当前位置:文档之家› 考研数学数列极限内容概括及考点总结

考研数学数列极限内容概括及考点总结

考研数学数列极限内容概括及考点总结
考研数学数列极限内容概括及考点总结

考研数学数列极限内容概括及考点总结

来源:文都教育

数列极限的概念和判断极限存在的夹逼准则和单调有界准则也是考研数学的重要考点,下面文都考研数学教研室老师为大家总结了数列极限部分的知识和考点题型,希望对同学们有帮助。

一、数列极限

1. 数列极限的定义

设{}n a 为一数列,若存在常数A ,对任意的0>ε,总存在0>N ,当N n >时,有ε<-||A a n ,称A 为数列{}n a 的极限,或称数列

{}n a 收敛于A ,记为A a

n

n =∞

→lim 。

2. 收敛数列的性质

(1)收敛数列极限存在且唯一. (2)收敛数列必为有界数列. (3)收敛数列的保号性.

3. 极限存在准则

(1)夹逼准则

如果数列{}{}{},,n n n a b c 满足下列条件:

从某项起,即0n N ?∈,当0n n >时有,n n n c b a ≤≤,且A c a n n n n ==∞

→∞

→lim lim ,

则A b n n =∞

→lim 。

(2)单调有界准则

单调增加(或单调减少)且有上界(或有下界)的数列{}n x 必有极限。

【注】此准则只给出了极限的存在性,并未给出极限是多少。此时一般是在判定了“极限存在”以后通过数列的递推表示,在等式两边取极限得到。

4. 重要结论

(1)若lim lim n n n n a a a a

→∞

→∞

=?=.

(2)lim 0lim 0

n n n n a a →∞

→∞

=?=.

(3)221lim lim ,lim n n n n n n a a a a a a

-→∞

→∞

→∞

=?==.

【考点一】数列极限的概念与性质

例1设

().lim 0,n n n n n x a y y x a

→∞

≤≤-=且为常数,则数列

{}n x 和{}n y ( )

(A )都收敛于a (B )都收敛,但不一定收敛于a (C )可能收敛,也可能发散 (D )都发散

例2设

(){}{}

.lim 0,,n n n n n n n n x a y y x x y →∞

≤≤-=且和

{}n a 均为数列,则lim n

n a →∞ ( )。

(A )存在且等于0 (B )存在但不一定等于0 (C )一定不存在 (D )不一定存在 【考点二】(1)单调有界数列必有极限.

(2)单调递增且有上界的数列必有极限,单调递增且无上界的数列的极限为+∞. (3)单调递减且有下界的数列必有极限,单调递减且无下界的数列的极限为-∞.

例1 设()()1103,31,2,

n n n x x x x n +<<=-=,证明:数列{}n x 极限存在,并求此极限

例2 设

()2

0110,20,1,2,

n n n x x x x n +-<<=+=,证明:数列{}n x 极限存在,并求此极限

【考点三】夹逼准则

【思路提示】在使用夹逼准则时,需要对通项进行“缩小”和“放大”,要注意:“缩小”应该是尽可能的大,而“放大”应该是尽可能的小,在这种情况下,如果仍然“夹不住”那么就说明夹逼准则不适用,改方法。 【考点四】数列连加和的极限

例1. 求极限

111

lim 1111212n n →∞

?

?+++ ?++++

+??

例2.求极限

222

12

lim

12

n

n

n n n n n n n

→∞

??

++

?++++++??.

【考点四】利用函数极限求数列极限

()

n

x f n

=

,则

()()

lim lim lim

n

n n x

x f n f x

→∞→∞→+∞

==

.

例.求

2

1

lim sin

n

n

n

n

→∞

??

?

??.

数列极限四则运算法则的证明

数列极限四则运算法则的证明 设limAn=A,limBn=B,则有 法则1:lim(A n+B n)=A+B 法则2:lim(An-Bn)=A-B 法则3:lim(An ? Bn)=AB 法则4:lim(An/Bn)=A/B. 法则5:lim(An的k次方)=A的k次方(k是正整数) (n T+R的符号就先省略了,反正都知道怎么回事.) 首先必须知道极限的定义: 如果数列{Xn}和常数A有以下关系:对于?£> 0(不论它多么小),总存在正数N,使得对于满足n > N的一切Xn,不等式|Xn-A| v &都成立, 则称常数A是数列{Xn}的极限,记作limXn=A. 根据这个定义,首先容易证明:引理1: limC=C.(即常数列的极限等于其本身) 法则1的证明: ?/ limAn=A,二对任意正数 &存在正整数N?,使n > N?时恒有|An-A| v&①(极限定义)同理对同一正数&存在正整数N?,使n>N?时恒有|Bn-B| v 设N=max{N ?,N?},由上可知当n > N时①②两式全都成立. 此时|(An+Bn)-(A+B)|=|An-A)+(Bn-B)| < |An-A|+|Bn-B| v & + & =2 &. 由于&是任意正数,所以2&也是任意正数. 即:对任意正数2 &存在正整数N,使n > N时恒有|(An+Bn)-(A+B)| v 2 &. 由极限定义可知,lim(An+Bn)=A+B. 即:对任意正数C&存在正整数N,使n > N时恒有|C ? An-CA|v C&. 由极限定义可知,lim(C ? An)=C?A若C=0的话更好证) 法则2的证明: lim(A n-B n) =limA n+lim(-B n)(法则1) =limAn+(-1)limBn (引理2) =A-B. 为了证明法则3,再证明1个引理. 引理3:若limAn=0,limBn=0,则lim(An ? Bn)=0. 证明:?/ limAn=0,二对任意正数 &存在正整数N?,使n>N?时恒有|An-0| v &③(极限定义)同理对同一

数列的证明的四种

第二章数列极限 证明留在下节进行. 三、关于极限 例6 例7 例8 四.数列单调有界证法欣赏: Cauchy (1789—1857 ) 最先给出这一极限,Riemann(1826—1866)最先给出以下证法 一. 证法一( Riemann最先给出这一证法)设应用二项式展开,得 , +

注意到 比多一项即↗. 且 有界. }单调有界. 综上, 数列{ 证法二( 利用Bernoulli不等式 ) 注意到Bernoulli不等式为正整数 ), 有 由利用Bernoulli不等式,有 ↗. 为证{ }上方有界, 考虑数列可类证↘. 事实上,

(此处利用了Bernoulli不等式 ) ↘. 显然有 有 即数列{ }有上界. 评註: 该证法的特点是惊而无险,恰到好处. 证法三( 利用均值不等式 ) 在均值不等式 中, 令 就有 即 ↗. 令 可仿上证得 时 ↗, ( 时无意义, 时诸 = , 不能用均值不等式. ) 当 时, 由

由 ↗ ↘. < 4. 证法四 ( 仍利用均值不等式 ) < 即 ↗. 有界性证法可参阅上述各证法. 证法五 先证明:对 和正整数 ,有不等式 事实上, < 该不等式又可变形为 ( 为正整数 ) 在此不等式中, 取 则有 就有 ↗.

取又有对 成立, 又由 小结、习题(2学时) 数列(1+1/n)^n的极限问题,主要是证明此数列单调递增且有上界,然后根据数列极限的单调有界准则就证明了这个极限存在。而证明此数歹」单调递增及有上界,大多数现行微积分教材都是将(1+告)·按二项式定理展开来分析证明的。本文我们将介绍四种不同方法来证明

数列极限的证明

数列极限的证明 数列极限的证明X1=2,Xn+1=2+1/Xn,证明Xn的极限存在,并求该极限 求极限我会 |Xn+1-A|以此类推,改变数列下标可得 |Xn-A||Xn-1-A|…… |X2-A|向上迭代,可以得到|Xn+1-A|2 只要证明{x(n)}单调增加有上界就可以了。 用数学归纳法: ①证明{x(n)}单调增加。 x(2)=√[2+3x(1)]=√5>x(1); 设x(k+1)>x(k),则 x(k+2)-x(k+1))=√[2+3x(k+1)]-√[2+3x(k)](分子有理化) =[x(k+1)-3x(k)]/【√[2+3x(k+1)]+√[2+3x(k)]】>0。 ②证明{x(n)}有上界。 x(1)=1设x(k)x(k+1)=√[2+3x(k)]3 当0 当0 构造函数f(x)=x*a^x(0 令t=1/a,则:t>1、a=1/t 且,f(x)=x*(1/t)^x=x/t^x(t>1)

则: lim(x→+∞)f(x)=lim(x→+∞)x/t^x =lim(x→+∞)[x'/(t^x)'](分子分母分别求导) =lim(x→+∞)1/(t^x*lnt) =1/(+∞) =0 所以,对于数列n*a^n,其极限为0 4 用数列极限的定义证明 3.根据数列极限的定义证明: (1)lim[1/(n的平方)]=0 n→∞ (2)lim[(3n+1)/(2n+1)]=3/2 n→∞ (3)lim[根号(n+1)-根号(n)]=0 n→∞ (4)lim0.999…9=1 n→∞ n个9 5几道数列极限的证明题,帮个忙。。。Lim就省略不打了。。。n/(n^2+1)=0 √(n^2+4)/n=1 sin(1/n)=0

数学分析-数列极限

第二章 数列极限 §1 数列极限概念 教学目的与要求: 使同学们理解数列极限存在的定义,数列发散的定义,某一实数不是数列极限的定义;掌握用数列极限定义证明数列收敛发散的方法。 教学重点,难点: 数列极限存在和数列发散定义的理解;切实掌握数列收敛发散的定义,利用数列收敛或发散的定义证明数列的收敛或发散性。 教学内容: 一、课题引入 1°预备知识:数列的定义、记法、通项、项数等有关概念。 2°实例:战国时代哲学家庄周著《庄子·天下篇》引用一句话“一尺之棰, 日取其半,万古不竭。”将其“数学化”即得,每天截后剩余部分长度为(单位尺) 21,221,321,……,n 21 ,…… 或简记作数列:? ?????n 21 分析:1°、? ?? ???n 21随n 增大而减小,且无限接近于常数0; 2 二、数列极限定义 1°将上述实例一般化可得:

对数列{}n a ,若存在某常数a ,当n 无限增大时,a n 能无限接近常数a ,则称 该数为收敛数列,a 为它的极限。 例如:? ?? ???n 1, a=0; ??? ? ??-+n n )1(3, a=3; {}2 n , a 不存在,数列不收敛; {}n )1(-, a 不存在,数列不收敛; 2°将“n 无限增大时”,数学“符号化”为:“存在N ,当n >N 时” 将“a n 无限接近a ”例如对? ?? ? ??-+n n )1(()3以3为极限,对ε= 10 1 3)1(3--+ =-n a a n n =10 11π n 只需取N=10,即可 3°“抽象化”得“数列极限”的定义 定义:设{}n a 是一个数列,a 是一个确定的常数,若对任给的正数ε,总存在 某一自然数N ,使得当n >N 时,都有 a a n -<ε 则称数列{}n a 收敛于a ,a 为它的极限。记作 a a n n =∞ →lim {(或a n →a,(n →∞)) 说明 (1)若数列{}n a 没有极限,则称该数列为发散数列。 (2)数列极限定义的“符号化”记法:a a n n =∞ →lim ? ε ?>0,?N ,当n (3)上述定义中ε的双重性:ε>0是任意..

数列极限四则运算法则的证明

数列极限四则运算法则 的证明 https://www.doczj.com/doc/2f14672484.html,work Information Technology Company.2020YEAR

数列极限四则运算法则的证明 设limAn=A,limBn=B,则有 法则1:lim(An+Bn)=A+B 法则2:lim(An-Bn)=A-B 法则3:lim(An·Bn)=AB 法则4:lim(An/Bn)=A/B. 法则5:lim(An的k次方)=A的k次方(k是正整数) (n→+∞的符号就先省略了,反正都知道怎么回事.) 首先必须知道极限的定义: 如果数列{Xn}和常数A有以下关系:对于ε>0(不论它多么小),总存在正数N,使 得对于满足n>N的一切Xn,不等式|Xn-A|<ε都成立, 则称常数A是数列{Xn}的极限,记作limXn=A. 根据这个定义,首先容易证明: 引理1: limC=C. (即常数列的极限等于其本身) 法则1的证明: ∵limAn=A, ∴对任意正数ε,存在正整数N?,使n>N?时恒有|An-A|<ε.①(极限定义) 同理对同一正数ε,存在正整数N?,使n>N?时恒有|Bn-B|<ε.② 设N=max{N?,N?},由上可知当n>N时①②两式全都成立. 此时|(An+Bn)-(A+B)|=|An-A)+(Bn-B)|≤|An-A|+|Bn-B|<ε+ε=2ε. 由于ε是任意正数,所以2ε也是任意正数. 即:对任意正数2ε,存在正整数N,使n>N时恒有|(An+Bn)-(A+B)|<2ε. 由极限定义可知,lim(An+Bn)=A+B. 为了证明法则2,先证明1个引理. 引理2:若limAn=A,则lim(C·An)=C·A.(C是常数) 证明:∵limAn=A, ∴对任意正数ε,存在正整数N,使n>N时恒有|An-A|<ε.①(极限定义) ①式两端同乘|C|,得: |C·An-CA|<Cε. 由于ε是任意正数,所以Cε也是任意正数. 即:对任意正数Cε,存在正整数N,使n>N时恒有|C·An-CA|<Cε. 由极限定义可知,lim(C·An)=C·A. (若C=0的话更好证) 法则2的证明: lim(An-Bn) =limAn+lim(-Bn) (法则1) =limAn+(-1)limBn (引理2) =A-B. 为了证明法则3,再证明1个引理.

考研数列极限计算汇总

数列极限及其计算(习题部分) 数列极限存在性的证明以及数列极限的计算,是考研数学的重难点,有时会命制成压轴题。 在考研范围内,数列极限计算常用的方法主要有单调有界准则、夹逼准则、初等变形、定积分定义、归结原理、级数收敛的必要条件、转化为幂级数求和等。本章部分题目涉及到后续章节的知识(如利用定积分定义求极限),自学本讲义的同学可暂时跳过。 题型一、递推数列的极限 (一)单调有界准则 例题1收敛并求极限值 注:利用单调有界准则证明递推数列的收敛性,是常考题型。在具体证明单调性和有界性时,常用到一些经典的不等式放缩,如均值不等式,柯西不等式等等;有时也可用数学归纳法证明。(在进行含有自然数的命题的证明时,我们常常可以考虑数学归纳法,这是一个很好用也很流氓的一个方法。) 类题1 ,证明收敛并求极限值 类题2 ,证明收敛并求极限值 ,问此时是否收敛,该如何 证明?若将,又该如何证明? 类题3 ,证明收敛并求极限值 [注]:此题对于极限值的取舍才是关键点,这是很多辅导书都没有讲清楚的地方,希望大家好好思考。 类题4 设数列,证明收敛并求极限 类题5设可导,且,对于数列收敛, 且极限值满足方程 类题6 收敛并求极限值 类题7 (2018年数学二压轴题)设,证明收敛并求极限 注:这题是我当年考研时的原题,当时考完以后,很多人就在吹这个题多么的不常规,是考研史上最难的数列极限题。也正常,弱者总喜欢找各种理由。 例题2设收敛 注:①.该题说明,某些不是递推型的数列,也可以用单调有界准则来证明 ②.是一个非常重要的极限,我们将这个极限值定义为欧拉常数, 和是等价无穷

是发散的。() 例题3问数列的单调性和函数的单调性之间有无必然联系?请猜想并证明你的判断。 例题4 (2013年数学二压轴题)设函数 (1) 求的最小值 (2)设数列收敛并求极限 注:本题的解法值得借鉴。该题说明,即使某些数列的递推关系由不等式给出,也能使用单调有界准则。 类题1 收敛并求极限 类题2 ,证明收敛并求极限 (二)非单调的迭代数列 例题1收敛并求极限值 注:对付这种不单调的数列,我们可以采取“先斩后奏”的办法——即先把极限值找出来,然后再用递推放缩的方法,证明这个数字就是该数列的极限。以下还有几道类似的题—— 类题1 ,证明收敛并求极限值 类题2 收敛并求极限值 例题2 压缩映像原理 设当,满足——对于上任意两点和,都有 ,试证明—— (1) ,使得 (2) ,证明收敛,且 注:压缩映像原理根本就不要求数列是单调的——只要函数是一个压缩映射,那么就一定收 若题目还告知了可导,那么在具体使用压缩映像原理证明数列收敛时,更常用的是下面这个推论:推论成立,则一定收敛。 (在利用压缩映像原理解题时,最常见的错误就是忽略了 ——正是因为,才能保证数列收敛。这里的相当于是一个“压缩比例” 或“压缩因子”。所以,如果只是证明出来了,是证明不出数列收敛的;, 才能说明数列收敛,也就是说,这个是不可缺少的,在解题时一定要找到这个具体的,切记!)

重要极限的证明

重要极限的证明 重要极限的证明极限是e a>0 在n比较大时,(1+(1-a)/n)^n取极限后,e》=原式的上极限》=原式的下极限》=e^(1-a) 由a的任意性,得 极限为e 利用极限存在准则证明: (1)当x趋近于正无穷时,(Inx/x^2)的极限为0; (2)证明数列{Xn},其中a>0,Xo>0,Xn=[(Xn-1)+(a/Xn-1)]/2,n=1,2,…收敛,并求其极限。 1)用夹逼准则: x大于1时,lnx>0,x^2>0,故lnx/x^2>0 且lnx1),lnx/x^2故(Inx/x^2)的极限为0 2)用单调有界数列收敛: 分三种情况,x0=√a时,显然极限为√a x0>√a时,Xn-X(n-1)=[-(Xn-1)+(a/Xn-1)]/2且Xn=[(Xn-1)+(a/Xn-1)]/2>√a,√a为数列下界,则极限存在. 设数列极限为A,Xn和X(n-1)极限都为A. 对原始两边求极限得A=[A+(a/A)]/2.解得A=√a 同理可求x0综上,数列极限存在,且为√ (一)时函数的极限: 以时和为例引入. 介绍符号: 的意义, 的直观意义. 定义( 和. ) 几何意义介绍邻域其中为充分大的正数.然后用这些邻域语言介绍几何意义. 例1验证例2验证例3验证证…… (二)时函数的极限: 由考虑时的极限引入. 定义函数极限的“ ”定义. 几何意义. 用定义验证函数极限的基本思路. 例4 验证例5 验证例6验证证由= 为使需有为使需有于是, 倘限制, 就有 例7验证例8验证( 类似有(三)单侧极限: 1.定义:单侧极限的定义及记法. 几何意义: 介绍半邻域然后介绍等的几何意义. 例9验证证考虑使的 2.单侧极限与双侧极限的关系: Th类似有: 例10证明: 极限不存在. 例11设函数在点的某邻域内单调. 若存在, 则有 = §2 函数极限的性质(3学时) 教学目的:使学生掌握函数极限的基本性质。 教学要求:掌握函数极限的基本性质:唯一性、局部保号性、不等式性质以及有理运算性等。教学重点:函数极限的性质及其计算。 教学难点:函数极限性质证明及其应用。 教学方法:讲练结合。

e极限的证明.

数列(1+1/n^n(n→∞的极限的证明 Tianhaisheng 单调有界原理:任何单调有界的数列一定有极限。 一.利用均值不等式来证明 平均值不等式,其中为正数,因为当正数不全相等时,,其几何平均值小于算术平均值,所以: 给两边同时(n+1次方,从而: 因此数列单调递增,又因为当n>5时有: 所以: 从而(两边取倒数: 即: 上述是在n>5时导出的,但由于数列单调递增,所以当n≤5时也成立。这就表明数列单调递增有上界。 任取一个正整数,当n>k时有:

,从而 从而: 所以: 即有: 上式是在n>k时导出的,但由于数列单调递增,所以当n 时也 成立。这表明对于任意一个取定的正数 k ,数都是数列的上界。例如: 取k=1则有: 取k=2则有: 取k=5则有: 因此式(1是一般结果,式(2是特殊情况,利用一般结果,有助于估计数e的范围。 此证法摘自山西吕梁高等师范专科学校数学系,张润玲,033000 二.构造不等式 证先建立一个不等式b>a>0,对于任一自然数n有: 或 令,,将它们代入(1,由于 , 故有:,因此数列单调递增。

再令a=1,b= 代入(1。由于 故有: 两边平方后有: 它对于一切自然数成立。联系数列的单调性,由此又推得数列是有界的。于是由单调有界原理知道极限是存在的。 通常用拉丁字母e代表这个极限,它是一个无理数,用十进制小数表示时,其前十三位数字是: e=2.718281828459 ②此例证法引自Amer. Math. Monthly 1974,Vol. 81,No.9,1011-1012,摘自华东师范大学数学系编《数学分析》上册第二版,47-48.

数学分析数列极限分析解析

第二章 数列极限 §1 数列极限概念 教学目的与要求: 使同学们理解数列极限存在的定义,数列发散的定义,某一实数不是数列极限的定义;掌握用数列极限定义证明数列收敛发散的方法。 教学重点,难点: 数列极限存在和数列发散定义的理解;切实掌握数列收敛发散的定义,利用数列收敛或发散的定义证明数列的收敛或发散性。 教学内容: 一、课题引入 1°预备知识:数列的定义、记法、通项、项数等有关概念。 2°实例:战国时代哲学家庄周著《庄子·天下篇》引用一句话“一尺之棰, 日取其半,万古不竭。”将其“数学化”即得,每天截后剩余部分长度为(单位尺) 21,221,32 1,……,n 21 ,…… 或简记作数列:? ?????n 21 分析:1°、? ?? ???n 21随n 增大而减小,且无限接近于常数0; 2 二、数列极限定义 1°将上述实例一般化可得: 对数列{}n a ,若存在某常数a ,当n 无限增大时,n 能无限接近常数a 该数为收敛数列,a 为它的极限。 例如:? ?? ???n 1, a=0; ??? ? ??-+n n )1(3, a=3; {}2 n , a 不存在,数列不收敛;

{}n )1(-, a 不存在,数列不收敛; 2°将“n 无限增大时”,数学“符号化”为:“存在N ,当n >N 时” 将“a n 无限接近a ”例如对??? ? ??-+n n )1(()3以3为极限,对ε =10 1 3)1(3--+ =-n a a n n =10 11 n 只需取N=10,即可 3°“抽象化”得“数列极限”的定义 定义:设{}n a 是一个数列,a 是一个确定的常数,若对任给的正数ε,总存在 某一自然数N ,使得当n >N 时,都有 a a n -<ε 则称数列{}n a 收敛于a ,a 为它的极限。记作 a a n n =∞ →lim {(或a n →a,(n →∞)) 说明 (1)若数列{}n a 没有极限,则称该数列为发散数列。 (2)数列极限定义的“符号化”记法:a a n n =∞ →lim ? ε ?>0,?N ,当n (3)上述定义中ε的双重性:ε>0是任意..的,由“任意性”可知,不等式a a n -<ε,可用a n -替 “<”号也可用“≤”号来代替(为什么?)(4)上述定义中N 的双重性:N 是仅依赖..于ε的自然数,有时记作N=N (ε)(这并非说明N 是ε的函数,是即:N 是对应确定....的!但N 又不是唯一.... 的,只要存在一个N ,就会存在无穷多

函数极限的性质证明

函数极限的性质证明X1=2,Xn+1=2+1/Xn,证明Xn的极限存在,并求该极限求极限我会 |Xn+1-A|<|Xn-A|/A 以此类推,改变数列下标可得 |Xn-A|<|Xn-1-A|/A ; |Xn-1-A|<|Xn-2-A|/A; …… |X2-A|<|X1-A|/A; 向上迭代,可以得到|Xn+1-A|<|Xn-A|/(A^n) 2 只要证明{x(n)}单调增加有上界就可以了。 用数学归纳法: ①证明{x(n)}单调增加。 x(2)=√[2+3x(1)]=√5>x(1); 设x(k+1)>x(k),则 x(k+2)-x(k+1))=√[2+3x(k+1)]-√[2+3x(k)](分子有理化) =[x(k+1)-3x(k)]/【√[2+3x(k+1)]+√[2+3x(k)]】>0。 ②证明{x(n)}有上界。 x(1)=1<4, 设x(k)<4,则 x(k+1)=√[2+3x(k)]<√(2+3*4)<4。 3 当0 当0 构造函数f(x)=x*a^x(0 令t=1/a,则:t>1、a=1/t 且,f(x)=x*(1/t)^x=x/t^x(t>1) 则: lim(x→+∞)f(x)=lim(x→+∞)x/t^x =lim(x→+∞)[x'/(t^x)'](分子分母分别求导) =lim(x→+∞)1/(t^x*lnt) =1/(+∞) =0 所以,对于数列n*a^n,其极限为0 4 用数列极限的定义证明 3.根据数列极限的定义证明: (1)lim[1/(n的平方)]=0 n→∞ (2)lim[(3n+1)/(2n+1)]=3/2 n→∞ (3)lim[根号(n+1)-根号(n)]=0 n→∞ (4)lim0.999…9=1 n→∞ n个9

相关主题
文本预览
相关文档 最新文档