当前位置:文档之家› 熔窑卡脖的搅拌作用

熔窑卡脖的搅拌作用

熔窑卡脖的搅拌作用

卡脖的搅拌作用很大

卡脖池深1200mm,生产流和回流一般都为600mm。国内一般插入玻璃液200~300mm,是搅拌好的与未均匀的合在一起。⑴深度,⑵搅拌速度,⑶水温。以搅拌为中心,带动周围玻璃的转动。对于垂直搅拌,相邻转向相反,叶片角度相邻为垂直放置。

大水管深度不够,卡脖开度较大,使冷却部大且温度不易降下来。

大水管浸入玻璃液的深度应为600mm,减少回流,甚至全部阻挡住回流,减少重复加热。

大水管、搅拌器的深度可以逐步加深,体会到最佳深度。

浮法玻璃熔窑天然气和重油燃烧系统的比较

浮法玻璃熔窑天然气和重油燃烧系统的比较 诸葛勤美王曙华王伟峰(中国新型建材设计研究院杭州市310003) 摘要 从天然气和重油的组成与性能,两种燃烧系统的燃料用量及成本,工艺及设备材料费和烟气等方面对天然气和重油燃烧系统进行比较,从而得出天然气燃烧系统比重油燃烧系统更优越。 关键词天然气重油燃烧浮法玻璃熔窑 中图分类号:TQ171 文献标识码:A 文章编号:1003-1987(2013)07-0003-03 Comparison of Natural Gas with Heavy Oil for Float Glass Furnace Zhuge Qinmei, Wang Shuhua, Wang Weifeng (China New Building Materials Design and Research Institute, Hangzhou, 310003)Abstract: This article compared the natural gas and heavy oil from the compositions and properties of natural gas and heavy oil, fuel consumption and cost of the two kinds combustion system, technology and equipment material fee, as well as flue gas and other aspects, and concluded that the natural gas combustion system is more superior than heavy oil combustion system. Key Words: natural gas combustion system,heavy oil combustion system 0 引言浮法玻璃生产所用的燃料主要有重油、柴油、煤焦油、天然气、焦炉煤气、发生炉煤气和石油焦等,综合考虑熔窑寿命、环境保护、生产规模、生产成本、产品品质等各方面因素,应首选天然气或者重油。 1 燃料的组成与性能比较 1.1 天然气的组成与性能天然气是指通过生物化学作用与地质变质作用,在不同的地质条件下生存迁移,并于一定压力下储集在地质构造中的可燃气体。通常根据形成条件不同,分为油田伴生气、气田气及凝析气田气。天然气是一种混合气体,其组成随气田和产气层不同而异。根据天然气公司提供的资料,西气东输的天然气组分见表1。 表1 西气东输的天然气组分/% 组分 C1 C2 C3 C4 C5 C6+ CO2 N2 100 96.1 1.74 0.58 0.28 0.03 0.09 0.62 0.56 西气东输的天然气低位热值约34.81 MJ/Nm 3 (8 320 kcal/ Nm 3 ),高位热值约38.62 MJ/Nm 3 (9 230 kcal/ Nm 3 )。天然气热值稍低于重油,但比焦炉煤气、发生炉煤气高很多,属高热值燃料。天然气燃烧后几乎不含硫、粉尘和其它有害物质,是一种洁净环保的优质能源。天然气也是较为安全的燃气之一,比空气轻,一旦泄漏,会立即向上扩散,不易积聚形成爆炸性气体,安全性较高。 1.2 重油的组成与性能重油又称渣油,是原油提取汽油、柴油等后的剩余重质油,其特点是分子量大、黏度高,密度一般在0.82~0.95 g/cm 。重油的发热量很高,一般为40~42 MJ/kg(9 560~10 038 kcal/kg)。重油的燃烧温度高,火焰的辐射能力强,是玻璃、钢铁等生产的优质燃料。重油的化学组成比较复杂,但一般都是碳链在16 以上的烷属烃、环烷烃(如环己烷、环戊烷的衍生物)及芳香烃(如苯、甲苯)。重油中的可燃成分较多,含碳86%~89%,含氢10%~12%,同时含有少量的氮、氧、硫等。重油中的硫虽然含量不大,但危害甚大,作为燃料用时,必须严格控制。重油中的水分是在运输和贮存过程中混进去的。重油含水多时,不仅降低了重油的发热量和燃烧温度,而且还容易由于水分的汽化影响供油设备的正常运行,甚至影响火焰的稳定。水分太多应设法去掉,目前一般都是在贮油罐中用自然沉淀的方法使油水分离。 3.1 工艺比较 (1)天然气燃烧系统工艺流程 天然气管:安全放散天然气调压站分成7 根支管过滤安全切断调压总管计量天然气喷枪支管换向流量调节支管计量 2 燃料用量及成本的比较冷却气:以600 t/d 浮法玻璃熔窑为例,重油和天然气用量计算如表2。空压站总管换向天然气喷枪 (2)重油燃烧系统工艺流程重油管:表2 重油和天然气用量泄压回油稳压回油油站初级加热粗过

一窑四线平拉玻璃熔窑设计

摘要介绍了260~300td一窑四线平拉玻璃熔窑的设计情况,包括:熔化部设计,分支通路的布置原则,分支通路长度尺寸的设计,全窑池底结构形式和不同池深的窑底结构处理。 关键词平拉玻璃熔窑设计 天津玻璃厂是我国采用平拉工艺(格法)生产平板玻璃的重点骨干企业。该厂于1986年全套引进了比利时格拉威伯尔公司(Glaverbe1)的平拉玻璃生产技术及主要设备。建设初期为一窑二线,并留有可热接第三线的接口。后来在不停产的情况下,成功地热接了第三线,建成了国内第一条一窑三线的平拉玻璃生产线。长期稳定地生产2 mm厚优质薄玻璃,工厂取得了良好的经济效益,同时为国内多家平拉玻璃企业提供了技术支持。 随着天津市城市建设的发展和环境保护的要求,该生产线所在的地理位置已被规划为商住区,玻璃厂需要搬迁到新址。由于原一窑三线已经完成了两个窑期近17年的运行,拆后可利用的设施已不多,以及要扩大生产能力的考虑,工厂决定新建一条一窑四线平拉玻璃生产线。设计熔化能力260~300t/d,燃料为重油,窑龄8年,玻璃原板宽 度4000 mm,耐火材料立足于全部国产,现将有关设计情况介绍如下: 1 熔化部设计 在80年代引进的一窑三线平拉玻璃熔窑,从窑型尺寸到各部位细部结构看,该熔窑的熔化部在现在看来仍是一座200 t/d级的技术比较先进的熔窑。本次工厂搬迁需要新建同样技术先进的一窑四线,熔化能力为260~300 t/d的熔窑,并要积极采用近年来的各项熔窑新技术。 本设计确定一窑四线平拉玻璃熔窑的熔化部,采用近年来在国内浮法玻璃熔窑上广泛采用的熔化部结构形式,并以某建成投产多年的300 t/d浮法线熔窑做为参照,进行熔化部设计。 1.1 熔化部主要尺寸的确定 按照熔化部的池宽尺寸计算公式: B=9000+ (P-300) ×7 求得该熔窑(按P=300 t/d)的熔化部池宽为:B=9 000 mm。 对于浮法玻璃熔窑来说,熔化部和熔化区的长宽比分别为:K1=3~3.3;K2=1.8~2.0。对于平拉玻璃熔窑来说,为了保证长通路末端玻璃液的成形温度,这两个比值要取得小一些,初步设定熔化部的长宽比为:K1=2.9;熔化区的长宽比为:K2=1.85。计算出熔化部和熔化区池长的初步尺寸: 熔化部池长:L=9 000×2.9=26100 mm, 熔化区池长:Ll=9 000×1.85=16650 mm。

钢包钢包底吹氩实验设计方案

钢包钢包底吹氩实验案 1吹氩精炼的影响因素 氩气的精炼效果与吹氩量、吹氩压力、吹氩时间等因素有关。 1.1吹氩量 搅拌气体进入熔池时,首先在喷嘴上形成气泡。在气流动能的推动下到液相中,分散成无数的小气泡而上浮,同时在高温钢水中气体被加热而膨胀,从而产生了强烈的搅拌作用。随着吹气量的增加,搅拌强度增大,而吹气量的增加是有一个I临界值的,如果吹气量超过某一临界值,吹入的气体从钢包底部向上部形成所谓的贯穿流,容易引起钢水发生喷溅,造成钢液表面覆盖的渣卷入钢液部。造成对钢液的污染。另外当吹氩量偏低时,就限制了氩气的精炼作用,从而使氨气的脱氧、去气和保护钢水的作用都得不到充分发挥。吹入气量是与吹气压力、吹气喷嘴结构等因素有关,可由试验决定。在生产常根据不冲破钢包渣层裸鼹钢水为原则来确定吹气量和压力。 1.2氩气压力 氩气的压力大,搅动力也大,气泡上升速度快,但压力过大时,氩气流涉及围越来越少,氩气泡与钢液的接触面减小,而且如压力过大时,气体会迅速地冲出钢液,要冲破钢液上覆盖的渣层,使钢液受到大气的氧化,对精炼效果反而不利。为此要求吹入的氩气压力不要太大,一般以能克服钢液的静压力,刚好能在透气砖表面上

形成气泡为合适。如钢液深,刚所需的氢气压力大,反之,所需氩气压力小。理想状态是使氩气流遍布全钢包,增加接触面积和延长氩气流上升的流程和时间。1.3吹氩时间 目前,普遍认为吹氩时问不宣太长,否则钢液温度下降太多,且由于耐材受冲刷而使非金属夹杂物出现率增加,但吹氩时间不足,气体及非金属夹杂物不能很好地去除,吹氩效果不明显。所以必须根据现场实际生产情况,以及要达到的精炼效果,从而确定合适的吹氩时间。 2实验原理 物理模拟的理论基础是相似原理。应用相似原理建立模型和进行实验时,必须保证两系统几相似、物理相似。对于钢包底吹氩系统来说,引起体系流动的动力主要是气泡浮力而不是湍流的粘性力,因此保证模型与原型的修正弗德准数相等,就能基本上保证它们的动力相似,根据这一原则,选用修正的Fr’,就可以确定模型中吹气量的围。

窑皮的作用及影响因素

水泥窑窑皮的作用及影响因素 窑皮的作用及影响因素依照温度与化学反应的不同,可以将整个窑分为四个带,它们分别是锻烧带、过渡带、烧成带及部分的冷却带。一般烧成带位于从窑头到5倍的窑直径处,在这段区域内有一层比较稳定的窑皮存在,窑皮对延长窑砖寿命及有非常关键的作用,旋窑的维护成本中,耐火砖所占的比例特别大,如果掉窑砖造成停窑,火砖的费用不算,产量的损失更大。由此可见保护窑皮对延长耐火砖寿命有重要作用。但如果窑皮过厚也会造成窑的有效空间减小,不利于烧成的进行,甚至会造成结圈。 窑皮是由熟料或粉尘自液相或半液相变成固体,它的主要作用有: 1. 保护耐火砖,使耐火砖不直接受高温及化学侵蚀。 2. 储存热能,减少窑壳向周围的热损失,提高旋窑的热效率。 3. 充当传热介质,在窑皮暴露于空气中,与高温的空气接触时,通过辐射或者是对流的方式吸收热量,当窑皮在下部与料接触时,以传导的方式传热给生料。 4. 窑皮的表面粗糙,它可以降低粉料流动速度,延长料在窑内反应时间。 影响窑皮生成的主要因素有: (1)生料的化学成份窑皮是由液相变成固相的过程的产物。铝质与铁质的成份比较多,液相量就多,容易形成窑皮。铝质与铁质的成份比较少,液相量少,形成窑皮比较困难。原料中铝质较多,液相的粘度大,形成窑皮比较困难,但一旦形成就比较坚固。原料中铁质原料多,液相的粘度就比较小,窑皮容易形成,但形成的窑皮也容易掉落。 (2)火焰的温度火焰温度低,料所形成的液相就比较少,不易形成窑皮,火焰温度过高,会使窑皮温度高过液相的凝固温度,窑皮容易脱落。 (3)火焰的形状窑皮的温度受火焰形状、以及窑壳筒体散热等情况的影响。一般来说,太短、太急、太粗阔的火焰对窑皮的侵蚀比较历害,长火焰对窑皮较为有利,但会使窑的热量分散,对烧成不好。 因此在操作时,一定要保持一定合理的火焰形状与位置,严格控制熟料的结粒,防止结大块冲刷窑皮,稳定窑内的热工制度,防止结圈,发现有大块或者是结圈要及时处理。 窑皮的脱落与发红 窑皮会因为温度超过本身的固态化温度而掉落,有时也会因为受热不均匀随火砖一起掉落,掉落的主要原因有: 1. 饲料成份与喂料量不稳定,导至窑温不稳定如果喂入的料一时好烧则窑内温度就高,不好烧时则温度就低。当料量较多时其温度就低,料量少时,多于的热就没有料来吸收。这样温度忽高忽低,造成窑皮热胀冷缩不均匀,容易脱落。 2. 错误的操作程序主要是火焰的形状调整不恰当所至。 当发现有掉窑皮时,在中控室可以通过查看窑壳温度去进行判断,一般窑壳的温度在200-300度左右,如果有温度过高的地方,就有可能发生掉窑皮,此时要马上要进行补救窑皮的措施,马上降低喷煤量,或改变火焰形状及位置,在现场可以利用鼓风机或压缩空气对掉窑皮的窑壳进行冷却,风机应该放在四点或者是八点的位置(此处正是料流的位置),离掉窑皮的地方越近越好。 各种挡板可以靠气动或者是电动来控制,两者都可进行

回转窑直接还原法

回转窑直接还原法(direct reduction process with rotary kiln) 以连续转动的回转窑作反应器,以固体碳作还原剂,通过固相还原反应把铁矿石炼成铁的直接还原炼铁方法。回转窑直接还原是在950~1100℃进行的固相碳还原反应,窑内料层薄,有相当大的自由空间,气流能不受阻碍的自由逸出,窑尾温度较高,有利于含铁多元共生矿实现选择性还原和气化温度低的元素和氧化物以气态排出,然后加以回收,实现资源综合利用。由于还原温度较低,矿石中的脉石都保留在产品里,未能充分渗碳。由于还原失氧形成大量微气孔,产品的微观类似海绵,故也称海绵铁。 高炉炼铁法有久远历史,已发展成高效、节能的冶金方法,是生产铁的基本方法,但它有一定局限性。随着人类对钢铁需求的增长和技术进步,早在18世纪又提出开发直接还原技术的想法,直到20世纪初才出现了工业化生产。20世纪60年代后,由于石油和天然气的大量开发,为钢铁工业提供了丰富和廉价的新能源;选矿技术进步,为直接还原生产提供了优质精矿原料;电力工业开发,电炉技术和能力的迅速发展,导致优质废钢供应紧张;而高新技术发展需要大量优质钢和纯净钢,这又需要纯净的优质炼钢炉料。总之,诸方面均为直接还原的开发开创了有利条件。70年代起,直接还原技术,工业规模,实际产量都取得重大进步和稳步发展。1975年世界直接还原炼铁的生产能力为436万t,实际产量为281万t,占生铁产量的0.6%,到1995年分别跃增到4460万t,3075万t和5.7%。至今气基直接还原炼铁法的生产能力和实际产量都占主导地位,约占总生产能力和总产量的90%,其中以米德莱克斯Midrex法和希尔(HYL)法占绝对优势。煤基直接还原法仅占10%左右,其中主要为回转窑直接还原法。回转窑直接还原法开发于50~60年代。60年代末发展较快,世界各地建设了一批工业生产窑,但由于工艺不够成熟,技术和装备上遇到一系列困难。如入窑料粉化严重,频繁出现窑衬粘结,无法实现正常运行,一度限制了该工艺发展。70年代中,重视对原料、燃料的性能研究,开发和改进送煤、送风技术,改革操作工艺,完善和提高设备,开发废热回收技术,保证了窑的正常操作,使生产率提高,能耗大幅度下降;同时,加强生产过程监测和自动化管理,促使回转窑直接还原技术步入成熟;此外70年代能源危机,天然气价格大幅度上涨,天然气又是重要化工原料,资源有限等,由此也促进了回转窑直接还原法的发展。1980~1995年期间,生产能力从216.2万t增加到365.5万t,直接还原铁产量从37万t增长到246万t。印度生产能力达151万t,南非为108万t。 筒史 1907年琼斯(J.T.Jones)最早提出回转窑直接还原法。在回转窑卸料端设煤气发生炉,热煤气从卸料端入窑,在距窑加料端1/3窑长处导入空气,与热煤气燃烧形成氧化加热带。铁矿石和还原煤从加料端加入,被高温废气干燥、预热、氧化去硫,随窑体转动铁矿石向卸料端前移,同时被热煤气和还原煤还原,然后从卸料端排出。后来改进为两台窑作业,一台氧化加热,另一台窑内铁矿石被油或煤粉不完全燃烧产生的还原气所还原,但因这样作业不经济,1912年停产。1926年鲍肯德(Bourcond)、斯奈德(Snyder)在实验室进行了用发生炉煤气的回转窑直接还原实验成功。同年还出现了用回转窑进行还原、增碳、得到熔融铁水的巴塞特(Basset)法。1930年克虏伯(krupp)公司开发了克虏伯一雷恩(krupp—Renn)法,用低质

玻璃熔窑设计

目录 前言 (1) 第一章浮法玻璃工艺方案的选择与论证 (3) 1.1平板玻璃工艺方案 (3) 1.1.1有曹垂直引上法 (3) 1.1.2垂直引上法 (3) 1.1.3压延玻璃 (3) 1.1.4 水平拉制法 (3) 1.2浮法玻璃工艺及其产品的优点 (4) 1.3浮法玻璃生产工艺流成图见图1.1 (5) 图1.1 (5) 第二章设计说明 (6) 2.1设计依据 (6) 2.2工厂设计原则 (7) 第三章玻璃的化学成分及原料 (8) 3.1浮法玻璃化学成分设计的一般原则 (8) 3.2配料流程 (9) 3.3其它辅助原料 (10) 第四章配料计算 (12) 4.1于配料计算相关的参数 (12) 4.2浮法平板玻璃配料计算 (12) 4.2.1设计依据 (12) 4.2.2配料的工艺参数; (13) 4.2.3计算步骤; (13) 4.3平板玻璃形成过程的耗热量的计算 (15) 第五章熔窑工段主要设备 (20) 5.1浮法玻璃熔窑各部 (20) 5.2熔窑主要结构见表5.1 (21) 5.3熔窑主要尺寸 (21) 5.4熔窑部位的耐火材料的选择 (24) 5.4.1熔化部材料的选择见表5.3 (24) 5.4.2卡脖见表5.4 (25) 5.4.3冷却部表5.5 (25) 5.4.4蓄热室见表5.6 (25) 5.4.5小炉见表5.7 (26) 5.5玻璃熔窑用隔热材料及其效果见表5.8 (26) 第六章熔窑的设备选型 (28) 6.1倾斜式皮带输送机 (28) 6.2毯式投料机 (28)

6.3熔窑助燃风机 (28) 6.4池壁用冷却风机 (29) 6.5碹碴离心风机4-72NO.16C (29) 6.6L吊墙离心风机9-26NO11.2D (29) 6.7搅拌机 (29) 6.8燃油喷枪 (29) 6.9压缩空气罐C-3型 (29) 第七章玻璃的形成及锡槽 (30) 第八章玻璃的退火及成品的装箱 (32) 第九章除尘脱硫工艺 (33) 9.1除尘工艺 (33) 9.2烟气脱硫除尘 (33) 第十章技术经济评价 (34) 10.1厂区劳动定员见表10.1 (34) 10.2产品设计成本编制 (35) 参考文献 (38) 致谢 (39) 摘要 设计介绍了一套规模为900t/d浮法玻璃生产线的工艺流程,在设计过程中,原料方面,对工艺流程中的配料进行了计算;熔化工段方面,参照国内外的资料和经验,对窑的各部位的尺寸、热量平衡和设备选型进行了计算;分析了环境保护重要性及环保措施参考实习工厂资料,在运用相关工艺布局的基础下,绘制了料仓、熔窑、锡槽、成品库为主的厂区平面图,具体对熔窑的结构进行了全面的了解,绘制了熔窑的平面图和剖面图,还有卡脖结构图,整个设计参照目前浮法玻璃生产的主要设计思路,采用国内外先进技术,进行全自动化生产,反映了目前浮法生的较高水平。 关键词:浮法玻璃、熔窑工段、设备选型、工艺计算。

耐火材料的使用维护:水泥窑窑皮的维护要点

耐火材料的使用维护:水泥窑窑皮的维护要点 窑皮是黏附于窑内高温带耐火材料表面的水泥熟料,对保护窑衬,延长耐火材料寿命起非常重要的作用。 大型新型干法水泥窑的火焰温度高达1700℃以上。如无窑皮保护,耐火材料表面就会在很高的温度下工作。耐火材料很快就会因高温和侵蚀的作用而损毁。窑皮的热导率为1.16w/(m?K),碱性砖的热导率为2.70w/(m?K)。如有150mm厚的窑皮存在,碱性砖的热面温度从1500℃降至600~700℃,热端膨胀从105%降至006%~007%。工作负荷大为缓和。从而,耐火材料的侵蚀得以减慢,窑衬寿命得以保持。 二成过程 水泥回转窑中,火焰不断对窑衬和窑料表面加热。随窑体的运转,窑料在不断地翻滚。当窑料埋住衬料时,衬料就将吸收的热量传给窑料,窑料的温度增高,衬料的温度降低,部分窑料黏附在窑衬上。当窑料被提升到最高位置后,窑料在重力的作用下下落,窑料和窑衬分离,撕下部分黏附在窑衬上的窑料。这一过程如图所示。

随时间的延续,耐火材料表面开始“发汗”,即出现液相。这时,窑料埋住窑衬,窑衬把热量传给窑料后温度降低,就能黏附一部分窑料,并把其中一些细粒窑料“冻结”在窑衬上。如果“冻结”的窑料多,“撕裂”掉落的窑料少,窑皮就会缓慢增厚。随厚度的增长,窑皮表面的温度增高,达到“冻结” “撕裂”平衡后,窑皮就不再增长。 如果窑内温度或窑料成分急剧变化,或因“冻结”-“撕裂”平衡破坏,或因窑体膨胀/收缩产生很大应力.或因窑料中β-C2S转化成γ-C2S使窑皮粉化,窑皮就会大面积脱落。不过,只要烧成条件保持稳定,窑皮又会慢慢形成,对耐火材料又会起到保护作用。如烧成条件变化过 快,窑皮频繁脱落,耐火材料的寿命就会受到很大影响。

关于浮法玻璃熔窑改进的几项措施

关于浮法玻璃熔窑改进的几项措施 3唐春桥1,孙兴银2,袁建平2,戴玖凤2 (1.深圳南玻浮法玻璃有限公司,广东 深圳 518067; 2.江苏华尔润集团有限公司,江苏 张家港 215600) 摘要:目前,我国的浮法玻璃熔窑结构设计技术有了较大的发展,使熔窑的熔化能力和熔制质量不断提高,熔窑寿命不断延长,熔窑能耗不断降低。但随着新技术的不断涌现,熔窑的结构设计仍有值得改进和完善的地方。本文就浮法玻璃熔窑改进的几项措施进行探讨,以供同仁参考。 关键词:浮法玻璃熔窑;结构;改进措施 中图分类号:T Q171.6+23.1 文献标识码:B 文章编号:1000-2871(2005)05-0023-02 So m e Acti on s Taken for I m prove m en t of Floa t Gl a ssM elti n g Furnace TAN G Chun -qiao,SUN X ing -y in,YUAN J ian -ping,DA I J iu -feng 1 概述 20世纪90年代初期,随着托利多熔窑技术的引进,国内平板玻璃熔窑在设计水平、熔化能力、窑炉寿命、能耗热效、玻璃熔制质量等方面均取得了跨越式的发展,走出了一条引进、消化、创新的路子。如今,国内设计的浮法熔窑,熔化能力从400t/d,向500t/d 、600t/d 、900t/d 稳步发展;窑龄也从5年向8年和10年迈进;熔制缺陷如气泡、结石等的大量减少,使玻璃质量从普通建筑级提高到汽车级和制镜级。 目前,国内针对浮法玻璃熔窑又进行了多方面的设计创新,如采用全等宽投料池、加长1# 小炉到前脸的间距、加长澄清带长度、大碹保温采用复合保温结构、全连通蓄热室改为“全分隔式”或“分组式”蓄热室、集中式烟道布置、采用水平搅拌和垂直搅拌混合的卡脖结构等等。但是浮法熔窑结构设计仍有改进和完善的空间,下面就浮法玻璃熔窑改进的几项措施进行探讨。2 浮法玻璃熔窑改进措施探讨 2.1 设置辅助电助熔装置 目前,在浮法玻璃熔窑上采用辅助电熔装置熔制玻璃的企业为数不多,主要集中在少数合资或外资企业和极少数国内的浮法玻璃企业中,其好处是:⑴在配合料料区采用电助熔,可大幅度提高料层下面的玻璃液温度,使料层获得更多的热量,提高料层的熔化能力,这样可大幅度增加浮法玻璃产量。而在热点区域采用电助熔,可强化热点、突出热点,从而提高玻璃液质量。⑵生产着色玻璃时,开启电加热可提高熔窑的池底温度,加强池底玻璃液对流,减少不动层厚度,同时,玻璃液可获得更多的热量,通过对流传递到配合料层,从而加快配合料的熔化,在一定程度上补偿空间热量的投入,降低熔窑的火焰空间热负荷,延长窑炉寿命。 第33卷第5期2005年10月玻璃与搪瓷G LASS &E NAMEL Vol .33No .5Oct .2005 3收稿日期:2004-10-10

钢包钢包底吹氩实验方案

钢包钢包底吹氩实验方案 1吹氩精炼的影响因素 氩气的精炼效果与吹氩量、吹氩压力、吹氩时间等因素有关。 1.1吹氩量 搅拌气体进入熔池时,首先在喷嘴上形成气泡。在气流动能的推动下到液相中,分散成无数的小气泡而上浮,同时在高温钢水中气体被加热而膨胀,从而产生了强烈的搅拌作用。随着吹气量的增加,搅拌强度增大,而吹气量的增加是有一个I临界值的,如果吹气量超过某一临界值,吹入的气体从钢包底部向上部形成所谓的贯穿流,容易引起钢水发生喷溅,造成钢液表面覆盖的渣卷入钢液内部。造成对钢液的污染。另外当吹氩量偏低时,就限制了氩气的精炼作用,从而使氨气的脱氧、去气和保护钢水的作用都得不到充分发挥。吹入气量是与吹气压力、吹气喷嘴结构等因素有关,可由试验决定。在生产中通常根据不冲破钢包渣层裸鼹钢水为原则来确定吹气量和压力。 1.2氩气压力 氩气的压力大,搅动力也大,气泡上升速度快,但压力过大时,氩气流涉及范围越来越少,氩气泡与钢液的接触面减小,而且如压力过大时,气体会迅速地冲出钢液,要冲破钢液上覆盖的渣层,使钢液受到大气的氧化,对精炼效果反而不利。为此要求吹入的氩气压力不要太大,一般以能克服钢液的静压力,刚好能在透气砖表面上形成气泡为合适。如钢液深,刚所需的氢气压力大,反之,所需氩气压力小。理想状态是使氩气流遍布全钢包,增加接触面积和延长氩气流上升的流程和时间。 1.3吹氩时间 目前,普遍认为吹氩时问不宣太长,否则钢液温度下降太多,且由于耐材受冲刷而使非金属夹杂物出现率增加,但吹氩时间不足,气体及非金属夹杂物不能很好地去除,吹氩效果不明显。所以必须根据现场实际生产情况,以及要达到的精炼效果,从而确定合适的吹氩时间。 2实验原理 物理模拟的理论基础是相似原理。应用相似原理建立模型和进行实验时,必须保证两系统几何相似、物理相似。对于钢包底吹氩系统来说,引起体系内流动的动力主要是气泡浮力而不是湍流的粘性力,因此保证模型与原型的修正弗鲁德准数相等,

影响窑皮的因素

浅谈影响窑皮的因素及解决措施 2007-1-5 作者: 作者:孙伟卿单位:德州大坝集团旋窑厂长期以来,一些水泥厂只注重熟料的产量和质量,而对窑皮的保护和它的均匀性不太重视,并认为窑内掉点窑皮是正常的事,只要不对熟料质量产生较大影响就无关紧要。而事实上恰恰相反,窑皮是回转窑的重要组成部分,适宜的窑皮,不但能够提高窑内的传热效率,稳定窑内的热工制度,保证熟料的煅烧,稳定熟料的产量和质量,并且能延长窑衬的使用寿命,提高窑的安全运转周期。本文结合我厂2500T/d熟料生产线(φ4.0 m×60m回转窑、双系列五级旋风预热器、T DF型分解炉)在生产过程中所遇到的问题谈一点对窑皮的认识和体会。1窑皮的作用 众所周知,窑皮是由熟料或粉尘通过液相粘挂在窑衬上形成的具有一定厚度的物料层。它的作用主要有以下几方面: (1)保护烧成带耐火砖,使耐火砖不直接受机械、高温和化学侵蚀; (2)储存热能,减少窑筒体向周围的热损失,提高窑的热效率; (3)作为传热介质,当窑皮在上部与高温气体接触时,通过辐射或对流的方式吸收热量;当窑皮在下部与物料接触时,以传导的方式传热给物料; (4)由于窑皮的表面比较粗糙,它产生的阻力可以降低粉料的流动速度,延长物料在窑内的反应时间,使物料的物理化学反应充分进行,有利于熟料中各矿物的形成。 2影响窑皮形成的因素 窑皮的形成主要受物料的特性、窑衬的种类、窑内温度和窑内火焰形状等因素的影响。2.1物料的特性 从熟料的三率值讲,KH值高,C3S的含量就增多,C2S的含量相对减少,物料不易煅烧,形成的液相量就少,不易挂窑皮,反之则易挂窑皮;SM值大,煅烧温度就高,形成液相量较少,窑内不易结粒,不易挂窑皮,反之SM值太小时,液相量较多,烧成带窑皮易挂易于脱落,就不能保持相对稳定;IM值大时,熟料液相的粘度增大,物料难烧,但挂上的窑皮相对牢固,不易脱落。 2.2窑衬的种类 不同的耐火砖其性能各不相同,挂窑皮的性能也有很大的差异。就窑内烧成带用砖及其窑皮易挂性来讲,目前国内普遍认可的是镁铬砖。我厂窑内烧成带现在使用的就是镁铬砖。2.3窑内温度 窑皮的形成取决于窑内的液相量,而液相的出现既与熟料三率值有关,又与窑内温度有关。适宜的窑内温度有利于物料的化学反应,形成适量的熟料矿物,生产出合格的熟料,又能形成好的窑皮。一般认为窑内温度在1 380~1 450℃较合适。

钢包底吹氩模拟研究进展

钢包底吹氩模拟研究进展 摘要本文介绍了,钢包底吹氩的原理、钢包底吹氩存在的问题及影响因素以及提高低吹成功率的改进措施。并且简略介绍了两种水模方法: ⑴.钢包底吹氩水模实验研究,其结论为:示踪剂偏向中心位置加入,混匀时间较短;对于同样的底部送气量,两块透气砖对称分布在同一直径上时,混匀时间较短;混匀时间随气体流量的增大而减少;⑵.钢包底吹氩性能优化水模型实验。 关键词钢包底吹氩水模混匀时间 Progress of Simulation Studies of Argon Blowing from Bottom of Ladle Abstract This paper introduces the principle of Argon Blowing from Bottom of Ladle,the existing questions of Argon Blowing from Bottom of Ladle and factors of influences.It also contains the improved measures to increase the success rates.And it introduces two kinds of water mould briefly: ⑴.The research of the experimental water mould,the conclusion is that tracer is turned to the center position.The time of blending is much shorter.To the same as the number of gases of blowing from bottom.The two

浮法玻璃熔窑的结构

浮法玻璃熔窑的结构 浮法玻璃熔窑和其他平板玻璃熔窑相比,结构上没有太大的区别,属浅池横焰池窑,但从规模上说,浮法玻璃熔窑的规模要大得多,目前世界上浮法玻璃熔窑日熔化量最高可达到1100t以上(通常用1000t/d表示)。浮法玻璃熔窑和其他平板玻璃熔窑虽有不同,但它们的结构有共同之处。浮法玻璃熔窑的结构主要包括:投料系统、熔制系统、热源供给系统、废气余热利用系统、排烟供气系统等。图1-1为浮法玻璃熔窑平面图,图1-2为其立面图。 一投料池 投料池位于熔窑的起端,是一个突出于窑池外面的和窑池相通的矩形小池。投料口包括投料池和上部挡墙(前脸墙)两部分,配合料从投料口投入窑内。 1.投料池的尺寸 图1-1 浮法玻璃熔窑平面图 1-投料口;2-熔化部;3-小炉;4-冷却部;5-流料口;6-蓄热室 图1-2 浮法玻璃熔窑立面图 1-小炉口;2-蓄热室;3-格子体;4-底烟道;5-联通烟道;6-支烟道;7-燃油喷嘴投料是熔制过程中的重要工艺环节之一,它关系到配合料的熔化速度、熔化区的热点位置、泡界限的稳定,最终会影响到产品的质量和产量。由于浮法玻璃熔窑的熔化量较大,采用横焰池窑,其投料池设置在熔化池的前端。投料池的尺寸随着熔化池的尺寸、配合料状态、投料方式以及投料机的数量。配合料状态有粉状、颗粒状和浆状(目前一般使用粉状);投料方式由选用的投料机而确定,有螺旋式、垄式、辊筒式、往复式、裹入式、电磁振动式和斜毯式等。(目前多采用垄式投料机和斜毯式投料机)。 (1)采用垄式投料机的投料池尺寸采用垄式投料机的投料池宽度取决于选用投料机的台数,投料池的长度可根据工艺布置情况和前脸墙的结构要求来确定。 (2)采用斜毯式投料机的投料池尺寸斜毯式投料机目前在市场上已达到了普遍使

浮法玻璃熔窑设计的改进

浮法玻璃熔窑设计的改进 宋 庆 余 (蚌埠玻璃工业设计研究院 蚌埠市 233018) 近些年来,我国浮法玻璃熔窑的设计技术取得了长足的发展,20年前中国只有一座浮法玻璃熔窑,当时的熔化能力只有230t/d,窑炉的寿命只有3年,熔化率为1.13t/m2?d,热耗11675kJ/kg玻璃液,玻璃质量仅能达到当时厂标的二、三等品,总成品率为65%。现在我国已有浮法窑61座,我国自己设计的最大吨位为600t/d的窑已投产2年,与20年前相比,熔化能力增加了2.6倍,熔化率达到2.26t/m2?d,提高了近一倍,热耗为6688kJ/ kg玻璃液,降低了43%,产品质量大幅度提高,制镜级和加工级玻璃达到90%,总成品率大于80%。以上的浮法玻璃熔窑技术指标,我国只有少数生产线可以达到,多数浮法玻璃熔窑达不到。这少数的浮法玻璃熔窑与国外先进的相比还有不小的差距。本文主要讨论目前我国浮法玻璃熔窑应如何改进。1 投料池设计的改进 投料是熔制过程中的重要工艺环节之一,它关系到配合料的熔化速度、熔化区的位置、泡界线的稳定,最终会影响到产品的质量和产量。 1.1 应设计与熔化部等宽的投料池 投料池越宽,配合料的覆盖面积就越大,配合料的吸热是与覆盖面积大小成正比的。因此采用与熔化部等宽或接近等宽的投料池,有利于提高热效率,有利于节能,有利于提高熔化率。 1.2 采用无水包的45度“L”型吊墙 传统的“L”型吊墙都有水包,由于水包的寿命短、易损坏、漏水,造成吊墙砖的炸裂,吊墙砖实际上在热工作状态下无法更换,这样就影响窑炉的寿命。所谓无水包吊墙,就是水包被一排吊砖所代替,这就解决了因水包漏水所造成的吊墙砖炸裂问题,同时也解决了更换损坏水包对生产的影响。1.3 投料口采用全密封结构 投料池内的压力一般是正压,所以由窑内向外部的溢流和辐射热损失较大。采用全密封结构,构成预熔池,将减少这部分热损失,使配合料进入熔化池之前能吸收一定的热量,将其中的水分蒸发并进行预熔,这样料堆进入熔化池后很快就会熔化摊平,因此加速了熔化过程。同时,由于料堆表面被预熔,就减少了粉料被烟气带入蓄热室的量,也减轻了飞料对熔窑上部结构的化学侵蚀。投料池采用全密封结构,可以防止外界的干扰,保证窑内压力制度、温度制度的稳定,保证泡界线的稳定。特别是保证玻璃对流的稳定,有利于减少生料对池壁砖的侵蚀,延长窑炉寿命,是一条宝贵的经验。 2 熔化部设计的改进 2.1 加长1#小炉至前脸墙的距离 加长1#小炉至前脸墙的距离,可开大1#小炉,提高熔化效率和热效率。从辐射传热公式可以清楚地看出这个问题。 Q=C? T1 100 4 - T2 100 4 ?F 式中:Q——配合料吸收的热量,kJ; T1——火焰的温度,K; T2——配合料的温度,K;

回转窑烧成带耐火砖的保护

回转窑烧成带耐火砖的保护 回转窑耐火砖的主要作用是保护窑筒体不受高温气体和高温物料的损害,保证生产的正常进行。在工业生产中,烧成带耐火砖的使用寿命很短,往往导致计划外停窑检修,是影响水泥窑优质、高产、低耗和年运转率的关键因素。 一、耐火砖的侵蚀机理 无论是湿法窑,还是新型干法回转窑,在熟料煅烧过程中,由于窑内气体温度比物料温度高得多,窑每旋转一圈,窑衬表面受到周期性的热冲击,温度变化幅度为150~250℃,在窑衬10~20mm表层范围内产生热应力。窑衬还承受由于窑的旋转而产生的砖砌体交替变化的径向和轴向机械应力,以及煅烧物料的冲刷磨损。由于同时产生硅酸盐熔体,在高温环境下很容易与窑衬耐火砖表面相互作用形成初始层,并同时沿耐火砖的孔隙渗入到耐火砖的内部,与耐火砖黏结在一起,使耐火砖表层10~20mm范围内的化学成分和相组成发生变化,降低耐火砖的技术性能。当物料的烧结范围较窄或者形成短焰急烧产生局部高温时,会使窑皮表面的最低温度高于物料液相凝固温度,窑皮表面层即从固态变为液态而脱落,并且由表及里深入到窑皮的初始后又形成新的窑皮初始层。当这种情况反复出现时,烧成带窑衬就逐渐由厚变薄,甚至完全脱落,导致局部露出窑筒体而红窑。实际上烧成带窑衬损坏情况正是如此,在高温区域残砖厚度大体上呈曲率半径较大的弧线分布,有时弧底就落在窑简体的内表面上。 二、耐火砖的保护 1.耐火砖物理性能的影响 抗渣性是指耐火材料抵抗化学侵蚀的能力,在形成窑皮初始层以及当物料粘性大或产生局部高温促使窑皮脱落情况下,抗渣性就显得非常重要。 孔隙率及导热系数,对于形成窑皮初始层有着重要的作用,并且在窑皮局部脱落时,孔隙率和导热系数较大的耐火材料有助于窑皮的及时补挂。但同时又有可能表现出极大的破坏作用,使耐火砖剥离的薄层脱落。 耐火砖在其生产过程中,其物理化学变化一般都未达到烧成温度下的平衡状态。也有烧成不充分的耐火砖,因而在回转窑作用中再受高温作用时,大多数的耐火砖由于其本身液相的产生及孔隙的填充,发生不可逆的重烧收缩。因此,高温体积稳定性,在选用烧成带耐火砖时必须予以考虑。 热表面层状勅离是回转窑烧成带窑衬经受热震后损坏的主要形式;若同时发生局部窑皮脱落,就会使耐火砖使用寿命大为缩短。 2.燃烧与燃料喷嘴对耐火砖的影响 用煤作燃料时,煤的挥发分和灰分起着决定性的作用,直接影响火焰形状。挥发分较高而灰分较低的煤粉,可使黑火头缩短,形成低温长焰煅烧。对保护窑衬一般是有利的,但挥发分过高,着火太快,使出窑熟料温度高达260℃以上,二次风温超过900℃,极易烧坏喷嘴,使其变形或烧破出现缺口,产生紊乱的火焰形状,在其被更换之前就损害了窑衬。煤的挥发分过低(小于0%),灰分太高(大于28%),大量煤粉的不完全燃烧就会沉降在物料内燃烧并放出大量的热也会损伤窑皮。 燃料喷嘴结构在生产中往往没受到足够的重视,喷嘴形状和出口尺寸主要影响煤粉同一次风的混合程度与喷出速度,有时为加强风煤的混合,还可在喷嘴内加装风翅,但要注意旋流风旋转幅度过大扫伤窑皮。 3.生料成分波动对耐火砖的影响 当铝率过高,液相黏度大时,窑皮大量垮落,操作上不易控制,对保护窑衬不利,生产实践中铝率一般控制在1.3~1.6;当釆取高饱和比、高硅率、低液相配料时易产生黏散料冲刷、磨蚀窑皮使窑薄严重时损伤窑衬,生产实践中硅2.5时,饱和比不宜超过0.92,当硅率

回转窑工艺技术操作规程学习资料

回转窑工艺技术操作规程 编制: 审核: 批准: 2007年08月01日发布2007年08月01日实施

茌平信发华兴有限公司石灰车间

目录 目录 (1) 第一章主机设备主要技术参数 (2) 第二章原燃料技术要求 (4) 第三章技术操作规程 (7) 一、煤粉制备技术操作规程 (7) 二、水泵开停机操作程序 (9) 三、上料岗位技术操作规程 (10) 四、除尘岗位技术操作规程 (10) 五、司炉(主控)工技术操作规程 (13) 六、成品输送工技术操作规程 (15) 第四章回转窑各系统的正常启动顺序 (16)

第一章主机设备主要技术参数 1、窑体主要参数 规格:Ф×64m 产量:800t/d 斜度:% 转速:(主传)-min (辅传)h 主电机: ZSN-315-12 功率:250KW 额定电流:615A 电压:440V 辅传电动机:Y200L2-6 功率:22KW 主减速器: ZSY630-71-1 速比:71 辅助减速器:ZL65A-14-2 速比: 四通道燃烧器:型号:PH2500 喷煤量:5~8t/h 2、高温风机主要参数: 型号:W6-冷却: IC611 风量:240000m3/h 电流: 风压:8500Pa 电压:10KV 转速:1490r/min 功率:900KW

气体工作温度:≤250℃最高瞬时温度:≤350℃风机冷却水用量:30t/h 水压:~ 调速型液力偶合器 型号:YOT71/15 功率:510/1555KW 转速:1500r/min 油冷却器工作压力: 调速范围:1~1:5 额定转差率:~3﹪ 总换热面积:30m2 慢转装置:功率: 3、竖式预热器参数 规格:×料仓容机: 300m3 推料杆数量:12支。系统工作压力:16Mpa 最大行程:320mm 4、竖式冷却机 规格:××产量: 800t/d 进料温度:900~1050℃出料温度:<100℃ 物料厚度:500~600mm 电振给料机型号:GZ4 功率: 电液推杆规格:DYZT1750-1500/90-X 推杆行程:1500mm 额定推速:90mm/s 额定拉速:115mm/s 额定推力:1750kg 额定拉力:1350kg 电机型号:Y100L1-4 功率: 冷却方式:IC06 绝缘等级:F级

t浮法玻璃熔窑熔制制度的确定

玻 璃 熔 制 组别:第二组 组长:黄忠伦 组员:孙印持、黄忠伦、张彬、何洋、赖世飞、朱子寒

“玻璃熔制”课程任务 一、任务目的: 400t/d浮法玻璃熔窑熔制制度的确定 二、主要内容: 1、确定玻璃熔制过程的温度-黏度曲线; 2、确定玻璃熔制的各种熔制制度; 3、分析熔制制度对玻璃质量的影响; 三、基本要求: 1、玻璃熔制制度应符合实际生产情况要求,便于组织生产; 2、熔制制度参数选择合理、先进; 3、熟悉玻璃熔制制度对玻璃质量的影响; 4、提交一份打印的任务说明书及电子文档; 5、提交本小组各成员的成绩表(100分制);

(一)黏度与温度的关系 1.由于结构特性的不同,玻璃熔体与晶体的黏度随温度的变化趋势有显著的差别。晶体在高于熔点时,黏度变化很小,当到达凝固点时,由于熔融态转变晶态的缘故,黏度呈直线上升。玻璃的黏度则随温度下降而增大,从玻璃液到固态,玻璃的黏度是连续变化的,其间没有数值上的突变。 (1)应变点:应力能在几小时内消除的温度,大致相当于粘度为1013.6Pa·s时的温度,也称退火下限温度。(2)转变点(Tg):相当于粘度为1012.4Pa·s时的温度。高于此点脆性消失,并开始出现塑性变形,物理性能开始迅速变化。 (3)退火点:应力能几分钟内消除的温度,大致相当于粘度为1012Pa·S时的温度,也称退火上限温度。(4)变形点:相当于粘度为1010-1011Pa·S时的温度范围。(5)、软化温度(Ts):它与玻璃的密度和表面张力有关,相当于黏度为3×106~1.5×107Pa·s的温度范围。对于密度约等于2.5的玻璃它相当于粘度为106.6Pa·S时的温度。(6)操作范围:相当于成型玻璃表面的温度范围。T上限指准备成型的温度,相当于粘度为102-103Pa·S时的温度;T下限相当于成型时能保持制品形状的温度,相当于粘度>105Pa·S时的温度。操作范围的粘度一般为103-106.6Pa·S

1控制入窑分解率的意义

1 控制入窑分解率的意义 入窑分解率是指生料经过分解炉及下级预热器后,在入窑之前分解成氧化物的碳酸盐占总碳酸盐的百分比。 生料入窑分解率是衡量分解炉运行正常的主要指标。对于没有分解炉的旋风预热器窑,生料有20%~40%在入窑前分解;若上升管道点火可以加大到60%~70%;增加分解炉后,入窑生料应有90%以上的CaCO3分解成CaO。如果此数值偏低,势必加重窑的负担,而且由于窑的传热效率远不如分解炉,不仅热耗增加,窑的产量也无法提高。 该指标并非是操作的考核指标,但它是为稳定回转窑系统运行、降低热耗所必须掌握的。因此,在抽样检测频次上,应以满足中控室操作需要为目的。如果全系统稳定,并分解率始终很高,频次可以减少,每班一次、甚至每天一次均可;如果窑的操作不够稳定,操作员可以要求化验人员增加检验次数,为操作员提供更多的判断依据。 2 正常入窑分解率的范围 根据目前分解炉的性能越发完善,也根据对分解率的实际控制能力,建议生料入窑分解率控制范围为90~95%为宜。分解率过低,没有充分发挥分解炉的作用,加大窑内负担,对增产与节能都不利。但如果分解率过高,使剩余不足5~10%的碳酸钙也在分解炉内完成分解,就意味着炉内的吸热反应完成,有可能紧接着发生水泥硅酸盐矿物生成的放热反应,这本应在窑内进行的烧结反应,在分解炉的悬浮状态中是无法承受的,最后势必在分解炉及预热器内发生灾难性的烧结堵塞。应该说,正是这个5%尚未完成分解的生料阻止了完成分解后的温度剧升,那种想象进一步提高分解率,便可以挖掘提高窑产量的潜力,将是很危险的。 3 控制分解炉温度的意义 ⑴可确保分解率高又不烧结的必须。分解炉温度达到一定数值是实现生料入窑分解率达到90% 以上的最基本条件。因此,当该温度值偏低时,就应该设法提高它;但是如果此温度过高,则更要警惕炉内出现烧结的可能。 ⑵判断煤料混合均匀及煤粉燃烧状态的依据。通过分解炉温度与上下两级预热器温度的比较,还可以判断分解炉燃烧是否完全。如果发生上级预热器温度高于此温度,说明有部分燃料在分解炉内未完全燃烧,而是随着热气流到上一级预热器继续燃烧所致。如果发现下级预热器容易结皮,并在结皮中发现有未烧尽的煤粉,则表明煤与料的分散不均,有部分煤粉被物料裹胁到该级预热器中。为此,在分解炉中有必要多点下煤下料设计,并合理布置。 ⑶判断窑炉用风是否处于平衡状态,如果三次风量不足或过剩,都会引起该温度的异常。操作员应该尽快调整。 4 影响分解炉温度的因素 为使分解炉内的燃料均匀地无焰燃烧,并很快与生料实现最好的传热效果,设计专家做了大量工作,开发出各式各样类型的分解炉。但是万变不离其宗,无非是要求风、煤、料的合理配合,要求在最短的时间内,用最少的风量,使煤粉燃烧完全,并能让燃烧所发出的热尽快地传导给生料,为此: ⑴加入煤粉的数量及质量。煤粉秤的可靠计量及输送稳定是保证热源稳定的前提。同时,煤粉要有足够的细度及合格的水分,确保能在炉内的有效时间内燃烧。如果分解炉出口温度高于炉中温度,说明有可能燃烧速度不够。 ⑵起主导作用的是三次风的风量、温度与速度。风量足够而又不能过多,温度越高越好,速度与方向应有利于煤粉的混合。使用新开发的分解炉用三风道煤管可以实现此目的。影响三次风量的因素也较多,不仅受系统总排风的约束,而且受窑炉用风平衡的牵制。 ⑶进入分解炉的生料应该与空气及煤粉充分混合均匀,而不能走短路入窑,或分散不

相关主题
文本预览
相关文档 最新文档