当前位置:文档之家› 大 型通用楔形管片拼装施工技术

大 型通用楔形管片拼装施工技术

大 型通用楔形管片拼装施工技术
大 型通用楔形管片拼装施工技术

大型通用楔形管片拼装施工技术

盾构网https://www.doczj.com/doc/3214059898.html,(2008-11-25) 新闻来源:上海隧道工程股份有限公司

摘要:通用楔形管片作为一种较先进的隧道衬砌形式,在盾构法施工中能够较好地控制隧道掘进轴线和管片成环质量。文章以上海市上中路隧道工程大型通用楔形管片的应用为例,介绍了通用楔形管片的设计理念和特点、全圆周错缝拼装的施工方法以及施工中控制管片质量的方法。

关键词:隧道;通用楔形管片;错缝拼装;施工技术

1 工程概述

上海市上中路隧道工程位于徐汇区和浦东新区内。该工程西起上中路~龙川路交叉口东侧,与中环线南段上中路衔接;东至浦东规划华夏西路~公园大道交叉口西侧,与中环线南段华夏西路衔接,是连接浦东、浦西的交通枢纽工程和重要的地下生命线工程。

本越江通道工程共设南线和北线2条隧道,为双管双层双向8车道隧道工程,工程以南线上层、北线下层车道作为主线控制中心线。其中盾构法圆隧道南线起始里程为SK1+850.0m,终止里程为SK0+580.0m,全长1270m。北线起始里程为NK0+582.853m,终止里程为NK1+856.908m,全长1274.055m。隧道工程采用一台Ф14870mm 泥水平衡式盾构机掘进施工。隧道最大坡度为4.50%,曲线转弯达12段,最小平曲线半径为R1000m。

在本次盾构施工中,我们采用通用楔形管片的形式作为隧道衬砌,在满足隧道曲线的基础上,保证了隧道环面的质量。

2 通用楔形管片的特点

2.1 普通隧道衬砌管片

目前在盾构施工中,隧道衬砌直线段一般采用等宽的普通圆环,在平面曲线和竖曲线段则采用不同的楔形圆环对隧道轴线进行拟合。整条隧道就需要设计和加工左转、直线、右转以及特殊形式的圆环,同时,由于管片楔形量是固定的,从而不利于在盾构施工中对隧道轴线的精准控制。而管片拼装一般采用通缝拼装和错缝拼装两种形式。错缝拼装要求在拼装时旋转一定的角度避免通缝,有利于衬砌本身传递圆环内力,且错缝拼装的隧道比通缝拼装的隧道整体性强,圆环可以近似按匀质刚度考虑。但在通常的隧道衬砌施工中,错缝拼装的形式比较单一,且管片的旋转角度相对固定(一般只能旋转3个角度,左右20度角范围内)。

2.2 通用楔形管片

本工程隧道管片外径14500mm,内径13300mm,环宽2000mm,管片厚度600mm。每环由10块管片构成。其中标准块7块(S1,S2,S3,S4,S5,S6,S7),邻接块2块(S8,S9),封顶块1块(S10)。普通衬砌环由钢筋砼管片构成,砼强度等级为C55,抗渗等级为1.2MPa,钢筋采用HPB235级、HRB335级钢。管片环与环之间用38根M27的斜螺栓相连接,每环管片块与块间以20根M36的斜螺栓连接。具体管片构造详见图1。

图1 衬砌圆环构造图

2.3 管片楔形量

在图1中,我们可以看到管片的楔形量为40mm,同时根据管片外径14500mm和环宽2000m,可以计算出轴线最小半径为725米,满足隧道轴线最小曲线半径1000m。

在本工程中,盾构机共有19组千斤顶,相对应管片可全圆周旋转19个方位,每次旋转的角度位18.947度。在管片旋转时,纵向的螺栓位置不变。

我们将封顶块S10在上部时管片姿态定义为衬砌圆环R1,S10顺时针旋转18.947度时,将其定义为R2,依次为R3~R19。在管片旋转的同时,其上部、右部、下部、左部的楔形量(对应2000mm的标准环宽)也相应地发生变化。具体楔形量变化见表1。

表1 不同旋转角度管片楔形量表

在推进施工中,根据盾构姿态与管片姿态的相对关系及管片与盾壳的间隙,可以根据不同旋转角度下管片楔形量的变化对隧道推进轴线进行微调,从而确保隧道轴线的进度。

3 管片选型

3.1 选型因素

在管片拼装前应先确定管片旋转的角度,即选择封顶块S10的位置,选型必须考虑以下因素:

盾构机姿态与隧道轴线相对关系

盾构机姿态与管片姿态的相对关系

盾构机各个千斤顶行程

管片外表面与盾壳内表面的四周间隙

管片的上、下、左、右超前量

错缝拼装

封顶块的位置尽量选择在隧道腰部以上

3.2 管片选型

(1) 设计排版

在推进施工前,应对管片进行排版以拟合设计轴线。在直线段,基本排版为R5、R6、R15、R16为主。在曲线段,以R=1000米的平面左曲线为例,每环管片(见图2)所需的右超前量计算如下:

Δ=φW/R=14.5×2000/1000=29mm

因此基本排版可采用R12、R13、R14、R15、R16、R17、R18,满足曲线转弯的需要。

图2平面曲线楔形量计算示意图

(2) 动态轴线拟合

在实际推进中,盾构姿态与管片姿态的关系是相辅相成的。盾构推进姿态决定了管片拼装姿态,同时成环隧道作为盾构推进的导向,而在施工中,成环隧道的轴线不可能与设计轴线相吻合,总存在一定的偏差,因此应根据设计轴线拟合管片拼装的轨迹,从而指导盾构推进。

设计轴线的动态拟合遵循缓和平稳的原则。

以下以竖曲线拟合设计轴线进行说明(平曲线拟合方法相同)。轴线拟合可归类于以下模型,见图3。

图3 曲线拟合示意图

测量上环管片的坡度θ2和与设计轴线的竖直方向的偏差ΔZ,设设计轴线坡度θ1,设拟合曲线的半径为R,转弯角度为α。

α=|θ1-θ2|

(3) 施工调整

在设计排版和拟合曲线的基础上应根据施工的具体工况对管片线路排版进行动态调整。在施工中我们采用CA TSBY施工软件和PYXIS测量导向系统,对管片选型进行优化。PYXIS测量导向系统通过盾构机各个千斤顶的行程与管片与盾壳的四周间隙数据采集计算,同时结合管片纵缝的情况计算出可供选择的封顶块位置,并可预测出后2环管片的趋势。见图4。

图4 施工软件界面图

但PYXIS测量导向系统没有考虑到盾构机姿态与隧道轴线相对关系和盾构机姿态与管片姿态的相对关系,在实际施工中我们应增加这两个因素对管片进行选型。

4 选型实例

在上中路隧道工程盾构推进至57环时,设计轴线坡度为-4.5%,测量盾构姿态、管片姿态(56环报表)、千斤顶行程和盾尾四周间隙报表见表2。

说明:盾构和管片的平面及高程均为相对设计轴线,坡度计算时需转换为角度;千斤顶行程和盾尾四周间隙的上、右、下、左为面向盾构推进方向所看到的方位。

经计算可得,57环高程楔形量Δ=9.97mm,根据表1管片楔形量表,选择R6、R7均可。同时考虑到左部千斤顶行程比右部长24mm和左部盾尾间隙比左部大,因此是这两种管片选型均是合理的。

5 管片拼装施工技术和质量控制

5.1 管片拼装技术

(1) 在拼装过程中要清除盾尾处拼装部位的垃圾和杂物,同时必须注意管片定位的正确,尤其是第一块管片的定位会影响整环管片成环后的质量及与盾构的相对位置良好度。

(2) 每环管片拼装要精心,尽量做到管片接缝密贴,环面平整。必要时应在环面密贴1~5mm石棉板以调整环面的平整度。

(3) 拼装时,要确保“T”字接头平整。

(4) 环面超前量控制:施工中经常测量管片圆环环面与隧道设计轴线的垂直度,当管片超前量超过控制量时,及时调整管片旋转角度,从而保证管片环面与隧道设计轴线的垂直度。

(5) 每一块管片拼装结束后,伸出千斤顶并控制到所需的顶力,再进行下一块管片的拼装,这样逐块进行完成一环的拼装。对于不平整环面的管片,在拼装下一环管片用千斤顶压实时,应先顶“凸”位置的千斤顶。

(6) 在拼装时应注意调整管片的椭圆度,尽量使管片呈竖椭圆状态。

(7) 拼装后及时调整千斤顶的顶力,防止盾构姿态发生突变。

5.2 同步注浆对成环管片的质量影响

由于盾构的外径大于管片的直径,随着盾构的推进,在管片与土体之间将产生建筑空隙。为了能及时填充这些空隙,尽可能的减少盾构施工时对地面的影响,采用较为有效的同步注浆法,即盾构一边向前推进,一边对盾构后产生的建筑空隙进行及时注浆填充。

相对以往大型泥水平衡盾构采用的双液浆,在上中路隧道工程中,同步注浆的浆液采用单液浆的形式。本次单液浆有以下特点:

注浆材料填充性好

填充后在早期只能取得与土体相当的强度

硬化后,体积的缩小量小、止水性好

具备不受或少受地下水稀释的特性

流动性好,离析少

可泵性好,在长距离输送过程中泌水量小

本工程的管片直径达14500mm,管片之间的连接相对管片的刚度而言表现为柔性。因此,在进行同步注浆时须控制好注浆压力和注浆量,使之既能达到有效地填充建筑空隙,又不会对管片的成环质量产生影响。

盾构本体同步注浆系统6个注浆点(0°、60°、120°、180°、240°、300°) 对盾尾后管片外部建筑空同步实施注浆。

注浆压力设定

P=P1+P2+P3

其中P1为该注浆点泥水压力值(Bar)

P2为注浆管损失压力,根据盾构机取2Bar

P3为注浆压力差,一般取1.5Bar

理论注浆量为:

V=π/4·(14.852-14.52) x2=16.14m3

实际的注浆量为理论建筑空隙的110%~120%,即17.75~19.36m3。

由于单液浆初期强度低,具有一定的流动性,故上部与下部注浆点的注浆量之比为60:40。

结语

相对传统管片形式,通用楔形管片有以下优点:

(1) 钢模数量单一,大大简便了管片生产施工,降低了施工成本;

(2) 单一的管片形式可适合多种不同曲线半径复合轴线推进;

(3) 施工动态调整方便,具有即时性,在盾构推进结束后根据测量的结构对管片进行拼装选型,对盾构推进起着良好的导向;

(4) 不同的楔形量调整有利于施工中盾构姿态与管片姿态的微调,从而提高隧道轴线控制质量;

(5) 管片成环质量高,踏步小,环面平整,止水效果明显。

参考文献

[1] 周文波. 盾构法隧道施工技术及应用. 北京,中国建筑工业出版社, 2004年11月

[2] 黄德中傅德明丁志诚. 上海上中路越江隧道工程. 大直径隧道与城市轨道交通工程技术-2005年上海国际隧道工程研讨会论文集, 上海,同济大学出版社,2005年10月,P67-73

[3] 韩亚丽陈溃. 南京地铁盾构隧道管片拼装技术. 隧道建设, 2003年第23卷第2期P15-17,54

[4] 孙善辉. 城陵矶长江穿越隧道管片拼装技术.隧道建设, 2003年第24卷第2期P15-17

[5] 余暄平沈永东凌宇峰王吉云. 超大直径超长距离隧道盾构施工技术初探. 大直径隧道与城市轨道交通工程技术-2005年上海国际隧道工程研讨会论文集, 上海,同济大学出版社,2005年10月,P12-24

(戴仕敏李章林何国军)

管片选型及拼装作业指导书

管片选型及拼装作业指导书 1?目的及范围 编制管片的选型及拼装施工技术措施,对施工做以指导,保证管片的拼装质量,达到施工及验收要求。 目前国内常见的管片形式为通用环和标准环加左、右转弯环管片。因此,主要介绍这两类型管片的施工技术。 2?编制依据 管片设计要求; 适应隧道设计线路; 适应盾构机的姿态。 3?职责 管片拼装职责表 4?施工工艺、方法及主要技术措施 施工工艺及流程

图管片安装工艺流程图 施工方法 管片的形式为平板型单层管片衬砌,衬砌环纵、环缝均采用弯螺栓连接,通过合理的管片选型使管片错缝拼装。 4.2.1管片的拼装点位 421.1通用性管片 管片为双面楔形通用管片,衬砌环纵采用12根弯螺栓连接,环缝采用16 根弯螺栓连接。 根据管片环向16个螺栓孔,将管片按照钟表的方向平均分为16个点位,通过管片的选型,以达到错缝拼装的要求。 表4.2.1-1管片拼装点位表

421.2标准环加左、右转弯环管片 管片为双面楔形通用管片,衬砌环纵采用12根弯螺栓连接,环缝采用10 根弯螺栓连接。 根据管片环向10个螺栓孔,将管片按照钟表的方向平均分为10个点位,通过管片的选型,以达到错缝拼装的要求。管片的点位可划分为两类,一类为1点、3点、5点、8点、10点;二类为11点、2点、4点、7点、9点,同一类管片不能相连。 表4.2.1.2-1管片拼装点位表 4.2.2隧道管片排序 鉴于管片拼装的规律性,所以盾构施工前必须对隧道管片做好排序,并根据设计,模拟出联络通道和泵房位置,管片拼到联络通道处时,点位要正好和设计点位符合,否则联络通道位置会被改变。 管片排序时,要优化洞门的长度,在武汉洞门长度要求在400mm?800mm, 一环管片的长度是1500m m,在条件允许的条件下,通过调整始发负环的位置,把每节隧道两端的洞门长度之和控制在1500mm以内,当隧道长度除以管片长 度的余数大于两倍最小洞门宽度800mm (各地洞门的最小宽度要求不同)时,就取余数的一半为洞门长度。

盾构管片拼装施工技术

盾构管片拼装施工技术文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

一、管片拼装工艺流程 盾构管片拼装的施工流程: 二、管片安装施工要点 1、盾构管片现场验收 管片到达施工场地后,进场验收,主要的检验项目有:管片出厂合格证是否齐全有效;管片外表是否清洁;止水条、缓冲垫是否贴牢完好;管片标识(包括管片型号、模具编号、生产日期、生产厂家、合格状态)是否齐全和完整;管片是否有崩角、破损、砂眼或裂缝等;吊装孔螺栓孔是否完好,孔内是否有异物。然后由地面工程师对进场管片负责签收,并对每环管片做好标识,做到有据可查。卸货后由地面工班黏贴止水条。 2、管片拼装施工措施 管片拼装是盾构法施工的重要环节,其拼装质量的好坏不仅直接关系到成洞的质量,而且对盾构机能否继续顺利推进有着直接的影响。因此,管片在拼装前仍要进行一次检查,再次确认管片种类正确、质量完好无缺和密封垫黏结无脱落,管片的吊装孔预埋位置正确,封堵盖完好无损,以及其他主要预埋件和混凝土的握裹牢固,管片接头使用的螺栓、螺母、垫圈、螺栓防水用密封垫等附件准备齐全后,才允许拼装。每环管片拼装结束后要及时拧紧各个方向的螺栓,且在该环脱出盾尾后再次拧紧。 3、管片的堆放运输

管片出厂前逐片进行尺寸、外观的检测,不合格者不允许出厂。外观的检测内容有:管片表面光洁平整,无蜂窝、露筋,无裂痕、缺角,无气、水泡,无水泥浆等杂物;灌浆孔螺栓套管完整。安装位置正确。对于轻微的缺陷进行处理,止水带附近不允许有缺陷。 达到龄期并检验合格的管片有计划地由平板车运到施工现场。管片运输时其间用垫木垫实,以免使管片产生有害裂纹,或棱线部分被碰坏。 管片到达现场后由龙门吊卸到专门的管片堆放区。管片堆放区应选择适当,以免因其自重造成场所不均匀沉降和垫木变形产生异常的应力而破裂。在卸之前对管片进行逐一的外观检测,不符合要求(裂缝、破损、无标志等)的管片立即退回。 4、管片吊放及隧道内运输 管片下井采用龙门吊进行。洞内运输采用电瓶车牵引管片车运输。管片车上的管片堆放有序,堆放次序依据管片安装顺序摆放。 管片运到盾构机附近后,由管片吊装机卸到管片喂片机,然后送到管片安装机工作范围内,按照从下到上依次安装到相应位置上。当最后一块插入块安装紧固后,一环管片即安装完毕,可以进行下一环的掘进。 5、管片拼装 管片拼装时采用错缝拼装方式,先拼装底部标准块,然后按左右对称顺序逐块拼装两侧的标准块和邻接块,最后拼装封顶块。封顶块拼装时先搭接2/3环宽,径向推上,再纵向插入。 管片拼装过程如下: 1)用管片拼装机将管片吊起,沿吊机梁移动到盾尾位置。 2)拼装前彻底清除盾壳安装部位的垃圾和积水,同时必须注意管片的定位精确,尤其第一环要做到居中安放。 3)管片拼装采取自下而上的原则,由下部开始,先装底部标准块(或邻接块),再对称安装标准块和邻接块,最后安装封顶块,封顶块安装时,先径向搭接2/3,径向推上,然后纵向插入

大型通用楔形管片拼装施工技术

大型通用楔形管片拼装施工技术 盾构网 https://www.doczj.com/doc/3214059898.html,(2008-11-25) 新闻来源:上海隧道工程股份有限公司 摘要:通用楔形管片作为一种较先进的隧道衬砌形式,在盾构法施工中能够较好地控制隧道掘进轴线和管片成环质量。文章以上海市上中路隧道工程大型通用楔形管片的应用为例,介绍了通用楔形管片的设计理念和特点、全圆周错缝拼装的施工方法以及施工中控制管片质量的方法。 关键词:隧道;通用楔形管片;错缝拼装;施工技术 1 工程概述 上海市上中路隧道工程位于徐汇区和浦东新区内。该工程西起上中路~龙川路交叉口东侧,与中环线南段上中路衔接;东至浦东规划华夏西路~公园大道交叉口西侧,与中环线南段华夏西路衔接,是连接浦东、浦西的交通枢纽工程和重要的地下生命线工程。 本越江通道工程共设南线和北线2条隧道,为双管双层双向8车道隧道工程,工程以南线上层、北线下层车道作为主线控制中心线。其中盾构法圆隧道南线起始里程为SK1+850.0m,终止里程为 SK0+580.0m,全长1270m。北线起始里程为NK0+582.853m,终止里程为NK1+856.908m,全长1274.055m。隧道工程采用一台Ф14870mm 泥水平衡式盾构机掘进施工。隧道最大坡度为4.50%,曲线转弯达12段,最小平曲线半径为R1000m。 在本次盾构施工中,我们采用通用楔形管片的形式作为隧道衬砌,在满足隧道曲线的基础上,保证了隧道环面的质量。 2 通用楔形管片的特点 2.1 普通隧道衬砌管片 目前在盾构施工中,隧道衬砌直线段一般采用等宽的普通圆环,在平面曲线和竖曲线段则采用不同的楔形圆环对隧道轴线进行拟合。整条隧道就需要设计和加工左转、直线、右转以及特殊形式的圆环,同时,由于管片楔形量是固定的,从而不利于在盾构施工中对隧道轴线的精准控制。而管片拼装一般采用通缝拼装和错缝拼装两种形式。错缝拼装要求在拼装时旋转一定的角度避免通缝,有利于衬砌本身传递圆环内力,且错缝拼装的隧道比通缝拼装的隧道整体性强,圆环可以近似按匀质刚度考虑。但在通常的隧道衬砌施工中,错缝拼装的形式比较单一,且管片的旋转角度相对固定(一般只能旋转3个角度,左右20度角范围内)。 2.2 通用楔形管片 本工程隧道管片外径14500mm,内径13300mm,环宽2000mm,管片厚度600mm。每环由10块管片构成。其中标准块7块(S1,S2,S3,S4,S5,S6,S7),邻接块2块(S8,S9),封顶块1块(S10)。普通衬砌环由钢筋砼管片构成,砼强度等级为C55,抗渗等级为1.2MPa,钢筋采用HPB235级、HRB335级钢。管片环与环之间用38根M27的斜螺栓相连接,每环管片块与块间以20根M36的斜螺栓连接。具体管片构造详见图1。

盾构隧道管片拼装技术样本

盾构隧道管片拼装技术 【内容提要】经过广州轨道交通四号线大学城专线【仑头~大学城盾构区间】隧道管片选型的实践, 详细的介绍了广州地铁施工中的管片拼装技术。 【关键词】管片拼装盾构姿态盾尾间隙转弯环楔形量 1、工程概况 广州轨道交通四号线大学城专线【仑头~大学城盾构区间】土建工程, 北起仑头后底岗盾构始发井, 经仑头村穿越仑头海至官洲岛, 经过官洲站后经官洲村、官洲河等地, 至大学城结束, 区间隧道为单孔双线隧道, 总长为2826.5m, 其中盾构法区间隧道为2301.3m, 区间包括7个联络通道、 2个废水泵房。 本区段共有两处曲线, 第一处曲线半径R为800m, 曲线长度为691.242m, 转向角а为43°25′08″; 第二处曲线半径R为450m, 曲线长度为259.359m, 转向角а为24°06′36″; 该区间曲线总长为950.601m, 占盾构隧道总长的41.31%。区间隧道设计为”V”形坡, 其坡度依次为: 27.75‰( 长540m, 下坡) 、 4.08‰( 长350m, 上坡) 、37‰( 长470m, 上坡) 、 24.5‰( 长350m, 下坡) 、 5‰( 长330m, 下坡) 、 43.3‰( 长320m, 上坡) , 变坡处设有竖曲线, 竖曲线半径R为5000m或3000m。 仑大盾构区间盾构隧道采用C50预制钢筋混凝土管片, 管片内径为5400mm, 外径为6000mm, 厚度为300mm, 宽度为1500mm。 管片采用3A+2B+1K的分块方式, 即每环管片分6个单元, 3个标准块, 2个邻接块和1个封顶块组成, 管片间设橡胶止水带, 衬砌环间采用错缝拼装。为满足曲线施工和隧道纠偏的需要, 专门设计了左、右转弯环。管片的型号分为标准环( T) 、左弯环( L) 和右弯环( R) , 转弯环为双面对称楔形环, 楔形量为38mm。

盾构管片的选型和拼装2018.6

管片的选型和拼装(2018年6月) 一、管片的选型原则 1、管片选型符合隧道设计线路; 2、管片选型要适合盾构机的姿态; 3、管片选型尽量采用ABA的拼装型式; 说明: 1、管片选型如何符合隧道设计线路 根据隧道中线的平曲线和竖曲线的走向,管片分为标准环、左转弯、右转弯三类。直线上选标准环,左转曲线上选左转环,右转曲线上选右转环。其中转弯环数量的计算公式如下: θ=2γ=2*arctg(δ/D) 式中: θ——转弯环的偏转角 δ——转弯环的最大楔型量的一半 D——管片直径 每条曲线上的转弯环个数为 N=(α0+β)/θ 式中: α0——曲线上切线的转角 β——缓和曲线偏角 经计算本标段所需左转弯环131环,右转弯环131环。 根据圆心角的计算公式

α=180L/(πR) 式中: L——段线路中心线的长度 R——曲线半径 而θ=α,将之代入的到L=6.33m,所以在圆曲线上每隔6.33m一个转弯环(N=6.33/1.5=4.2环,即平均4.2环一个转弯环)。经过实际计算,在缓和曲线上,也近似于6m一个转弯环。 2、管片选型要符合盾构机的姿态 管片是在盾尾内拼装,所以不可避免的受到盾构机姿态的约制。管片平面尽量垂直于盾构机轴线,让盾构机的推进油缸能垂直地推在管片上,这样使管片受力均匀,掘进时不会产生管片破损。同时也要兼顾管片与盾尾之间的间隙,避免盾构机与管片发生碰撞而破损管片。当因地质不均、推力不均等原因,使盾构机偏离线路设计轴线时,管片的选型要适宜盾构机的姿态,尤其在曲线段掘进时更要注意。 3、根据现有的管模数量和类型,及生产能力 现有管模四套,两套标准环管模,一套左转环管模,一套右转环管模,每套管模每天能生产两环管片。为了满足每天掘进8~9环的进度要求,用转弯环代替标准环,例如用一套左转环和一套右转环来代替两个标准环。 二、影响管片选型的因素 1、盾构机的盾尾间隙的影响 盾尾与管片之间的间隙叫盾尾间隙。 盾尾间隙是管片选型的一个重要的一个重要依据。如果盾尾间隙过

大 型通用楔形管片拼装施工技术

大型通用楔形管片拼装施工技术 盾构网https://www.doczj.com/doc/3214059898.html,(2008-11-25) 新闻来源:上海隧道工程股份有限公司 摘要:通用楔形管片作为一种较先进的隧道衬砌形式,在盾构法施工中能够较好地控制隧道掘进轴线和管片成环质量。文章以上海市上中路隧道工程大型通用楔形管片的应用为例,介绍了通用楔形管片的设计理念和特点、全圆周错缝拼装的施工方法以及施工中控制管片质量的方法。 关键词:隧道;通用楔形管片;错缝拼装;施工技术 1 工程概述 上海市上中路隧道工程位于徐汇区和浦东新区内。该工程西起上中路~龙川路交叉口东侧,与中环线南段上中路衔接;东至浦东规划华夏西路~公园大道交叉口西侧,与中环线南段华夏西路衔接,是连接浦东、浦西的交通枢纽工程和重要的地下生命线工程。 本越江通道工程共设南线和北线2条隧道,为双管双层双向8车道隧道工程,工程以南线上层、北线下层车道作为主线控制中心线。其中盾构法圆隧道南线起始里程为SK1+850.0m,终止里程为SK0+580.0m,全长1270m。北线起始里程为NK0+582.853m,终止里程为NK1+856.908m,全长1274.055m。隧道工程采用一台Ф14870mm 泥水平衡式盾构机掘进施工。隧道最大坡度为4.50%,曲线转弯达12段,最小平曲线半径为R1000m。 在本次盾构施工中,我们采用通用楔形管片的形式作为隧道衬砌,在满足隧道曲线的基础上,保证了隧道环面的质量。 2 通用楔形管片的特点 2.1 普通隧道衬砌管片 目前在盾构施工中,隧道衬砌直线段一般采用等宽的普通圆环,在平面曲线和竖曲线段则采用不同的楔形圆环对隧道轴线进行拟合。整条隧道就需要设计和加工左转、直线、右转以及特殊形式的圆环,同时,由于管片楔形量是固定的,从而不利于在盾构施工中对隧道轴线的精准控制。而管片拼装一般采用通缝拼装和错缝拼装两种形式。错缝拼装要求在拼装时旋转一定的角度避免通缝,有利于衬砌本身传递圆环内力,且错缝拼装的隧道比通缝拼装的隧道整体性强,圆环可以近似按匀质刚度考虑。但在通常的隧道衬砌施工中,错缝拼装的形式比较单一,且管片的旋转角度相对固定(一般只能旋转3个角度,左右20度角范围内)。 2.2 通用楔形管片 本工程隧道管片外径14500mm,内径13300mm,环宽2000mm,管片厚度600mm。每环由10块管片构成。其中标准块7块(S1,S2,S3,S4,S5,S6,S7),邻接块2块(S8,S9),封顶块1块(S10)。普通衬砌环由钢筋砼管片构成,砼强度等级为C55,抗渗等级为1.2MPa,钢筋采用HPB235级、HRB335级钢。管片环与环之间用38根M27的斜螺栓相连接,每环管片块与块间以20根M36的斜螺栓连接。具体管片构造详见图1。

管片拼装质量控制技术教学提纲

管片拼装质量控制技术 1管片的特征 深圳地铁7号线7301-2标盾构管片环主要为通用环,管片环外径为6m,内径为5.4m,幅宽1.5m,厚度为0.3m,楔形量38mm。每环由6片管片组成,其中三块标准块,两块邻接块,一块封顶块;管片混凝土强度等级为C50,抗渗等级不小于p10。 管片拼装除了这些特征外,在设计中还有拼装点位、楔形等一些特征。 1.1管片的拼装点位 本区间的管片拼装分10个点位,和钟表的点位相近,分别是1、2、3、4、5、7、8、9、10、11。 管片划分点位的依据有两个:管片的分块形式和螺栓孔的布置。拼环时点位尽量要求ABA(1点、11点)形式,隧道管片要求错缝拼装,相邻两环管片不能通缝。管片拼装点位有很强的规律,管片的点位可划分为两类,一类为1点、3点、5点、8点、10点;二类为11点、2点、4点、7点、9点。同一类管片不能相连,例如1点后不能跟3、5、8、10这四个点位,只能跟11、2、4、7、9这五个点位。在成型隧道里两联络通道之间的奇数管片是同一类,偶数管片是同一类。 1.2管片楔形的种类 楔形管片分为前楔形、后楔形、等腰楔形(6000:19)。本工程

采用的管片为等腰楔形。后楔形和等腰楔形容易控制管片方向,纠偏比较灵活,前楔形一般不可取。 如图所示,在楔形量相同的情况下后楔形管片纠偏的能力最强,前楔形管片纠偏能力最差。 1.3管片楔形量的确定 隧道在曲线上,外边长大于内边长,且盾构机姿态始终蛇行前进,

所以要求管片在隧道里拼装时,可以灵活地调整走向,即需要管片设计楔形量。 确定管片楔形量的因素有三个,分别是线路的曲线半径、管片宽度、标准环数与楔形环数之比。本标段管片楔形量为38mm。 2盾构管片拼装施工流程 盾构管片拼装的施工流程:管片进场检查→粘贴防水材料→由技术人员和质检员检查防水材料粘贴情况→吊装下井→电瓶车将管片运至盾尾→盾尾清理→缩回安装位置油缸→管片就位→拼装管片→管片螺栓连接→管片脱离盾尾后→二次紧固螺栓。 3管片拼装施工措施 管片拼装是盾构法施工的重要环节,其拼装质量的好坏不仅直接关系到成洞的质量,而且对盾构机能否继续顺利推进有着直接的影响。因此,管片在拼装前仍要进行一次检查,再次确认管片种类正确、质量完好无缺和密封垫黏结无脱落,管片的吊装孔预埋位置正确,封堵盖完好无损,以及其他主要预埋件和混凝土的握裹牢固,管片接头使用的螺栓、螺母、垫圈、螺栓防水用密封垫等附件准备齐全后,才允许拼装。每环管片拼装结束后要及时拧紧各个方向的螺栓,且在该环脱出盾尾后再次拧紧。 3.1拼装机械设备 管片安装机整体外形为一圆环状,套装在2个安装器行走悬伸臂上,主要用于管片的拼装衬砌。其安装头具有6个自由度,包括随安装器的前后移动、旋转运动、伸举运动和绕管片自身的三轴旋转运动,

盾构施工管片拼装质量技术交底

技术交底记录 交底内容: 一、工程概况 成都地铁7号线8标区间盾构工程已于 2014年6月1日开始始发,管片外径为6m 内径为 5.4m,幅宽1.5m,厚度为0.3m,楔形量38mm每环由6片管片组成,其中三块标准块,两块邻接块,一块封顶块;管片混凝土强度等级为C50,抗渗等级不小于P10, 由负8环开始拼装。 二、管片施工整体概况 1、盾构管片现场验收 管片到达施工场地后,进场验收,主要的检验项目有:管片出厂合格证是否齐全有效;管片外表是否清洁;止水条、缓冲垫是否贴牢完好;管片标识(包括管片型号、模具编号、生产日期、生产厂家、合格状态)是否齐全和完整;管片是否有崩角、破损、砂眼或裂缝等;吊装孔螺栓孔是否完好,孔内是否有异物。然后由地面工程师对进场管片负责签收,并对每环管片做好标识,做到有据可查。卸货后由地面工班黏贴止水条。 2、盾构管片拼装施工流程 盾构管片拼装的施工流程:管片进场检查f粘贴防水材料f由技术人员和质检员检

查防水材料粘贴情况-吊装下井一电瓶车将管片运至盾尾-盾尾清理一缩回安装位置油缸一管片就位T拼装管片一管片螺栓连接一管片脱离盾尾后一二次紧固螺栓。 3、管片拼装施工措施 管片拼装是盾构法施工的重要环节,其拼装质量的好坏不仅直接关系到成洞的质量,而且对盾构机能否继续顺利推进有着直接的影响。因此,管片在拼装前仍要进行一次检查,再次确认管片种类正确、质量完好无缺和密封垫黏结无脱落,管片的吊装孔预埋位置正确,封堵盖完好无损,以及其他主要预埋件和混凝土的握裹牢固,管片接头使用的螺栓、螺母、垫圈、螺栓防水用密封垫等附件准备齐全后,才允许拼装。每环管片拼装结束后要及时拧紧各个方向的螺栓,且在该环脱出盾尾后再次拧紧。 4、管片的堆放运输 管片出厂前逐片进行尺寸、外观的检测,不合格者不允许进厂。外观的检测内容有:管片表面光洁平整,无蜂窝、露筋,无裂痕、缺角,无气、水泡,无水泥浆等杂物;灌浆孔螺栓套管完整。安装位置正确。对于轻微的缺陷进行修饰,止水带附近不允许有缺陷。 达到龄期并检验合格的管片有计划地由平板车运到施工现场。管片运输时其间用垫 木垫实,以免使管片产生有害裂纹,或棱线部分被碰坏。 管片到达现场后由龙门吊卸到专门的管片堆放区。管片堆放区应选择适当,以免因其自重造成场所不均匀沉降和垫木变形而产生异常的应力而破裂。在卸之前对管片进行逐一的外观检测,不符合要求(裂缝、破损、无标志等)的管片立即退回。 管片下井采用龙门吊进行。洞内运输采用电瓶车牵引管片车运输。管片车上的管片堆放有序,堆放次序是依据管片安装顺序

管片选型与拼装

管片选型与拼装 昆明地铁晓东村至世纪城站区间,沿途经过华洋五金机电城,雨龙村等,城中建筑多为二至七层结构。我们在管片拼装时主要面临着350m小半径的难题,在管片选型我们要时刻注意油缸的行程与盾尾间隙,在推进的过程中还要考虑转弯对管片的损害。 在这个区间我们的管片采用的时候通用型管片,所以我们在管片选型时可以不用考虑选用左弯环、右弯环或者是通用环。每一环共有6块管片,分别为B1\B2\B3\L1\L2\K块,管片的最小楔形量为零,最大楔形量为37.2mm。盾构机共有16组油缸,其中K块由一个油缸顶着,其余每块由三组油缸顶着。在盾构机推进的过程中盾体接着管片的反作用力前进。所以管片的拼装决定着盾构机的姿态以及盾构机的走向。管片是在尾盾进行拼装,所以在盾构机推进时,不合理的拼装会与尾盾有摩擦,有肯能将管片损坏。所以在拼装管片时,管片应该尽量垂直于盾构机轴线,使盾构机的推进油缸的撑靴能垂直贴在管片上,这样可以使管片受力均匀,掘进时不会事管片破损。同时也要兼顾管片与盾尾的间隙,使其控制在55mm,这样的缘由有以下两点:第一、盾尾间隙过大,在同步注浆时由于注浆的压力在3bar左右,浆液容易将盾尾脂冲破,造成漏浆,空隙填充不饱满,地面一起沉降;第二、盾尾间隙过小,盾尾上的盾尾刷紧贴管片,在推进过程中,盾尾刷在前进,容易将盾尾刷刮坏,造成漏浆,或者将管片损坏,在盾尾托出管片时地下水从管片破损处流进,后果不堪设想。盾构机在推进时应该尽量根据设计路线进行掘进,避免产生不必要的偏差。在实际掘进过程中,盾构机因为地质不均,推理不均等原因,盾构机的姿态经常会偏离隧道的设计路线,当盾构机在偏离设计路线进行纠偏时,要特别注意管片型号的选择,避免因为盾尾间隙过小造成管片的破损。如果盾构机偏离设计路线时,在纠偏的过程中不要过急,为了保证盾尾密封,盾尾钢丝刷密封工作的良好,同时也为了保证管片的不受损坏,纠偏过程不应该有太大的调整,一环的纠偏值应该控制在8mm内,否则管

管片拼装作业指导

目录 1 工艺概述 (1) 2 工程概况 (1) 2.1 管片概况 (1) 2.2 盾构机概况 (2) 3 作业内容 (2) 4 质量标准及验收方法 (2) 5 工艺流程图 (3) 6 工艺步骤及质量控制说明 (3) 6.1 管片进场 (3) 6.2 施工准备 (3) 6.3 管片安装前检查 (3) 6.4 管片安装步骤 (4) 6.5 质量控制说明 (4) 7 工艺装备及作业组织 (5) 8 生产效率 (6) 9 安全生产保证措施 (6)

1工艺概述 (1)管片 指用于盾构开挖后完成隧道衬砌的预制钢筋混凝土圆环。 (2)管片吊机 指把管片从编组列车的管片运输车上吊下,运至盾构内拼装机下方的轨行式吊机。 (3)管片安装机 指盾构机自备的用于管片安装的机器。管片安装机位于盾构中体上,可平移950mm,旋转角度±220度。 2工程概况 2.1管片概况 盾构隧道管片结构设计图

本标段采用通用环衬砌环类型,隧道内经5500㎜,管片幅宽1.2m,厚度350㎜,管片采用6分块,其中一块小封顶块,两块邻接块和三块标准块,封顶块(F)管片圆心角为20°,标准块管片3块(分别为B1、B2、B3)圆心角为67.5°,邻接块管片左右各一块(分别为L1、L2),圆心角为68.75°,纵向接头为16处,按22.5°等角度布置;联络通道处区间隧道采用钢管片和钢筋混凝土管片组成的复合型管片环。 管片环缝和纵缝均采用5.8级或6.8级M30“U型”螺栓连接,环向管片间设2个单排螺栓,纵向设16个螺栓,管片中心处设一个吊装孔,兼作二次注浆孔。管片环纵缝采用三元乙丙橡胶密封条止水。 2.2盾构机概况 本标段采用两台上海力行奥村φ6360mm土压平衡盾构机。两台盾构机盾尾外径?6360mm,壳体厚度55mm,壳体内径6250mm,管片拼装处盾尾间隙25mm。盾构机盾尾长度3000mm,采用16支千斤顶向前掘进,全圆千斤顶伸缩长度均为2150mm。拼装机可平移950mm,旋转角度±220度,提升能力为178.2KN,满足1.2米宽、全圆错缝拼装的要求。 管片拼装机 3作业内容 主要作业内容包括:管片进场、防水粘贴、管片检查、管片安装、紧固螺栓、螺栓复紧。 4质量标准及验收方法 管片拼装允许误差见下表。

盾构项目管片拼装技术手册

管片拼装技术手册

盾构区间管片拼装技术手册 一、设计标准 地铁设计标准: 1、地铁主体结构设计使用年限为100年; 2、区间隧道防水等级为二级; 3、混凝土允许裂缝开展,管片最大允许裂缝宽度为0.2mm,并 不得有贯穿裂缝; 4、管片混凝土强度等级C50,抗渗等级为P12。 管片设计标准: 衬砌环构造:管片外径6000mm,内径5400mm。管片幅宽:线路曲线半径大于等于400mm时,采用1500mm宽管片,线路半径小于400mm时,采用1200mm的管片。管片厚度300mm。每环衬砌环由6块管片组成,1块封顶块,2块邻接块,3块标准块。采用直线+左右楔形环拟合不同曲线。成都地铁采用的楔形环为双面楔形,单面楔形量为19mm,转角为0.1814°,整环楔形总量为38mm,转角为0.363°。 管片连接:衬砌环纵、环缝采用弯螺栓连接,对于1500mm和1200mm管片,每环纵缝采用12根M27螺栓,每个环缝采用10根M27螺栓。 二、管片选型分析 原则:

确保管片的走向符合隧道设计线路,且拼装后的管片质量符合规范和设计要求。 依据: 1.线路参数。 2.盾构机姿态与油缸行程差。 3.盾尾间隙。 拼装点位: 管片拼装点位表示每一环管片中封顶块所在的位置。根据成都地铁管片设计构造特点,管片拼装分为10个点位。拼装点位分布如右图所示。 拼装点位的选取原则: 1.相邻环管片不通缝。 2.楔形环不同楔形量使用合理,有利于调整盾尾间隙、油缸行程差和拟合隧道中心线。 拼装点位选择:

现为了保证隧道的美观和防水效果,将管片的点位划分为两类:上半区点位(1点、2点、3点、9点、10点、11点),下半区点位(4点、5点、7点、8点)。其中上半区点位位于隧道中线以上(含中线),有利于管片拼装和隧道的防水质量,因此上半区作为管片点位选择的主要区域。 管片楔形量: 成都地铁采用的左右转弯楔形环为等腰梯型,该类型的管片需要两次可达到调整方向的目的,纠偏量比较小,有利于盾构机掘进中的方向控制。

盾构隧道设计基本概念

盾构隧道设计基本概念 1盾构管片的几何设计 1.1隧道线形的选择—平纵断面的拟合 隧道的中线是由直线及曲线组成。设计常常采用楔形衬砌环(见图1-1),来实现盾构隧道在曲线上偏转及纠偏,楔形衬砌环最大宽度与最小宽度之差称为楔形量。一般来说,楔形量的确定具有经验性,应考虑管片种类、环宽、直径、曲线半径、曲线区间楔形管片环使用比例、管片制作的方便性、盾尾操作空隙因素综合确定;管片楔形量还必须为施工留出适当的余裕。如下图所示,阴影部分是管片的平面投影图,圆弧是隧道设计中心线,圆弧中心点O1是隧道的转弯半径所在的中心点,O2是理论上能拼出的最小转弯半径时的圆心,则O2P<O1P。 a)普通环b)单侧楔形环c)两侧楔形环 图1-1 楔形衬砌环(β-楔形角、△-楔形量) 图1-2 楔形量与转弯半径示意图 日本曾统计管片外径与楔形量的相关关系,如下图所示。

图1-3 楔形量的施工统计 《盾构工程用标准管片(1990年)》规定管片环外径与楔形量的关系如表1-1所示。 表1-1 楔形量与管片环外径的关系 目前,多采用楔形衬砌环与直线衬砌环的组合、左右楔形衬砌环以及通用型管片。 1.1.1标准环+楔形环 管片拼装时,根据隧道线路的不同,直线段采用标准环管片,曲线段采用楔形管片(左转弯环、右转弯环)用于隧道的转弯和纠偏。楔形环的楔形角由标准管片的宽度、外径和施工曲线的半径而定。采用这类管片时,至少需三种管片模具,即标准环管模、左转弯环管模和右转弯环管模。 a)直线段b)曲线段 图1-4 标准环+楔形环拟合线路 通常,以短折线拟合曲线,在设计时常以2标准环+1楔形环来拟合;不得以(极端困难)时,以1标准环+1楔形环来拟合。

盾构隧道管片拼装施工选型与排版总结[优秀工程范文]

盾构隧道管片拼装施工选型与排版总结 区间盾构结构为预制钢筋混凝土环形管片,外径6200米米,内径5500米米,厚度 350米米,宽度 1200米米.在盾构施工开工前,应对管片进行预排版,确定管片类型数量. 1)隧道衬砌环类型 为满足盾构隧道在曲线上偏转及蛇形纠偏的需要,应设计楔形衬砌环,目前国际上通畅采用的衬砌环类型有三种:①直线衬砌环与楔形衬砌环的组合;②通用型管片;③左、右楔形衬砌环之间相互组合. 国内一般采用第③种,项目隧道采用该衬砌环. 直线衬砌环与楔形衬砌环组合排版优缺点:优点—简化施工控制,减少管片选型工作量;缺点—需要做好管片生产计划,增加钢模数量. 盾构推进时,依据预排版及当前施工误差,确定下一环衬砌类型.由于采用衬砌环类型不完全确定性,所以给管片供应带来一定难度 . 2)管片预排版 1、转弯环设计 区间转弯靠楔形环完成,分三种:标准换、右转弯环、左转弯环.即管片环向宽度六块不是同一量,曲线外侧宽,内侧窄. 管片楔形量确定主要因素有三个:①线路的曲线半径;②管片宽度 ;③标准环数与楔形环数之比u值.还有一个可供参考的因素:楔形量管模的使用地域.楔形量理论公式如下: △=D(米+n)B/nR ①

(D-管片外径,米:n-标准环与楔形环比值,B-环宽,R-拟合圆曲线半径) 本次南门路到团结桥楔形环设计为双面楔形,楔形量对称设置于楔形环的两侧环面.按最小水平曲线半径R=300米计算,楔形量△=37.2米米,楔形角β=0.334°. 值得注意的是转弯环设计时,环宽最大和最小处是固定的 ,左转弯以K块在1点位设计,右转弯以K块在11点位设计,即在使用转弯环时,要考虑错缝拼装和管片位置要求. 2、圆曲线预排版 设需拟合圆曲线半径为450米(南门路到团结桥区间曲线半径值),拟合轴线弧长270米,需用总楔形量计算如下: β=L/R=0.6 ② △总=(R+D/2)β-(R-D/2)β=3720米米③ 由△总计算出需用楔形环数量: n1=△总/△=100 ④ 标准环数量为: n2=(L-n1*B)/B=125 ⑤ 标准环和楔形环的比值为: u=n2:n1=5:4 ⑥ 即在R=450圆曲线上,标准环和楔形环比例为5:4,根据曲线弧长计算管片数量,确定出各类型管片具体数量,出现小数点时标准环数量减1,转弯环加1.

负环管片拼装技术交底大全

交底容: 1管片类型及拼装式 本工程采用标准环通缝拼装,便拆除负环管片。负环管片共8环,排序为-7~0环。管片无楔形量,每环管片包含3块标准块,2块邻接块,1块封顶块。 2 负环拼装法 -7环负环管片采用盾构机空拼,之后通过千斤顶顶推至反力架与反力架连接。盾构机采用管片拼装模式,在主推力千斤顶行程为700mm的位置进行-7环管片的拼装,-7环管片拼装完毕后,千斤顶将次环管片整体后推1500mm,再进行-6环的拼装,-6环拼装完毕后,千斤顶将此两环整体后推,使-7环管片顶到反力架。-7环与反力架的连接,通过在-7环外焊接三角挡块实现。-7环管片与反力架连接固定好后,开始正常拼接-5环及以后的管片。反力架与负环的位置见图1 图1 负环管片与反力架的位置关系图 3 拼装步骤 (1)焊接导轨 导轨设置在千斤顶和盾尾密封刷之间,采用30mm槽钢制作,在下部均匀设置4条,从距千斤顶端面600mm开始向后设置,长1800mm。铺设导轨的目的是: ①避免管片下落到盾壳上与盾体发生碰撞,损坏盾壳或管片;

②保证负环管片后推时不破坏盾尾刷; ③使拼装成型后管片与盾体同心; ④保证负环管片在拼装好后能顺利向后推进。 (2)焊接限位板和撑靴 ①在距千斤顶末端1800mm~2000mm位置处焊接20#加肋工字钢进行限位,工字钢中心距千斤顶末端1900mm。工字钢翼板间设置10mm厚钢板作为肋板,间距100mm。加肋工字钢高340mm。加肋工字钢每块管片设置两个(加肋工字钢为防止管片受千斤顶推力影响发生后移,同时提供一个基准面)。 ②-7环安装前,同时应在盾构机上焊接盾体固定块,固定块为钢板加工件,将盾体固定在始发托架之上,防止拼装及顶推过程中盾构机前移。 (3)涂抹黄油和盾尾密封油脂 管片拼装之前需在导轨上涂抹黄油,盾尾密封刷涂满盾尾密封油脂,下部尾刷与管片之间的间隙也填满盾尾密封油脂,以利于管片的顺利滑动; (4)负环管片拼装 ①安装管片遵循从下向上安装的顺序,封顶C块选择12点位置。C块在12点时各管片位置图如图3。首先安装最底部的A1块。安装第一块B2块管片时,测量人员测量A1块中心线与隧道中心线在一条线上(A块圆弧角度67.5°),以保证整环管片环向角度准确。

盾构始发技术交底-上传重点

福州市轨道交通2号线工程 施工单位:合同号: 监理单位:编号: 技术交底记录 B.0.27

二、盾构始发人员安排 表-1盾构始发施工人员任务划分表 序号岗位白班夜班主要工作内容 1 生产调度 负责协调地面及隧道盾构施工所有工序生产工作,紧急情况下启动应急 预案 2 技术负责人负责盾构掘进施工中各掘进技术参 数的控制 3 值班安全员负责现场安全巡查,制止相关违规作业,警戒安全事故现场 4 值班技术员 监督现场按照技术方案或上级指令的掘进参数施工,洞门密封装置的保 护和加强 5 掘进班(机)长管理协调隧道运输、掘进、设备保养 等工作 6 盾构主司机盾构掘进及设备维保 7 管片拼装手管片拼装、台车、电瓶车轨道延伸、 管片吊运等 8 同步注浆负责人负责同步注浆及管道疏通、砂浆罐清理工作,盾构盾体径向注浆 9 二次注浆负责人负责二次注浆及管道疏通、浆液制备,洞门预留孔注浆 10 拌合站负责人负责拌合站砂浆制备等地面管理工 作 11 地面辅助负责人负责地面协调,各材料、物资的吊装 12 机电维修负责人负责盾构机配套设备的机电维保工作,同时负责二次密封板焊接 13 物资仓库负责人负责各种材料物资(应急物资)的发 放及领用 三、盾构始发施工技术措施 1、端头加固处理及检测: 桔园洲站始发端头加固采用800mm厚素砼地下连续墙+基坑内Φ850@600三轴搅拌桩+靠基坑侧Φ800@600三重管高压旋喷桩密贴地墙止水,同时在加固范围内布置4口降水井,进行辅助降水。端头加固平面布置如下图: 始发端头加固平面图始发端头加固断面图端头井地基加固完成后,盾构始发前在洞门开挖轮廓线范围内打检查孔,检查加固效果,

盾构管片拼装和姿态控制的要点

盾构管片拼装和姿态控制的要点盾构管片拼装质量和姿态控制是相互关联,密不不可分的。为保证拼装质量和姿态,我们可以从人、机、物、法、环几个方面进行控制。 1、人的控制首先人是控制工程质量的第一因素,在这里我认为主要是责任心和技能素质。责任心与自身所受的教育,家庭责任感和社会责任感及公司的管理制度有很大的关系。你的用心操作和一丝不苟的作风,将直接影响到拼装质量。所以拼装 负责人和机械操作手要掌握质量标准,以质量求进度,质量不达标准不进行下一环的拼装。 在技能方面,你们公司是第一次在上海做盾构,盾构机又是新购进的,人员也是新配备的,机械性能等方面都需要调试和一个熟悉的过程。这里固然有有利的因素,那就是机械性能先进,自动化程度高。但我们也要看到不利的因素,就是新的人员要驾御这匹性能还不完全熟悉的盾构机。一是需要专家的现场指导,二是在干中学学中干。并要结合实际,积累经验,达到熟练操作的程度。 2、管片拼装 1)、管片拼装的前期准备盾构推进的后座应与后壁密实贴紧,后座的环面应与推进轴线垂直,同时开口段的上半部应设有稳固的后座支撑体系。 盾构在基座导轨上推进时应同步垫实管片脱出盾尾后与导轨之间的空隙,不使管片下沉,垫实材料宜用木楔。 盾构的出洞施工由于后座条件的限制,一般盾构的上部千斤顶在一定期间内不能使用,为此要精心调整盾构正面土体反力以少用或不用底部范围千斤顶,防止盾构上飘以及后座因受力不均而遭破坏。当上飘较大而开口副环又没到位时,要临时在上部加支撑和使用上部千斤顶。. 盾构管片的第一环(包括副环),管片的横向轴线一定要垂直于隧道设计的纵向轴线。这一环致关重要,首次拼装一定要千万注意。 施工人员要加强对前一环管片环面进行质量检查和确认,及时通知地面管片进行调整接缝弹性密封垫厚度的调整。同时本环的第一块管片定位前,应观察管片与盾构四周的空隙情况及上环管片的成果报表来决定本环的纠偏方法和纠偏量,然后确定本环第一块的拼装位置。 送到盾构后续车架内的管片,要按先后顺序——由下而上,待拱底块管片就位

管片防水技术交底

监理单位:广州轨道交通建设监理有限公司编号: 技术交底记录A3.12

监理单位:广州轨道交通建设监理有限公司编号: 技术交底记录A3.12 管片防水安装技术交底 交底内容:材料列表(每一环) 序号项目类型单位数量备注 01 三元乙丙橡胶弹性密封垫标准块条 3 标准块邻接块条 2 邻接块封顶块条 1 封顶块 02 丁腈软木橡胶传力衬垫环缝 块13 B1型 块 2 B2型 块 1 B3型纵缝块 6 L型 03 自粘橡胶薄片块12 04 单组份氯丁-酚醛粘结剂桶 1 05 刷子把 5 06 胶水刮刀把 2 07 橡胶锤个 2 08 胶水桶个 2 09 遇水膨胀橡胶垫圈个56 *10 纵向螺栓套16 随管片下井*11 环向螺栓套12 随管片下井

监理单位:广州轨道交通建设监理有限公司编号: 技术交底记录A3.12

监理单位:广州轨道交通建设监理有限公司编号: 技术交底记录A3.12 管片防水安装技术交底 交底内容: 贴4片,纵向螺栓孔处留孔。 (3)为规范传力衬垫粘贴位置,以管片内弧面钢印(即“KT-N”的字样)为参照,每片管片环缝传力衬垫粘贴在钢印左侧接缝,纵缝传力衬垫粘贴在钢印上方接缝,参考图例如下。 质量标准:粘贴后的传力衬垫表面应平整,不得出现脱胶、翘边、歪斜等现象。 4、自粘性橡胶薄板的粘贴 为加强管片角部防水,在密封垫外角部覆贴自粘性橡胶薄片(未硫化丁基橡胶)。自粘性橡胶薄片厚15cm,宽50mm,长75mm×2,仅覆盖一半弹性密封垫表面(迎水侧)安装方法:由于自粘性橡胶薄板具有自粘性,因此不需要涂抹粘结剂,且在地面安装时,自粘性橡胶薄板表面的薄膜需要保护好,要求到达拼装台准备安装管片前将其保护膜撕下,确保止水效果。自粘性橡胶薄板的安装位置密封垫的外角部,要求覆盖密封垫一半的宽度位置,采用对角布置形式。

第4讲 管片选型与盾构姿态控制

盾构施工关键构关技术讲座之四 管片选型与盾构姿态控制 讲座人:张厚美 广市盾建地程有公 广州市盾建地下工程有限公司2011---2011729

管片选型与盾构姿态控制 本节主要内容: 管片的拟合计算 4.1 管片的拟合计算 4.1 如何进行管片选型 4.2 4.2 如何进行管片选型 管片下井与拼装 4.3 管片下井与拼装 4.3 盾构机姿态测量及控制 4.4 盾构机姿态测量及控制 4.4 广州盾建2

预备知识——衬砌环类型 为了满足盾构隧道在曲线上偏转及蛇行纠偏的需要,应设计楔形衬砌环。目前国际上通常采用的衬砌组合类型有种衬砌环组合类型有三种。 A 、直线衬砌环与楔形衬砌环的组合采用楔形衬砌环与直线衬砌环的 优选及组合进行线路拟合包括左优选及组合进行线路拟合,包括左 转弯、右转弯楔形衬砌环及直线衬 砌环由于采用的衬砌环类型不完砌环。由于采用的衬砌环类型不完 全确定性,所以给管片供应带来一 定难度16:38广州盾建3定难度。

B )通用型管片 目前欧洲较为流行通用管片 。它只采用一种类型的楔形 衬砌环,管片衬砌环是可以 °360旋转。国内深圳地铁首 次采用通用管片。由于它只 需种管片类型可降低管需一种管片类型,可降低管 模成本,但是通用管片拼装 难度较高需要有经验的盾难度较高,需要有经验的盾 构机操作人员。 16:38 广州盾建4

)左右楔形衬砌环之间相互组合C)左、右楔形衬砌环之间相互组合 这种管片组合形式,国内在南京地铁施工中首 次使用。根据线路偏转方向及施工纠偏的需要 ,设计左转弯、右转弯楔形衬砌环,在直线段 通过左转弯和右转弯衬砌环对应组合形成 通过左转弯和右转弯衬砌环一一对应组合形成 直线。设计时根据线路条件进行全线衬砌环的 排列,以使隧道设计拟合误差控制在允许范围 之内。盾构推进时,依据排列图及当前施工误 之内盾构推进时依据排列图及当前施工误差,确定下一环衬砌类型。 16:38广州盾建5

管片拼装作业指导书 改

管片拼装作业指导书 1 作业准备 1.1 管片进场的验收 管片生产好并运输到达施工现场后,要进行管片的验收,我们验收时主要检查的项目是:管片出场相关质检资料,试验报告是否齐全;管片的外表是否清洁;管片标识(包括管片型号、模具编号、生产日期等)是否齐全和完整;管片是否有缺楞掉角、破损、蜂窝麻面或裂痕等;吊装孔螺栓是否完好,孔内是否有异物;管片尺寸是否符合设计要求;弹性密封止水条是否脱落等。 1.2 管片的进场卸车及堆放 管片进场卸车时,要有信号工现场指挥龙门吊卸车,卸车过程中不得出现碰撞、下放过猛等不利情况发生。 管片堆放时,每环3块管片叠放一摞。管片的内弧面向上,注意管片之间的方木垫放的位置,应使受力点的连线交于一点。不得在堆放的管片上放置其他重物或对管片造成破坏的物品和材料。并用篷布覆盖进行保护。 1.3 防水材料粘贴 a. 弹性橡胶密封垫(三元乙丙橡胶密封垫)粘贴,根据管片标准块、相邻块、封顶块的不同,应对应粘贴相应的弹性橡胶密封垫。 b. 海绵条(氯丁海绵橡胶条)粘贴,尺寸为厚6mm宽20mm,长度为环于管片外沿周长。 c. 弹性密封垫角部防水,需在密封垫外角部覆贴自粘性橡胶薄板(未硫化丁基橡胶薄板) 1.4 管片下井吊运的保护 吊装管片过程中,龙门吊司机和信号员要配合好,吊装要平稳,同时吊放管片要求使用管片带,在起吊时,能起到缓冲作用,以免管片吊装过程中发生崩角等损坏或起吊时过猛造成的外部和内在的伤害。管片在电瓶车上放置的质量要保证,一般采用方木垫稳、卡实,防止管片在电瓶车运输过程中发生碰撞。 1.5 拼装前检查 把管片从电瓶车上转移到管片运输器上前,作业班长要再次检查管片型号是否正确,管片是否完好,管片表面是否清洁干净、吊装孔内是否有异物,管片的

管片楔形量计算

管片楔形量 一、管片楔形量计算 护盾式TBM(含盾构)在曲线段施工和蛇行修正时,需要使用楔形管片环,楔形管片环分为左转环及右转环。蛇行修正用楔形管片环的数量,会因工程区域内所包含的缓曲线和急曲线区段的比例、有无S形曲线等的隧道线路、影响TBM (含盾构)操作稳定性的周围围岩的情况而不同。通常,蛇行修正用楔形管片环数量大概是直线区间所需管片环数的3%~5%,可通过线形计算。 楔形量除了根据管片种类、管片宽度、管片环外径、曲线外径、曲线间楔形管片环使用比例、管片制作的方便性确定外,还应根据盾尾操作空隙而定。根据区间隧道线形,其最小半径为350m,建议曲线拟合采用楔形量38mm的楔形管片环,模拟线形采用标准环、左转环和右转环组合的方式。 管片楔形量确定主要因素有三个:①线路的曲线半径;②管片宽度;③标准环数与楔形环数之比u值。还有一个可供参考的因素:楔形量管模的使用地域。楔形量理论公式如下: △=D(m+n)B/nR (D-管片外径,m:n-标准环与楔形环比值,B-环宽,R-拟合圆曲线半径) 结合青岛市地铁1号线工程具体情况,TBM施工区段线路最小曲线半径为350m,按最小水平曲线半径R=350m计算,楔形量△=38mm,楔形角β=0.3629°。 楔形量与转弯半径关系(如图7.8)的计算公式如下:

曲线中心 图7.8 楔形量与转弯半径关系图 根据圆心角的计算公式: X=180L/πR 式中:L——段线路中心线的长度(mm), R——曲线半径(mm), X——圆心角。 将圆心角公式代入得, 180×(1500-△/2)/[π×(R-3000)]=180×(1500+△/2)/[π×(R+3000)] 简化得楔形量与转弯半径关系公式: (1500-△/2)/(R-3000)=(1500+△/2)/(R+3000) R=9000000/△ 将管片拼装的最大楔形量△=38mm代入上式计算得此转弯环管片的理论最小转弯半径为:R=236842mm。

相关主题
文本预览
相关文档 最新文档