当前位置:文档之家› 第三章 配气机构

第三章 配气机构

第三章 配气机构
第三章 配气机构

第三章配气机构

3.1 概述 (2)

3.2 配气相位 (5)

3.3 配气机构的零件和组件 (8)

3.4 可变进气系统 (21)

学习目

标:

1.掌握配气机构的组成及各零部件的结构特点;

2.掌握配气相位、气门间隙;

3.掌握凸轮轴的结构特点;

4.掌握可变进气系统的结构类型特点。

学习方

法:

介绍发动机配气机构的结构及组成,通过实物教学和多媒体课件动态演示相结合,并和汽车拆装与调整实践教学相辅相承,使学生掌握各零部件的结构特点和安装要

求。

学习内

容:

§3.1 概述

§3.2 配气相位

§3.3 配气机构的零件和组件

§3.4 用配气相位图分析可调间隙的气门

§3.5 可变进气系统

学习重

点:

1.配气相位;

2.气门间隙;

3.凸轮轴的结构特点;

4.可变进气系统的结构类型。

作业习

题:

1.影响充气效率的因素主要有哪些?

2.配气机构的功用是什么?

3.如何从一根凸轮轴上找出各缸的进排气凸轮和该发动机的发火顺序?

4.气门弹簧起什么作用,为什么在装配气门弹簧时要预先压缩?

5.挺柱的类型主要有哪些,液压挺柱有哪些优点?

6.可变进气系统主要有哪几种型式?

3.1 概述

配气机构的功用就是根据每一气缸内所进行的工作循环和点火顺序的要求,定时打开和关闭各缸的进排气门,使新气及时进入气缸和废气及时排出气缸,使换气过程最佳。好的配气机构应使发动机在各种工况下工作时获得最佳的进气量,以保证发动机在各种工况下工作时发出最好的性能。

发动机在全负荷下工作时,需获得最大功率和扭矩,这就要求在此工况下,配气机构应保证获得最大进气充量。吸入的进气越多,发动机发出的功率和扭矩越大。进气充满气缸的程度,常用充气效率 ( 也称充气系数 ) η v 表示。即:ηv =M/Mo

式中M -进气过程中,实际充入气缸的进气量;

Mo -在进气状态下充满气缸工作容积的进气量。

一般情况下发动机充气效率η v 总是小于 l 的。η v 的大致范围是:

四冲程汽油机 0.7 ~ 0.85 ;

四冲程非增压柴油机 0.75 ~ 0.90 ;

四冲程增压柴油机 0.90 ~ 1.05 。

从不同的角度,气门式配气机构有多种分类方法:

3.1.1 按照气门的布置形式分:侧置气门、混合气门和顶置气门式配气机构

前两种布置形式在轿车发动机中已被淘汰,现代轿车发动机已全都采用顶置气门布置形式。货车和客车也大多采用这种型式。

3.1.2 按照凸轮轴的布置位置分:凸轮轴下置式,凸轮轴中置式,和凸轮轴上置式

三者都可用于气门顶置式配气机构。凸轮轴下置和中置的配气机构中的凸轮轴位于曲轴箱中部。当发动机转速较高时,为了减小气门传动机构的往复运动质量,可将凸轮轴位置移到气缸体的上部,由凸轮轴经过挺柱直接驱动摇臂,而省去推杆,这种结构称为凸轮轴中置式配气机构。

凸轮轴上置式配气机构中的凸轮轴布置在气缸盖上,这种结构中,凸轮轴直接通过摇臂来驱动气门,没有挺柱、推杆,使往复运动质量大大减小。因此它适用于高速发动机。但由于凸轮轴离曲轴中心线更远,因此正时传动机构更为复杂,而且拆装气缸盖也比较困难。缸径较小的柴油机的凸轮轴上置时给安装喷油器也带来困难。

上置凸轮轴的另一种型式是凸轮轴直接驱动气门,如图 3-3 所示。这种配气机构的往复运动质量最小,对凸轮轴和气门弹簧设计的要求也最低,因此特别适用于高速强化发动机。这在国外的高速汽车发动机上得到广泛的应用。

3.1.3 按曲轴和凸轮轴的传动方式分:齿轮传动式、链条传动式和齿带传动式三种型式

(1)齿轮传动:在下置凸轮轴驱动的顶置气门布置中,通常采用曲轴正时齿轮直接或通过中间轮带动凸轮轴转动的形式。这种驱动方式传动简单可靠、噪声小,广泛用在下置凸轮轴的传动中。

(2)链传动:链传动一般用在顶置凸轮轴布置形式中,为了不致脱链和工作时链条具有适度的张力,一般装有导链板和张紧轮等装置。链传动的主要缺点是寿命差,噪声较大,结构质量也较大,优点是布置容易。若传动距离较长时,可用两级链传动。

(3)齿带传动:现代高速轿车用汽油机和柴油机,广泛采用齿型带传动的形式,噪声小、工作可靠、成本低。

3.1.4 按每气缸气门数目分:二气门式、四气门式等

一般发动机都采用每缸两个气门,即一个进气门和一个排气门的结构。为了进一步改善气缸的换气,在可能的条件下,应尽量加大气门的直径,特别是进气门的直径。但是,由于燃烧室尺寸的限制,气门直径最大一般不能超过气缸直径的一半。当气缸直径较大,活塞平均速度较高时,每缸一进一排的气门结构就不能保证良好的换气质量。因此,在很多新型汽车发动机上多采用每缸四气门的结构,即两个进气门和两个排气门。如 12V150Z 型柴油机就是这种型式。采用这种型式后,进气门总的通过断面较大,充气效率较高,排气门的直径可适当减小,使其工作温度相应降低,提高了工作可靠性。

组成

为气门顶置凸轮轴下置式配气机构。它由气门组和气门传动组两部分组成。气门组包括气门 3 、气门导管 2 、气门弹簧 4 和 5 、弹簧座 6 、锁片 7 等零件。气门传动组包括摇臂轴 9 、摇臂 10 、推杆 13 、挺柱 14 、凸轮轴 15 和正时齿轮等零件。发动机工作时,曲轴通过正时齿轮驱动凸轮轴旋转。当凸轮轴转到凸轮的凸起部分顶起挺柱时,通过推杆和调整螺钉 12 使摇臂绕摇臂轴摆动,压缩气门弹簧,使气门离座,即气门开启。当凸轮凸起部分离开挺柱后,气门便在气门弹簧力作用下上升而落座,即气门关闭。

3.2 配气相位

在前述四冲程发动机的简单工作循环中,为了方便,曾把进、排气过程都看做是在活塞的一个行程内即曲轴转180°完成的,即气门开关时刻是在活塞的上下止点处。但实际情况并非如此。由于发动机转速很高,一个行程的时间极短,例如上海桑塔纳轿车发动机,在最大功率时的转速为 5600r/min ,一个行程历时仅为 60/(5600 × 2) = 0.0054s 。再加上用凸轮驱动气门开启需要一个过程,气门全开的时间就更短了,这样短的时间难以做到进气充分,排气干净。为了改善换气过程,提高发动机性能,实际发动机的气门开启和关闭并不恰好在活塞的上下止点,而是适当地提前和滞后,以延长进、排气的时间。也就是说,气门开启过程中曲轴转角都大于 180°。

用曲轴转角表示的进、排气门开闭时刻和开启持续时间,称为配气相位。配气相位的各个角度可用配气相位图来表示,如图3-2-1 。

3.2.1 进气门的配气相位

(1)进气提前角

在排气行程接近终了,活塞到达上止点之前,进气门便开始开启。从进气门开始开启到上止点所对应的曲轴转角称为进气提前角 ( 或早开角 ) ,用α表示,一般为 10°-30°。进气门提前开启的目的,是为了保证进气行程开始时进气门已开大,新鲜气体能顺利地充入气缸。

(2)进气迟后角

在进气行程下止点过后,活塞重又上行一段,进气门才关闭。从下止点到进气门关闭所对应的曲轴转角称为进气迟后角 ( 或晚关角 ) ,用β表示,β一般为 40°-80°。进气门晚关,是因为活塞到达下止点时,由于进气阻力的影响,气缸内的压力仍低于大气压,且气流还有相当大的惯性,仍能继续进气。下止点过后,随着活塞的上行,气缸内压力逐渐增大,进气气流速度也逐渐减小,至流速等于零时,进气门便关闭的β角最适宜。若β过大就会将进入气缸的气体重新又压回进气管。

由上可见,进气门开启持续时间内的曲轴转角,即进气持续角为α +180°+ β。

在前述四冲程发动机的简单工作循环中,为了方便,曾把进、排气过程都看做是在活塞的一个行程内即曲轴转 180°完成的,即气门开关时刻是在活塞的上下止点处。但实际情况并非如此。由于发动机转速很高,一个行程的时间极短,再加上用凸轮驱动气门开启需要一个过程,气门全开的时间就更短了,这样短的时间难以做到进气充分,排气干净。为了改善换气过程,提高发动机性能,实际发动机的气门开启和关闭并不恰好在活塞的上下止点,而是适当地提前和滞后,以延长进、排气的时间。也就是说,气门开启过程中曲轴转角都大于180°。

用曲轴转角表示的进、排气门开闭时刻和开启持续时间,称为配气相位。配气相位的各个角度可用配气相位图来表示,如图 3-2-1 。

3.2.2 排气门的配气相位

(1)排气提前角

在做功行程的后期,活塞到达下止点前,排气门便开始开启。从排气门开始开启到下止点所对应的曲轴转角称为排气提前角(或早开角),用γ表示,γ一般为40°- 80°。排气门恰当的早开,气缸内还有0.3-0.5MPa的压力,做功作用已经不大,但利用此压力可使气缸内的废气迅速地自由排出,待活塞到达下止点时,气缸内只剩约0.11-0.12MPa的压力,使排气行程所消耗的功率大为减小。此外,高温废气的早排,还可防止发动机过热。但γ角若过大,则将得不偿失。

(2)排气迟后角

在活塞越过上止点后,排气门才关闭。从上止点到排气门关闭所对应的曲轴转角称为排气迟后角(或晚关角),用δ表示。δ一般为10°-30°。由于活塞到达上止点时,气缸内的压力仍高于大气压,且废气气流有一定的惯性,所以排气门适当晚关可使废气排得较干净。

由上可见,排气门开启持续时间内的曲轴转角,即排气持续角为γ+180°+δ。

3.2.3 气门的叠开

由于进气门早开和排气门晚关,就出现了一段进、排气门同时开启的现象,称为气门叠开。同时开启的角度,即进气门早开角与排气门晚关角的和(α+δ),称为气门叠开角。

由于叠开时气门的开度很小,且新鲜气体和废气流的惯性要保持原来的流动方向,所以只要叠开角适当,就不会产生废气倒排回进气管和新鲜气体随废气排出的问题。相反,由于废气气流周围有一定的真空度,对排气速度有一定影响,从进气门进入的少量新鲜气体可对此真空度加以填补,还有助于废气的排出。发动机的结构不同、转速不同,配气相位也就不同。

3.3 配气机构的零件和组件

四冲程气门式配气机构一般都由气门组和气门传动组两部分组成。不同型式的配气机构,气门组结构差异不大,但气门传动组结构差别很大。

3.3.1 气门组

气门组包括气门、气门座、气门导管及气门弹簧等零件,如图3-3-1 所示,有的进气门还设有气门旋转机构。

3.3.1.1 气门的工作条件与材料

承受热负荷、机械负荷、冲击且冷却润滑困难。

为了保证气门的正常工作,除了在结构上采取措施外,还应当选用耐热、耐蚀、耐磨的材料。根据进、排气门工作条件的不同,进气门采用一般合金钢 ( 如 40Cr 、 35CrMo 等 ) 即可,而排气门则要求用高铬耐热钢 ( 如 4Crl0Si2Mo 和 4Cr9Si2 等 ) 制造。

3.3.1.2气门

气门是保证发动机工作性能良好和可靠性、耐久性的重要零件之一。对气门的主要要求是在任何情况下都必须保证燃烧室的气密性。

气门由头部和杆部组成。

气门头部

(1) 气门顶形状(如图3-3-3 所示)

球面顶:这种气门顶面具有最大的强度,但吸热面大,质量也大。球面对排气阻力有利,适于作排气门。

喇叭形顶:这种气门顶与杆部过渡具有一定的流线形,可减少进气阻力。但受热面大,一般用在高功率和赛车发动机上作进气门。

平顶:这种气门顶吸热量少,制造简单,若用较大一点圆弧连接则流动阻力也小,故是所有发动机中最常用的形式。

改良形内凹顶:它是介于喇叭形顶与平顶之间的一种形式。它制造比喇叭形顶有改进,故也有应用。

(2) 气门锥角

气门与气门座之间的配合面做成锥面,如图3-3-4 所示,以便落座时自行对正中心,接触良好。气门密封锥面并不是以全宽参加工作,从降低热负荷出发,希望接触带宽些,但接触带过大时,工作面比压下降,杂物和硬粒卡在气门锥面与气门座面之间不能很好碾碎,妨碍密封性。为了保证密封可靠,气门与气门座相配研磨后,要求得到 l ~ 2mm 宽的密封带。

气门锥角对气门头部与气门座的密封性和导热性,以及气门的刚度都有影响,一般多采用 45°,有的采用 30°,个别情况下也有用 60°或 15°的。

(3) 气门直径

进气门直径一般大于排气门直径。这是由于进气阻力对发动机动力性的影响比排气阻力大得多 ( 尤其对汽油机而言 ) 。在受限制的燃烧室空间 ( 考虑到燃烧室的紧凑性、发动机的尺寸等 ) 内布置的进、排气门,显然应当适当加大进气门直径,并适当减小排气门直径。有时为了加工简单,把进、排气门直径做成一样,在这种情况下,往往在排气门头部刻有排气标记,以防装错。

气门头部到气门杆的过渡圆弧一般都比较大,以减少气流阻力,同时也增加强度,改善气门头部的散热。

气门杆部(如图3-3-5 所示)

气门杆部用来为气门运动时导向、承受侧压力并传走一部分热量。气门杆的圆柱形表面需经磨光。有的发动机排气门杆加粗,以利于传热,降低排气门的温度。但出于工艺上的考虑,绝大多数发动机的进、排气门杆制成一样粗。

(1) 弹簧座的固定

杆部尾端的形状决定于弹簧座的固定方式。常用的固定方法有两种:一是在气门杆端制有凹槽,其中嵌入制成两半的锥形锁环(锁片),利用弹簧座的锥形内表面将锁环卡住;二是气门杆端制有圆柱形径向通孔,利用插在孔内的锁销来支承承弹簧座,而弹簧座的边缘又可

阻止锁销松脱。

(2) 防落装置

为了防止当气门弹簧万一折断时气门落入气缸造成严重事故,可在气门杆尾部加工一个环形槽,在槽内装上弹簧卡环,如图3-3-6 所示。一般环形槽的位置相应于气门最大升程后可再下降 1 ~ 2mm 。

(3) 机油防漏装置

由于进气管中有一定真空度,气缸盖上的机油会通过气门与导管之间的间隙漏到进气门上。为了减少机油损耗和气门上沉积物的数量,在有些发动机进气门杆上部压有橡胶挡油罩,以避免机油过多地漏入进气门中去。 492Q 型汽油机即采用这种结构,如图 3-3-7 所示。

(4) 气门旋转装置

为了改善密封锥面和气门杆的工作,有许多发动机的气门装有使之可能相对于气门座旋转的装置。气门缓慢旋转时在密封锥面上产生轻微的摩擦,有自洁作用,妨碍沉积物的形成,减轻不均匀磨损,同时可使气门头部沿圆周温度均匀,减小气门变形的可能性。气门旋转时,气门杆的润滑条件也得以改善,气门杆中形成的沉积物也可减少。实践证明,采用旋转机构后,气门的使用期限可以大大提高。

3.3.1.3 气门座

气门座与气门共同执行密封功能,可以直接在气缸盖 ( 气门顶置时 ) 或气缸体 ( 气门侧置时 ) 上镗出,也可以用耐热钢、球墨铸铁或合金铸铁单独制成,然后压入气缸盖或气缸体的相应孔中,后者称为镶嵌式气门座。

车用汽油机经常在部分负荷下工作,由于节气门开度不大,进气被节流,进气管道中真空度较大,进气门可以经常得到经由气门导管吸人的机油的润滑,故可以不镶气门座。而排

气门的工作条件就恶劣得多,因此大多镶有气门座。

柴油机有些是进、排气门均镶座,以提高耐磨性。有些则是进气门镶座、排气门不镶座。这是因为柴油机的排气门经常受到由于燃烧不完全而夹杂在废气中的柴油和机油等的润滑而不致强烈磨损,而进气门由于通过导管漏入的机油少 ( 柴油机无化油器,进气管内真空度较小,虽然汽车柴油机经常在部分负荷工作,但柴油机的负荷不是用如汽油机那样的节气门来控制,进气管内的真空度不会因负荷减小而增加 ) 。气门直径又较大,在很高的气体压力作用下挠曲变形较大,致使在密封锥面上发生微量的相对滑动,磨损比较严重。

对于增压柴油机来说,由于完全排除了从气门导管获得机油的可能,进气门座的磨损尤显突出。因此,进气门就更需要镶座,而且往往采用 30°的气门锥角,以抵消因弯曲而引起的锥面上的相对滑动。例如 135 系列柴油机采用增压后,把原 45°锥角改为 30°,此外还添加了进气门旋转机构。

3.3.1.3 气门导管

气门导管的主要功用是保证气门直线运动,使气门与气门座正确配合,如图3-3-10 所示。

气门导管的材料一般为铸铁或球墨铸铁。近年来我国广泛应用铁基粉末冶金导管,它在不良润滑条件下工作可靠、磨损很小,同时工艺性好、造价低。

一般导管的外表面也制成圆柱形,没有台肩,以便于在大量生产条件下用无心磨床高效率地生产。导管加工后压入气缸盖 ( 顶置 ) 或气缸体 ( 侧置 ) 的导管孔中,由于压入后会有变形,故内孔的精铰在压入后进行。由于导管外表面无台肩,压入时的正确位置用专用工具保证。

为了防止气门导管自动下落掉入气缸 ( 气门顶置时 ) ,有时在其露出气缸盖部分嵌有卡环。一般情况下,只要装配时保证一定的过盈是不会发生上述事故的,故可不另采取措施。采用铝缸盖的发动机 ( 如 492Q 型汽油机 ) ,为安全起见,在导管上嵌有卡环。

3.3.1.4 气门弹簧

气门弹簧的作用是使气门迅速回位,紧密闭合。

气门弹簧一般是用弹簧钢丝制成的圆柱形螺旋弹簧,其一端支承在气缸盖 ( 或气缸体 ) 的相应凹槽内,另一端压在与气门杆端连接的弹簧座上,如。

气门弹簧应当有足够的弹力,而且安装时必须给予一定的预紧力。如果使用质量不高、刚性不足的弹簧,将不同程度地导致发动机噪音增加,磨损加剧,密封不可靠,动力性和经济性下降。

气门弹簧在工作中可能会发生共振,这是应当避免的。可以采用变螺距弹簧来预防共振,弹簧在工作时,螺距较小的一端逐渐迭合,有效因数不断变化 ( 减少 ) ,因而固有振动频率也就不断变化 ( 增加 ) ,共振便成为不可能。变螺距弹簧安装时应将较小螺距的一端压向气门座,否则,由于工作时参加振动的当量质量增加,反而容易折断。

也可以采用双弹簧结构,两个弹簧的刚度不同,固有频率不同,若一个弹簧进入了共振工况,另一个弹簧可起减振作用。采用双弹簧不仅可以防止共振,而且还可起安全作用,因

为如果其中一个弹簧折断,另一个弹簧尚能继续工作,不致立即发生气门落入气缸的事故。采用双弹簧时,内外弹簧的螺旋方向应相反,以免互相干扰,当一个弹簧断裂时,不致嵌入另一弹簧圈内,使另一弹簧卡住造成配气机构零件的损坏。在高速发动机中,还可在弹簧内圈加阻尼摩擦片来消除共振。

3.3.2 气门传动组

3.3.2.1 功用和组成

气门传动组的作用是使进、排气门能按配气相位规定的时刻开闭,且保证有足够的开度。

气门传动组主要包括凸轮轴、正时齿轮、挺柱及其导管,有的还有推杆、摇臂和摇臂轴等。

3.3.2.2 凸轮轴

凸轮轴上主要有各缸进、排气凸轮,用以使气门按一定的工作次序和配气相位及时开闭,并保证气门有足够的升程。汽油机的凸轮轴布置在气缸的侧面下方时,一般将驱动汽油泵的偏心轮和驱动分电器的螺旋齿轮也设置在凸轮轴上,如图 3-3-16a )所示。凸轮受到气门间歇性开启的周期性冲击载荷,因此凸轮表面要求耐磨,凸轮轴要求有足够的韧性和刚度。

发动机工作时,凸轮轴的变形会影响配气相位,因此有的发动机凸轮轴采用全支承以减小其变形,如图 3-3-16a )所示的 BJ2023 型汽车的 492QA 发动机的凸轮轴有五个轴颈。但是,支承数多,加工工艺较复杂。所以一般发动机的凸轮轴是每隔两个气缸设置一个轴颈,为了安装方便,凸轮轴各轴颈直径是做成从前向后依次减小的。

凸轮轴材料一般用优质钢模锻而成,也可采用合金铸铁或球墨铸铁铸造。凸轮和轴颈的工作表面一般经热处理后精磨,以改善其耐磨性。

由图 3-3-16 可以看出,同一气缸的进、排气凸轮的相对角位置是与既定的配气相位相

适应的。发动机各个气缸的进气 ( 或排气 ) 凸轮的相对角位置应符合发动机各气缸的发火次序和发火间隙时间的要求。因此,根据凸轮轴的旋转方向以及各进气 ( 或排气 ) 凸轮的工作次序,就可以判定发动机的发火次序。

凸轮的轮廓应保证气门开启和关闭的持续时间符合配气相位的要求,且使气门有合适的升程 ( 它决定了气门通道面积 ) 及其升降过程的运动规律。凸轮轮廓形状如图 3-3-17 所示。O点为凸轮旋转中心。 EA 为以O为中心的圆弧。当凸轮按图中箭头方向转过弧 EA 时,挺柱不动,气门关闭。凸轮转过 A 点后,挺柱 ( 液压挺柱除外 ) 开始上移。至 B 点,气门间隙消除,气门开始开启。凸轮转到 C 点,气门开度达最大。至 D 点,气门闭合终了。φ对应着气门开启持续角,ρ1 和ρ2 则分别对应着消除和恢复气门间隙所需的转角。凸轮轮廓 BCD 段的形状,决定了气门的升程及其升降过程的运动规律。

在一根凸轮轴上,各缸的同名凸轮彼此间的夹角称为同名凸轮配角,它应符合发动机的工作顺序;同一缸的异名凸轮彼此间的夹角称为异名凸轮配角,它应保证一个工作循环中对进、排气门开闭时间的要求。根据这一原则,四缸四冲程发动机每完成一个工作循环,曲轴旋转两周而凸轮轴只旋转一周。如发动机的工作顺序 1-2-4-3 ,各缸同名凸轮配角为曲轴的连杆轴颈配角的一半,即 180°/ 2 = 90°。四冲程发动机同缸异名凸轮配角的理论值为 90°,实际上由于气门的早开迟闭,它往往要大于 90°。

凸轮轴轴承

当采用分开式结构时,轴承座与轴承盖用铝合金材料,轴承与轴之间不再加装轴衬;当采用整体式的轴承时,在轴与轴承之间往往装有衬套,此衬套可以是钢衬套、铝衬套、粉末冶金衬套或是青铜衬套。

由于凸轮轴的驱动齿轮通常采用圆柱螺旋齿轮,有的大型车辆发动机上还采用圆锥齿轮驱动,因此凸轮轴不可避免地受到一定的轴向力。为了保持凸轮轴轴向位置的正确性,凸轮轴需要轴向定位。常用的轴向定位方法有以下几种:

止推轴承定位

如图 3-3-18a) 所示,止推轴承定位,也就是控制凸轮轴的第一轴颈 2 上的两端凸肩与凸轮轴承座之间的间隙⊿,以限制凸轮轴的轴向移动。 12150L 柴油机的凸轮轴就是采用这种止推方式。

止推片轴向定位

如图 3-3-18b) 所示,止推片 4 安装在正时齿轮 3 与凸轮第一轴颈 5 之间,且留有一定的间隙,从而限止了凸轮轴的轴向移动量。调整止推片的厚度,可控制轴向间隙大小。

止推螺钉轴向定位

如图 3-3-18c) 所示,止推螺钉 7 拧在正时齿轮室盖 6 上,并用锁紧螺母锁紧。调整止推螺钉拧入的程度就可以调整凸轮轴的轴向移动量。车用发动机凸轮轴的轴向间隙一般为0.10 ~ 0.20mm 。

3.3.2.3 正时齿轮

正时齿轮传动为凸轮轴的常见驱动方式,正时齿轮包括曲轴正时齿轮和凸轮轴正时齿轮,它们分别用半圆键装在曲轴和凸轮轴的前端,传动比为 2 : 1 。为了使齿轮啮合平顺,减小噪音,正时齿轮一般采用斜齿轮。

3.3.2.4 挺柱

挺柱是凸轮的从动件。它的作用是将来自凸轮的运动和作用力传给推杆,承受凸轮传来的侧向力,并将此侧向力传给发动机机体。

挺柱有平面挺柱、滚子挺柱和液压挺柱多种。

平面挺柱

如图 3-3-20a) 、 b) 、 c) 所示,平面挺柱由作为工作面的圆盘 ( 平面或微凸面 ) 和起导向作用的圆柱体组成。在挺柱的内部或顶部有球窝,与推杆上的球头相配合。为保持两者之间的润滑油膜,球窝的半径要略大于球头的半径。挺柱的工作面直接与凸轮相接触,是一对高摩擦副,在工作中产生很大的摩擦与磨损。为了减轻挺柱工作面的局部磨损,一般可采取以下三种方法:

1) 将挺柱工作面作成半径较大的球面 ( 其球半径 R = 500 ~ 1000mm) ,将凸轮的母线作成斜率很小的锥体 ( 其母线斜角β为 7 ˊ~ 15 ˊ ) ,这样可使挺柱在工作中绕其中心线稍有转动,从而达到磨损均匀的目的。

2) 挺柱工作面是平面,凸轮是柱体,但在安装中使挺柱中心线与凸轮中心线不相重合,而是具有一定的偏心量 (e = 1 — 3mm) 。这样,在工作时也可使挺柱绕其中心线产生一定的转动。

3) 挺柱外表面做成两端小,中间大的桶形。当挺柱在座孔中歪斜时,由于它的自位作用,仍可保证凸轮型面全宽与挺柱表面相接触,从而可减小接触应力,井使磨损均匀。

平面挺柱由于结构简单、质量轻,被广泛地用于车用发动机上。

滚子挺柱

如图 3-3-20d) 所示,滚子挺柱结构比较复杂,质量也比较大,一般用于缸径较大、转速较低或具有特殊要求的发动机上。

液压挺柱

由于配气机构中存在间隙.在高速运行时会产生很大的振动和噪声,这对某些要求行驶平稳与低噪声的车用发动机来说是很不适宜的,因此出现了一种液压挺柱,它直接放在凸轮与气门之间,如图 3-3-22a) 所示。液压挺柱由外体 10 ,内体 9 ,活塞 4 ,单向阀 7 ,单向阀弹簧 12 ,活塞回位弹簧 14 等组成,如图 3-3-22b) 所示。在各个零件组装到外体上后,再把外体组件与上盖 1 焊接在一起,成为不可拆卸的整体。内体 9 的内、外表面分

别与活塞 4 外表面和外体 10 内表面良好的配合。整个挺柱形成三个空间,即贮油室Ⅰ、Ⅱ和高压油腔Ⅲ。

液压挺柱的工作过程如下:

1) 当凸轮没有压下液压挺柱时,挺柱处于的位置。发动机润滑系中带压力的机油通过设在气缸盖上的专门油道,经外体上的环形油槽、供油斜孔 11 进入贮油室Ⅰ,并通过上盖1 上的溢油槽 2 进入贮油室Ⅱ,再克服单向阀弹簧 12 的弹力顶开单向阀进入高压油腔Ⅲ。这时贮油室Ⅰ、Ⅱ和高压油腔Ⅲ都充满机油,其压力等于气缸盖油道内的压力。活塞 4 在活塞回位弹簧 14 作用下,顶在上盖 1 上。

2) 当凸轮开始下压液压挺柱时,外体 ( 连上盖 )10 和活塞 4 被压下,内体 9 因气门杆的反力,被推向上盖 1 ,压缩高压油腔Ⅱ。油腔中的一部分油通过内体 9 与活塞 4 间的泄漏间隙挤出,使油腔容积缩小。由于内体 9 的高速向上运动,产生很强的节流作用,油腔内的油压仍然很快增高。单向阀 7 在高压油压和单向阀弹簧 12 的作用下关闭,切断了它与贮油室Ⅰ、Ⅱ的连接通道。与此同时,由于内体 9 向上运动,顶到上盖 1 上并占据了贮油室Ⅰ内的相应的空间,使贮油室容积减小。多余的机油则通过内体 9 与外体 10 间的导向间隙 8 和外体 10 上的进油孔 ( 在开始某一时间进油孔尚未完全切断 ) 挤走。这时高压油腔内的机油,由于它的不可压缩性使挺柱外体、内体与活塞成为一个刚体,按凸轮的运动规律,使气门逐渐开启,再逐渐关闭。

3) 当凸轮转到基圆位置,不再压液压挺柱时,挺柱回到原始位置,挺柱外体 10 上的环形油槽又对准气缸盖上的专门油道.挺柱内体 9 在高压油腔 13 内的油压与活塞四位弹簧 14 的作用下向下运动,顶在气门杆上,消除挺柱与气门杆之间的间隙,挺柱回到原始位置。贮油室Ⅰ和高压油腔Ⅲ由于体积增大,油压下降,这时气缸盖上的专门油道正好与挺柱外体上的环形油槽相通,带压力的机油,进入贮油室Ⅰ、Ⅱ和高压油腔Ⅲ。

有的液压挺柱,它不是直接放在凸轮与气门之间,而是放在凸轮与推杆之间。液压挺柱就是靠液压缸的相对位移来代替 ( 或补偿 ) 气门的预留间隙。实际上,在凸轮与气门之间还是需要有空行程的。液压挺柱减少了配气机构的撞击噪声,在高级轿车上得到广泛应用。但结

构复杂,加工精度高,是不可拆卸的组件,磨损后无法调整,安装前须将液压挺柱中的空气排除,以免工作时产生额外噪声。

3.3.2.5 挺柱导管

挺柱导管为挺柱运动的轨道,它分为可拆式和不可拆式两种,解放 CA6102 型发动机的可拆式挺柱导管架,用螺钉固定在气缸体上。在装配可拆式挺柱导管架时,前后两导管架不可互换使用,以保证挺柱与气门的正确配合。

3.3.2.6 推杆

其作用是将凸轮轴经挺柱传来的推力传给摇臂。图3-3-24 所示为几种推杆的型式。为了减轻质量,推杆多采用空心钢管,并在两端焊有或镶有不同形状的端头。端头经过淬火和光磨,以增加其耐磨性。

3.3.2.7 摇臂

其作用是将推杆传来的力改变方向以开启气门。它是一个以轴孔为支承、两臂不等长的

第三章 配气机构

第三章 配气机构 一、概述 1.功用: 配气机构是进、排气管道的控制机构,它按照气缸的工作顺序和工作过程的要求,准时地开闭进、排气门、向气缸供给可燃混合气(汽油机)或新鲜空气(柴油机)并及时排出废气。另外,当进、排气门关闭时,保证气缸密封。进饱排净,四行程发动机都采用气门式配气机构。 2.充气效率 新鲜空气或可燃混合气被吸入气缸愈多,则发动机可能发出的功率愈大。新鲜空气或可燃混合气充满气缸的程度,用充气效率v η表示。 o v m m =η 气质量充满气缸工作容积的新进气系统进口状态下量实际充入气缸的新气质进气过程中,,→→ v η越高,表明进入气缸的新气越多,可燃混合气燃烧时可能放出的热量也就越大,发动机的功率越大。 3.型式 ① ? ??气门侧置式配气机构气门顶置式配气机构分根据气门安装位置不同, (图3-1) 气门位于气缸盖上称为气门顶置式配气机构,由凸轮、挺柱、推杆、摇臂、气门和气门弹簧等组成。其特点,进气阻力小,燃烧室结构紧凑,气流搅动大,能达到较高的压缩比,目前国产的汽车发动机都采用气门顶置式配气机构。 气门位于气缸体侧面称为气门侧置式配气机构,由凸轮、挺柱、气门和气门弹簧等组成。省去了推杆、摇臂等另件,简化了结构。因为它的进、排气门在气缸的一侧,压缩比受到限制,进排气门阻力较大,发动机的动力性和高速性均较差。逐渐被淘汰。 ② ?? ???凸轮轴上置式凸轮轴中置式凸轮轴下置式按凸轮轴布置位置 (图3-2) 凸轮轴下置式,主要缺点是气门和凸轮轴相距较远,因而气门传动另件较多,结构较复杂,发动机高度也有所增加。 凸轮轴中置,凸轮轴位于气缸体的中部由凸轮轴经过挺柱直接驱动摇臂,省去推杆,这种结构称为凸轮轴中置配气机构。 凸轮轴上置,凸轮轴布置在气缸盖上。凸轮轴上置有两种结构,一是凸轮轴直接通过摇臂来驱动气门,这样既无挺柱,又无推杆,往复运动质量大大减小,此结构适于高速发动机。另一种是凸轮轴直接驱动气门或带液力挺柱的气门,此

第三章配气机构

1.功用: 配气机构是进、排气管道的控制机构,它按照气缸的工作顺序和工作过程的要求,准时地开闭进、排气门、向气缸供给可燃混合气(汽油机)或新鲜空气(柴油机)并及时排出废气。另外,当进、排气门关闭时,保证气缸密封。进饱排净,四行程发动机都采用气门式配气机构。 2.充气效率 新鲜空气或可燃混合气被吸入气缸愈多,则发动机可能发出的功率愈大。新鲜空气或可燃混合气充满气缸的程度,用充气效率ηv表示。ηv越高,表明进入气缸的新气越多,可燃混合气燃烧时可能放出的热量也就越大,发动机的功率越大。 3.型式 气门位于气缸盖上称为气门顶置式配气机构,由凸轮、挺柱、推杆、摇臂、气门和气门弹簧等组成。其特点,进气阻力小,燃烧室结构紧凑,气流搅动大,能达到较高的压缩比,目前国产的汽车发动机都采用气门顶置式配气机构。 气门位于气缸体侧面称为气门侧置式配气机构,由凸轮、挺柱、气门和气门弹簧等组成。省去了推杆、摇臂等另件,简化了结构。因为它的进、排气门在气缸的一侧,压缩比受到限制,进排气门阻力较大,发动机的动力性和高速性均较差,逐渐被淘汰。 凸轮轴下置式,主要缺点是气门和凸轮轴相距较远,因而气 门传动另件较多,结构较复杂,发动机高度也有所增加。

凸轮轴中置,凸轮轴位于气缸体的中部由凸轮轴经过挺柱直接驱动摇臂,省去推杆,这种结构称为凸轮轴中置配气机构。凸轮轴上置,凸轮轴布置在气缸盖上。 凸轮轴上置有两种结构,一是凸轮轴直接通过摇臂来驱动气门,这样既无挺柱,又无推杆,往复运动质量大大减小,此结构适于高速发动机。另一种是凸轮轴直接驱动气门或带液力挺柱的气门,此种配气机构的往复运动质量更小,特别适应于高速发动机. 凸轮轴下置,中置的配气机构大多采用圆柱形正时齿轮传动,一般 从曲轴到凸轮轴只需一对正时齿轮 传动,若齿轮直径过大,可增加一个中间齿轮。为了啮合平稳, 减小噪声,正时齿轮多用斜齿。 链条与链轮的传动适用于凸轮轴上置的配气机构,但其工作可 靠性和耐久性不如齿轮传动。近年来高速汽车发动机上广泛采 用齿形皮带来代替传动链,齿形带传动,噪声小、工作可靠、 成本低. 一般发动机都采用每缸两个气门,即一个进气门和一个排气门的结构。为了改善换气,在可能的条件下,应尽量加大气门的直径,特别是进气门的直径。但是由于燃烧 室尺寸的限制,气门直径最大一般不能超过气缸直径的一半。当气 缸直径较大,活塞平均速度较高时,每 缸一进一排的气门结构就不能保证良 好的换气质量。因此,在很多新型汽车 发动机上多采用每缸四个气门结构。即 两个进气门和两个排气门。 4.组成

第三章配气机构

第三章配气机构 配气机构(一) 教学目的 1、掌握配气机构的布置形式。 2、掌握配气相位与气门间隙的知识。 教学安排 组织教学 讲述新课 功用:按照气缸的工作顺序和工作过程的要求,准时地开闭进、排气门,向气缸供给可燃混合气(汽油机)或新鲜空气(柴油机)并及时排出废气。 充气效率:新鲜空气或可燃混合气充满气缸的程度,用充气效率表示。 §3.1 配气机构的布置形式 一、配气机构布置形式和工作情况 (一)布置形式 按气门的布置形式分:顶置气门式和侧置气门式。侧置气门式已趋于淘汰; 按凸轮轴安装位置分:上置凸轮轴式、中置凸轮轴式和下置凸轮轴式; 按曲轴和凸轮轴的传动方式分:齿轮传动式、链条传动式和齿形皮带传动式; 按每个气缸的气门数目分:2气门式、3气门式、4气门式和5气门式。 (二)工作过程 运动传递路线:曲轴→凸轮轴→挺柱→推杆→摇臂→气门 四冲程发动机曲轴与凸轮轴的传动比为2:1。 二、凸轮轴布置型式及特点 §3.2 配气相位与气门间隙 一、配气相位 配气相位是用曲轴转角表示的进、排气门的开启时刻和开启延续时间。 通常用环形图表示——配气相位图。 气门重叠: 两个气门同时开启时间相当的曲轴转角叫作气门重叠角。

二、气门间隙 作用:为气门热膨胀留有余地,以保证气门的密封。 间隙过小:发动机工作后,零件受热膨胀,将气门推开,使气门关闭不严,造成漏气,功率下降,并使气门的密封表面严重积碳或烧坏,甚至气门撞击活塞。 间隙过大:进、排气门开启迟后,缩短了进排气时间,降低了气门的开启高度,改变了正常的配气相位,使发动机因进气不足,排气不净而功率下降,此外,还使配气机构零件的撞击增加,磨损加快。 采用液压挺柱的配气机构不需要留气门间隙。 作业 1、配气机构有何功用?凸轮轴的布置形式有哪几种?各有什么特点? 2、什么是配气相位?画出配气相位图,并注明气门重叠角。 3、气门为何要早开晚关? 配气机构(二) 教学目的 掌握配气机构主要零件的功用及构造 教学安排 组织教学 复习旧课 1、配气机构的功用、凸轮轴的布置形式及特点; 2、配气相位、画出配气相位图、气门重叠角。 讲述新课 §3.3 配气机构的主要零件与组件 一、气门组 包括:气门、气门座、气门导管、气门弹簧、气门弹簧座及锁片等。 1、气门 功用:控制进、排气管的开闭 构造:气门由头部和杆部组成。气门密封锥面与气门座配对研磨。 杆身装在气门导管内起导向作用,杆身与头部采用圆滑过渡连接。 尾部制有凹槽(锥形槽或环形槽)用来安装锁紧件。

第三章 配气机构

第三章配气机构 3.1 概述 (2) 3.2 配气相位 (5) 3.3 配气机构的零件和组件 (8) 3.4 可变进气系统 (21) 学习目 标: 1.掌握配气机构的组成及各零部件的结构特点; 2.掌握配气相位、气门间隙; 3.掌握凸轮轴的结构特点; 4.掌握可变进气系统的结构类型特点。 学习方 法: 介绍发动机配气机构的结构及组成,通过实物教学和多媒体课件动态演示相结合,并和汽车拆装与调整实践教学相辅相承,使学生掌握各零部件的结构特点和安装要 求。 学习内 容: §3.1 概述 §3.2 配气相位 §3.3 配气机构的零件和组件 §3.4 用配气相位图分析可调间隙的气门 §3.5 可变进气系统 学习重 点: 1.配气相位; 2.气门间隙;

3.凸轮轴的结构特点; 4.可变进气系统的结构类型。 作业习 题: 1.影响充气效率的因素主要有哪些? 2.配气机构的功用是什么? 3.如何从一根凸轮轴上找出各缸的进排气凸轮和该发动机的发火顺序? 4.气门弹簧起什么作用,为什么在装配气门弹簧时要预先压缩? 5.挺柱的类型主要有哪些,液压挺柱有哪些优点? 6.可变进气系统主要有哪几种型式? 3.1 概述 配气机构的功用就是根据每一气缸内所进行的工作循环和点火顺序的要求,定时打开和关闭各缸的进排气门,使新气及时进入气缸和废气及时排出气缸,使换气过程最佳。好的配气机构应使发动机在各种工况下工作时获得最佳的进气量,以保证发动机在各种工况下工作时发出最好的性能。 发动机在全负荷下工作时,需获得最大功率和扭矩,这就要求在此工况下,配气机构应保证获得最大进气充量。吸入的进气越多,发动机发出的功率和扭矩越大。进气充满气缸的程度,常用充气效率 ( 也称充气系数 ) η v 表示。即:ηv =M/Mo 式中M -进气过程中,实际充入气缸的进气量; Mo -在进气状态下充满气缸工作容积的进气量。 一般情况下发动机充气效率η v 总是小于 l 的。η v 的大致范围是:

第三、四章 配气机构

第三章配气机构 一、填空题 1?充气效率越高,进人气缸内的新鲜气体的量就___ 多____,发动机研发出的功率就__高____。 2?气门式配气机构由__气门组____ 和___气门传动组______组成。 3?四冲程发动机每完成一个工作循环,曲轴旋转____2___周,各缸的进、排气门各开启____1___ 次,此时凸轮轴旋转_____1___周。 4?气门弹簧座是通过安装在气门杆尾部的凹槽或圆孔中的___锁片____或___锁块____ 固定的。 5?由曲轴到凸轮轴的传动方式有下置式、上置式和中置式等三种。 6?气门由__头部____和__杆身_____两部分组成。 7?凸轮轴上同一气缸的进、排气凸轮的相对角位置与既定的__配气相位_____相适应。8?根据凸轮轴____旋向____和同名凸轮的___夹角______可判定发动机的发火次序。9?汽油机凸轮轴上的斜齿轮是用来驱动___机油泵____和__分电器____的。而柴油机凸轮轴上的斜齿轮只是用来驱动___机油泵____的。 10?在装配曲轴和凸轮轴时,必须将__正时标记_____对准以保证正确的_配气相位___ 二、判断改错题 1?充气效率总是小于1的。( √) 改正: 2?曲轴正时齿轮是由凸轮轴正时齿轮驱动的。( ×) 改正: 3?凸轮轴的转速比曲轴的转速快1倍。(×) 改正: 4?气门间隙过大,发动机在热态下可能发生漏气,导致发动机功率下降。( ×) 改正: 5?气门间隙过大时,会使得发动机进气不足,排气不彻底。( √) 改正: 6?对于多缸发动机来说,各缸同名气门的结构和尺寸是完全相同的,所以可以互换使用。( ×) 改正: 7?为了安装方便,凸轮轴各主轴径的直径都做成一致的。( ×) 改正: 8?摇臂实际上是一个两臂不等长的双臂杠杆,其中短臂的一端是推动气门的。( ×) 改正: 三、选择题(有一项或多项正确) 1?曲轴与凸轮轴之间的传动比为( A )。 A?2:1 B?l:2C?l:l D?4:1 2?设某发动机的进气提前角为,进气迟关角为,排气提前角为,排气迟关角为,则该发动机的进、排气门重叠角为( C )。 A? B? C? D? 3?曲轴正时齿轮一般是用( D )制造的。

第三章 配 气 机 构 习题四答案

第三章配气机构习题四 一、填空题 1.常用的气门间隙的调整方法有逐缸调整法和两次调整法。 2. 气门叠开角是进气提前角和排气延迟角之和。 3. 造成气门关闭不严的原因是凸轮轴与气门顶杆之间间隙过大、气门弹簧无力、气门导管间隙过大、和气门与气门坐圈之间变形或损坏。 4. 气门间隙两次调整法的实质是把发动机的曲轴摇转两次,就能把多缸发动机的所有气门全部检查调整好。 5.在装配曲轴和凸轮轴时,必须将正时标记对准以保证正确的配气正时和点火正时。 二、解释术语 1.配气相位: 进、排气门的实际开闭,用相对于上、下止点的曲轴转角来表示。 2.气门重叠: 在一段时间内进、排气门同时开启的现象。 3.进气迟关角:从排气门开启一直到活塞到达下止点所对应的曲轴转角。 三、判断题(正确打√、错误打×) 1.正时齿轮装配时,必须使正时标记对准。(√) 2.气门间隙的检查与调整是在气门完全打开,气门挺杆落至最低位置时进行的。( ) 3.在任何时候,发动机同一缸的进排气门都不可能同时开启。 ( × ) 4.曲轴正时齿轮是由凸轮轴正时齿轮驱动的。(×)凸轮轴正时齿轮是由曲轴正时齿轮驱动的 5.对于多缸发动机来说,各缸同名气门的结构和尺寸是完全相同的,所以可以互换使用。(×) 6.为了安装方便,凸轮轴各主轴径的直径都做成一致的。(×) 四、选择题 1. 常用的气门间隙调整方法有“逐缸调整法”和“两遍调整法”,其中,逐缸调整法就是依次将每个汽缸的活塞调整到( A ),并对该缸的进、排气门间隙进行调整的方法。 A、压缩行程上止点 B、排气行程上止点 C、压缩行程下止点 D、排气行程下止点 2. 调整顶置式气门间隙时,松开锁紧螺母,旋松调整螺钉,将厚薄规插入( C )之间,用平口起子调整间隙恰当后,固定并锁紧调整螺钉即可。 A、调整螺钉与推杆 B、推杆与挺柱 C、摇臂与气门杆 D、气门与气门杆 3.曲轴正时齿轮一般是用( D )制造的。 A.夹布胶木 B.铸铁 C.铝合金 D.钢 4.凸轮轴上凸轮的轮廓的形状决定于( B )。 A.气门的升程 B.气门的运动规律 C.气门的密封状况 D.气门的磨损规律 5.四冲程四缸发动机配气机构的凸轮轴上同名凸轮中线间的夹角是( C )。 A.180° B.60° C.90° D.120°

第三章 配 气 机 构 习题三答案

第三章配气机构习题三 一、填空题 1.气门弹簧座一般是通过锁块或锁销固定在气门杆尾端的。 2.摇臂通过衬套空套在摇臂轴上,并用弹簧防止其轴向窜动。 3.采用双气门弹簧时,双个弹簧的旋向必须相反。 4.气门间隙过大,气门开启时刻变晚,关闭时刻变早;气门间隙过小,易使气门关闭不严,造成漏气。 5.充气效率越高,进入气缸内的新鲜气体的量就越多,发动机所发出的功率就越高。6.凸轮轴上同一气缸的进、排气凸轮的相对角位置与既定的配气相位相适应。 7.汽油机凸轮轴上的斜齿轮是用来驱动分电器和机油泵的。而柴油机凸轮轴上的斜齿轮只是用来驱动的机油泵。 二、解释术语 1.气门锥角: 气门密封锥面的锥角。 2.充气效率:实际进入气缸的新鲜充量与在进气状态下充满气缸容积的新鲜充量之比。 三、判断题(正确打√、错误打×) 1. 进气门头部直径通常比排气门的大,而气门锥角有时比排气门的小。( √) 2. 凸轮轴的转速比曲轴的转速快一倍。( ×) 3. 采用液力挺柱的发动机其气门间隙等于零。 ( √) 4. 挺柱在工作时既有上下运动,又有旋转运动。( √) 5. 气门的最大升程和在升降过程中的运动规律是由凸轮转速决定的。( ×) 6. 凸轮轴的轴向窜动可能会使配气相位发生变化。( √) 四、选择题 1.摇臂的两端臂长是(B)。 A、等臂的 B、靠气门端较长 C、靠推杆端较长 2.CA6102发动机的进、排气门锥角是(B)。 A、相同的 B、不同的 3.一般发动机的凸轮轴轴颈是(B)设置一个。 A、每隔一个气缸 B、每隔两个气缸 4.下述各零件中不属于气门传动组的是(A )。 A.气门弹簧 B.挺住 C.摇臂 D.凸轮轴 5.气门间隙过大,发动机工作时( B )。 A.气门早开B.气门迟开C.不影响气门开启时刻 6.气门的升程取决于( A )。 A.凸轮的轮廓B.凸轮轴的转速C.配气相位 7.发动机一般排气门的锥角较大,是因为( A )。 A.排气门热负荷大B.排气门头部直径小C.配气相位的原因 8.下面哪种凸轮轴布置型式最适合于高速发动机( B )。 A.凸轮轴下置式B.凸轮轴上置式C.凸轮轴中置式 五、问答题 1. 采用液力挺柱有哪些优点?

第三章配气机构解析

荆州职业技术学院汽车发动机构造与维修课程教案汽车检测与维修专业班级教师郑毅授课时间

荆州职业技术学院汽车发动机构造与维修课程教案汽车检测与维修专业班级教师郑毅授课时间

配气机构 3.1.1 配气机构的作用

其作用是根据发动机工作循环和点火次序,适时地开启和关闭各缸的进、排气门,使纯净空气或空气与燃油的混合气及时地进入气缸,废气及时地排出。 3.1.2 配气机构总体组成与工作原理 1.配气机构总体组成(以顶置双凸轮轴齿形皮带传动的配气机构(图3-11)为例) 气门组件(含进排气门、进排气门座、气门弹簧、气门锁夹、气门导管等) 气门驱动机构(液压挺柱) 凸轮轴 凸轮轴传动机构(含曲轴正时皮带轮、凸轮轴传动皮带轮、齿形皮带、张紧轮等) 2.配气机构工作原理 齿形皮带3带动进排气凸轮轴旋转,克服气门弹簧力作用压下进气门,进气门开启,开始进气。 各缸进、排气门开闭的时刻取决于各进、排气凸轮的相对位置及进排气凸轮轴与曲轴的相对位置。 3.1.3 配气机构的分类 1.按气门的布置位置分(侧置式、顶置式两种) 侧置式:气门布置在气缸的一侧。使燃烧室结构不紧凑,热量损失大,气道曲折,进气流通阻力大,从而使发动机的经济性和动力性变差,已被淘汰。 顶置式:气门布置在气缸盖上(图3-11)。 2. 按凸轮轴布置位置分(上置凸轮轴、中置凸轮轴、下置凸轮轴三种) (1)下置凸轮轴配气机构(图 图3-11 配气机构总体总成 1-曲轴正时皮带轮 2-中间轴正时皮带轮 3-齿形 皮带 4-张紧轮 5-凸轮轴传动皮带轮 6-进气凸轮轴 7-凸轮 8-液压挺柱 9-进气门组件 10-排气凸轮轴 11-排气门组件 图3-12 下置凸轮轴配气机构 1-凸轮轴 2-挺柱 3-推杆 4-摇臂轴 5-锁紧螺母 6-调整螺钉 7-摇臂 8-气门锁夹 9-气门弹簧座 10-气门弹簧 11-气门导管 12-气门 13-气门座 图3-13 中置凸轮轴配气机构 1-凸轮轴 2-挺柱 3-支架 4-调整螺钉 5-摇臂 6-摇臂轴 7-锁夹 8-气门弹簧座 9-气门弹簧 10-气门导 管 11-气门

第三章 配气机构

第三章配气机构 一. 选择题: 1. 四冲程内燃机,曲轴与凸轮轴的传动比为() a. 1:2 b. 1/1 c. 2/1 d. 1/4 2. 若气门间隙过大时,则气门开启量()。 a. 不变 b. 变小 c. 变大 3. 四冲程发动机在实际工作中,进排气门持续开启时间对应的凸轮轴转角()。 a. 大于90 ° b. 等于90 ° c. 小于90 ° 4. 关于可变气门正时错误的说法是:()。 a. 气门升程上可变的 b. 气门打开的周期是固定的 c. 在低转速可或得最大转矩 d. 每套进气门和排气门有三个凸轮 5. 四冲程发动机同一汽缸的进排凸轮之间的夹角一般为()。 a. 等于90 ° b. 大于 90 c. 小于90 °

d. 等于180 ° 6. 气门的升程取决于()。 a. 凸轮轴转速 b. 凸轮轮廓的形状 c. 气门锥角 d. 配气相位 7. 顶置式配气机构的气门间隙是指()之间的间隙。 a. 摇臂与推杆; b. 摇臂与气门; c. 挺杆与气门; d. 推杆与气门 8. 气门重叠角是()的和。 a. 进气门早开角与进气门晚关角 b. 进气门早开角与排气门早开角 c. 进气门晚开角与排气门晚关角 d. 排气门早开角与排气门晚关角 9. 气门的()部位与气门座接触。() a. 气门杆 b. 气门锥面 c. 气门侧面 d. 气门导管 10. 当机油泄漏到排气流中时,说明气门的以下哪个部分磨损了 ? () a. 气门导管 b. 气门头部

c. 气门座 d. 气门弹簧 11. 液力挺柱在发动机温度升高后,挺柱有效长度()。 a. 变长 b. 变短 c. 保持不变 d. 依机型而定,可能变长也可能变短。 12. 排气门在活塞位于()开启。 a. 作功行程之前 b. 作功行程将要结束时 c. 进气行程开始前 d. 进气行程开始后 13. 使用四气门发动机的原因是:() a. 可使更多的燃油和空气进入发动机 b. 可得到更好的润滑 c. 使发动机预热的更快 d. 使发动机冷却的更快 14. 采用双气门弹簧或变螺矩弹簧的主要作用是:() a. 提高弹簧的疲劳强度 b. 防止气门弹簧产生共振 c. 提高弹簧的使用寿命 d. 防止弹簧折断 15. 安装曲轴正时齿轮和凸轮轴正时齿轮时,应注意: ( ) a. 总是按照制造厂的规范对齐正时

发动机第三章-配气机构

第一节 配气机构的功用及组成 第二节 配气定时及气门间隙 第三节 气门组 第四节 气门传动组 思考题 1、试比较凸轮轴下置式、中置式和上置式配气机构的优缺点及其各自的应用范围。 2、进、排气门为什么要早开晚关? 3、为什么在采用机械挺柱的配气机构中要预留气门间隙?怎样调整气门间隙?为什么采用液力挺柱或气门间隙补偿器的配气机构可以实现零气门间隙? 4、如何根据凸轮轴判定发动机工作顺序? 5、如何确定异名凸轮的相对角位置? 6、试述两种可变配气定时机构的工作原理及其各自的优缺点。 目前,四冲程汽车发动机都采用气门式配气机构。其功用是按 照发动机的工作顺序和工作循环的要求,定时开启和关闭各缸的 进、排气门,使新气进入气缸,废气从气缸排出。 进入气缸内的新气数量或称进气量对发动机性能的影响很大。 进气量越多,发动机的有效功率和转矩越大。因此,配气机构首先 要保证进气充分,进气量尽可能的多;同时,废气要排除干净,因 为气缸内残留的废气越多,进气量将会越少。

第一节 配气机构的功用及组成 气门式配气机构由气门组和气门传动组两部分组成,每组的零件组成则与气门的位置、凸轮轴的位置和气门驱动形式等有关。现代汽车发动机均采用顶置气门,即进、排气门置于气缸盖内,倒挂在气缸顶上。 凸轮轴的位置有下置式、中置式和上置式3种。  一、凸轮轴下置式配气机构 凸轮轴置于曲轴箱内的配气机构为凸轮轴下置式配气机构。 其中气门组零件包括气门、气门座圈、气门导管、气门弹簧、气门弹簧座和气门锁夹等;气门传动组零件则包括凸轮轴、挺柱、推杆、摇臂、摇臂轴、摇臂轴座和气门间隙调整螺钉等。 下置凸轮轴由曲轴定时齿轮驱动。发动机工作时,曲轴通过定时齿轮驱动凸轮轴旋转。当凸轮的上升段顶起挺柱时,经推杆和气门间隙调整螺钉推动摇臂绕摇臂轴摆动,压缩气门弹簧使气门开启。当凸轮的下降段与挺柱接触时,气门在气门弹簧力的作用下逐渐关闭。

第三章 配气机构

第三章配气机构 第一节概述 一功用: 按照柴油机各缸工作循环的需要,定时地开启和关闭进、排气门,使新鲜空气及时进入汽缸、废气及时排出汽缸。 要求:进气充分、排气彻底、相位准确、密封可靠。 二、分类: 根据气门的安装位置,气门—凸轮式配气机构可分为顶置气门式和侧置气门式两种,而公路工程机械用柴油机多采用顶置气门式配气机构。 三、结构介绍 1、顶置气门式:气门布置在气缸盖上,凸轮轴一般布置在上曲轴箱上。 (1)组成:分为气门组、传动组;气门组包括气门、气门导管、气门弹簧、气门弹簧座、气门锁片等零件;传动组包括摇臂、摇臂轴及其支架、调整螺钉、推杆、挺杆、凸轮轴、凸轮轴正时齿轮等零件。(2)工作过程:当汽缸的工作循环需要将气门打开进行换气时,由曲轴通过正时齿轮驱动凸轮轴旋转,使凸轮轴上的凸轮凸起部分通过挺柱、推杆、调整螺钉推动摇臂摆转,摇臂的另一端便向下推开气门,同时使气门弹簧进一步压缩。凸轮的凸起部分的顶点转过挺柱后便逐渐减小了对挺柱的推力,气门在其弹簧张力的作用下开度逐渐减小,直至最后关闭,进气或排气过程即告结束。压缩和作功冲程中气门在

其弹簧张力作用下严密关闭,使汽缸密闭。 2、侧置气门式 气门顺装在气缸体的一侧,凸轮轴只能下置,由挺杆直接驱动气门,由于气门偏置于气缸的一侧,燃烧室结构不紧凑,散热损失大,热效率低,多不采用。四、气门间隙 1、定义:柴油机冷态装配时,在气门与其传动机构中留有适当的间隙,称气门间隙。 2、原因:补偿气门受热后的膨胀量。 3、影响: 气门间隙过小,柴油机在热态下可能因气门关闭不严而发生漏气,导致气门烧坏。 气门间隙过大,则使传动零件之间以及气门和气门座之间产生撞击响声并加速磨损。同时,也会使气门开启的持续时间减少,汽缸的充气以及排气效果变坏。 4、调整: (1)调整时刻:气门完全关闭时,即挺柱与凸轮基圆弧接触,传动组位于最低位置时。 (2)调整位置: (3)调整方法: 第二节:配气相位 一、概念:用曲轴转角表示的进、排气门开闭时刻和开启持续时间称为配气相位。

第三章 配 气 机 构 习题三答案汇编

第三章配气机构习题三答案

第三章配气机构习题三 一、填空题 1.气门弹簧座一般是通过锁块或锁销固定在气门杆尾端的。 2.摇臂通过衬套空套在摇臂轴上,并用弹簧防止其轴向窜动。 3.采用双气门弹簧时,双个弹簧的旋向必须相反。 4.气门间隙过大,气门开启时刻变晚,关闭时刻变早;气门间隙过小,易使气门关闭不严,造成漏气。 5.充气效率越高,进入气缸内的新鲜气体的量就越多,发动机所发出的功率就越高。 6.凸轮轴上同一气缸的进、排气凸轮的相对角位置与既定的配气相位相适应。 7.汽油机凸轮轴上的斜齿轮是用来驱动分电器和机油泵的。而柴油机凸轮轴上的斜齿轮只是用来驱动的机油泵。 二、解释术语 1.气门锥角: 气门密封锥面的锥角。 2.充气效率:实际进入气缸的新鲜充量与在进气状态下充满气缸容积的新鲜充量之比。 三、判断题(正确打√、错误打×) 1. 进气门头部直径通常比排气门的大,而气门锥角有时比排气门的小。( √ ) 2. 凸轮轴的转速比曲轴的转速快一倍。( × ) 3. 采用液力挺柱的发动机其气门间隙等于零。( √ ) 4. 挺柱在工作时既有上下运动,又有旋转运动。( √ )

5. 气门的最大升程和在升降过程中的运动规律是由凸轮转速决定的。( × ) 6. 凸轮轴的轴向窜动可能会使配气相位发生变化。( √ ) 四、选择题 1.摇臂的两端臂长是(B)。 A、等臂的 B、靠气门端较长 C、靠推杆端较长 2.CA6102发动机的进、排气门锥角是(B)。 A、相同的 B、不同的 3.一般发动机的凸轮轴轴颈是(B)设置一个。 A、每隔一个气缸 B、每隔两个气缸 4.下述各零件中不属于气门传动组的是(A )。 A.气门弹簧 B.挺住 C.摇臂 D.凸轮轴 5.气门间隙过大,发动机工作时(B)。 A.气门早开 B.气门迟开 C.不影响气门开启时刻 6.气门的升程取决于(A)。 A.凸轮的轮廓 B.凸轮轴的转 速 C.配气相位 7.发动机一般排气门的锥角较大,是因为(A)。 A.排气门热负荷大 B.排气门头部直径 小 C.配气相位的原因 8.下面哪种凸轮轴布置型式最适合于高速发动机( B )。

第三章 配气机构

第三章配气机构 第一节概述 1.功用: 配气机构是进、排气管道的控制机构,它按照气缸的工作顺序和工作过程的要求,准时地开闭进、排气门、向气缸供给可燃混合气(汽油机)或新鲜空气(柴油机)并及时排出废气。另外,当进、排气门关闭时,保证气缸密封。进气充分、排气彻底,四行程发动机都采用气门式配气机构。 2.充气效率 新鲜空气或可燃混合气被吸入气缸愈多,则发动机可能发出的功率愈大。新鲜空气或可燃混合气充满气缸的程度,用充气效率表示。越高,表明进入气缸的新气越多,可燃混合气燃烧时可能放出的热量也就越大,发动机的功率越大。 3. 型式 (1)(1)气门布置方式(如图3-1) 气门位于气缸盖上称为气门顶置式配气机构,由凸轮、挺柱、推杆、摇臂、气门和气门弹簧等组成。其特点,进气阻力小,燃烧室结构紧凑,气流搅动大,能达到较高的压缩比,目前国产的汽车发动机都采用气门顶置式配气机构。 气门位于气缸体侧面称为气门侧置式配气机构,由凸轮、挺柱、气门和气门弹簧等组成。省去了推杆、摇臂等零件,简化了结构。因为它的进、排气门在气缸的一侧,压缩比受到限制,进排气门阻力较大,发动机的动力性和高速性均较差,逐渐被淘汰。

图3-1 (2) 凸轮轴布置方式(如图3-2) 凸轮轴下置式,主要缺点是气门和凸轮轴相距较远,因而气门传动另件较多,结构较复杂,发动机高度也有所增加。 凸轮轴中置,凸轮轴位于气缸体的中部由凸轮轴经过挺柱直接驱动摇臂,省去推杆,这种结构称为凸轮轴中置配气机构。凸轮轴上置,凸轮轴布置在气缸盖上。 凸轮轴上置有两种结构,一是凸轮轴直接通过摇臂来驱动气门,这样既无挺柱,又无推杆,往复运动质量大大减小,此结构适于高速发动机。另一种是凸轮轴直接驱动气门或带液力挺柱的气门,此种配气机构的往复运动质量更小,特别适应于高速发动机。

第三章 配气机构

第三章配气机构 1、教学目的: 熟练掌握配气机构的组成与布置形式,配气相位的意义和作用;掌握气门弹簧的共振避免措施,了解各零部件的功用。 2、教学内容: (1)配气机构的功用及结构 (2)配气相位 (3)气门组 (4)气门传动组 3、教学方法: 课堂教学、作业练习、课后答疑 4、教学过程: 一、配气机构的功用和组成 1、功用 根据每一气缸内所进行的工作循环和点火顺序的要求,定时打开和关闭各缸的进排气门,使新气及时进入气缸和废气及时排出气缸,使换气过程最佳。 2、充气效率 配气机构应使发动机在各种工况下工作时获得最佳的进气量,以保证发动机在各种工况下工作时发出最好的性能。发动机在全负荷下工作时,需获得最大功率和转矩,这就要求在此工况下,配气机构应保证获得最大进气充量。吸入的进气越多,发动机发出的功率和转矩越大。 进气充满气缸的程度,常用充气效率(也称充气系数)ηv表示。即: ηv= M/Mo 式中 M ——进气过程中,实际充入气缸的进气量;Mo——在进气状态下充满气缸工作容积的进气量。 一般情况下发动机充气效率ηv总是小于1的。 ηv的大致范围是:四冲程汽油机 0.7~ 0.85; 四冲程非增压柴油机 0.75~ 0.90; 四冲程增压柴油机 0.90~ 1.05。 影响充气效率ηv的主要因素有:①进气终了时的气缸压力;②进气终了时的气

缸内温度;③上一循环残留在气缸内的高温废气。提高充气效率的措施是:①减少进气门处的流动损失;②减少整个进气管道的流通阻力;③减少对空气(或混合气的)热传导;④减少排气系统对气流的阻力;⑤合理选择配气相位。充气效率越高,表明充入气缸的新鲜气量越多,燃烧后放出的热量越多,发动机发出的功率就越大。 3、组成与工作原理 (1)配气机构的形式 配气机构常见的有两种形式: 一是气门式配气机构,它由凸轮驱动,通过传动机构来控制进排气门开闭,这是四冲程发动机最常用的一种机构。 另一种是气孔式配气机构,它是在气缸套中间开有进、排气孔,通过活塞位移来控制进、排气过程,常用于二冲程发动机。 (2)气门式配气机构的组成与形式 四冲程气门式配气机构由气门组和气门传动组组成。 气门式配气机构按照气门的布置形式分为三种:侧置气门、混合气门和顶置气门式配气机构。前两种布置形式在轿车发动机中已被淘汰,现代轿车发动机已全都采用顶置气门布置形式(图3-1)。货车和客车也大多采用这种形式。 图3-1 图3-2 图3-3 工作原理:发动机工作时,曲轴通过正时齿轮驱动凸轮轴旋转。当凸轮轴转到凸轮的凸起部分顶起挺柱时,通过推杆和调整螺钉使摇臂绕摇臂轴摆动,压缩气门弹簧,使气门离座,即气门开启。当凸轮凸起部分离开挺柱后,气门便在气门弹簧力作用下上升而落座,即气门关闭。四冲程发动机每完成一个工作循环,曲轴旋转两周,各缸的进、排气门各开启一次,此时凸轮轴只旋转一周。因此曲轴与凸轮轴之比(即传

相关主题
文本预览
相关文档 最新文档