当前位置:文档之家› 小学五年级因数与倍数练习题

小学五年级因数与倍数练习题

小学五年级因数与倍数练习题
小学五年级因数与倍数练习题

长方体和正方体练习题2

班级:_______姓名:_________

1、填空。

(1)长方体或者正方体( )叫做它的表面积。

(2)求长方体的表面积必须知道长方体的( )。

(3)一个长方体的长是6分米,宽 1.5分米,高3分米,它的表面积是( )平方分米。

(4)一个正方体的棱长是0.5分米,它的表面积是( )平方分米。

(5)一个长4分米、宽2分米、高2分米的长方体,它占地面积最大是( ),表面积是( )。

2、一只无盖的长方形鱼缸,长0.4米,宽0.25米,深0.3米,做这只鱼缸至少要用玻璃多少平方米?

3、用36厘米的铁丝折一个正方体框架,这个正方体棱长是多少?如果用纸糊满框架的表面,至少需要纸多少平方厘米?

4、两个棱长1厘米的正方体木块,拼成一个长方体,这个长方体表面积是多少平方厘米?

5、做20个棱长为30厘米的小正方体纸箱,至少需要多少平方米硬纸?

6、一间教室长8米、宽6米,高3米,现在要用涂料粉刷它的四壁和顶棚。如果扣除门、窗和黑板24平方米,求要粉刷的面积有多大?如果每平方米用涂料0.15千克,一共需要多少千克涂料?

7、水泥厂要制作10根长方体铁皮通风管,管口是边长30厘米的正方形,管子长2米。共需多少平方米铁皮?

8、一个长方体游泳池,长20米,宽15米,深2米,现要将它的每个面先抹上水泥,再贴上边长4分米瓷砖,需要这样的瓷砖多少块?如果每平方米用水泥5千克,要用去多少水泥?

长方体和正方体练习题3

一、填空

1.长方体或者正方体()叫做它的表面积。

2.一个正方体的棱长是10厘米,它的表面积是()平方厘米。

3.一个长方体长4分米,宽3分米,高2分米,它的表面积是()平方分米。

4.正方体的棱长之和是60分米,它的表面积是()平方分米。

5.用两个长6厘米,宽3厘米,高1厘米的长方体拼成一个表面积尽可能小的正方体,这个拼成的长方体的表面积是()平方厘米。

二、一个房间长5米,宽3米,高2.8米,现需油漆四壁和天花板,扣除门窗的面积4.5平方米,求油漆的总面积有多大?

三、要做一种管口周长40厘米的通气管子10根,管子长2米,至少需要铁皮多少平方米?

四、一个正方体的表面积是54平方分米,这个正方体所有棱长之和是多少?

五、有一个长方体木箱,长0.7米,宽0.5米,高0.3米。怎样放,这个木箱占地面积最小?最小是多少平方米?

六、一种长方体铁皮烟囱,底面是边长3分米的正方形,高4米,制这样一节烟囱至少要用铁皮多少平方米?

七、一个正方体木块,若把它切成3个完全相等的长方体后,表面积增加了80平方厘米,这个正方体木块原来的表面积是多少平方厘米?

八、一个长方体的棱长和是72厘米,它的长是9厘米,宽6厘米,它的表面积是多少平方厘米?

九、张大爷制作了一种卖苹果用的长方体木箱(无盖),它的长是60厘米,宽40厘米,高30厘米。做这种箱子至少用木板多少平方米?

十、一个卫生间长2.4米,宽1.8米,高2米。

(1)如果在四壁贴上花墙砖,贴墙砖的面积为多少平方米?

(2)用长30厘米,宽20厘米的花墙砖贴墙,需要多少块?

长方体和正方体练习题4

1.填空

(l)长方体或正方体()个面的总面积,叫做它们的表面积。(2)计算正方体的表面积可以用()×()×()的方法计算。这是因为正方体有()个面,每个面都是()形,而且()都相等。

(3)一个正方体的表面积是36平方厘米,把它放在桌子上占的面积是()平方厘米。

(4)一个长方体长5厘米,宽5厘米,高4厘米,这个长方体有2个面是()形,有()个面的面积相等,长方体的表面积是()。(5)正方体的棱长扩大3倍,它的表面积就扩大()倍。

3、做一个不带盖的长方体铁盒,长0.6米,宽0.35米,高0,4米。至少需要多少平方米铁皮?

4、把一个正方体锯成两个长方体,它的表面积增加了6平方厘米,那么原正方体的表面积是多少平方厘米?

5.有一个长方体的糖盒长和宽都是12厘米,高10厘米,在盒的四周贴上商标纸,这张商标纸的面积至少是多少?

6.用铁皮焊15个底面是边长25厘米的正方形,高4分米的长方体无盖水桶,至少要用多少铁皮?

7.一个小食堂长10米,宽8米,高5米,要粉刷四壁和顶棚。扣除门窗面积18.4平方米,平均每平方米用石灰0.2千克,一共用石灰多少千克?

8.用三个棱长为8厘米的正方体木块拼成一个长方体,长方体的表面积是多少?棱长之和是多少?

长方体和正方体练习题5

一.填空。

1.长方体()的面积之和,叫做它的表面积。

2.一个长方体的形状如图

(1)它的上下两个面的面积=()×()×()。

(2)它的前后两个面的面积=()×()×()。

(3)它的左右两个面的面积=()×()×()。

(4)这个长方体的表面积是()平方米。

3.棱长为10厘米的正方体,上表面的面积是(),表面积是()。

4.长、宽、高分别是6分米、5分米、4分米的长方体,它的表面积是()平方分米。

5.一个正方体的棱长是2米,它的占地面积是()平方米。它的表面积是()平方米。

二.选择。

1. 是一个长方体,它的下底面的面积是()。

A 12㎝2

B 20㎝2

C 15㎝2

D 94㎝2

2. 是一个长方体纸盒的展开图,它的表面积是()(单位:分米)

A 200平方分米

B 520平方分米

C 700平方分米

D 1400平方分米

3.如果一个正方体,把它的棱长都缩小4倍,它的表面积将缩小()倍。

A 2

B 4

C 8

D 16

三.求下图的表面积。

1.

2.

棱长总和为60分米

四.解决问题。

1. 做一个长5厘米,宽5厘米,高8厘米的长方体的纸盒至少要面积是多少的硬纸板?如果分别用a、b、h表示长、宽、高,请你总结一个计算公式。

2. 制作一个棱长为4分米的正方体玻璃鱼缸(无盖),至少需要多少平方分米的玻璃?

3. 如图,这根长方体钢材,已知它的表面积是78㎝2,底面积(长方形)是15㎝2,求它的正方形横截面的面积是多少平方厘米?

长方体和正方体练习题6

一、填空

1、一个正方体的棱长为A,棱长之和是(),当A=5厘米时,这个正方体的棱长总和是()厘米。

2、一个长方体的长是6厘米,宽是5厘米,高是4厘米,它的上面的面积是()平方厘米;前面的面积是()平方厘米;右面的的面积是()平方厘米。这个长方体的表面积是()平方厘米。

3、一个长方体最多可以有()个面是正方形,最多可以有()条棱长度相等。

4、把一根长80厘米,宽5厘米,高3厘米的长方体木料锯成长都是40厘米的两段,表面积比原来增加了()平方厘米。

5、用铁丝焊接成一个长12厘米,宽10厘米,高5厘米的长方体的框架,至少需要铁丝()厘米。

6、一个长方体的长是25厘米,宽是20厘米,高是18厘米,最大的面的长是()厘米,宽是()厘米,它的面积是()平方厘米;最小的面长是()厘米,宽是()厘米,它的面积是()平方厘米。

7、一个长方体的长是5分米,宽和高都是4分米,在这个长方体中,长度为4分米的棱有()条,面积是20平方分米的面有()个。

8、一个长方体的金鱼缸,长是8分米,宽是5分米,高是6分米,不小心前面的玻璃被打坏了,修理时配上的玻璃的面积是()。9、一个正方体的棱长总和是72厘米,它的一个面是边长()厘米的正方形,它的表面积是()平方厘米。

10、至少需要()厘米长的铁丝,才能做一个底面周长是18厘米,高3厘米的长方体框架。

二、计算,求它们的棱长之和、底面积、侧面积和表面积。

1、长方体长宽高分别为4厘米、3厘米、2厘米

2、正方体棱长 1.5厘米

三、应用题。

1、用一根铁丝刚好焊成一个棱长8厘米的正方体框架,如果用这根铁丝焊成一个长10厘米、宽7厘米的长方体框架,它的高应该是多少厘米?

2、天天游泳池,长25米,宽10米,深1.6米,在游泳池的四周和池底砌瓷砖,如果瓷砖的边长是1分米的正方形,那么至少需要这种瓷砖多少块?

3、一个通风管的横截面是边长是0.5米的正方形,长2.5米.如果用铁皮做这样的通风管50只,需要多少平方米的铁皮?

4、一种长方体硬纸盒,长10厘米,宽6厘米,高5厘米,有2平方米的硬纸板210张,可以做这样的硬纸盒多少个?(不计接口)

5、一个房间的长6米,宽3.5米,高3米,门窗面积是8平方米。现在要把这个房间的四壁和顶面粉刷水泥,粉刷水泥的面积是多少平方米?如果每平方米需要水泥4千克,一共要水泥多少千克?

6、在一节长120厘米,宽和高都是10厘米的通风管,至少需要铁皮多少平方厘米?做12节这样的通风管呢?

7、一盒饼干长20厘米,宽15厘米,高30厘米,现在要在它的四周贴上商标纸,如果商标纸的接头处是4厘米,这张商标纸的面积是多少平方厘米?

8、把一根长20厘米,宽5厘米,高3厘米的长方体木料沿横截面锯成2段,表面积增加多少?

四、思考题

1、一个长方体底面是一个边长为20厘米的正方形,高为40厘米,如果把它的高增加5厘米,它的表面积会增加多少?

2、一个长方体正好可以切成5个同样大小的正方体,切成的5个正方体的表面积比原来长方表面积多了200平方厘米,求原来长方体的表面积?

3、一个长方体侧面积是360平方厘米,高是9厘米,长是宽的1.5倍,求它的表面积。

4、一个正方体的表面积是384平方厘米,它的棱长是多少?

长方体和正方体练习题7

一、填空

1、一个长方体的棱长总和是48cm,宽是2cm,长是宽的2倍,它的表面积是()。

2、一个长方体方木,长2m,宽和厚都是30cm,把它的长截成2段,表面积增加()。

3、长方体中最多可以有()条棱的长度相等,最少有()条棱的长度相等。

4、两个完全相同的长方体,长10cm,宽7cm,高4cm,拼成一个表面积最大的长方体后,表面积是(),比原来减少了();如果拼成一个表面积最小的长方体,表面积是(),比原来减少了()。

5、一个正方体的棱长总和是48厘米,它的表面积是()。

二、选择

1、一个棱长是1分米的正方体木块,横截成三个体积相等的小长方体后,表面积增加了()A、2平方分米B、4平方分米C、6平方分米

2、大正方体棱长是小正方体棱长的3倍,大正方体的表面积是小正方体表面积的()倍。A、3 B、6 C、9

3、一个正方体表面积是150平方厘米,把它平均分成两个长方体,每个长方体的表面积是()A、75平方厘米B、100平方厘米C、90平方厘米

4、一个长方体有四个面的面积相等,则其余两个面是()

A、长方形

B、正方形

C、不一定

5、挖一个长8米、宽6米、深4.5米的长方体水池,这个水池的占地面积至少是()A、48平方米B、44平方米C、36平方米D、222平方米

三、计算

1、一个长方体的12条棱长总和是64厘米,侧面是一个周长为24厘米的长方形,它的长是多少?

2、粮店售米用的长方体木箱(上面没有盖),长1.2米,宽0.6米,高0.8米,制作这样一个木箱至少要用木板多少平方米?

3、把一个长方体和一个正方体拼成一个新的长方体,这个新长方体的表面积比原来的长方体的表面积增加了80平方厘米,求正方体的表面积。

4、一个长方体的木块,截成两个完全相等的正方体。两个正方体棱长之和比原来长方体棱长之和增加40厘米,求原长方体的长是多少厘米?

5、用三个长3厘米,宽2厘米,高1厘米的长方体拼成一个表面积最小的大长方体,这个长方体的表面积是多少平方厘米?

6、一个小食堂长10米,宽8米,高5米,要粉刷四壁和顶棚。扣除门窗面积18.4平方米,平均每平方米用石灰0.2千克,一共用石灰多少千

克?

7、一个棱长是5分米的正方体水池,蓄水的水面低于池口2分米,水的容量是()升

8、有大、中、小三个长方体水池,它们的口都是正方形分别是5分米、3分米、2分米,现在把两块石头分别放入中、小水池内,这两个水池的水面分别升高6厘米,如果这两块石头都沉入大水池中,那么大水池的水面将升高多少厘米?

9、一个带盖的长方体木箱,体积是0.576立方米,它的长是12分米,宽是8分米,做这样一个木箱至少要用木板多少平方米?

10、一个房间的长6米,宽3.5米,高3米,门窗面积是8平方米。现在要把这个房间的四壁和顶面粉刷水泥,粉刷水泥的面积是多少平方米?如果每4平方米需要水泥1千克,一共要水泥多少千克?

11、一个底面是正方形的长方体,所有棱长的和是100厘米,它的高是7厘米,这个长方体的体积是多少立方厘米?

12、用一根长36厘米的铁丝做成一个最大的正方体框架,在框架外面全部糊上白纸,需要白纸多少平方厘米?

13、一种汽车上的油箱,里面长8分米,宽5分米,高3.5分米。做这个油箱需要多少平方分米的铁皮?如果每升汽油5.5元钱. 这个油箱装满汽油共需要多少钱?

长方体和正方体练习题8

1、把一个正方体和一个等底面积的长方体拼成一个新的长方体,拼成的长方体的表面积比原来的长方体的表面积增加了50平方厘米。原俩正方体的表面积是多少平方厘米?

2、把两个完全一样的长方体木块拼成一个大长方体,这个大长方体的表面积比原来两个小长方体的表面积之和减少了46平方厘米,而长是原来长方体的2倍。如果拼成的长方体的长是24厘米,那么它的体积是多少立方厘米?

3、一根长80厘米,宽和高都是12厘米的长方体钢材,从钢材的一端锯下一个最大的正方体后,它的表面积减少了多少平方厘米?

4、把4块棱长都是2分米的正方体粘成一个长方体,它们的表面积会减少多少平方分米?

5、长方体不同的三个面的面积分别为10、15和6平方厘米。这个长方体的体积是多少立方厘米?

6、一个长方体、不同的三个面的面积分别为35、15和21平方厘米,且长宽高都是素数。这个长方体的体积是多少立方厘米?

7、一个长方体,前面和上面的面积之和是209立方厘米,这个长方体的长、宽、高以厘米为单位的数都是质数。这个长方体的体积是多少立方厘米?

8、长方体不同的三个面的面积分别为25、18和8平方厘米。这个长方体的体积是多少立方厘米?

长方体和正方体练习题9

1、在一个长15分米,宽12分米的长方体水箱中,有10分米深的水,如果在水中沉入一个棱长为30厘米的正方体铁块,那么水箱中水深多少分米?

2、有一个长方体容器,从里面量长5分米,宽4分米,高6分米,里面注入水,水深3分米。如果把一块长2分米的正方体铁块浸入水中,水面上升了多少分米?

3、有一个小金鱼缸,长4分米,宽3分米,水深2分米。把一个小块假山石浸入水中后,水面上升了0.8分米。这块假山石的体积是多少立方分米?

4、在一个长20分米,宽15分米的长方体容器中,有20分米深的水。现在在水中沉入一个棱长30厘米的正方体铁块,这时容器中水深多少分米?

5、将表面积分别为54、96和150平方厘米的三个铁质正方体熔成一个大正方体(不计损耗),求这个大正方体的体积。

6、有三个正方体铁块,它们的表面积分别为24、54和294平方厘米。现将三块铁熔成一个大正方体(不计损耗),求这个大正方体的体积。

7、将表面积分别是216和384平方厘米的两个正方体熔成一个长方体,已知这个长方体的长是13厘米,宽7厘米,求它的高。

8、把8块棱长是1分米的正方体铁块熔成一个大正方体,求这个大正方体的表面积是多少平方分米?

9、一个长方体容器的底面是一个边长为60厘米的正方形,容器里直立着一个高1米,底面边长15厘米的长方体铁块。这时容器里的水深0.5米。

如果把铁块取出,容器里的水深是多少厘米?

10、有一块棱长是5厘米的正方体铁块,浸没在一个长方体容器里的水中。取出铁块后,水面下降了0.5厘米。这个长方体容器的底面积是多少平方厘米?

长方体和正方体练习题10

1、有一个长方体冰箱,从里面量长40厘米,宽30厘米,深35厘米,箱中水面高10厘米,放进一个棱长20厘米的正方体铁块后,铁块顶面仍高于水面。这时水面高多少厘米?

2、有大中小三个长方形水池,它们的池口都是正方形,边长分别为6分米,3分米和2分米。现在把两堆碎石分别沉入中小两个水池内。这两个水池的水面分别升高了6厘米和4厘米。如果把这两堆碎石都沉入大池内,那么,大池的水面将升高多少厘米?(结果保留整数)

3、有一个长方体容器,长30厘米,宽20厘米,高10厘米,里面的水深6厘米(最大面为底面),如果把这个容器盖紧(不漏水),再朝左竖起来(最小面为底面),里面的水深是多少厘米?

4、有两个长方体水缸,甲缸长3分米,宽和高都是2分米。乙缸长4分米,宽2分米,里面的水深1.5分米。现把乙缸的水倒进甲缸,水深多少分米?

5、有一块边长2分米的正方形铁块,现把它锻造成一根长方体,这个长方体的截面是一个长4厘米,宽2厘米的长方形,求它的长。

6、一个长方体容器内装满水,现在有大中小三个铁球,第一次把小球沉入水中,第二次把小球取出,把中球沉入水中,第三次把中球取出,把小球和大球一起沉入水中。已知每次从容器中溢出的水量情况是:第二次是第一次的3倍,第三次是第一次的2.5倍。问:大球的体积是小球的几倍?

7、有一个正方形容器,边长是25厘米,里面注满了水,有一根长50厘米,横截面是12平方厘米的长方体铁棒,现将铁棒垂直插入水中。问:会溢出多少立方厘米的水?

8、有两个水池,甲水池长8分米,宽6分米,水深3分米,乙水池空着,它长、宽高都是4分米。现将从甲水池中抽出一部分水到乙水池,使两水池的水面同样高。求水面的高度。

长方体和正方体练习题11

1、一个长方体容器,底面是一个边长60厘米的正方形。容器里直立着一个高1米,底面边长15厘米的长方体铁块,这时容器里的水深0.5米。现在把铁块轻轻地向上提起24厘米,那么露出水面的铁块上被水浸湿的部分长多少厘米?

2、一个棱长为6厘米的正方体木块,如果把它锯成棱长为2厘米的小正方体,表面积增加了多少平方厘米?

3、把27块棱长是1厘米的小正方体堆成一个大正方体,这个大正方体的表面积比原来所有的小正方体的面积之和少多少平方厘米?

4、有一个棱长是1米的正方体木块,如果把它锯成相等的8个小正方体,表面积增加多少平方米?

5、把一个正方体的六个面都涂上红色,然后把它锯两次锯成4个同样大的小长方体,没有涂颜色的面积是60平方厘米。求涂上红色的面积一共是多少平方厘米?

6、一个正方体的表面涂满了红色,然后切成大小相同的27个小正方体。

⑴、三个面有红色的有几个?⑵二个面有红色的有几个?⑶一个面有红色的有几个?⑷六个面都没有红色的有几个?

7、把一个棱长是5厘米的正方体六个面都涂上红色,然后切成1立方厘米的小正方体,这些小正方体中,一面涂红色的、二面涂红色的、三面涂红色的以及六个面都没有红色的各有多少个?

8、把若干个体积相同的小正方体堆成一个大正方体,然后在大大正方体的表面涂上颜色,已知两面被涂上颜色的小正方体有24个,那么,这些小正方体一共有多少个?

长方体和正方体练习题12

1、把1立方米的正方体木块的表面涂上颜色,然后切成1立方分米的小正方体,在这些小正方体中,六个面都没有涂色的有多少个?

2、一个长方体的长宽高分别是6、5、4厘米,若把它切割成三个体积相等的小长方体,这三个小长方体的表面积的和最大是多少平方厘米?

3、有三块完全一样的长方体木块,每块长8厘米,宽5厘米,高3厘米。要把它们粘成一个大长方体,这个长方体的表面积最大是多少平方厘米?最少是多少平方厘米?

4、把8个同样大的小正方体拼成一个大正方体,已知每个小正方体的表面积是72平方厘米,拼成的大正方体的表面积是多少平方厘米?

5、把一个长宽高分别是7、

6、5厘米的长方体截成两个小长方体,使这两个长方体的表面积的和最大。求它们的表面积和是多少平方厘米?

6、有一个正方体,棱长是3分米。如果把它切成棱长是1分米的小正方体,这些小正方体的表面积的和是多少?

7、用棱长是1厘米的小正方体摆成一个较大的正方体,至少需要多少个?如果要摆成一个棱长是6厘米的正方体,需要多少个小正方体?

8、有一个长方体,长10厘米,宽6厘米,高4厘米。如果把它锯成棱长是1厘米的小正方体,一共可锯多少个?这些小正方体的表面积和是多少?

9、把24个棱长是1厘米的小正方体摆成一个长方体,这个长方体的表面

积至少是多少平方厘米?

人教版五年级下册因数和倍数教案

第二单元因数与倍数 一、教学内容1、因数与倍数2、2、5、3的倍数的特征3、质数与合数 二、教材分析 本单元教材就是在学生学过整数的四则运算的基础上进行教学。它就是以后学习约分,通分,最大公因数,最小公倍数的基础。通过这部分内容的教学,使学生获得一些有关整数的知识,即数论中最初步的知识,还为学生到中学学习因式分解做些准备,使学生加深对整数的认识,还有助于发展她们的抽象思维。 本单元教材概念较多,内容比较抽象。重点就是使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系与区别。其中,因数与倍数的概念就是其她概念的基础与前提。接着教学2、5、3的倍数的数的特征。因为小学的分数计算中,分子、分母都不大,只要掌握用2、5、3整除的数的特征,基本上就够用了,至于7、11的倍数的特征,只在较大的数目时用到,不需要学生熟练掌握。注意增加判断练习来沟通概念之间的联系与区别。 三、教学目标 1、使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系与区别。 2、使学生通过自主探索,掌握2、5、3的倍数的特征。 3、逐步培养学生的数学抽象能力。 四、教学重点 1、使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系与区别。 2、使学生通过自主探索,掌握2、5、3的倍数的特征。 五、教学难点 使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系与区别。 第一课时 教学内容:教材P12~p13 例1及做一做,练习二中部分习题。 教学目标:1、知识目标:使学生知道因数与倍数的含义,以及它们之间的相互依存的关系。并且知道研究因数与倍数时所说的数一般指非0整数。 2、能力目标: 进一步培养学生知识迁移、概括的能力。 3、思想教育目标: 培养学生初步辩证唯物主义观点。 教学重点、难点:使学生知道因数与倍数的含义,以及它们之间的相互依存的关系。

(完整版)因数与倍数练习题大全

因数与倍数练习题日期: 一、填空题: 1、一个数的最大因数是12,这个数是();一个数的最小倍数是18,这个数是()。 2、根据算式25×4=100,则()是()的因数,()也是()的因数;()是()的倍数,()也是()的倍数。 3、48的最小倍数是(),最大因数是()。最小因数是()。 4、在1 5、18、25、30、19中,2的倍数有( ),5的倍数 有( ),3的倍数有( ),既是2、5又是3的倍数有( )。 5、56的所有因数之和是()。 6、在18÷3=6中,( )和( )是( )的因数。 在3×9=27中,( )是( )和( )的倍数。 7、2 的所有因数有( ),从小到大15的5个倍数是( )。 8、7是7的( )数,也是7的( )数。 9、一个数的最大因数是12,这个数是();一个数的最小倍数是18,这个数是()。 10、10以内,所有质数的积是() 11、一个数既是25的倍数,又是25的因数,这个数是()。 12、质数a有()和()两个因数。 13、最小的质数和最小的合数的积是()。 14、在20以内的自然数中,是奇数又是合数的数有()。。 15、30的因数中,最小的是( ),最大的是( )。 二、判断题: 1. 任何自然数,它的最大因数和最小倍数都是它本身。( ) 2、36的全部因数是2、 3、 4、6、9、12和18,共有7个。()

3、因为18÷9=2,所以18是9的倍数,9是18的因数。() 4、一个数的倍数总比它的因数大。() 5、18的因数有6个,18的倍数有无数个。() 6、一个数是6的倍数,这个数一定是2和3的倍数。() 7、两个奇数的和是偶数,两个奇数的积是合数。() 三、选择: 1.13的倍数是() ①合数②质数③可能是合数,也可能是质数 2.2是(),但不是()。 ①合数②质数③偶数 3.4的倍数都是()的倍数。 ① 2 ② 3 ③ 8 4.甲数是乙数的倍数,丙数是乙数的因数,那么甲数是丙数的() ①倍数②因数③无法确定 5.如果□37是3的倍数,那么□里可能是( )。 ① 2、5 ② 5、8 ③ 2、5、8 6.如果用a表示非零自然数,那么偶数可以表示为()。 ①a+2 ② 2a ③a-1 ④2a-1 7.一个正方形的边长是一个质数,这个正方形的周长一定是()。 ①合数②奇数③质数 8.相邻两个自然数的积一定是()。 ①质数②合数③奇数④偶数 四、写出下列数的因数与倍数: 1、24的全部因数: 2、100以内所有的8的倍数: 3、既是24的因数又是8的倍数:

新人教版小学五年级下册数学《因数和倍数》优秀教学设计

新人教版小学五年级下册数学《因数和倍数》教学设计 一、教学目标 (一)知识与技能 理解因数和倍数的意义以及两者之间相互依存的关系,掌握找一个数的因数和倍数的方法,发现一个数的倍数、因数中最大的数、最小的数,及因数和倍数个数方面的特征。 (二)过程与方法 通过整数的乘除运算认识因数和倍数的意义,自主探索和总结出求一个数的因数和倍数的方法。 (三)情感态度和价值观 在探索的过程中体会数学知识之间的内在联系,在解决问题的过程中培养学生思维的有序性和条理性。 二、教学重难点 教学重点:理解因数和倍数的含义。 教学难点:自主探索有序地找一个数的因数和倍数的方法。 三、教学准备 教学课件。 四、教学过程 (一)理解因数和倍数的意义 教学例1:

1.观察算式的特点,进行分类。 (1)仔细观察算式的特点,你能把这些算式分类吗? (2)交流学生的分类情况。(预设:学生会根据算式的计算结果分成两类) 第一类是被除数、除数、商都是整数;第二类是被除数、除数都是整数,而商不是整数。 2.明确因数和倍数的意义。 (1)同学们,在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。例如,12÷2=6,我们就说12是2的倍数,2是12的因数。12÷6=2,我们就说12是6的倍数,6是12的因数。 (2)在第一类算式中找一个算式,说一说,谁是谁的因数?谁是谁的倍数? (3)强调一点:为了方便,在研究倍数与因数的时候,我们所说的

数指的是自然数(一般不包括0)。 3.理解因数和倍数的依存关系。 (1)独立完成教材第5页“做一做”。 (2)我们能不能说“4是因数”“24是倍数”呢?表述时应该注意什么? 4.理解一个数的“因数”和乘法算式中的“因数”的区别以及一个数的“倍数”与“倍”的区别。 (1)今天学的一个数的“因数”与以前乘法算式中的“因数”有什么区别呢? 课件出示: 乘法算式中的“因数”是相对于“积”而言的,可以是整数,也可以是小数、分数;而一个数的“因数”是相对于“倍数”而言的,它只能是整数。

五年级因数与倍数专项练习题

五年级下册数学第二单元专项练习题姓名 一、填空 1、找出24的所有因数:(); 2、一个数的倍数的个数是(),最小的倍数是()。 3、在数字5、0、6组成的三位数中,2的倍数有,5的倍有,同时是2和5的倍数有。 4、在36、7 5、34、36 6、580、540这几个数中,同时是2和3的倍数有;同时是3和5的倍数有();同时是2和5的倍数有;同时是2、3和5的倍数有。 5、最小的奇数是();最小的偶数()。 6、根据45÷5=9,我们说()是()的倍数,()是()的因数。 7、既是2和5的倍数,又是3的倍数的最小三位数是(); 8、个位上是()或()的数,是5的倍数;个位上是()的数都是2的倍数;一个数()上的数的()是3的倍数,这个数就是3的倍数。 9、。奇数与偶数的和是();奇数与奇数的和是();偶数与偶数的和是(); 10、23的倍数有()个,其中最小的倍数是()。 11、个位数字是0的数,既是()的倍数,又是()的倍数,例如:()()()(); 12、50以内9的倍数有(),100以内19的倍数有()。 13、25的因数有( ),65的因数有()。 14、()既是9的因数,又是12的因数。 15、从199起,连续写5个奇数(),从388起,连续写5个偶数() 16、24=1×24=2×()=()×()=()×() 17、在0、1、0.8、25.2、35、-4这些数中,自然数有( ) 18、一个两位数既是3的倍数,又是5的倍数,这个数最小是(),最大是(); 二、判断 1、一个数的因数一定比这个数小。()11、个位上是3、6、9的数,都是3的倍数。() 2、一个数的倍数一定比这个数大。()12、个位上是1、 3、5、7、9的数都是奇数。() 3、1是任何自然数的因数。()13、1.因为7×6=42,所以42是倍数,7是因数。() 4、5是因数,30是倍数。()14、偶数的因数一定比奇数的因数多。() 5、任意两个奇数的和都是偶数。()15、3×0.4=1.2 ,3是1.2的因数。() 6、如果用a 表示自然数,那么2a一定是偶数。()16、一个自然数,不是偶数就是奇数。() 7、个位上的数是3的倍数,这个数就是3的倍数。()17、一个数是9的倍数,那么它一定是3的倍数。() 8、区分奇数和偶数,是以一个数是否是2的倍数为标准的。()18、一个数的因数一定比它的倍数小。() 9、“2、4、5”这三个数字,无论怎样排列成三位数,一定是3的倍数。() 10、甲数除以乙数,商是15,那么甲数一定是乙数的倍数。() 三、将正确答案的序号填在括号里 1、如果17是a的倍数,那么a是() A 1 B 17 C 1或17 2、下面各组数中,哪一组的第二个数是第一个数的倍数。() A.36和9 B.210和70 C.0.2和100 D.30和60 3、一个奇数和一个偶数的积一定是()。 A.奇数 B.偶数 C.两种情况都有可能 4、一个奇数要(),结果才能是偶数。 A.乘3 B.加2 C.减1 5、数A是一个偶数,则下列说法中()是错误的。 A 数A有因数2 B 数A是2的倍数 C 数A除以2余2 四、填一填,写一写 1.在括号里填一个适当的数,使它既是2的倍数,又是3的倍数:4();7()0;13()6;()12()

人教版五年级数学下册《因数和倍数》教案

《因数和倍数》教案 教学目标 1、知识与技能 掌握因数、倍数的概念,知道因数、倍数的相互依存关系。 2、过程与方法 通过自主探究,使学生学会用因数、倍数描述两个数之间的关系。 3、情感态度与价值观 使学生感悟到数学知识的内在联系的逻辑之美。 教学重点 掌握找一个数的因数、倍数的方法。 教学难点 能熟练地找一个数的因数和倍数。 教学准备 课件、投影等。 教学过程 一、迁移引入 同学们,在我们的日常生活中,人与人之间存在着许多相互依存的关系,如:佳爸是佳佳的爸爸,佳佳是佳爸的儿子。其实在我们的数学王国里,数与数回见也存在着这种相互依存的关系,请看大平米,认识这些吗?(课件出示:0,1,2,3,4,5……) 这些自然数。(课件去“0”) 去0后这又是什么数?(非零自然数中。)这节课我们就在非零自然数中来研究数与数之间的这种相互依存的关系。 板书:因数和倍数 二、情境创设,探究新知 1、理解整除的意义。 (1)出示例1,在前面学习中,我们见过下面的算式。 12÷2=6 8÷3=2……2 30÷6=5 19÷7=2……5 9÷5=1.8 26÷8=3.25 20÷10=2 21÷21=1 63÷9=7 你能把这些算式分类吗?

(2)分类所得: (3)观察发现,合作交流。 观察算式,说一说谁是谁的倍数,谁是谁的约数。 2、理解因数、倍数的意义。 12÷2=6中,我们就说12是2的倍数,2是12的因数。12÷6=2,所以12是6的倍数,6是12的因数。由此可知:(在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。) 3、总结归纳 (1)在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。 (2)因数与倍数是相互依存的关系。 4、注意: 为了方便,在研究因数和倍数的时候,我们所说的数指的是自然数(一般不包括0)。 5、做一做。 下面的4组数中,谁是谁的因数?谁是谁的倍数? 4和24 36÷13 75÷25 81÷9 6、教学例2 18的因数有哪几个? 18的因数有1、2、3、6、9、18。 也可以这样用图表示。 18的因数 1,2,3, 6,9,18 30的因数有哪些?36呢? 7、教学例3 2的倍数有哪些? 2的倍数有2、4、6、8……

人教版五年级下册数学因数与倍数练习题(整理)

第二单元《因数与倍数》同步试题 一、填空 1.在4、9、36这三个数中:()是()和()的倍数,()和()是()的因数;36的因数一共有()个,它的倍数有(无数)个。 2.圈出5的倍数: 15 24 35 40 53 78 92 100 54 45 88 60 3.从0、4、5、8、9中选取三个数字组成三位数: (1)在能被2整除的数中,最大的是(),最小的是(); (2)在能被3整除的数中,最大的是(),最小的是(); (3)在能被5整除的数中,最大的是(),最小的是()。 4.将2、10、13、22、39、64、57、61、1、73、111按要求填入下面的圈内。 5.用“偶数”和“奇数”填空: 偶数+()=偶数偶数×偶数=() ()+奇数=奇数奇数×奇数=() 奇数+()=偶数奇数×()=偶数 二、选择 1.如果(都是不等于0的自然数),那么()。 A.是的倍数 B.和都是的倍数 C.和都是的因数 D.是的因数 2.在四位数21□0的方框里填入一个数字,使它能同时被2、3、5整除,最多有()种填法。 A.2 B.3 C.4 D.5 3.下列各数或表示数的式子(为整数):,4,,,0。是偶数的共有()。 A.4个 B.3个 C.2个 D.1个 4.按因数的个数分,非零自然数可以分为()。 A.质数和合数 B.奇数和偶数 C.奇数、偶数和1 D.质数、合数和1 5.古希腊数学家认为:如果一个数恰好等于它的所有约数(本身除外)相加的和,那么这个数就是“完全数”。例如:6有四个约数1、2、3、6,除本身6以外,还有1、2、3三个约数,6=1+2+3,恰好是所有约数之和,所以6就是“完全数”。下面数中是“完全数”的是()。 A.12 B.15 C.28 D.36 三、解答 1.有三张卡片,在它们上面各写有一个数字2、3、7,从中至少取出一张组成一个数,在组成的所有数中,有几个是质数?请将它们写出来。 答案:有6个是质数,分别是2、3、7、23、37、73。

人教版数学五年级下册因数与倍数的概念

因数和倍数的概念的教学设计 教学内容:教材第5页的内容以及练习二的第5题。 教学目标: 1、结合情景教学,使学生初步认识自然数之间存在着因数和倍数的关系,初步理解倍数和倍数的含义。 2、通过学习,使学生有条理、清晰地说出因数和倍数的概念以及它们之间的联系。 3、初步学会运用所学的知识解决实际问题,培养学生概括、分析和比较的能力,体会数学知识的内在联系。 教学重点、难点:理解并掌握因数和倍数之间的关系。 教具学具:投影仪。 教学过程: 一、创设情境,激趣导入。 师:同学们喜欢看《熊出没》吗?(出示画面)这部电视主要讲得是谁?(熊大和熊二)它们是什么关系?(兄弟关系)那么老师和同学们之间是什么关系?(师生关系) 师:同学们,在生活中不仅人与人存在的关系,在数学中,数与数之间也存在的关系。 今节课,我们就一起来研究两个自然数之间的关系。板书课题:因数和倍数。【设计意图:通过情景图知道人与人之间存在着关系,为理解因数与倍数存在着关系打下基础】 二、探究体验,经历过程。 投影出示例1。 1、提出问题。 师:请同学们认真观察这9个算式,把它们进行分类,可以怎样分?说说你的理由。(分小组讨论,师巡回指导) 2、展示交流。 生:老师,我们这组是根据商的特点,把这些算式分成三类。第一类为结果是整数的,第二类为结果是小数且能除得尽的,第三类为结果是带有余数的。 师:你们组的同学观察得真仔细,分类也很明确,很棒。还有没有不同的分类?又该怎样分? 生:老师,我们组把这些算式分成了两类。我们也是按商的特点去分。一类为结果是整数的,另一类为结果不是整数的。 师:你们组的同学也观察得很仔细,分类也很明确,真聪明。 在整数除法中,如果商是除数且没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。例如,12÷2=6我们就说12是2的倍数,2是12的因数。12

五年级下册 因数和倍数教案

《因数与倍数的复习》教学设计 复习目标: 1、通过整理与复习,系统掌握本单元的概念,形成一定的知识网络。 2、能灵活运用所学知识解决生活中的实际问题,体会数学和日常生活密切关系。 3、通过合作交流等活动培养学生思维能力、说理能力,使学生感受到学习的快乐,使每个学生得到不同的发展。 复习重点: 1、复习整理本单元的概念,形成知识网络。 2、利用所学知识解决实际问题。 复习难点: 复习整理本单元的概念,形成知识网络。 复习方法:小组合作讨论法 教具准备:多媒体 教学过程: 一、谈话导入复习 看见数字1,你想到了什么? 这些知识点是我们在学习哪一单元时学习的,今天我们就来复习《因数与倍数》。(板书课题) 二、回顾整理,建构网络 1、交流矫正 除了这些内容,还有其他的知识点吗?让学生补充,提出质疑。 2、交流补充,形成知识网络。

现在我们一起回忆,刚才回顾的知识点,同学们有没有感觉到这一单元的知识点太多,太零碎了?那怎样有条理的整理它们呢? 整理建议: 1、想一想,这些知识点之间有什么联系? 2、用箭头、线条或表格把这些知识点按一定的顺序连起来,形成一个知识网。 小组讨论,教师巡视,及时指导。 3、利用展台小组汇报知识网络。 总结:同学们,在交流中表现的非常棒,能够主动构建知识网络,并能熟练的运用知识网络记忆本单元的知识。下面同学们就运用复习掌握的知识来进入闯关游戏吧! 三、重点复习,强化提高 第一关:判一判(用学习卡表示) 1、5.7是3的倍数。() 2、8的倍数只有16,24,32,40,48。() 3、一个数的因数一定比它本身小。() 4、在全部自然数里,不是奇数就是偶数。() 5、一个奇数加2就变成偶数。() 第二关:找一找,谁是与众不同的数 (1)1、9、5、16、17 (2)14、16、27、28、13 (3)11、13、5、26、29 第三关破译微信号。请注意:每个字母代表一个数字。

小学五年级数学因数与倍数讲义 非常经典的讲义

中小学1对1课外辅导专家 龙文教育学科讲义 教师:学生:日期:2013-03-09星期:六时段:08:00—10:00 课题因数、倍数年级五年级 学习目标与考点分析1、掌握因数、倍数、质数、合数、公因数、公倍数的概念 2、掌握2、 3、5倍数的特征 3、会找最大公因数和最小公倍数 学习重点重点:2、3、5倍数的特征 难点:找公因数、公倍数的特征 学习方法讲练结合 学习内容与过程 一、倍数与因数的关系 【知识点1】倍数与因数之间的关系是相互的,不能单独存在。 例如:6是倍数、3和2是因数。(×)改正:6是3和2的倍数,3和2是6的因数。 练习: (1)8×5=40,()和()是()的因数,()是()和()的倍数。 (2)因为36÷9=4,所以()是()和()的倍数,()和()是()的因数。 (3)在18÷6=3中,18是6的(),3和6是()的()。 (4)在14÷7=2中,()能被()整除,()能整除(),()是()的倍数,()是()的因数。 (5)若A÷B=C(A、B、C都是非零自然数),则A是B的()数,B是A的()数。 (6)如果A、B是两个整数(B≠0),且A÷B=2,那么A是B的,B是A的。 (7)判断并改正:因为7×6=42,所以42是倍数,7是因数。() 因为15÷5=3,所以15和5是3的因数,5和3是15的倍数。() 5是因数,15是倍数。() 甲数除以乙数,商是15,那么甲数一定是乙数的倍数。() (8)甲数×3=乙数,乙数是甲数的()。 A、倍数 B、因数 C、自然数 【知识点2】倍数因数只考虑正数,小数、分数等不讨论倍数、因数的问题。 例如:0.6×5=3,虽然可以表示0.6的5倍是3但是,0.6是小数是不讨论倍数因数问题。 因此类似的:因为0.6×5=3,所以3是0.6和5的倍数。是错误的说法。 练习: (1)有5÷2=2.5可知() A、5能被2除尽 B、2能被5整除 C、5能被2整除 D、2是5的因数,5是2的倍数

五年级数学因数和倍数知识点整理

五年级数学因数和倍数知识点整理 1、整除 大数能被小数整除时,大数是小数的倍数,小数是大数的因数。 找因数的方法: 最小的因数是最大的因数 最小的倍数 2、自然数按能不能被2整除来分:奇数、偶数 奇数:不能被2整除的数。 偶数:能被2整除的数。 10. 个位上是0,2,4,6,8的数都是2的倍数。 个位上是0或5的数,是5的倍数。 一个数各位上的数的和是3的倍数,这个数就是3的倍数。 90120。 3、自然数按因数的个数来分:质数、合数 质数: 合数:至少有 1:只有1 最小的质数是2,最小的合数是4。 20以内的质数:有8个(2、3、5、7、11、13、17、19) 100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、 43、47、53、59、61、67、71、73、79、83、89、97 4、分解质因数 用短除法分解质因数(一个合数写成几个质数相乘的形式) 5、公因数、最大公因数 几个数公有的因数叫这些数的公因数。其中最大的那个就叫它们的最大公因

数。 用短除法求两个数或三个数的最大公因数(除到互质为止,把所有的除数连乘起来) 几个数的公因数只有1,就说这几个数互质。 两数互质的特殊情况: ⑴1和任何自然数互质;⑵相邻两个自然数互质;⑶两个质数一定互质; ⑷2和所有奇数互质;⑸质数与比它小的合数互质; 如果两数是倍数关系时,那么较小的数就是它们的最大公因数。 如果两数互质时,那么1就是它们的最大公因数。 6、公倍数、最小公倍数 几个数公有的倍数叫这些数的公倍数。其中最小的那个就叫它们的最小公倍数。 用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来) 用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来) 如果两数是倍数关系时,那么较大的数就是它们的最小公倍数。 如果两数互质时,那么它们的积就是它们的最小公倍数。

小学五年级数学因数与倍数讲义 非常经典的讲义

龙文教育学科讲义 教师:学生:日期:2013-03-09星期:六时段:08:00—10:00

【知识点3】没有前提条件确定倍数与因数 例如:36的因数有()。 确定一个数的所有因数,我们应该从1的乘法口诀一次找出。如:1×36=36、2×18=36、3×12=36、4×9=36、6×6=36因此36的所有因数为:1、2、3、4、6、9、12、18、36重复的和相同的只算一个因数。 一个数的因数个数是有限的,最小的因数是1,最大的因数是他本身。 例如:7的倍数()。 确定一个数的倍数,同样依据乘法口诀,如:1×7=7、2×7=14、3×7=21、4×7=28、5×7=35……还有很多。 因此7的倍数有:7、14、21、28、35、42…… 一个数的倍数个数是无限的,最小的倍数是他本身,没有最大的倍数。 练习: (1)20的因数有: (2)45的因数有:

(3)24的倍数有: (4)17的倍数有: (5)下面的数,因数个数最多的是()。 A、18 B、 36 C、40 (6)判断并改正:14比12大,所以14的因数比12的因数多() 1是1,2,3,4,5…的因数() 一个数的最小因数是1,最大因数是它本身。() 一个数的最小倍数是它本身() 12是4的倍数,8是4的倍数,12与8的和也是4的倍数。() 凡是8的倍数也一定是2的倍数。() (7)幼儿园里有一些小朋友,王老师拿了32颗糖平均分给他们,正好分完。小朋友的人数可能是多少? (8)小红到超市买日记本,日记本的单价已看不清楚,他买了3本同样的日记本,售货员阿姨说应付35元,小红认为不对。你能解释这是为什么吗? 【知识点4】有前提条件的情况下确定倍数与因数 例如:25以内5的倍数有(5、10、15、20、25 )。特别注意前提条件是25以内! 例如:5、1、20、35、40、10、140、2 以上各数中,是20的因数的数有();是20的倍数的数有 ();既是20的倍数又是20的因数的数有()。 首先我们应该明确20的因数有哪些,然后在上面的数中一次找出,特别注意没有在以上数字中出现的因数是不能填入括号的! 练习: (1)100以内19的倍数有: (2)在4,6,8,10,12,16,18,20,22,24,28,32,36 中4的倍数: 36的因数: (3)一个数既是6的倍数,又是60的因数,这个数可能是 (4)用1、5、6、8、9组成的数中,是3的倍数的数有 是2的倍数的数有。 【知识点3】关于倍数因数的一些概念性问题 一个数的因数个数是有限的,最小的因数是1,最大的因数是他本身。 一个数的倍数个数是无限的,最小的倍数是他本身,没有最大的倍数。.

小学五年级数学 因数与倍数练习题

因数与倍数练习题 五年级数学教案 一、判断题 ( )1、任何自然数,它的最大因数和最小倍数都是它本身。 ( )2、一个数的倍数一定大于这个数的因数。 ( )3、个位上是0的数都是2和5的倍数。 ( )4、一个数的因数的个数是有限的,一个数的倍数的个数是无限的。 ( )5、5是因数,10是倍数。 ( )6、36的全部因数是2、3、4、6、9、12和18,共有7个。 ( )7、因为18÷9=2,所以18是倍数,9是因数。 ( )9、任何一个自然数最少有两个因数。 ( )10、一个数如果是24的倍数,则这个数一定是4和8的倍数。 ( )11、15的倍数有15、30、45。 ( )12、一个自然数越大,它的因数个数就越多。 ( )13、两个素数相乘的积还是素数。 ( )14、一个合数至少得有三个因数。 ( )15、在自然数列中,除2以外,所有的偶数都是合数。 ( )16、15的因数有3和5。 ( )17、在1—40的数中,36是4最大的倍数。

( )18、是16的因数,16是16的倍数。 ( )19、8的因数只有2,4。 ( )20、一个数的最大因数和最小倍数都是它本身,也就是说一个数的最大因数等于它的最小倍数。 ( )21、任何数都没有最大的倍数。 ( )22、1是所有非零自然数的因数。 ( )23、所有的偶数都是合数。 ( )24、素数与素数的乘积还是素数。 ( )25、个位上是3、6、9的数都能被3整除。 ( )26、一个数的因数总是比这个数小。 ( )27、743的个位上是3,所以743是3的倍数。 ( )28、100以内的最大素数是99。 二、填空。 1、在50以内的自然数中,最大的素数是(),最小的合数是 ()。 2、既是素数又是奇数的最小的一位数是()。 3、在20以内的素数中,()加上2还是素数。 4、如果有两个素数的和等于24,可以是()+(),()+()或()+()。 5、一个数的最小倍数减去它的最大因数,差是()。

新人教版五年级数学下册因数和倍数教案

第一课时因数和倍数 教学目标: 1.理解因数和倍数的意义,理解二者是相互依存而不相同的两个概念。 2.掌握求一个数的因数的方法。 3.培养概括分析和比较的能力。 教学重点:理解因数和倍数的概念。 教学难点:掌握求一个数的因数的方法。 教学过程: 一、创设情境 师:同学们,数学与我们的生活息息相关,数学无处不在。人与人之间存在着许多种关系,你们和爸爸(妈妈)的关系是……? 生:父子(父母、母子、母女)关系。 师:我和你们的关系是……? 生:师生关系。 师:对,我是你们的老师,你们是我的学生。在数学中,数与数之间也存在着这种关系,这一节课,我们一起探讨两数之间的因数与倍数关系。(板书课题:因数与倍数) [设计意图]教师首先和学生交流生活中的各种各样的关系,再引入到数学中自然数和自然数之间也有各种关系,初步体会数和数的对应关系,这样既能让学生感受数学和生活的密切联系,又能激发学生的学习兴趣,提高学生主动探究学习的积极性。 二、探索新知 (一)因数和倍数的概念 1.观察下面的算式并分类

师:仔细观察,这些算式有什么共同特点呢?你能把这些算式分分类吗? 生1:它们有些算式能除尽,有些不能除尽。 生2:有一些算式的商是整数,有一些不是。 师:你的意思是把它们分成两类: 2.师:今天我们就研究第一类算式。这一类算式的特点是什么? 在这样的整数除法中,如果商事整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。比如,12÷2=6,我们可以说12是2的倍数,2是12的因数。在除法算式12÷6=2中,我们知道12是6的倍数,6是12的因数。 师:谁能像老师这样再说一说?(生说) 师:请同学们再一起说一遍。 师:在第一类中的算式,请同学们任意选择一个算式说一说,谁是谁的因数?谁是谁的倍数。 3.因数和倍数的关系。 师:谁能说一说因数和倍数有什么关系呢? 因数和倍数是相互依存的关系,我们不能单独说一个数是因数或倍数,它们是两个数之间的关系。比如,我们可以说5是30的因数,但不能说5是因数,30是倍数。 师:像这样的式子还有吗? 生说算式,并说谁是谁的因数,谁是谁的倍数。

(完整版)小学五年级下册因数与倍数知识点总结

二单元因数与倍数知识点总结 必须掌握的知识: 1.因数、倍数概念:如果a×b=c(a、b、c都是不为0的整数)我们就说a和b都是c的因数c是a的倍数也是b的倍数。倍数和因数是相互依存的。 2.一个数的因数个数是有限的,最小因数 ,最大因数。一个数的倍数个数是,最小倍数是,最大倍数。 (1) 一个数的因数的求法:成对的按顺序找。 (2)一个数的倍数的求法:一次乘以自然数。 3.2、3、5倍数的特征。 (1)2的倍数的特征:个位上是0、2、4、6、8的数,都是2的倍数,是2的倍数的数叫做偶数;不是2的倍数的数叫做奇数。也就是个位上的数字是1、3、5、7、9的数是。最小的奇数是,最小的偶数是。 (2)3的倍数的特征:一个数各位数上的和是3的倍数这个数是3的倍数。 (3)5的倍数的特征: 个位上是0、5的数都是5的倍数。 (4)9的倍数的特征:一个数各位数上的和是的倍数这个数是的倍数。 (5) (4 )如果一个数同时是2和5的倍数,那它的个位数字一定是。4.质数和合数。 (1)一个数,如果只有1和它本身两个因数,这样的数叫做质数(素数)。最小的质数是。 (2)一个数,除了1和它本身还有别的因数,这样的因数叫做合数。最小的合数是,合数至少有三个因数(1、它本身、别的因数)。连续的两个质数是。 (3)1既不是质数,也不是合数。 5.100以内质数: 2、 3、 5、 7、 11、 13、 17、 19、 23、 29、 31、 41、 43、 47、 53、 59、 61、 67、 71 、73、 79、 83、 89、 93、 97 6. 13的倍数:26、39、52、65、78、91、104、117 17的倍数:34、51、68、85、102、119、136、153 19的倍数:38、57、76、95、114、133、152、171

五年级下册因数与倍数练习题大全

因数与倍数练习题班级:姓名: 一、填空题: 1、一个数的最大因数是12,这个数是();一个数的最小倍数是18,这个数是()。 2、根据算式25×4=100,则()是()的因数,()也是()的因数;()是()的倍数,()也是()的倍数。 3、48的最小倍数是(),最大因数是()。最小因数是()。 4、在1 5、18、25、30、19中,2的倍数有( ),5的倍数有( ), 3的倍数有( ),既是2、5又是3的倍数有( )。 5、56的所有因数之和是()。 6、在18÷3=6中,( )和( )是( )的因数。 在3×9=27中,( )是( )和( )的倍数。 7、2 的所有因数有( ),从小到大15的5个倍数是( )。 8、7是7的( )数,也是7的( )数。 9、一个数的最大因数是12,这个数是();一个数的最小倍数是18,这个数是()。 10、10以内,所有质数的积是() 11、一个数既是25的倍数,又是25的因数,这个数是()。12、质数a有()和()两个因数。 13、最小的质数和最小的合数的积是()。 14、在20以内的自然数中,是奇数又是合数的数有()。。 15、30的因数中,最小的是( ),最大的是( )。 二、判断题: 1. 任何自然数,它的最大因数和最小倍数都是它本身。( ) 2、36的全部因数是2、 3、 4、6、9、12和18,共有7个。() 3、因为18÷9=2,所以18是9的倍数,9是18的因数。() 4、一个数的倍数总比它的因数大。() 5、18的因数有6个,18的倍数有无数个。() 6、一个数是6的倍数,这个数一定是2和3的倍数。() 7、两个奇数的和是偶数,两个奇数的积是合数。() 三、选择: 1.13的倍数是() ①合数②质数③可能是合数,也可能是质数 2.2是(),但不是()。 ①合数②质数③偶数 3.4的倍数都是()的倍数。

小学五年级数学因数和倍数教案

小学五年级数学因数和倍数教案 教学目标: 1、学生掌握找一个数的因数,倍数的方法; 2、学生能了解一个数的因数是有限的,倍数是无限的; 3、能熟练地找一个数的因数和倍数; 4、培养学生的观察水平。 教学重点:掌握找一个数的因数和倍数的方法。 教学难点:能熟练地找一个数的因数和倍数。 教学过程: 一、引入新课。 1、出示主题图,让学生各列一道乘法算式。 2、师:看你能不能读懂下面的算式? 出示:因为2×6=12 所以2是12的因数,6也是12的因数;12是2的倍数,12也是6的倍数。 3、师:你能不能用同样的方法说说另一道算式? (指名生说一说) 师:你有没有明白因数和倍数的关系了? 那你还能找出12的其他因数吗? 4、你能不能写一个算式来考考同桌?学生写算式。 师:谁来出一个算式考考全班同学? 5、师:今天我们就来学习因数和倍数。(出示课题:因数倍数) 齐读p12的注意。

二、新授: (一)找因数: 1、出示例1:18的因数有哪几个? 从12的因数能够看得出,一个数的因数还不止一个,那我们一起找找看18的因数有哪些? 学生尝试完成:汇报 (18的因数有:1,2,3,6,9,18) 师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…) 师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。 2、用这样的方法,请你再找一找36的因数有那些? 汇报36的因数有:1,2,3,4,6,9,12,18,36 师:你是怎么找的? 举错例(1,2,3,4,6,6,9,12,18,36) 师:这样写能够吗?为什么?(不能够,因为重复的因数只要写一个就能够了,所以不需要写两个6) 仔细看看,36的因数中,最小的是几,最大的是几? 看来,任何一个数的因数,最小的一定是(),而最大的一定是()。 3、你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在自练本上写一写,然后汇报。 4、其实写一个数的因数除了这样写以外,还能够用集合表示:如 18的因数 小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉? 从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。 (二)找倍数:

小学五年级下册因数与倍数综合练习题及答案

因数与倍数 重要知识点 ..... 1.因数、倍数概念:如果a×b=c(a、b、c都是不为0的整数)我们就说a和b都是c的因数c是a的倍数也是b的倍数。倍数和因数是相互依存的。2.一个数的因数个数是有限的,最小因数是1,最大因数是它本身。一个数的倍数个数是无限的,最小倍数是它本身,没有最大倍数。 3.2、3、5倍数的特征。 (1)2的倍数的特征:个位上是0、2、4、6、8的数,都是2的倍数,是2的倍数的数叫做偶数;不是2的倍数的数叫做奇数。 (2)3的倍数的特征:一个数各位数上的和是3的倍数这个数是3的倍数。(3)个位上是0、5的数都是5的倍数。 4.质数和合数。 (1)一个数,如果只有1和它本身两个因数,这样的数叫做质数(素数)。最小的质数是2。 (2)一个数,除了1和它本身还有别的因数,这样的因数叫做合数。最小的合数是4,合数至少有三个因数。 (3)1既不是质数,也不是合数。 5.质因数和分解质因数。 (1)每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数。

(2)把一个合数用质因数相乘的形式表示出来,叫做分解质因数。例:30=2×3×5 6.最大公因数和最小公倍数。 (1)几个数公有的因数,叫做这几个数的公因数,其中最大的一个,叫做这几个数的最大公因数。 (2)几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。 7.互质数:公因数只有1的两个数,叫做互质数。 8.100以内质数:2、3、5、7、11、13、17、19、23、29、31、41、43、47、53、59、61、67、71、73、79、83、89、93、97 9.13的倍数:26、39、52、65、78、91、104、117 17的倍数:34、51、68、85、102、119、136、153 19的倍数:38、57、76、95、114、133、152、171 因数与倍数专项练习题 .......... 一.我会填. 1.一个数是3、5、7的倍数,这个数最小是( 105 ). 2.是3的倍数的最小三位数是( 102). 3.三个数相乘,积是70,这三个数是(2 )(5)(7) 4.同时是2、3、5的倍数的最小两位数是(30 ),最大两位数(90) 最小三位数(120)最大三位数(990)。 5.用8、5、1、0中三个数组成同时是2、3、5的倍数的最大三位数是(810)同时是3、5倍数的最小三位数是(105)。

最新人教版五年级下册数学《因数和倍数》练习题

《因数和倍数》练习题 一、填空 1、一个数的因数的个数() ,最大的因数是(),最小的一个因数是(),一个数的倍数的个数是(),最小的倍数是() 。 2、因为15÷5=3,所以5是()的因数,15是5的()。 3、如果A、B是两个整数(B≠0),且A÷B=2,那么A是B的(),B是A的() 4、20的因数有(),其中是质数的有()。 5、要使52 含有因数3,里最小可填();要使它是2的倍数,里最大可填()。 6、一个数的最小倍数是99,这个数是(),将它分解质因数是(). 7、1021至少加上一个整数()就能被3整除. 8、三个连续偶数的和是42,这三个偶数分别是()、()和()。 9、两个质数和为18,积是65,这两个质数是()和()。 11、一个数的最小倍数是12,这个数是();一个数的最大因数是33,这个数是()。 12、一个三位数,它的个位上是最小的质数,十位上是最小的合数,百位上的最小的奇数,这个三位数是(),13、它同时是质数()和()的倍数。 14、在3×9=27中,()是()和()的倍数。在18÷3=6中,()和()是()的因数。5×7=35中,()是()和()的倍数,()和()是()的因数。 15、一个数是48的因数,又是6的倍数,这个数可能是()、()、()、()。 16、幼儿园的大班有36个小朋友,中班有48个小朋友,小班有54个小朋友。按班分组,三个班的各组人数一样多,问每组最多有()个小朋友。 17、用"奇数","偶数"填空:偶数+偶数= 奇数+奇数= 偶数+奇数= 二、选择 1、2、3、7、11、19都是() A、因数 B、倍数 C、质数 D、奇数 2、a÷b=2……1,下列说法正确的是() A、是偶数 B、b一定是奇数 C、c是奇数 D、b是a的因数 3、把66分解质因数是()。 ①66=1×2×3×11 ②66=6×11 ③66=2×3×11 4、已知a、b、c是三个不同的非零自然数,且a = b × c ,那么下面说法错误的是()。【①a一定是b的倍数。②a一定是合数。③a一定是偶数。】 三、选出两张数字卡片,按要求组成数(每题2分,计6分) 8、5、0、9 1、组成的数是偶数 2、组成的数是5的倍数 3、组成的数既是2和5的倍数,又是3的倍数 四、解决问题(每题4分,计8分) 1、货场有36吨煤,现有三辆不同载重量的卡车,怎样用卡车正好可以装完,并且所运的次数最少? 1号车2号车3号车 2吨3吨5吨

(完整版)人教版五年级下因数与倍数知识点归纳

百佳新东方·杨燕红整理 五年级下册数学因数与倍数重难点归纳 1、因数与倍数 如果a×b=c(a、b、c都是不为0的整数),我们就说a和b都是c的因数,c是a和b的倍数。因数与倍数是相互依存的。(必须说谁是谁的因数,谁是谁的倍数,而不能单单说谁是因数谁是倍数)。 2、一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。 3、奇数和偶数 自然数按是否是2的倍数,可以分为奇数和偶数两大类。 是2的倍数的数叫偶数,不是2的倍数的数叫奇数。 4、奇数+奇数=偶数偶数+偶数=偶数奇数+偶数=奇数(可以通过举例去记公式) 5、2的倍数特征:个位上是0、2、4、 6、8的数,都是2的倍数。 3的倍数特征:一个数各个数位上的数的和是3的倍数,这个数就是3的倍数。 5的倍数特征:个位上是0或5的数,都是5的倍数。 6、同时是2和3的倍数就是6的倍数; 同时是3和5的倍数就是15的倍数; 同时是2和5的倍数就是10的倍数,个位上一定是0; 同时是2、3和5的倍数,个位上一定是0,且各个数位上的数的和是3的倍数。 7、质数与合数 自然数按因数的个数来分,可以分为质数、合数、0和1四类。 质数:一个数,如果只有1和它本身两个因数,这样的数就叫做质数(素数)。 最小的质数是2。 合数:一个数,除了1和它本身以外还有其他因数,这样的数叫做合数。 最小的合数是4,合数至少有三个因数。 注:1既不是质数也不是合数。质数×质数=合数 8、常见的最大、最小 最大因数:数本身。最小因数:1。最小倍数:数本身。最小的自然数:0。 最小的奇数:1。最小的偶数:0。最小的质数:2。最小的合数:4。 连续的两个质数是:2和3。 9、20以内的质数有8个:2、3、5、7、11、13、17、19。 100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、 53、59、61、67、71、73、79、83、89、97。 注:除了2以外,其他的质数都是奇数。 100以内判断是质数还是合数,只要看是否是2、3、5、7、11、13的倍数,是的就是合数,不是的就是质数。(易错:91是13的倍数,是合数) 10、质因数和分解质因数 质因数:每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数。 分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 例如:30=2×3×5,这个过程就叫分解质因数,2、3、5就是30的质因数。 11、最大公因数和最小公倍数 公因数:几个数公有的因数,叫做这几个数的公因数,其中最大的一个,叫做这几个数的最大公因数。 公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。

相关主题
文本预览
相关文档 最新文档