当前位置:文档之家› LED液晶显示器的驱动原理

LED液晶显示器的驱动原理

LED液晶显示器的驱动原理
LED液晶显示器的驱动原理

LED液晶显示器的驱动原理

艾布纳科技有限公司

前两次跟大家介绍有关液晶显示器操作的基本原理, 那是针对液晶本身的特性,与TFT LCD 本身结构上的操作原理来做介绍. 这次我们针对TFT LCD 的整体系统面来做介绍, 也就是对其驱动原理来做介绍, 而其驱动原理仍然因为一些架构上差异的关系, 而有所不同. 首先我们来介绍由于Cs(storage capacitor)储存电容架构不同, 所形成不同驱动系统架构的原理.

Cs(storage capacitor)储存电容的架构

一般最常见的储存电容架构有两种, 分别是Cs on gate与Cs on common这两种. 这两种顾名思义就可以知道, 它的主要差别就在于储存电容是利用gate走线或是common走线来完成的. 在上一篇文章中, 我曾提到, 储存电容主要是为了让充好电的电压,能保持到下一次更新画面的时候之用. 所以我们就必须像在CMOS的制程之

中, 利用不同层的走线, 来形成平行板电容. 而在TFT LCD的制程之中, 则是利用显示电极与gate走线或是common走线,所形成的平行板电容,来制作出储存电容Cs.

图1就是这两种储存电容架构, 从图中我们可以很明显的知道, Cs on gate由于不必像Cs on common一样, 需要增加一条额外的common走线, 所以它的开口率(Aperture ratio)会比较大. 而开口率的大小, 是影响面板的亮度与设计的重要因

素. 所以现今面板的设计大多使用Cs on gate的方式. 但是由于Cs on gate的方

式, 它的储存电容是由下一条的gate走线与显示电极之间形成的.(请见图2的Cs on gate与Cs on common的等效电路) 而gate走线, 顾名思义就是接到每一个TFT 的gate端的走线, 主要就是作为gate driver送出信号, 来打开TFT, 好让TFT对显

示电极作充放电的动作. 所以当下一条gate走线, 送出电压要打开下一个TFT时, 便会影响到储存电容上储存电压的大小. 不过由于下一条gate走线打开到关闭的时间很短,(以1024*768分辨率, 60Hz更新频率的面板来说. 一条gate走线打开的时间约为20us, 而显示画面更新的时间约为16ms, 所以相对而言, 影响有限.) 所以当下一条gate走线关闭, 回复到原先的电压, 则Cs储存电容的电压, 也会随之恢复到正常. 这也是为什么, 大多数的储存电容设计都是采用Cs on gate的方式的原因.

至于common 走线, 我们在这边也需要顺便介绍一下. 从图 2 中我们可以发

现, 不管您采用怎样的储存电容架构, Clc 的两端都是分别接到显示电极与

common. 既然液晶是充满在上下两片玻璃之间, 而显示电极与TFT 都是位在同一片玻璃上, 则common 电极很明显的就是位在另一片玻璃之上. 如此一来, 由液晶所形成的平行板电容Clc, 便是由上下两片玻璃的显示电极与common 电极所形成. 而位于Cs 储存电容上的common 电极, 则是另外利用位于与显示电极同一片玻璃上的走线, 这跟Clc 上的common 电极是不一样的, 只不过它们最后都是接到相同的电压就是了.

整块面板的电路架构

从图3 中我们可以看到整片面板的等效电路, 其中每一个TFT 与Clc 跟Cs 所并联的电容, 代表一个显示的点. 而一个基本的显示单元pixel,则需要三个这样显示的点,分别来代表RGB 三原色. 以一个1024*768 分辨率的TFT LCD 来说, 共需要

1024*768*3 个这样的点组合而成. 整片面板的大致结构就是这样, 然后再藉由如图3 中gate driver 所送出的波形, 依序将每一行的TFT 打开, 好让整排的source driver 同时将一整行的显示点, 充电到各自所需的电压, 显示不同的灰阶. 当这一行充好电时, gate driver 便将电压关闭, 然后下一行的gate driver 便将电压打开, 再由相同的一排source driver 对下一行的显示点进行充放电. 如此依序下去, 当充好了最后一行的显示点, 便又回过来从头从第一行再开始充电. 以一个1024*768 SVGA 分辨率的液晶显示器来说, 总共会有768 行的gate 走线, 而source 走线则共需要1024*3=3072 条. 以一般的液晶显示器多为60Hz 的更新频率来说, 每一个画面的显示时间约为1/60=16.67ms. 由于画面的组成为768 行的gate 走线, 所以分配给每一条gate 走线的开关时间约为16.67ms/768=21.7us. 所以在图3 gate driver 送出的波形中, 我们就可以看到, 这些波形为一个接着一个宽度为21.7us 的脉

波, 依序打开每一行的TFT. 而source driver 则在这21.7us 的时间内, 经由source 走线, 将显示电极充放电到所需的电压, 好显示出相对应的灰阶.

面板的各种极性变换方式由于液晶分子还有一种特性,就是不能够一直固定在某一个电压不变, 不然时间久了, 你即使将电压取消掉, 液晶分子会因为特性的破坏, 而无法再因应电场的变化来转动, 以形成不同的灰阶. 所以每隔一段时间, 就必须将电压恢复原状, 以避免液晶分子的特性遭到破坏. 但是如果画面一直不动, 也就是说画面一直显示同一个灰阶的时候怎么办? 所以液晶显示器内的显示电压就分成了两种极性, 一个是正极性, 而另一个是负极性. 当显示电极的电压高于common 电极电压时, 就称之为正极性. 而当显示电极的电压低于common 电极的电压时, 就称之为负极性. 不管是正极性或是负极性, 都会有一组相同亮度的灰阶. 所以当上下两层玻璃的压差绝对值是固定时, 不管是显示电极的电压高, 或是common 电极的电压高, 所表现出来的灰阶是一模一样的. 不过这两种情况下, 液晶分子的转向却是完全相反, 也就可以避免掉上述当液晶分子转向一直固定在一个方向时, 所造成的特性破坏. 也就是说, 当显示画面一直不动时, 我们仍然可以藉由正负极性不停的交替, 达到显示画面不动, 同时液晶分子不被破坏掉特性的结果. 所以当您所看到的液晶显示器画面虽然静止不动, 其实里面的电压正在不停的作更换, 而其中的液晶分子正不停的一次往这边转, 另一次往反方向转呢!

图 4 就是面板各种不同极性的变换方式, 虽然有这么多种的转换方式, 它们有一个共通点, 都是在下一次更换画面数据的时候来改变极性. 以60Hz 的更新频率来说, 也就是每16ms, 更改一次画面的极性. 也就是说, 对于同一点而言, 它的极性是不停的变换的. 而相邻的点是否拥有相同的极性, 那可就依照不同的极性转换方式来决定了. 首先是frameinversion 它整个画面所有相邻的点, 都是拥有相同的极性. 而row inversion 与column inversion 则各自在相邻的行与列上拥有相同的极性. 另外在dot inversion 上, 则是每个点与自己相邻的上下左右四个点, 是不一样的极性. 最后是delta inversion, 由于它的排列比较不一样, 所以它是以RGB 三个点所形成的pixel 作为一个基本单位, 当以pixel 为单位时, 它就与dot inversion 很相似

了, 也就是每个pixel 与自己上下左右相邻的pixel,是使用不同的极性来显示的. Common 电极的驱动方式

图5 及图6 为两种不同的Common 电极的电压驱动方式, 图5 中Common 电极的电压是一直固定不动的, 而显示电极的电压却是依照其灰阶的不同, 不停的上下变动. 图5 中是256 灰阶的显示电极波形变化, 以V0 这个灰阶而言, 如果您要在面板上一直显示V0 这个灰阶的话, 则显示电极的电压就必须一次很高, 但是另一次却很低的这种方式来变化. 为什么要这么复杂呢? 就如同我们前面所提到的原因一样, 就是为了让液晶分子不会一直保持在同一个转向, 而导致物理特性的永久破坏. 因此在不同的frame 中, 以V0 这个灰阶来说, 它的显示电极与common 电极的压差绝对值是固定的, 所以它的灰阶也一直不曾更动. 只不过位在Clc 两端的电压, 一次是正

的, 称之为正极性, 而另一次是负的, 称之为负极性. 而为了达到极性不停变换这个目的, 我们也可以让common 电压不停的变动, 同样也可以达到让Clc 两端的压差绝对值固定不变, 而灰阶也不会变化的效果, 而这种方法, 就是图6 所显示的波形变化. 这个方法只是将common 电压一次很大, 一次很小的变化. 当然啦, 它一定要比灰阶中最大的电压还大, 而电压小的时候则要比灰阶中最小的电压还要小才行. 而各灰阶的电压与图5 中的一样, 仍然要一次大一次小的变化.

这两种不同的Common 驱动方式影响最大的就是source driver 的使用. 以图

7 中的不同Common 电压驱动方式的穿透率来说, 我们可以看到, 当common 电极的电压是固定不变的时候, 显示电极的最高电压, 需要到达common 电极电压的两倍以上. 而显示电极电压的提供, 则是来自于source driver. 以图七中common 电极电压若是固定于5 伏特的话, 则source driver 所能提供的工作电压

范围就要到10 伏特以上. 但是如果common 电极的电压是变动的话, 假使

common 电极电压最大为5 伏特, 则source driver 的最大工作电压也只要为5 伏特就可以了. 就source driver 的设计制造来说, 需要越高电压的工作范围, 制程与电路的复杂度相对会提高, 成本也会因此而加高.面板极性变换与common 电极驱动方式的选用并不是所有的面板极性转换方式都可以搭配上述两种common 电极的驱动方式. 当common 电极电压固定不变时, 可以使用所有的面板极性转换. 但是如果common 电压是变动的话, 则面板极性转换就只能选用frame inversion 与row inversion.(请见表1) 也就是说, 如果你想使用column inversion 或是dot inversion 的话, 你就只能选用common 电极电压固定不动的驱动方式. 为什么

呢? 之前我们曾经提到common 电极是位于跟显示电极不同的玻璃上, 在实际的制作上时, 其实这一整片玻璃都是common 电极. 也就是说, 在面板上所有的显示点, 它们的common 电压是全部接在一起的. 其次由于gate driver 的操作方式是将同一行的所有TFT 打开, 好让source driver 去充电, 而这一行的所有显示点, 它的common 电极都是接在一起的, 所以如果你是选用common 电极电压是可变动的方式的话, 是无法在一行TFT 上, 来同时做到显示正极性与负极性的. 而column

inversion 与dot inversion 的极性变换方式, 在一行的显示点上, 是要求每个相邻的点拥有不同的正负极性的. 这也就是为什么common 电极电压变动的方式仅能适用于frame inversion 与row inversion 的缘故. 而common 电极电压固定的方式, 就没有这些限制. 因为其common 电压一直固定, 只要source driver 能将电压充到比common 大就可以得到正极性, 比common 电压小就可以得到负极性, 所以common 电极电压固定的方式, 可以适用于各种面板极性的变换方式.

表 1

各种面板极性变换的比较

现在常见使用在个人计算机上的液晶显示器, 所使用的面板极性变换方式, 大部分都是dot inversion. 为什么呢? 原因无它, 只因为dot inversion 的显示品质相对于其它的面板极性变换方式, 要来的好太多了. 表2 是各种面板极性变换方式的比较表. 所谓Flicker 的现象, 就是当你看液晶显示器的画面上时, 你会感觉到画面会有闪烁的感觉. 它并不是故意让显示画面一亮一灭来做出闪烁的视觉效果, 而是因为显示的画面灰阶在每次更新画面时, 会有些微的变动, 让人眼感受到画面在闪烁. 这种情况最容易发生在使用frame inversion 的极性变换方式, 因为frame inversion 整个画面都是同一极性, 当这次画面是正极性时, 下次整个画面就都变成了是负极性. 假若你是使用common 电压固定的方式来驱动, 而common 电压又有了一点误差(请见图8),

这时候正负极性的同一灰阶电压便会有差别, 当然灰阶的感觉也就不一样. 在不停切换画面的情况下, 由于正负极性画面交替出现,你就会感觉到Flicker 的存在. 而其它面板的极性变换方式, 虽然也会有此flicker 的现象, 但由于它不像frame inversion 是同时整个画面一齐变换极性, 只有一行或是一列, 甚至于是一个点变化极性而已. 以人眼的感觉来说, 就会比较不明显. 至于crosstalk 的现象, 它指的就是相邻的点之间, 要显示的资料会影响到对方, 以致于显示的画面会有不正确的状况. 虽然crosstalk 的现象成因有很多种, 只要相邻点的极性不一样, 便可以减低此一现象的发生. 综合这些特性, 我们就可以知道, 为何大多数人都使用dot inversion 了.

表 2

面板极性变换方式Flicker 的现象Crosstalk 的现象

Frame inversion 明显垂直与水平方向都易发生

Row inversion 不明显水平方向容易发生

Column inversion 不明显垂直方向容易发生

Dot inversion 几乎没有不易发生

面板极性变换方式, 对于耗电也有不同的影响. 不过它在耗电上需要考量其搭配的common 电极驱动方式. 一般来说common 电极电压若是固定, 其驱动common 电极的耗电会比较小. 但是由于搭配common 电压固定方式的source driver 其所需的电压比较高, 反而在source driver 的耗电会比较大. 但是如果使用相同的common 电极驱动方式, 在source driver 的耗电来说,就要考量其输出电压的变动频率与变动电压大小. 一般来说, 在此种情形下, source driver 的耗电,会有dot inversion > row inversion > column inversion > frame inversion 的状况. 不过现今由于dot inversion 的source driver 多是使用PN 型的OP, 而不是像row inversion 是使用rail to rail OP, 在source driver 中OP 的耗电就会比较小. 也就是说由于source driver 在结构及电路上的改进, 虽然先天上它的输出电压变动频率

最高也最大(变动电压最大接近10 伏特,而row inversion 面板由于多是使用common 电极电压变动的方式,其source driver 的变动电压最大只有5 伏特,耗电上会比较小), 但dot inversion 面板的整体耗电已经减低很多了. 这也就是为什么大多数的液晶显示器都是使用dot inversion 的方式.

参考数据:

1.交通大学次微米人才培训课程, 平面显示器原理讲义.

2.财团法人自强基金会电子工业人才培训课程, 液晶显示器显示原理讲义.

TFT-LCD液晶显示器的工作原理

TFT-LCD液晶显示器的工作原理 我一直记得,当初刚开始从事有关液晶显示器相关的工作时,常常遇到的困扰,就是不知道怎么跟人家解释,液晶显示器是什么? 只好随着不同的应用环境,来解释给人家听。在最早的时候是告诉人家,就是掌上型电动玩具上所用的显示屏,随着笔记型计算机开始普及,就可以告诉人家说,就是使用在笔记型计算机上的显示器。随着手机的流行,又可以告诉人家说,是使用在手机上的显示板。时至今日,液晶显示器,对于一般普罗大众,已经不再是生涩的名词。而它更是继半导体后另一种可以再创造大量营业额的新兴科技产品,更由于其轻薄的特性,因此它的应用范围比起原先使用阴极射线管(CRT,cathode-ray tube)所作成的显示器更多更广。 如同我前面所提到的,液晶显示器泛指一大堆利用液晶所制作出来的显示器。而今日对液晶显示器这个名称,大多是指使用于笔记型计算机,或是桌上型计算机应用方面的显示器。也就是薄膜晶体管液晶显示器。其英文名称为Thin-film transistor liquid crystal display,简称之TFT LCD。从它的英文名称中我们可以知道,这一种显示器它的构成主要有两个特征,一个是薄膜晶体管,另一个就是液晶本身。我们先谈谈液晶本身。 液晶(LC,liquid crystal)的分类 我们一般都认为物质像水一样都有三态,分别是固态液态跟气态。其实物质的三态是针对水而言,对于不同的物质,可能有其它不同的状态存在。以我们要谈到的液晶态而言,它是介于固体跟液体之间的一种状态,其实这种状态仅是材料的一种相变化的过程,只要材料具有上述的过程,即在固态及液态间有此一状态存在,物理学家便称之为液态晶体。

TFT LCD液晶显示器的驱动原理

TFT LCD液晶显示器的驱动原理 我们针对feed through电压,以及二阶驱动的原理来做介绍.简单来说Feed through电压主要是由于面板上的寄生电容而产生的,而所谓三阶驱动的原理就是为了解决此一问题而发展出来的解决方式,不过我们这次只介绍二阶驱动,至于三阶驱动甚至是四阶驱动则留到下一次再介绍.在介绍feed through电压之前,我们先解释驱动系统中gate driver所送出波形的timing图. SVGA分辨率的二阶驱动波形 我们常见的1024*768分辨率的屏幕,就是我们通常称之为SVGA分辨率的屏幕.它的组成顾名思义就是以1024*768=786432个pixel来组成一个画面的数据.以液晶显示器来说,共需要1024*768*3个点(乘3是因为一个pixel需要蓝色,绿色,红色三个点来组成.)来显示一个画面.通常在面板的规划,把一个平面分成X-Y轴来说,在X轴上会有1024*3=3072列.这3072列就由8颗384输出channel的source driver 来负责推动.而在Y轴上,会有768行.这768行,就由3颗256输出channel的gate driver来负责驱动.图1就是SVGA分辨率的gate driver输出波形的timing图.图中gate 1 ~ 768分别代表着768个gate

driver的输出.以SVGA的分辨率,60Hz的画面更新频率来计算,一个frame的周期约为16.67 ms.对gate 1来说,它的启动时间周期一样为16.67ms.而在这16.67 ms之间,分别需要让gate 1 ~ 768共768条输出线,依序打开再关闭.所以分配到每条线打开的时间仅有16.67ms/768=21.7us而已.所以每一条gate d river打开的时间相对于整个frame是很短的,而在这短短的打开时间之内,source driver再将相对应的显示电极充电到所需的电压. 而所谓的二阶驱动就是指gate driver的输出电压仅有两种数值,一为打开电压,一为关闭电压.而对于common电压不变的驱动方式,不管何时何地,电压都是固定不动的.但是对于common电压变动的驱动方式,在每一个frame开始的第一条gate 1打开之前,就必须把电压改变一次.为什么要将这些输出电压的t iming介绍过一次呢?因为我们接下来要讨论的feed through电压,它的成因主要是因为面板上其它电压的变化,经由寄生电容或是储存电容,影响到显示电极电压的正确性.在LCD面板上主要的电压变化来源有3个,分别是gate driver电压变化,source driver电压变化,以及common电压变化.而这其中影响最大的就是gate driver电压变化(经由Cgd或是Cs),以及common电压变化(经由Clc或是Cs+Clc). Cs on common架构且common电压固定不动的feed through电压 我们刚才提到,造成有feed through电压的主因有两个.而在common电压固定不动的架构下,造成f eed through电压的主因就只有gate driver的电压变化了.在图2中,就是显示电极电压因为feed thro ugh电压影响,而造成电压变化的波形图.在图中,请注意到gate driver打开的时间,相对于每个frame 的时间比例是不正确的.在此我们是为了能仔细解释每个frame的动作,所以将gate driver打开的时间画的比较大.请记住,正确的gate driver打开时间是如同图1所示,需要在一个frame的时间内,依序将7

液晶显示器的工作原理

液晶显示器的工作原理 我们很早就知道物质有固态、液态、气态三种型态。液体分子质心的排列虽然不具有任何规律性,但是如果这些分子是长形的(或扁形的),它们的分子指向就可能有规律性。于是我们就可将液态又细分为许多型态。分子方向没有规律性的液体我们直接称为液体,而分子具有方向性的液体则称之为“液态晶体”,又简称“液晶”。液晶产品其实对我们来说并不陌生,我们常见到的手机、计算器都是属于液晶产品。液晶是在1888年,由奥地利植物学家Reinitzer发现的,是一种介于固体与液体之间,具有规则性分子排列的有机化合物。一般最常用的液晶型态为向列型液晶,分子形状为细长棒形,长宽约1nm~10nm,在不同电流电场作用下,液晶分子会做规则旋转90度排列,产生透光度的差别,如此在电源ON/OFF下产生明暗的区别,依此原理控制每个像素,便可构成所需图像。 1. 被动矩阵式LCD工作原理 TN-LCD、STN-LCD和DSTN-LCD之间的显示原理基本相同,不同之处是液晶分子的扭曲角度有些差别。下面以典型的TN-LCD为例,向大家介绍其结构及工作原理。 在厚度不到1厘米的TN-LCD液晶显示屏面板中,通常是由两片大玻璃基板,内夹着彩色滤光片、配向膜等制成的夹板? 外面再包裹着两片偏光板,它们可决定光通量的最大值与颜色的产生。彩色滤光片是由红、绿、蓝三种颜色构成的滤片,有规律地制作在一块大玻璃基

板上。每一个像素是由三种颜色的单元(或称为子像素)所组成。假如有一块面板的分辨率为1280×1024,则它实际拥有3840×1024个晶体管及子像素。每个子像素的左上角(灰色矩形)为不透光的薄膜晶体管,彩色滤光片能产生RGB三原色。每个夹层都包含电极和配向膜上形成的沟槽,上下夹层中填充了多层液晶分子(液晶空间不到5×10-6m)。在同一层内,液晶分子的位置虽不规则,但长轴取向都是平行于偏光板的。另一方面,在不同层之间,液晶分子的长轴沿偏光板平行平面连续扭转90度。其中,邻接偏光板的两层液晶分子长轴的取向,与所邻接的偏光板的偏振光方向一致。在接近上部夹层的液晶分子按照上部沟槽的方向来排列,而下部夹层的液晶分子按照下部沟槽的方向排列。最后再封装成一个液晶盒,并与驱动IC、控制IC 与印刷电路板相连接。 在正常情况下光线从上向下照射时,通常只有一个角度的光线能够穿透下来,通过上偏光板导入上部夹层的沟槽中,再通过液晶分子扭转排列的通路从下偏光板穿出,形成一个完整的光线穿透途径。而液晶显示器的夹层贴附了两块偏光板,这两块偏光板的排列和透光角度与上下夹层的沟槽排列相同。当液晶层施加某一电压时,由于受到外界电压的影响,液晶会改变它的初始状态,不再按照正常的方式排列,而变成竖立的状态。因此经过液晶的光会被第二层偏光板吸收而整个结构呈现不透光的状态,结果在显示屏上出现黑色。当液晶层不施任何电压时,液晶是在它的初始状态,会把入射光的方向扭转90度,因此让背光源的入射光能够通过整个结构,结果在显示屏上出现白

led液晶显示器的驱动原理

led液晶显示器的驱动原理 LED液晶显示器的驱动原理 艾布纳科技有限公司 前两次跟大家介绍有关液晶显示器操作的基本原理, 那是针对液晶本身的特性,与 TFT LCD 本身结构上的操作原理来做介绍. 这次我们针对 TFT LCD 的整体系统面来做介绍, 也就是对其驱动原理来做介绍, 而其驱动原理仍然因为一些架构上差异的关系, 而有所不同. 首先我们来介绍由于 Cs(storage capacitor)储存 电容架构不同, 所形成不同驱动系统架构的原理. Cs(storage capacitor)储存电容的架构 一般最常见的储存电容架构有两种, 分别是Cs on gate与Cs on common这两种. 这两种顾名思义就可以知道, 它的主要差别就在于储存电容是利用gate走线或是common走线来完成的. 在上一篇文章中, 我曾提到, 储存电容主要是为了让充好电的电压,能保持到下一次更新画面的时候之用. 所以我们就必须像在 CMOS 的制程之中, 利用不同层的走线, 来形成平行板电容. 而在TFT LCD的制程之中, 则是利用显示电极与gate走线或是common走线,所形成的平行板电容,来制作出储存电容Cs.

图1就是这两种储存电容架构, 从图中我们可以很明显的知道, Cs on gate由于不必像Cs on common一样, 需要增加一条额外的common走线, 所以它的开口率(Aperture ratio)会比较大. 而开口率的大小, 是影响面板的亮度与设计的重要因素. 所以现今面板的设计大多使用Cs on gate的方式. 但是由于Cs on gate的方式, 它的储存电容是由下一条的gate走线与显示电极之间形成的.(请见图2的Cs on gate与Cs on common的等效电路) 而gate走线, 顾名思义就是接到每一个TFT 的gate端的走线, 主要就是作为gate driver送出信号, 来打开TFT, 好让TFT对显示电极作充放电的动作. 所以当下一条gate走线, 送出电压要打开下一个TFT时 , 便会影响到储存电容上储存电压的大小. 不过由于下一条gate走线打开到关闭的时间很短,(以1024*768分辨率, 60Hz更新频率的面板来说. 一条gate走线打开的时间约为20us, 而显示画面更新的时间约为16ms, 所以相对而言, 影响有限.) 所以当下一条gate走线关闭, 回复到原先的电压, 则Cs储存电容的电压, 也会随之恢复到正常. 这也是为什么, 大多数的储存电容设计都是采用Cs on gate的方式的原因.

12864点阵型液晶显示屏的基本原理与使用方法(很详细)

12864点阵型液晶显示屏的基本原理与使用方法(很详细) 点阵LCD的显示原理 在数字电路中,所有的数据都是以0和1保存的,对LCD控制器进行不同的数据操作,可以得到不同的结果。对于显示英文操作,由于英文字母种类很少,只需要8位(一字节)即可。而对于中文,常用却有6000以上,于是我们的DOS前辈想了一个办法,就是将ASCII表的高128个很少用到的数值以两个为一组来表示汉字,即汉字的内码。而剩下的低128位则留给英文字符使用,即英文的内码。 那么,得到了汉字的内码后,还仅是一组数字,那又如何在屏幕上去显示呢?这就涉及到文字的字模,字模虽然也是一组数字,但它的意义却与数字的意义有了根本的变化,它是用数字的各位信息来记载英文或汉字的形状,如英文的'A'在字模的记载方式如图1所示: 图1“A”字模图 而中文的“你”在字模中的记载却如图2所示:

图2“你”字模图 12864点阵型LCD简介 12864是一种图形点阵液晶显示器,它主要由行驱动器/列驱动器及128×64全点阵液晶显示器组成。可完成图形显示,也可以显示8×4个(16×16点阵)汉字。 管脚号管脚名称LEVER管脚功能描述 1VSS0电源地 2VDD+5.0V电源电压 3V0-液晶显示器驱动电压 4D/I(RS)H/L D/I=“H”,表示DB7∽DB0为显示数据 D/I=“L”,表示DB7∽DB0为显示指令数据5R/W H/L R/W=“H”,E=“H”数据被读到DB7∽DB0 R/W=“L”,E=“H→L”数据被写到IR或DR 6E H/L R/W=“L”,E信号下降沿锁存DB7∽DB0 R/W=“H”,E=“H”DDRAM数据读到DB7∽DB0 7DB0H/L数据线 8DB1H/L数据线 9DB2H/L数据线 10DB3H/L数据线 11DB4H/L数据线 12DB5H/L数据线 13DB6H/L数据线 14DB7H/L数据线 15CS1H/L H:选择芯片(右半屏)信号 16CS2H/L H:选择芯片(左半屏)信号 17RET H/L复位信号,低电平复位

液晶显示器电源工作原理及维修

液晶显示器电源工作原理及维修 详细介绍液晶显示器电源的作用、工作原理、维修及代换, 一、电源的作用 1、电源的基本知识 液晶电源的作用是为整机提供能量,常见的电源适配器外观如图所示 它的输入是220V交流电,输出为12V、4A直流电。电源适配器的内部电路结构如图所示

2、液晶电源的常见存在形式 常见的液晶电源有内置式和外置式两种。内置式电源一般是和高压板做在一起,形成二合一电源板,驱动板需要的各路电压均有电源板产生。外置式电源也就是通常所说的电源适配器,它一般是220V交流电输入,12V直流电输出,驱动板需要的其他电原在驱动板上进行变换。 二、电源的工作原理 由于LCD采用低电压工作,而一般市电提供提是110V或220V的交流电压,因此显示器需要配备电源。电源的作用是将市电的220V交流电压转变成12V或其它低压直流电,以向液晶显示器供电。 LCD显示器中的电源部分均采用开关电源。由于开关电源具有体积小、重量轻、变换效率高等优点,因此被广泛应用于各种电子产品中,特别是脉宽调制(PWM)型的开关电源。PW M型开关电源的特点是固定开关频率、通过改变脉冲宽度的占空比来调节电压。 PWM开关电源的基本工作原理是:交流电220V输入电源经整流滤波是路变成300V直流电压,再由开关功率管控制和高频变压器降压,得到高频矩形波电压,经整流滤波后获得显示器所需要的各种直流输出电压。脉宽调制器是这类开关电源的核心,它能产生频率固定具脉冲宽度可调的驱动信号,控制开关功率管的导通与截止的占空比,用来调节输出电压的高低,从而达到稳压的目的。 以下将要介绍的电源适配器就是此类开关电源,我们以采用UC3842脉宽调制集成控制器的电源为例讲解相关电路。 1、UC3842的性能特点 (1)它属于电流型单端PWM调制器,具有管脚数量少,外围是路简单、安装调试方便、性能优良、价格低廉等优点。而且通过高频变压器与电网隔离,适合构成无工频变压器的20-50W小功率开关电源。 (2)最高开关频率为500KHZ,频率稳定度高达0.2%。电源效率高,输出电流大,能直接驱动双极型功率晶体管或VMOS管、DMOS管、TMOS管工作。 (3)内部有高稳定的基准电压源,档准值为5V,允许有+0.1%的偏差,温度系数为

LED液晶显示器的驱动原理

LED液晶显示器的驱动原理 艾布纳科技有限公司 前两次跟大家介绍有关液晶显示器操作的基本原理, 那是针对液晶本身的特性,与TFT LCD 本身结构上的操作原理来做介绍. 这次我们针对TFT LCD 的整体系统面来做介绍, 也就是对其驱动原理来做介绍, 而其驱动原理仍然因为一些架构上差异的关系, 而有所不同. 首先我们来介绍由于Cs(storage capacitor)储存电容架构不同, 所形成不同驱动系统架构的原理. Cs(storage capacitor)储存电容的架构 一般最常见的储存电容架构有两种, 分别是Cs on gate与Cs on common这两种. 这两种顾名思义就可以知道, 它的主要差别就在于储存电容是利用gate走线或是common走线来完成的. 在上一篇文章中, 我曾提到, 储存电容主要是为了让充好电的电压,能保持到下一次更新画面的时候之用. 所以我们就必须像在CMOS的制程之 中, 利用不同层的走线, 来形成平行板电容. 而在TFT LCD的制程之中, 则是利用显示电极与gate走线或是common走线,所形成的平行板电容,来制作出储存电容Cs. For personal use only in study and research; not for commercial use

图1就是这两种储存电容架构, 从图中我们可以很明显的知道, Cs on gate由于不必像Cs on common一样, 需要增加一条额外的common走线, 所以它的开口率(Aperture ratio)会比较大. 而开口率的大小, 是影响面板的亮度与设计的重要因 素. 所以现今面板的设计大多使用Cs on gate的方式. 但是由于Cs on gate的方 式, 它的储存电容是由下一条的gate走线与显示电极之间形成的.(请见图2的Cs on gate与Cs on common的等效电路) 而gate走线, 顾名思义就是接到每一个TFT 的gate端的走线, 主要就是作为gate driver送出信号, 来打开TFT, 好让TFT对显 示电极作充放电的动作. 所以当下一条gate走线, 送出电压要打开下一个TFT时, 便会影响到储存电容上储存电压的大小. 不过由于下一条gate走线打开到关闭的时间很短,(以1024*768分辨率, 60Hz更新频率的面板来说. 一条gate走线打开的时间约为20us, 而显示画面更新的时间约为16ms, 所以相对而言, 影响有限.) 所以当下一条gate走线关闭, 回复到原先的电压, 则Cs储存电容的电压, 也会随之恢复到正常. 这也是为什么, 大多数的储存电容设计都是采用Cs on gate的方式的原因. For personal use only in study and research; not for commercial use

液晶显示驱动原理1

TFT LCD液晶显示器的驱动原理(一) 谢崇凯 前两次跟大家介绍有关液晶显示器操作的基本原理, 那是针对液晶本身的特性,与TFT LCD本身结构上的操作原理来做介绍. 这次我们针对TFT LCD的整体系统面来做介绍, 也就是对其驱动原理来做介绍, 而其驱动原理仍然因为一些架构上差异的关系, 而有所不同. 首先我们来介绍由于CS(storage capacitor)储存电容架构不同, 所形成不同驱动系统架构的原理. CS(storage capacitor)储存电容的架构 一般最常见的储存电容架构有两种, 分别是cs on gate与cs on common这两种. 这两种顾名思义就可以知道, 它的主要差别就在于储存电容是利用gate走线或是common走线来完成的. 在上一篇文章中, 我曾提到, 储存电容主要是为了让充好电的电压,能保持到下一次更新画面的时候之用. 所以我们就必须像在CMOS的制程之中, 利用不同层的走线, 来形成平行板电容. 而在TFT LCD的制程之中, 则是利用显示电极与gate走线或是common走线,所形成的平行板电容,来制作出储存电容CS. 图1就是这两种储存电容架构, 从图中我们可以很明显的知道, cs on gate由于不必像cs on common一样, 需要增加一条额外的common走线, 所以它的开口率(Aperture ratio)会比较大. 而开口率的大小, 是影响面板的亮度与设计的重要因

素. 所以现今面板的设计大多使用cs on gate的方式. 但是由于cs on gate的方式, 它的储存电容是由下一条的gate走线与显示电极之间形成的.(请见图2的cs on gate 与cs on common的等效电路) 而gate走线, 顾名思义就是接到每一个TFT的gate端的走线, 主要就是作为gate driver送出信号, 来打开TFT, 好让TFT对显示电极作充放电的动作. 所以当下一条gate走线, 送出电压要打开下一个TFT时 ,便会影响到储存电容上储存电压的大小. 不过由于下一条gate走线打开到关闭的时间很短,(以1024*768分辨率, 60Hz更新频率的面板来说. 一条gate走线打开的时间约为20us, 而显示画面更新的时间约为16ms, 所以相对而言, 影响有限.) 所以当下一条gate 走线关闭, 回复到原先的电压, 则cs储存电容的电压, 也会随之恢复到正常. 这也是为什么, 大多数的储存电容设计都是采用cs on gate的方式的原因. 至于common走线, 我们在这边也需要顺便介绍一下. 从图2中我们可以发现, 不管您采用怎样的储存电容架构, Clc的两端都是分别接到显示电极与common. 既然液晶是充满在上下两片玻璃之间, 而显示电极与TFT都是位在同一片玻璃上, 则common电极很明显的就是位在另一片玻璃之上. 如此一来, 由液晶所形成的平行板电容Clc, 便是由上下两片玻璃的显示电极与common电极所形成. 而位于cs储存电容上的common电极, 则是另外利用位于与显示电极同 一片玻璃上的走线, 这跟Clc上的common电极是不一样的, 只不过它们最后都是接到相同的电压就是了.

显示屏工作原理

2 显示扫描原理 各个企业制造的LED显示屏的控制结构有所不同,但是,显示屏的显示扫描电路基本相同。双基色LED显示屏的显示扫描电路如图1所示。在图1中,IC1、IC2是数据锁存器电路74HC595,分别锁存红色、绿色数据,它们的性能是:①串行输入8位并行输出;②数据锁存、数据清除功能;③输出具有比较强的驱动能力。电阻RPB1、RPB2是限流电阻,根据颜色和模块的亮度来选择他们的数值。ML1是双色LED显示模块,共有8行×8列=64个LED,其中,8个引脚是红色信号输入端,8个引脚是绿色信号输入端,8个引脚是行控制输入端,共有24个引脚。三极管 Q0,Q2,…Q7是行选通、驱动作用。IC3是3-8地址译码电路74HC138,8个选通输出端分别控制相应的行。图中电路是显示屏的原理电路,其数据传送方式是数据传送与行信号异步进行:首先,同时传送8位红、绿颜色数据到电路IC1、IC2并将数据锁存,然后再传送行控制信号点亮一行LED,接下来重复上述操作,只是行信号移至下一行,依次到第八行为止,即是一次完整的扫描过程。 显示扫描电路板的设计要求具有比较低的生产成本,因此,许多企业都设计成双面电路板,这样可以节省约三分之一的电路板成本。在显示模块的相应尺寸范围内,要安放上图中的全部元器件,其对应的双层印刷电路板编制具有较大难度,所以IC1电路特别适合点阵扫描原理的LED显示模块的驱动。显示扫描电路都是采用串行方式传送数据,这样既可以节省电路板的位置,又适合显示屏与计算机之间的数据传送。 3 工作状态分析 显示扫描电路的原理是动态扫描方式,不能静态测量其工作电流,因此,要计算出工作电流,就要分析动态参数。图2是一个LED的工作电路图。电路中Q8是驱动电路,正端接电源,控制端接74HC138的输出,输出端接LED发光二极管D,与限流电阻连接,电阻接74HC595的数据输出端。LED的点亮方式是:控制74HC138的片选信号无效,为不选通,之后74HC595输出电平,低电平为点亮信号,再选通74HC138,控制输出选通信号,此时,有电流I0从Q8输出,流过D、R1后,进入74HC595的数据输出端。 在图中,V ab是加在LED上的电压,红、绿色高亮度发光二极管的压降均约2~3V,Vbc是加在限流电阻两端上的电压,通过调节限流电阻的数值,就可以改变电路的工作电流I0,当电阻R1=0时,电路依靠74HC595的输出有源电阻作为限流电阻。 在扫描电路中可以看出,电路结构比较简单,合理地调整各个部分工作参数就能够使电路工作在最佳状态。在选择电路时,还要准确掌握各个公司电路的性能,以及之间的技术参数的差别。不同型号的器件技术参数也有所区别,表1是74H C595的技术参数,表中给出了Texas Instru-ments,ST,Philips公司的74HC595的技术参数。在表中可以看出不同的公司生产的电路略有不同,因此,一块显示屏尽量要使用同一公司的电路器件,以免由于参数的差别影响显示屏的显示效果。 在表1中,Iik为输入尖峰脉冲电流,Iok为输出尖峰脉冲电流,I0为连续输出电流,Vcc为最高供电电压,f max表示在25℃时的最大工作频率(随着负载电容的不同,工作频率也不同),ta为工作温度。表中元件SN74HC595、M74HC595、74HC595对应公司是Texas Instryments,ST,Philips。 4 亮度和颜色的调整 4.1 亮度和颜色的调整 制造大屏幕时,首先要按照亮度指标选择LED或者显示模块,其次是根据选择的产品红、绿、蓝颜色的亮度比来确定哪一种颜色为基准,一般是将亮度比例低的一种作为亮度基准,当基准的一种已经达到最大亮度时,调整另外一种(双色)或两种(全彩)。显示屏幕是双色时,大多数情况下以绿色为基准,调整红色二极管的工作电流。一般是降低工作电流,以平衡颜色黄色为调整标准,这样就要减小整个显示屏幕的亮度。显示屏的颜色调整至最佳平衡状态,则会使屏的亮度降低。如果显示屏幕为了

TFT-LCD液晶显示器的工作原理(上)

TFT-LCD液晶显示器的工作原理(上) 谢崇凯 我一直记得,当初刚开始从事有关液晶显示器相关的工作时,常常遇到的困扰,就是不知道怎么跟人家解释,液晶显示器是什么? 只好随着不同的应用环境,来解释给人家听。在最早的时候是告诉人家,就是掌上型电动玩具上所用的显示屏,随着笔记型计算机开始普及,就可以告诉人家说,就是使用在笔记型计算机上的显示器。随着手机的流行,又可以告诉人家说,是使用在手机上的显示板。时至今日,液晶显示器,对于一般普罗大众,已经不再是生涩的名词。而它更是继半导体后另一种可以再创造大量营业额的新兴科技产品,更由于其轻薄的特性,因此它的应用范围比起原先使用阴极射线管(CRT,cathode-ray tube)所作成的显示器更多更广。 如同我前面所提到的,液晶显示器泛指一大堆利用液晶所制作出来的显示器。而今日对液晶显示器这个名称,大多是指使用于笔记型计算机,或是桌上型计算机应用方面的显示器。也就是薄膜晶体管液晶显示器。其英文名称为Thin-film transistor liquid crystal display,简称之TFT LCD。从它的英文名称中我们可以知道,这一种显示器它的构成主要有两个特征,一个是薄膜晶体管,另一个就是液晶本身。我们先谈谈液晶本身。 液晶(LC,liquid crystal)的分类 我们一般都认为物质像水一样都有三态,分别是固态液态跟气态。其实物质的三态是针对水而言,对于不同的物质,可能有其它不同的状态存在。以我们要谈到的液晶态而言,它是介于固体跟液体之间的一种状态,其实这种状态仅是材料的一种相变化的过程(请见图1),只要材料具有上述的过程,即在固态及液态间有此一状态存在,物理学家便称之为液态晶体。

液晶屏的工作原理

液晶屏的工作原理 (资料来源:中国联保网) 简单的来说,屏幕能显示的基本原理就是在两块平行板之间填充液晶材料,通过电压来改变液晶材料内部分子的排列状况,以达到遮光和透光的目的来显示深浅不一,错落有致的图象,而且只要在两块平板间再加上三元色的滤光层,就可实现显示彩色图象。 认识了它的结构和原理,了解了它的技术和工艺特点,才能在选购时有的放矢,在应用和维护时更加科学合理。液晶是一种有机复合物,由长棒状的分子构成。在自然状态下,这些棒状分子的长轴大致平行。 LCD第一个特点是必须将液晶灌入两个列有细槽的平面之间才能正常工作。这两个平面上的槽互相垂直(90度相交),也就是说,若一个平面上的分子南北向排列,则另一平面上的分子东西向排列,而位于两个平面之间的分子被强迫进入一种90度扭转的状态。由于光线顺着分子的排列方向传播,所以光线经过液晶时也被扭转90度。但当液晶上加一个电压时,分子便会重新垂直排列,使光线能直射出去,而不发生任何扭转。 LCD的第二个特点是它依赖极化滤光片和光线本身,自然光线是朝四面八方随机发散的,极化滤光片实际是一系列越来越细的平行线。这些线形成一张网,阻断不与这些线平行的所有光线,极化滤光片的线正好与第一个垂直,所以能完全阻断那些已经极化的光线。 只有两个滤光片的线完全平行,或者光线本身已扭转到与第二个极化滤光片相匹配,光线才得以穿透。一方面,LCD正是由这样两个相互垂直的极化滤光片构成,所以在正常情况下应该阻断所有试图穿透的光线。但是,由于两个滤光片之间充满了扭曲液晶,所以在光线穿出第一个滤光片后,会被液晶分子扭转90度,最后从第二个滤光片中穿出。另一方面,若为液晶加一个电压,分子又会重新排列并完全平行,使光线不再扭转,所以正好被第二个滤光片挡住。总之,加电将光线阻断,不加电则使光线射出。当然,也可以改变LCD 中的液晶排列,使光线在加电时射出,而不加电时被阻断。但由于液晶屏幕几乎总是亮着的,所以只有“加电将光线阻断”的方案才能达到最省电的目的。 主动矩阵式液晶屏 TFT-LCD液晶显示器的结构与TN-LCD液晶显示器基本相同,只不过将TN- LCD上夹层的电极改为FET晶体管,而下夹层改为共通电极。 TFT-LCD液晶显示器的工作原理与TN-LCD却有许多不同之处。TFT- LCD液晶显示器的显像原理是采用“背透式”照射方式。当光源照射时,先通过下偏光板向上透出,借助液晶分子来传导光线。由于上下夹层的电极改成FET电极和共通电极,在FE T电极导通时,液晶分子的排列状态同样会发生改变,也通过遮光和透光来达到显示的目

液晶电视的显示原理

液晶电视的显示原理 摘要:系统的介绍了液晶显示器的显示原理,结合液晶电视的显示原理,对液晶电视的技术特点进行了分析。 关键词:高清电视;液晶显示技术;亮度;对比度。 引言 液晶电视技术的发展这些年来可谓突飞猛进,在许多消费者还没有完全弄懂它背后深含的技术理论时,液晶电视已飞入千万寻常百 姓家。本文结合液晶显示原理,对液晶电视 的技术特点进行分析与比对。 1 液晶显示原理 TFT-LCD 液晶屏的结构 TFT- LCD 液晶屏在结构上由里到 外主要由背光源、偏光片、透明电极 (控制电路)、液晶、彩色滤光片、偏 光片所构成,如图1 所示。 液晶的光学效果 液晶包含在两个槽状表面中间,且槽的方向互相垂直,如图2 所示。液晶分子的排列为:上表面分子沿a 方向,下表面分子沿b 方向,介于上下表面中间的分子产生旋转的效应,因此液晶分子在两槽状表面间产生90°的旋转。

当线性偏振光射入上层槽状表面时,此光线随着液晶分子的旋转也产生旋转;当线性偏振光射出下层槽状表面时,此光线已经产生了90°的旋转。 当在上下表面之间加电压时,液晶分子会顺着电场方向排列,形成直立排列的现象。此时入射光线不受液晶分子影响,直线射出下表面。不同电压值,决定液晶偏转的角度。 偏光片的光学效果 如图3 所示。第一片偏光片可以将非偏振光(一般光线)过滤成偏振光;第二片偏光片实现取向功能,即仅允许该偏光片方向分量的光线通过。当非偏振光通过第一片a 方向的偏光片时,光线被过滤成与a 方向平行的线性偏振光;当通过第二片偏光片时,如果两片偏光片放置方向一致时,如图3 左图所示,光线可以顺利通过。当两片偏光片放置方向相互垂直时,如图3 右图所示,光线被完全阻挡。改变偏振光与第二片偏光片的夹角,可实现透光率的控制。 彩色滤光膜的光学效果 彩色滤光膜的各像素对应液晶屏的各像素,每像素包含红、绿、蓝三个子像素,光线透过彩色滤光膜形成红、绿、蓝三基色分量,如图4 所示。

液晶显示器高压板电路基本工作原理

液晶显示器高压板电路基本工作原理2010-06-11 10:21

高压板电路是一种DC/AC(直流/交流)变换器,它的工作过程就是开关电源工作的逆变过程。开关电源是将市电电网的交流电压转变为稳定的12V直流电压,而高压板电路正好相反,将开关电源输出的12V直流电压转变为高频(40~80kHz)的高压(600~800V)交流电。 电路主要由驱动电路(振荡电路、调制电路)、直流变换电路、Royer结构的驱动电路、保护检测电路、谐振电容、输出电流取样、CCFL等组成。在实际的高压板中,常将振荡器、调制器、保护电路集成在一起,组成一块小型集成电路,一般称为PWM控制IC。 驱动电路采用Royer结构形式。Royer结构的驱动电路也称为自激式推挽多谐振荡器,主要由功率输出管及升压变压器等组成, 、 组成一个具有亮度调整和保护功能的高压板电路。 图中的ON/OFF为振荡器启动/停止控制信号输入端,该控制信号来自驱动板(主板)微控制器(MCU)。当液晶显示器由待机状态转为正常工作状态后,MCU向振荡器送出启动工作信号(高/低电平变化信号),振荡器接收到信号后开始工作,产生频率40~80kHz的振荡信号送入调制器,在调制器内部与PWM激励脉冲信号,送往直流变换电路,使直流变 Royer L1(相当于电感)组成自激振荡电路,产生的振荡信号经功率放大和升压变压器升压耦合,输出高频交流高压,点亮背光灯管。 为了保护灯管,需要设置过电流和过电压保护电路。过电流保护检测信号从串联在背光灯管上的取样电阻R上取得,输送到驱动控制IC IC。当输出电压及背光灯管工作电流出现异常时,驱动控制IC控制调制器停止输出,从而起到保护的作用。 调节亮度时,亮度控制信号加到驱动控制IC,通过改变驱动控制IC输出的PWM脉冲的占空比,进而改变直流变换器输出的直流电压大小,也就改变了加在驱动输出管上的电压大小,即改变了自激振荡的振荡幅度,从而使升压变压器输出的信号幅度、CCFL两端的电压幅度发生变化,达到调节亮度的目的。 该电路只能驱动一只背光灯管。由于背光灯管不能并联或串联应用,所以,若需要驱动多只背光灯管,必须由相应的多个升压变压器输出电路及相适配的激励电路来驱动。

液晶屏原理

液晶屏原理 1.液晶显示器(LCD)目前科技信息产品都朝着轻、薄、短、小的目标发展,在计算机周边中拥有悠久历史的显示器产品当然也不例外。在便于携带与搬运为前题之下,传统的显示方式如CRT映像管显示器及LED显示板等等,皆受制于体积过大或耗电量甚巨等因素,无法达成使用者的实际需求。而液晶显示技术的发展正好切合目前信息产品的潮流,无论是直角显示、低耗电量、体积小、还是零辐射等优点,都能让使用者享受最佳的视觉环境。 2.液晶的诞生要追溯液晶显示器的来源,必须先从「液晶」的诞生开始讲起。在公元1888年,一位奥地利的植物学家,菲德烈.莱尼泽(Friedrich Reinitzer)发现了一种特殊的物质。他从植物中提炼出一种称为螺旋性甲苯酸盐的化合物,在为这种化合物做加热实验时,意外的发现此种化合物具有两个不同温度的熔点。而它的状态介于我们一般所熟知的液态与固态物质之间,有点类似肥皂水的胶状溶液,但它在某一温度范围内却具有液体和结晶双方性质的物质,也由于其独特的状态,后来便把它命名为「Liquid Crystal」,就是液态结晶物质的意思。不过,虽然液晶早在1888年就被发现,但是真正实用在生活周遭的用品时,却是在80年后的事情了。公元1968年,在美国RCA公司(收音机与电视的发明公司)的沙诺夫研发中心,工程师们发现液晶分子会受到电压的影响,改变其分子的排列状态,并且可以让射入的光线产生偏转的现象。利用此一原理,RCA公司发明

了世界第一台使用液晶显示的屏幕。尔后,液晶显示技术被广泛的用在一般的电子产品中,举凡计算器、电子表、手机屏幕、医院所使用的仪器(因为有辐射计量的考虑)或是数字相机上面的屏幕等等。令人玩味的是,液晶的发现比真空管或是阴极射线管还早,但世人了解此一现象的并不多,直到1962年才有第一本,由RCA研究小组的化学家乔.卡司特雷诺(Joe Castellano)先生所出版的书籍来描述。而与映像管相同的,这两项技术虽然都是由美国的RCA公司所发明的,却分别被日本的新力(Sony)与夏普(Sharp)两家公司发扬光大。 3.什么是液晶液晶显示器是以液晶材料为基本组件,由于液晶是介于固态和液态之间,不但具有固态晶体光学特性,又具有液态流动特性,所以已经可以说是一个中间相。而要了解液晶的所产生的光电效应,我们必须来解释液晶的物理特性,包括它的黏性(visco-sity)与弹性(elasticity)和其极化性(polarizalility)。液晶的黏性和弹性从流体力学的观点来看,可说是一个具有排列性质的液体,依照作用力量不同的方向,应该有不同的效果。就好像是将一把短木棍扔进流动的河水中,短木棍随着河水流着,起初显得凌乱,过了一会儿,所有短木棍的长轴都自然的变成与河水流动的方向一致,这表示着次黏性最低的流动方式,也是流动自由能最低的一个物理模型。此外,液晶除了有黏性的反应外,还具有弹性的反应,它们都是对于外加的力量,呈现了方向性的效果。也因此光线射入液晶物质中,必然会按照

LCD液晶显示屏工作原理

LCD 液晶显示屏工作原理 一、工作原理和概念术语 1、液晶显示屏的工作原理 液晶(Liquid Crystal ):是一种介于固态和液态之间的具有规则性分子排列,及晶体的光学各向异性的有机化合物,液晶在受热到一定温度的时候会呈现透明状的液体状态,而冷却则会出现结晶颗粒的混浊固体状态,因为物理上具有液体与晶体的特性,故称之为“液晶”。 液晶显示器LCD (Liquid Crystal Display ):是新型平板显示器件。显示器中的液晶体并不发光,而是控制外部光的通过量。当外部光线通过液晶分子时,液晶分子的排列扭曲状态不同,使光线通过的多少就不同,实现了亮暗变化,可重现图像。液晶分子扭曲的大小由加在液晶分子两边的电压差的大小决定。因而可以实现电到光的转换。即用电压的高低控制光的通过量,从而把电信号转换成光像。 (1)、液晶分子的电-光特性(如图2-1所示) (2)、液晶的电光控制特性(如图2-2所示) (a) (光 光控制电压010 9050%液晶显示器的电光特性(常暗模式) 101009050%b )液晶显示器的电光特性(常亮模式) 液晶显示器的电光控制特性 图中Uth —阈值电压(临界电压);Usat —饱和电压 透过率透过率控制电压 图2-1液晶的电-光特性图 图2-2 旋光性

(3)、 液晶分子排列状态的改变可实现对光的控制 液晶分子在偏光板间排列成多层,在不同层间, 液晶分子的长轴沿偏光板平行平面连续扭转90°,与偏光板的偏振光方向一致的偏振光,垂直射向无外加电场的液晶分子时,入射光将因其偏振方向随液晶分子轴的扭曲而旋转射出。故称为扭曲向列型液晶显示器。 当给液晶层施以某一电压差时,液晶分子会改变它的初始排列状态而不扭转,不改变光的极化方向,因此经过液晶的光会被第二层偏光片吸收而整个结构呈现不透光的状态。 2、概念和术语 (1)、光学的各向异性 液晶的特有性质,改变液晶两端电压,可改变液晶某一方向折射出的光的大小 (2)、偏振片(器) 只能在特定方向上透过光线的器件 (3)、像素、子像素、节距、分辨率(如图2-3所示) (4)、视角 当背光源的入射光通过偏极片、液晶后,输出光便具备了特定的方向特性,假如从一个非常斜的角度观看一个全白的画面,我们可能会看到黑色或是色彩失真。这个效应在某些场合有用,但在大部分的应用上是我们不希望要的。制造商们已经花了很多时间来试图改善液晶显示器的视角特性,有数种广视角技术被提出:IPS(IN-PLANE -SWITCHING 、MVA(MULTI-DOMAIN VERTICAL ALIGNMENT)、TN+FILM 。 这些技术都能把液晶显示器的视角增加到160度,甚至更多,就如同CRT 屏幕的视角特性一样。最大视角的定义是对比值至少能达到10:1的视角(通常有四个方向,上/下/左/右),如图2-4。 平板显示器的象素结构 绿、蓝三个组成一个像1024 列) 图2-3 平板显示器的像素结构 水平视角 显示器件的视角 图2-4 显示器件的视角

液晶显示器工作原理

液晶显示器工作原理 现在市场上的液晶显示器都采用了TFT液晶面板,这种液晶面板的是目前最先进的液晶显示器技术,从结构上看,液晶屏由两片线性偏光器和一层液晶所构成。其中,两片线性偏光器分别位于液晶显示器的内外层,每片只允许透过一个方向的光线,它们放臵的方向成90度交叉(水平、垂直),也就是说,如果光线保持一个方向射入,必定只能通过某一片线性偏光器,而无法透过另一片,默认状态下,两片线性偏光器间会维持一定的电压差,滤光片上的薄膜晶体管就会变成一个个的小开关,液晶分子排列方向发生变化,不对射入的光线产生任何影响,液晶显示屏会保持黑色。一旦取消线性偏光器间的电压差,液晶分子会保持其初始状态,将射入光线扭转90度,顺利透过第二片线性偏光器,液晶屏幕就亮起来了。当然这是一个很简单的原理模型,真正的液晶显示器内还有更复杂的电路结构。 红绿蓝三原色大家都知道,当这三种颜色同时混合时就会产生白色,这当然实在三原色强度一样的情况下才能够显示器纯正的白色,这样,从图中我们可以看见液晶面板的每一个像素中都有三种原色,这三种原色如果强度不同变化就可以产生不同的混色效果,这样全屏就有1024×768这样的像素,所以真实分辨率就是1024×768。低端的液晶显示板,各个基色只能表现6位色,即2的6次方=64种颜色.可以很简单的得出,每个独立像素可以表现的最大颜色数是64×64× 64=262144种颜色,高端液晶显示板利用FRC技术使得每个基色则可以表现8位色,即2的8次方=256种颜色,则像素能表现的最大颜色数为 256×256×256=16777216种颜色.这种显示板显示的画面色彩更丰富,层次感也好.现在基本上显示器都拥有FRC技术,可以显示器16777216种颜色 什么是TFT-LCD 其中彩色LCD又分为STN和TFT两种屏,其中TFT-LCD是英文Thin Film Transi stor-Liquid Crystal Display的缩写,即薄膜晶体管液晶显示器,也就是大家 常说的真彩液晶显示屏,显示效果较好;而DSTN-LCD,即双扫瞄液晶显示器,则是STN-LCD的一种显示 液晶是一种介于液体和固体之间的特殊物质,它具有液体的流态性质和固体的光学性质。当液晶受到电压的影响时,就会改变它的物理性质而发生形变,此时通过它的光的折射角度就会发生变化,而产生色彩。 液晶屏幕后面有一个背光,这个光源先穿过第一层偏光板,再来到液晶体上,而当光线透过液晶体时,就会产生光线的色泽改变,从液晶体射出来的光线,还得必须经过一块彩色滤光片以及第二块偏光板。由于两块偏光板的偏振方向成90度,再加上电压的变化和一些其它的装臵,液晶显示器就能显示我们想要的颜色了。 液晶显示有主动式和被动式两种,其实这两种的成像原理大同小异,只是背光源和偏光板的设计和方向有所不同。主动式液晶显示器又使用了fet场效晶体管以及共通电极,这样可以让液晶体在下一次的电压改变前一直保持电位状态。这样主动式液晶显示器就不会产生在被动式液晶显示器中常见的鬼影、或是画面延迟的残像等。现在最流行的主动式液晶屏幕是tft(thin film transistor薄

相关主题
文本预览
相关文档 最新文档