编(难题易错题)

1.已知,在矩形ABCD中,AB=a,BC=b,动点M从点A出发沿边AD向点D运动.

(1)如图1,当b=2a,点M运动到边AD的中点时,请证明∠BMC=90°;

(2)如图2,当b>2a时,点M在运动的过程中,是否存在∠BMC=90°,若存在,请给与证明;若不存在,请说明理由;

(3)如图3,当b<2a时,(2)中的结论是否仍然成立?请说明理由.

【答案】(1)见解析;

(2)存在,理由见解析;

(3)不成立.理由如下见解析.

【解析】

试题分析:(1)由b=2a,点M是AD的中点,可得AB=AM=MD=DC=a,又由四边形ABCD 是矩形,即可求得∠AMB=∠DMC=45°,则可求得∠BMC=90°;

(2)由∠BMC=90°,易证得△ABM∽△DMC,设AM=x,根据相似三角形的对应边成比例,即可得方程:x2﹣bx+a2=0,由b>2a,a>0,b>0,即可判定△>0,即可确定方程有两个不相等的实数根,且两根均大于零,符合题意;

(3)由(2),当b<2a,a>0,b>0,判定方程x2﹣bx+a2=0的根的情况,即可求得答案.

试题解析:(1)∵b=2a,点M是AD的中点,

∴AB=AM=MD=DC=a,

又∵在矩形ABCD中,∠A=∠D=90°,

∴∠AMB=∠DMC=45°,

∴∠BMC=90°.

(2)存在,

理由:若∠BMC=90°,

则∠AMB+∠DMC=90°,

又∵∠AMB+∠ABM=90°,

∴∠ABM=∠DMC,

又∵∠A=∠D=90°,

∴△ABM∽△DMC,

∴AM AB

CD DM

=,

设AM=x,则x a

a b x =

-

整理得:x2﹣bx+a2=0,

∵b>2a,a>0,b>0,

∴△=b2﹣4a2>0,

∴方程有两个不相等的实数根,且两根均大于零,符合题意,

∴当b>2a时,存在∠BMC=90°,

(3)不成立.

理由:若∠BMC=90°,

由(2)可知x2﹣bx+a2=0,

∵b<2a,a>0,b>0,

∴△=b2﹣4a2<0,

∴方程没有实数根,

∴当b<2a时,不存在∠BMC=90°,即(2)中的结论不成立.

考点:1、相似三角形的判定与性质;2、根的判别式;3、矩形的性质

2.操作:如图,边长为2的正方形ABCD,点P在射线BC上,将△ABP沿AP向右翻折,得到△AEP,DE所在直线与AP所在直线交于点F.

探究:(1)如图1,当点P在线段BC上时,①若∠BAP=30°,求∠AFE的度数;②若点E 恰为线段DF的中点时,请通过运算说明点P会在线段BC的什么位置?并求出此时∠AFD 的度数.

归纳:(2)若点P是线段BC上任意一点时(不与B,C重合),∠AFD的度数是否会发生变化?试证明你的结论;

猜想:(3)如图2,若点P在BC边的延长线上时,∠AFD的度数是否会发生变化?试在图中画出图形,并直接写出结论.

【答案】(1)①45°;②BC的中点,45°;(2)不会发生变化,证明参见解析;(3)不会发生变化,作图参见解析.

【解析】

试题分析:(1)当点P在线段BC上时,①由折叠得到一对角相等,再利用正方形性质求出∠DAE度数,在三角形AFD中,利用内角和定理求出所求角度数即可;②由E为DF中点,得到P为BC中点,如图1,连接BE交AF于点O,作EG∥AD,得EG∥BC,得到AF 垂直平分BE,进而得到三角形BOP与三角形EOG全等,利用全等三角形对应边相等得到BP=EG=1,得到P为BC中点,进而求出所求角度数即可;(2)若点P是线段BC上任意一点时(不与B,C重合),∠AFD的度数不会发生变化,作AG⊥DF于点G,如图1(a)所示,利用折叠的性质及三线合一性质,根据等式的性质求出∠1+∠2的度数,即为∠FAG

度数,即可求出∠F度数;(3)作出相应图形,如图2所示,若点P在BC边的延长线上时,∠AFD的度数不会发生变化,理由为:作AG⊥DE于G,得∠DAG=∠EAG,设

∠DAG=∠EAG=α,根据∠FAE为∠BAE一半求出所求角度数即可.

试题解析:(1)①当点P在线段BC上时,∵∠EAP=∠BAP=30°,∴∠DAE=90°﹣

30°×2=30°,在△ADE中,AD=AE,∠DAE=30°,∴∠ADE=∠AED=(180°﹣30°)÷2=75°,在△AFD中,∠FAD=30°+30°=60°,∠ADF=75°,∴∠AFE=180°﹣60°﹣75°=45°;②点E为DF 的中点时,P也为BC的中点,理由如下:

如图1,连接BE交AF于点O,作EG∥AD,得EG∥BC,∵EG∥AD,

DE=EF,∴EG=AD=1,∵AB=AE,∴点A在线段BE的垂直平分线上,同理可得点P在线段BE的垂直平分线上,∴AF垂直平分线段BE,∴OB=OE,∵GE∥BP,∴∠OBP=∠OEG,

∠OPB=∠OGE,∴△BOP≌△EOG,∴BP=EG=1,即P为BC的中点,∴∠DAF=90°﹣

∠BAF,∠ADF=45°+∠BAF,∴∠AFD=180°﹣∠DAF﹣∠ADF=45°;(2)∠AFD的度数不会发生变化,作AG⊥DF于点G,如图1(a)所示,

在△ADE中,AD=AE,AG⊥DE,∵AG平分∠DAE,即∠2=∠DAG,且

∠1=∠BAP,∴∠1+∠2=×90°=45°,即∠FAG=45°,则∠AFD=90°﹣45°=45°;(3)如图2所示,∠AFE的大小不会发生变化,∠AFE=45°,

作AG⊥DE于G,得∠DAG=∠EAG,设∠DAG=∠EAG=α,

∴∠BAE=90°+2α,∴∠FAE=∠BAE=45°+α,∴∠FAG=∠FAE﹣∠EAG=45°,在Rt△AFG中,∠AFE=90°﹣45°=45°.

考点:1.正方形的性质;2.折叠性质;3.全等三角形的判定与性质.

3.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系;

(2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由

(3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长.

【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP的长为62

或23

3

.

【解析】

【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再根据直角三角形斜边中线等于斜边一半即可得OF=OE;

(2)如图2中,延长EO交CF于K,由已知证明△ABE≌△BCF,△AOE≌△COK,继而可证得△EFK是等腰直角三角形,由等腰直角三角形的性质即可得OF⊥EK,OF=OE;

(3)分点P在AO上与CO上两种情况分别画图进行解答即可得.

【详解】(1)如图1中,延长EO交CF于K,

∵AE⊥BE,CF⊥BE,∴AE∥CK,∴∠EAO=∠KCO,

∵OA=OC,∠AOE=∠COK,∴△AOE≌△COK,∴OE=OK,

∵△EFK是直角三角形,∴OF=1

2

EK=OE;

(2)如图2中,延长EO交CF于K,

∵∠ABC=∠AEB=∠CFB=90°,

∴∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF,

∵AB=BC,∴△ABE≌△BCF,∴BE=CF,AE=BF,

∵△AOE≌△COK,∴AE=CK,OE=OK,∴FK=EF,

∴△EFK是等腰直角三角形,∴OF⊥EK,OF=OE;

(3)如图3中,点P在线段AO上,延长EO交CF于K,作PH⊥OF于H,

∵|CF﹣AE|=2,3AE=CK,∴FK=2,

在Rt△EFK中,tan∠3

∴∠FEK=30°,∠EKF=60°,

∴EK=2FK=4,OF=1

2

EK=2,

∵△OPF是等腰三角形,观察图形可知,只有OF=FP=2,

在Rt△PHF中,PH=1

2

PF=1,3OH=23

∴()2

2

12362

+-=

如图4中,点P 在线段OC 上,当PO=PF 时,∠POF=∠PFO=30°, ∴∠BOP=90°, ∴OP=

33OE=233

, 综上所述:OP 的长为62 或

23

3

. 【点睛】本题考查了全等三角形的判定与性质、直角三角形斜边中线等于斜边一半、等腰直角三角形的判定与性质、解直角三角形等,综合性较强,正确添加辅助线是解题的关键.

4.如图,在平行四边形ABCD 中,AD ⊥DB ,垂足为点D ,将平行四边形ABCD 折叠,使点B 落在点D 的位置,点C 落在点G 的位置,折痕为EF ,EF 交对角线BD 于点P . (1)连结CG ,请判断四边形DBCG 的形状,并说明理由; (2)若AE =BD ,求∠EDF 的度数.

【答案】(1)四边形BCGD 是矩形,理由详见解析;(2)∠EDF =120°. 【解析】 【分析】

(1)根据平行四边形的性质和折叠性质以及矩形的判定解答即可;

(2)根据折叠的性质以及直角三角形的性质和等边三角形的判定与性质解答即可. 【详解】

解:(1)四边形BCGD 是矩形,理由如下, ∵四边形ABCD 是平行四边形,

∴BC∥AD,即BC∥DG,

由折叠可知,BC=DG,

∴四边形BCGD是平行四边形,

∵AD⊥BD,

∴∠CBD=90°,

∴四边形BCGD是矩形;

(2)由折叠可知:EF垂直平分BD,

∴BD⊥EF,DP=BP,

∵AD⊥BD,

∴EF∥AD∥BC,

∴AE PD1

BE BP

==

∴AE=BE,

∴DE是Rt△ADB斜边上的中线,

∴DE=AE=BE,

∵AE=BD,

∴DE=BD=BE,

∴△DBE是等边三角形,

∴∠EDB=∠DBE=60°,

∵AB∥DC,

∴∠DBC=∠DBE=60°,

∴∠EDF=120°.

【点睛】

本题考查了平行四边形的性质,折叠性质,等边三角形的性质和判定,主要考查学生运用定理进行推理和计算的能力,题目综合性比较强,有一定的难度

5.菱形ABCD中、∠BAD=120°,点O为射线CA上的动点,作射线OM与直线BC相交于点E,将射线OM绕点O逆时针旋转60°,得到射线ON,射线ON与直线CD相交于点F.(1)如图①,点O与点A重合时,点E,F分别在线段BC,CD上,请直接写出CE,CF,CA三条段段之间的数量关系;

(2)如图②,点O在CA的延长线上,且OA=1

3

AC,E,F分别在线段BC的延长线和线

段CD的延长线上,请写出CE,CF,CA三条线段之间的数量关系,并说明理由;

(3)点O在线段AC上,若AB=6,BO=27,当CF=1时,请直接写出BE的长.

【答案】(1)CA=CE+CF.(2)CF-CE=4

3

AC.(3)BE的值为3或5或1.

【解析】

【分析】

(1)如图①中,结论:CA=CE+CF.只要证明△ADF≌△ACE(SAS)即可解决问题;

(2)结论:CF-CE=4

3

AC.如图②中,如图作OG∥AD交CF于G,则△OGC是等边三角

形.只要证明△FOG≌△EOC(ASA)即可解决问题;(3)分四种情形画出图形分别求解即可解决问题.【详解】

(1)如图①中,结论:CA=CE+CF.

理由:∵四边形ABCD是菱形,∠BAD=120°

∴AB=AD=DC=BC,∠BAC=∠DAC=60°

∴△ABC,△ACD都是等边三角形,

∵∠DAC=∠EAF=60°,

∴∠DAF=∠CAE,

∵CA=AD,∠D=∠ACE=60°,

∴△ADF≌△ACE(SAS),

∴DF=CE,

∴CE+CF=CF+DF=CD=AC,

∴CA=CE+CF.

(2)结论:CF-CE=4

3 AC.

理由:如图②中,如图作OG∥AD交CF于G,则△OGC是等边三角形.

∵∠GOC=∠FOE=60°,

∴∠FOG=∠EOC,

∵OG=OC,∠OGF=∠ACE=120°,

∴△FOG≌△EOC(ASA),

∴CE=FG,

∵OC=OG,CA=CD,

∴OA=DG,

∴CF-EC=CF-FG=CG=CD+DG=AC+1

3AC=

4

3

AC,

(3)作BH⊥AC于H.∵AB=6,AH=CH=3,

∴BH=33,

如图③-1中,当点O在线段AH上,点F在线段CD上,点E在线段BC上时.

∵7,

∴22

OB BH

=1,

∴OC=3+1=4,

由(1)可知:CO=CE+CF,

∵OC=4,CF=1,

∴CE=3,

∴BE=6-3=3.

如图③-2中,当点O在线段AH上,点F在线段DC的延长线上,点E在线段BC上时.

由(2)可知:CE-CF=OC,

∴CE=4+1=5,

∴BE=1.

如图③-3中,当点O在线段CH上,点F在线段CD上,点E在线段BC上时.

同法可证:OC=CE+CF,

∵OC=CH-OH=3-1=2,CF=1,

∴CE=1,

∴BE=6-1=5.

如图③-4中,当点O在线段CH上,点F在线段DC的延长线上,点E在线段BC上时.

同法可知:CE-CF=OC,

∴CE=2+1=3,

∴BE=3,

综上所述,满足条件的BE 的值为3或5或1. 【点睛】

本题属于四边形综合题,考查了全等三角形的判定和性质,等边三角形的性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.

6.△ABC 为等边三角形,AF

AB =.BCD BDC AEC ∠=∠=∠.

(1)求证:四边形ABDF 是菱形.

(2)若BD 是ABC ∠的角平分线,连接AD ,找出图中所有的等腰三角形.

【答案】(1)证明见解析;(2)图中等腰三角形有△ABC ,△BDC ,△ABD ,△ADF ,△ADC ,△ADE . 【解析】 【分析】

(1)先求证BD ∥AF ,证明四边形ABDF 是平行四边形,再利用有一组邻边相等的平行四边形是菱形即可证明;(2)先利用BD 平分∠ABC ,得到BD 垂直平分线段AC ,进而证明△DAC 是等腰三角形,根据BD ⊥AC,AF ⊥AC ,找到角度之间的关系,证明△DAE 是等腰三角形,进而得到BC =BD =BA =AF =DF ,即可解题,见详解. 【详解】

(1)如图1中,∵∠BCD =∠BDC , ∴BC =BD ,

∵△ABC 是等边三角形, ∴AB =BC , ∵AB =AF , ∴BD =AF , ∵∠BDC =∠AEC , ∴BD ∥AF ,

∴四边形ABDF 是平行四边形, ∵AB =AF ,

∴四边形ABDF 是菱形.

(2)解:如图2中,∵BA =BC ,BD 平分∠ABC , ∴BD 垂直平分线段AC , ∴DA =DC ,

∴△DAC 是等腰三角形, ∵AF ∥BD ,BD ⊥AC ∴AF ⊥AC , ∴∠EAC =90°,

∵∠DAC =∠DCA ,∠DAC +∠DAE =90°,∠DCA +∠AEC =90°, ∴∠DAE =∠DEA , ∴DA =DE ,

∴△DAE 是等腰三角形, ∵BC =BD =BA =AF =DF ,

∴△BCD ,△ABD ,△ADF 都是等腰三角形,

综上所述,图中等腰三角形有△ABC ,△BDC ,△ABD ,△ADF ,△ADC ,△ADE .

【点睛】

本题考查菱形的判定,等边三角形的性质,等腰三角形的判定等知识,属于中考常考题型,熟练掌握等腰三角形的性质是解题的关键.

7.问题情境

在四边形ABCD 中,BA =BC ,DC ⊥AC ,过点D 作DE ∥AB 交BC 的延长线于点E ,M 是边AD 的中点,连接MB ,ME. 特例探究

(1)如图1,当∠ABC =90°时,写出线段MB 与ME 的数量关系,位置关系; (2)如图2,当∠ABC =120°时,试探究线段MB 与ME 的数量关系,并证明你的结论; 拓展延伸

(3)如图3,当∠ABC =α时,请直接用含α的式子表示线段MB 与ME 之间的数量关系.

【答案】(1)MB =ME ,MB ⊥ME ;(2)ME 3.证明见解析;(3)ME =MB·tan 2

.

【解析】 【分析】

(1)如图1中,连接CM .只要证明△MBE 是等腰直角三角形即可; (2)结论:EM=3MB .只要证明△EBM 是直角三角形,且∠MEB=30°即可; (3)结论:EM=BM?tan 2

.证明方法类似;

【详解】

(1) 如图1中,连接CM .

∵∠ACD=90°,AM=MD , ∴MC=MA=MD , ∵BA=BC , ∴BM 垂直平分AC , ∵∠ABC=90°,BA=BC ,

∴∠MBE=1

2

∠ABC=45°,∠ACB=∠DCE=45°, ∵AB ∥DE ,

∴∠ABE+∠DEC=180°, ∴∠DEC=90°,

∴∠DCE=∠CDE=45°, ∴EC=ED ,∵MC=MD ,

∴EM 垂直平分线段CD ,EM 平分∠DEC , ∴∠MEC=45°,

∴△BME 是等腰直角三角形, ∴BM=ME ,BM ⊥EM .

故答案为BM=ME ,BM ⊥EM .

(2)ME =3MB .

证明如下:连接CM ,如解图所示.

∵DC ⊥AC ,M 是边AD 的中点, ∴MC =MA =MD . ∵BA =BC , ∴BM 垂直平分AC . ∵∠ABC =120°,BA =BC ,

∴∠MBE =1

2

∠ABC =60°,∠BAC =∠BCA =30°,∠DCE =60°. ∵AB ∥DE ,

∴∠ABE +∠DEC =180°, ∴∠DEC =60°,

∴∠DCE =∠DEC =60°, ∴△CDE 是等边三角形, ∴EC =ED . ∵MC =MD ,

∴EM 垂直平分CD ,EM 平分∠DEC ,

∴∠MEC =

1

2

∠DEC =30°, ∴∠MBE +∠MEB =90°,即∠BME =90°. 在Rt △BME 中,∵∠MEB =30°, ∴ME =3MB .

(3) 如图3中,结论:EM=BM?tan

2

α.

理由:同法可证:BM ⊥EM ,BM 平分∠ABC , 所以EM=BM?tan 2

α. 【点睛】

本题考查四边形综合题、等腰直角三角形的判定和性质、等边三角形的判定和性质、等腰三角形的性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.

8.如图,抛物线y=mx 2+2mx+n 经过A (﹣3,0),C (0,﹣3

2

)两点,与x 轴交于另一点B .

(1)求经过A ,B ,C 三点的抛物线的解析式;

(2)过点C 作CE ∥x 轴交抛物线于点E ,写出点E 的坐标,并求AC 、BE 的交点F 的坐标 (3)若抛物线的顶点为D ,连结DC 、DE ,四边形CDEF 是否为菱形?若是,请证明;若不是,请说明理由.

【答案】(1)y=1

2

x2+x﹣

3

2

;(2)F点坐标为(﹣1,﹣1);(3)四边形CDEF是菱

形.证明见解析

【解析】

【分析】

将A、C点的坐标代入抛物线的解析式中,通过联立方程组求得该抛物线的解析式;

根据(1)题所得的抛物线的解析式,可确定抛物线的对称轴方程以及B、C点的坐标,由CE∥x轴,可知C、E关于对称轴对称。根据A、C点求得直线AC的解析式,根据B、E点求出直线BE的解析式,联立方程求得的解,即为F点的坐标;

由E、C、F、D的坐标可知DF和EC互相垂直平分,则可判定四边形CDEF为菱形.

【详解】

(1)∵抛物线y=mx2+2mx+n经过A(﹣3,0),C(0,﹣)两点,

∴,解得,

∴抛物线解析式为y=x2+x﹣;

(2)∵y=x2+x﹣,

∴抛物线对称轴为直线x=﹣1,

∵CE∥x轴,

∴C、E关于对称轴对称,

∵C(0,﹣),

∴E(﹣2,﹣),

∵A、B关于对称轴对称,

∴B(1,0),

设直线AC、BE解析式分别为y=kx+b,y=k′x+b′,

则由题意可得,,

解得,,

∴直线AC、BE解析式分别为y=﹣x﹣,y=x﹣,

联立两直线解析式可得,解得,

∴F点坐标为(﹣1,﹣1);

(3)四边形CDEF是菱形.

证明:∵y=x2+x﹣=(x+1)2﹣2,

∴D(﹣1,﹣2),

∵F(﹣1,﹣1),

∴DF⊥x轴,且CE∥x轴,

∴DF⊥CE,

∵C(0,﹣),且F(﹣1,﹣1),D(﹣1,﹣2),

∴DF和CE互相平分,

∴四边形CDEF是菱形.

【点睛】

本题考查菱形的判定方法,二次函数的性质,以及二次函数与二元一次方程组.

9.如图,在正方形ABCD中,点E在CD上,AF⊥AE交CB的延长线于F.

求证:AE=AF.

【答案】见解析

【解析】

【分析】

根据同角的余角相等证得∠BAF=∠DAE,再利用正方形的性质可得AB=AD,

∠ABF=∠ADE=90°,根据ASA判定△ABF≌△ADE,根据全等三角形的性质即可证得AF=AE.

【详解】

∵AF⊥AE,

∴∠BAF+∠BAE=90°,

又∵∠DAE+∠BAE=90°,

∴∠BAF=∠DAE,

∵四边形ABCD是正方形,

∴AB=AD,∠ABF=∠ADE=90°,

在△ABF和△ADE中,

∴△ABF≌△ADE(ASA),

∴AF=AE.

【点睛】

本题主要考查了正方形的性质、全等三角形的判定和性质等知识点,证明△ABF≌△ADE是解决本题的关键.

10.如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标为(3,3).将正方形ABCO 绕点A顺时针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段OC于点G,ED的延长线交线段BC于点P,连AP、AG.

(1)求证:△AOG≌△ADG;

(2)求∠PAG的度数;并判断线段OG、PG、BP之间的数量关系,说明理由;

(3)当∠1=∠2时,求直线PE的解析式;

(4)在(3)的条件下,直线PE上是否存在点M,使以M、A、G为顶点的三角形是等腰三角形?若存在,请直接写出M点坐标;若不存在,请说明理由.

【答案】(1)见解析(2)∠PAG =45°,PG=OG+BP.理由见解析(3)y=x﹣3.(4)、.

【解析】

试题分析:(1)由AO=AD,AG=AG,根据斜边和一条直角边对应相等的两个直角三角形全等,判断出△AOG≌△ADG即可.(2)首先根据三角形全等的判定方法,判断出

△ADP≌△ABP,再结合△AOG≌△ADG,可得∠DAP=∠BAP,∠1=∠DAG;然后根据

∠1+∠DAG+∠DAP+∠BAP=90°,求出∠PAG的度数;最后判断出线段OG、PG、BP之间的数量关系即可.(3)首先根据△AOG≌△ADG,判断出∠AGO=∠AGD;然后根据

∠1+∠AGO=90°,∠2+∠PGC=90°,判断出当∠1=∠2时,∠AGO=∠AGD=∠PGC,而

∠AGO+∠AGD+∠PGC=180°,求出∠1=∠2=30°;最后确定出P、G两点坐标,即可判断出直线PE的解析式.

(4)根据题意,分两种情况:①当点M在x轴的负半轴上时;②当点M在EP的延长线上

时;根据以M、A、G为顶点的三角形是等腰三角形,求出M点坐标是多少即可.

试题解析:(1)在Rt△AOG和Rt△ADG中,(HL)∴△AOG≌△ADG.

(2)在Rt△ADP和Rt△ABP中,∴△ADP≌△ABP,则∠DAP=∠BAP;

∵△AOG≌△ADG,∴∠1=∠DAG;又∵∠1+∠DAG+∠DAP+∠BAP=90°,

∴2∠DAG+2∠DAP=90°,∴∠DAG+∠DAP=45°,∵∠PAG=∠DAG+∠DAP,∴∠PAG=45°;∵△AOG≌△ADG,∴DG=OG,∵△ADP≌△ABP,∴DP=BP,∴PG=DG+DP=OG+BP.(3)解:∵△AOG≌△ADG,∴∠AGO=∠AGD,又∵∠1+∠AGO=90°,∠2+∠PGC=90°,∠1=∠2,

∴∠AGO=∠PGC,又∵∠AGO=∠AGD,∴∠AGO=∠AGD=∠PGC,

又∵∠AGO+∠AGD+∠PGC=180°,∴∠AGO=∠AGD=∠PGC=180°÷3=60°,

∴∠1=∠2=90°﹣60°=30°;在Rt△AOG中,∵AO=3,∴OG=AOtan30°=3×=,

∴G点坐标为(,0),CG=3﹣,在Rt△PCG中,PC===3(﹣

1),

∴P点坐标为:(3,3﹣3 ),设直线PE的解析式为:y=kx+b,则

解得:,∴直线PE的解析式为y=x﹣3.

(4)①如图1,当点M在x轴的负半轴上时,,∵AG=MG,点A坐标为(0,3),

∴点M坐标为(0,﹣3).

②如图2,当点M在EP的延长线上时,,由(3),可得∠AGO=∠PGC=60°,

∴EP与AB的交点M,满足AG=MG,∵A点的横坐标是0,G点横坐标为,∴M的横坐标是2,纵坐标是3,∴点M坐标为(2,3).

综上,可得点M坐标为(0,﹣3)或(2,3).

考点:几何变换综合题.

相关主题
文本预览
相关文档 最新文档