当前位置:文档之家› MATLAB 函数解优化问题

MATLAB 函数解优化问题

MATLAB 函数解优化问题
MATLAB 函数解优化问题

MATLAB 函数在优化问题中的应用

§1 线性规划模型

一、线性规划课题:

实例1:生产计划问题

假设某厂计划生产甲、乙两种产品,现库存主要材料有A类3600公斤,B类2000公斤,C类3000公斤。每件甲产品需用材料A类9公斤,B类4公斤,C类3公斤。每件乙产品,需用材料A类4公斤,B类5公斤,C类10公斤。甲单位产品的利润70元,乙单位产品的利润120元。问如何安排生产,才能使该厂所获的利润最大。

建立数学模型:

设x1、x2分别为生产甲、乙产品的件数。f为该厂所获总润。

max f=70x1+120x2

s.t 9x1+4x2≤3600

4x1+5x2≤2000

3x1+10x2≤3000

x1,x2≥0

实例2:投资问题

某公司有一批资金用于4个工程项目的投资,其投资各项目时所得的净收益(投入资金锪百分比)如下表:

工程项目收益表

由于某种原因,决定用于项目A的投资不大于其他各项投资之和而用于项目B和C的投资要大于项目D的投资。试确定全文该公司收益最大的投资分配方案。

建立数学模型:

设x 1、 x 2 、x 3 、x 4分别代表用于项目A 、B 、C 、D 的投资百分数。 max f=0.15x 1+0.1x 2+0.08 x 3+0.12 x 4 s.t x 1-x 2- x 3- x 4≤0 x 2+ x

3- x 4≥0 x 1+x 2+x 3+ x 4=1 x j ≥0 j=1,2,3,4 实例3:运输问题

有A 、B 、C 三个食品加工厂,负责供给甲、乙、丙、丁四个市场。三个厂每天生产食品箱数上限如下表:

四个市场每天的需求量如下表:

从各厂运到各市场的运输费(元/每箱)由下表给出:

求在基本满足供需平衡的约束条件下使总运输费用最小。

建立数学模型:

设a i j为由工厂i运到市场j的费用,x i j 是由工厂i运到市场j的箱数。b i是工厂i的产量,d j是市场j的需求量。

b= ( 60 40 50 ) d= ( 20 35 33 34 )

s.t

x i j≥0

当我们用MATLAB软件作优化问题时,所有求maxf 的问题化为求min(-f )来作。约束g i (x)≥0,化为–g i≤0来作。

上述实例去掉实际背景,归结出规划问题:目标函数和约束条件都是变量x的线性函数。

形如:(1) min f T X

s.t A X≤b

Aeq X =beq

lb≤X≤ub

其中X为n维未知向量,f T=[f1,f2,…f n]为目标函数系数向量,小于等于约束系数矩阵A为m×n矩阵,b为其右端m维列向量,Aeq为等式约束系数矩阵,beq为等式约束右端常数列向量。lb,ub为自变量取值上界与下界约束的n维常数向量。

二.线性规划问题求最优解函数:

调用格式:x=linprog(f,A,b)

x=linprog(f,A,b,Aeq,beq)

x=linprog(f,A,b,Aeq,beq,lb,ub)

x=linprog(f,A,b,Aeq,beq,lb,ub,x0)

x=linprog(f,A,b,Aeq,beq,lb,ub,x0,options)

[x,fval]=linprog(…)

[x, fval, exitflag]=linprog(…)

[x, fval, exitflag, output]=linprog(…)

[x, fval, exitflag, output, lambda]=linprog(…)

说明:x=linprog(f,A,b)返回值x为最优解向量。

x=linprog(f,A,b,Aeq,beq) 作有等式约束的问题。若没有不等式约束,则令A=[ ]、b=[ ] 。

x=linprog(f,A,b,Aeq,beq,lb,ub,x0,options) 中lb ,ub为变量x的下界和上界,x0为初值点,options为指定优化参数进行最小化。

Options的参数描述:

Display 显示水平。选择’off’ 不显示输出;选择’iter’显示每一步迭代过程的输出;选择’final’ 显示最终结果。

MaxFunEvals 函数评价的最大允许次数

Maxiter 最大允许迭代次数

TolX x处的终止容限

[x,fval]=linprog(…) 左端fval 返回解x处的目标函数值。

[x,fval,exitflag,output,lambda]=linprog(f,A,b, Aeq,beq,lb,ub,x0) 的输出部分:

exitflag描述函数计算的退出条件:若为正值,表示目标函数收敛于解x处;若为负值,表示目标函数不收敛;若为零值,表示已经达到函数评价或迭代的最大次数。

output 返回优化信息:output.iterations表示迭代次数;output.algorithm表示所采用的算法;outprt.funcCount表示函数评价次数。

lambda返回x处的拉格朗日乘子。它有以下属性:

lambda.lower-lambda的下界;

lambda.upper-lambda的上界;

lambda.ineqlin-lambda的线性不等式;

lambda.eqlin-lambda的线性等式。

三.举例

例1:求解线性规划问题:

max f=2x1+5x2

s.t

先将目标函数转化成最小值问题:min(-f)=- 2x1-5x2

程序:

f=[-2 -5];

A=[1 0;0 1;1 2];

b=[4;3;8];

[x,fval]=linprog(f,A,b)

f=fval*(-1)

结果:x = 2

3

fval = -19.0000

maxf = 19

例2:minf=5x1-x2+2x3+3x4-8x5

s.t –2x1+x2-x3+x4-3x5≤6

2x1+x2-x3+4x4+x5≤7

0≤x j≤15 j=1,2,3,4,5

程序:

f=[5 -1 2 3 -8];

A=[-2 1 -1 1 -3;2 1 -1 4 1];

b=[6;7];

lb=[0 0 0 0 0];

ub=[15 15 15 15 15];

[x,fval]=linprog(f,A,b,[],[],lb,ub) 结果:x =

0.0000

0.0000

8.0000

0.0000

15.0000

minf =

-104

例3:求解线性规划问题:

minf=5x1+x2+2x3+3x4+x5

s.t –2x1+x2-x3+x4-3x5≤1

2x1+3x2-x3+2x4+x5≤-2

0≤x j≤1 j=1,2,3,4,5

程序:

f=[5 1 2 3 1];

A=[-2 1 -1 1 -3;2 3 -1 2 1];

b=[1;-2];

lb=[0 0 0 0 0];

ub=[1 1 1 1 1];

[x,fval,exitflag,output,lambda]=linprog(f,A,b,[],[],lb,ub) 运行结果:

Exiting: One or more of the residuals, duality gap, or total relative error

has grown 100000 times greater than its minimum value so far:

the primal appears to be infeasible (and the dual unbounded).

(The dual residual < TolFun=1.00e-008.)

x = 0.0000

0.0000

1.1987

0.0000

0.0000

fval =

2.3975

exitflag =

-1

output =

iterations: 7

cgiterations: 0

algorithm: 'lipsol'

lambda =

ineqlin: [2x1 double]

eqlin: [0x1 double]

upper: [5x1 double]

lower: [5x1 double]

显示的信息表明该问题无可行解。所给出的是对约束破坏最小的解。

例4:求解实例1的生产计划问题

建立数学模型:

设x1、x2分别为生产甲、乙产品的件数。f为该厂所获总润。

max f=70x1+120x2

s.t 9x1+4x2≤3600

4x1+5x2≤2000

3x1+10x2≤3000

x1,x2≥0

将其转换为标准形式:

min f=-70x1-120x2

s.t 9x1+4x2≤3600

4x1+5x2≤2000

3x1+10x2≤3000

x1,x2≥0

程序:f=[-70 -120];

A=[9 4 ;4 5;3 10 ];

b=[3600;2000;3000];

lb=[0 0];

ub=[];

[x,fval,exitflag]=linprog(f,A,b,[],[],lb,ub)

maxf=-fval

结果:x =

200.0000

240.0000

fval =

-4.2800e+004

exitflag =

1

maxf =

4.2800e+004

例5:求解实例2

建立数学模型:

max f=0.15x1+0.1x2+0.08 x3+0.12 x4

s.t x1-x2- x3- x4≤0

x2+ x3- x4≥0

x1+x2+x3+ x4=1

x j≥0 j=1,2,3,4

将其转换为标准形式:

min z=-0.15x1-0.1x2-0.08 x3-0.12 x4

s.t x1-x2- x3- x4≤0

-x2- x3+ x4≤0

x1+x2+x3+ x4=1

x j≥0 j=1,2,3,4

程序: f = [-0.15;-0.1;-0.08;-0.12];

A = [1 -1 -1 -1

0 -1 -1 1];

b = [0; 0];

Aeq=[1 1 1 1];

beq=[1];

lb = zeros(4,1);

[x,fval,exitflag] = linprog(f,A,b,Aeq,beq,lb)

f=-fval

结果:x =

0.5000

0.2500

0.0000

0.2500

fval =

-0.1300

exitflag =

1

f =

0.1300

即4个项目的投资百分数分别为50%,25%,0, 25%时可使该公司获得最大的收益,其最大收益可到达13%。过程正常收敛。

例6:求解实例3

建立数学模型:

设a i j为由工厂i运到市场j的费用,x i j 是由工厂i运到市场j的箱数。b i是工厂i的产量,d j是市场j的需求量。

b= ( 60 40 50 )T d= ( 20 35 33 34 )T

s.t

x i j≥0

程序:A=[2 1 3 2;1 3 2 1;3 4 1 1];

f=A(:);

B=[ 1 0 0 1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1 0 0 1];

D=[1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1];

b=[60;40;50];

d=[20;35;33;34];

lb=zeros(12,1);

[x,fval,exitflag]=linprog(f,B,b,D,d,lb)

结果:x =

0.0000

20.0000

0.0000

35.0000

0.0000

0.0000

0.0000

0.0000

33.0000

0.0000

18.4682

15.5318

fval =

122.0000

exitflag =

1

即运输方案为:甲市场的货由B厂送20箱;乙市场的货由A厂送35箱;丙商场的货由C厂送33箱;丁市场的货由B厂送18箱,再由C厂送16箱。

最低总运费为:122元。

§2 非线性规划模型

一.非线性规划课题

实例1 表面积为36平方米的最大长方体体积。

建立数学模型:

设x、y、z分别为长方体的三个棱长,f为长方体体积。

max f = x y (36-2 x y)/2 (x+y)

实例2 投资决策问题

某公司准备用5000万元用于A、B两个项目的投资,设x1、x2分别表示配给项目A、B的投资。预计项目A、B的年收益分别为20%和16%。同时,投资后总的风险损失将随着总投资和单位投资的增加而增加,已知总的风险损失为2x12+x22+(x1+x2)2.问应如何分配资金,才能使期望的收益最大,同时使风险损失为最小。

建立数学模型:

max f=20x1+16x2-λ[2x12+x22+(x1+x2)2]

s.t x1+x2≤5000

x1≥0,x2≥0

目标函数中的λ≥0是权重系数。

由以上实例去掉实际背景,其目标函数与约束条件至少有一处是非线性的,称其为非线性问题。

非线性规划问题可分为无约束问题和有约束问题。实例1为无约束问题,实例2为有约束问题。

二.无约束非线性规划问题:

求解无约束最优化问题的方法主要有两类:直接搜索法(Search method)和梯度法(Gradi ent method).

1.fminunc函数

调用格式:x=fminunc(fun,x0)

x=fminunc(fun,x0,options)

x=fminunc(fun,x0,options,P1,P2)

[x,fval]=fminunc(…)

[x,fval, exitflag]=fminunc(…)

[x,fval, exitflag,output]=fminunc(…)

[x,fval, exitflag,output,grad]=fminunc(…)

[x,fval, exitflag,output,grad,hessian]=fminunc(…)

说明:fun为需最小化的目标函数,x0为给定的搜索的初始点。options指定优化参数。

返回的x为最优解向量;fval为x处的目标函数值;exitflag描述函数的输出条件;out put返回优化信息;grad返回目标函数在x处的梯度。Hessian返回在x处目标函数的Hessi an矩阵信息。

例1 :求

程序:编辑ff1.m文件

function f=ff1(x)

f=8*x(1)-4*x(2) +x(1)^2+3*x(2)^2;

通过绘图确定一个初始点:

[x,y]=meshgrid(-10:.5:10);

z= 8*x-4*y +x.^2+3*y.^2;

surf(x,y,z)

选初始点:x0=(0,0)

x0=[0,0];

[x,fval,exitflag]=fminunc(@ff1,x0)

结果:x =

-4.0000 0.6667

fval =

-17.3333

exitflag =

1

例2:

程序:编辑ff2.m文件:

function f=ff2(x)

f=4*x(1)^2+5*x(1)*x(2)+2*x(2)^2;

取初始点:x0=(1,1)

x0=[1,1];

[x,fval,exitflag]=fminunc(@ff2,x0)

结果:x =

1.0e-007 *

-0.1721 0.1896

fval =

2.7239e-016

exitflag =

1

例3:将上例用提供的梯度g最小化函数进行优化计算。

修改M文件为:

function [f,g]=ff3(x)

f=4*x(1)^2+5*x(1)*x(2)+2*x(2)^2;

if nargut >1

g(1)=8*x(1)+5*x(2);

g(2)=5*x(1)+4*x(2);

end

通过下面将优化选项结构options.GradObj设置为’on’来得到梯度值。

options=optimset(‘Gradobj’,’on’);

x0=[1,1];

[x,fval,exitflag]=fminunc(@ff3,x0,options)

结果:x =

1.0e-015 *

-0.2220 -0.2220

fval =

5.4234e-031

exitflag =

1

2.minsearch函数

调用格式:x=fminsearch(fun,x0)

x=fminsearch(fun,x0,options)

x=fminsearch(fun,x0,options,P1,P2)

[x,fval]=fminsearch(…)

[x,fval, exitflag]=fminsearch(…)

[x,fval, exitflag,output]=fminsearch(…)

[x,fval, exitflag,output,grad]=fminsearch(…)

[x,fval, exitflag,output,grad,hessian]=fminsearch(…)

说明:参数及返回变量同上一函数。对求解二次以上的问题,fminsearch函数比fminunc 函数有效。

3.多元非线性最小二乘问题:

非线线性最小二乘问题的数学模型为:

其中L为常数。

调用格式:x=lsqnonlin(fun,x0)

x=lsqnonlin(fun,x0,lb,ub)

x=lsqnonlin(fun,x0,options)

x=lsqnonlin(fun,x0,options,P1,P2)

[x,resnorm]=lsqnonlin(…)

[x,resnorm, residual,exitflag]=lsqnonlin(…)

[x,resnorm, residual , exitflag,output]=lsqnonlin(…)

[x,resnorm, residual,exitflag, output,lambda]=lsqnonlin(…)

[x,resnorm, r esidual,exitflag, output,lambda,jacobian]=lsqnonlin(…)

说明:x返回解向量;resnorm返回x处残差的平方范数值:sum(fun(x).^2);residual返回x处的残差值fun(x);lambda返回包含x处拉格朗日乘子的结构参数;jacobian返回解x 处的fun函数的雅可比矩阵。

lsqnonlin默认时选择大型优化算法。Lsqnonlin通过将https://www.doczj.com/doc/335841687.html,rgeScale设置为’off’来作中型优化算法。其采用一维搜索法。

例4.求minf=4(x2-x1)2+(x2-4)2,选择初始点x0(1,1)

程序:

f ='4*(x(2)-x(1))^2+(x(2)-4)^2'

[x,reshorm]=lsqnonlin(f,[1,1])

结果:x =

3.9896 3.9912

reshorm =

5.0037e-009

例5:求,选择初始点x0(0.2,0.3) 求解:先编辑ff5.m文件:

function f=ff5(x)

k=1:10;

f=2+2*k-exp(k*x(1))-exp(k*x(2));

然后作程序:x0=[0.2,0.3];

[x,resnorm]=lsqnonlin(@ff5,x0)

结果:x =

0.2578 0.2578

resnorm =

124.3622

二.有约束非线性规划问题:

数学模型:min F(x)

s.t G i (x) ≤0 i=1,…,m

G j (x) =0 j=m+1,…,n

x l≤x≤x u

其中:F(x)为多元实值函数,G(x)为向量值函数,

在有约束非线性规划问题中,通常要将该问题转换为更简单的子问题,这些子问题可以求并作为迭代过程的基础。其基于K-T方程解的方法。它的K-T方程可表达为:

方程第一行描述了目标函数和约束条件在解处梯度的取消。由于梯度取消,需要用拉格朗日乘子λi来平衡目标函数与约束梯度间大小的差异。

调用格式: x=fmincon(f,x0,A,b)

x=fmincon(f,x0,A,b,Aeq,beq)

x=fmincon(f,x0,A,b,Aeq,beq,lb,ub)

x=fmincon(f,x0,A,b,Aeq,beq,lb,ub,nonlcon)

x=fmincon(f,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)

[x,fval]=fmincon(…)

[x, fval, exitflag]=fmincon(…)

[x, fval, exitflag, output]=fmincon(…)

[x, fval, exitflag, output, lambda]=fmincon(…)

说明:x=fmincon(f,x0,A,b)返回值x为最优解向量。其中:x0为初始点。A,b为不等式约束的系数矩阵和右端列向量。

x=fmincon(f,x0,A,b,Aeq,beq) 作有等式约束的问题。若没有不等式约束,则令A= [ ]、b=[ ] 。

x=fmincon(f, x0,A,b,Aeq,beq,lb,ub, nonlcon ,options) 中lb ,ub为变量x的下界和上界;nonlcon=@fun,由M文件fun.m给定非线性不等式约束c (x) ≤0和等式约束g(x)=0;option s为指定优化参数进行最小化。

例6:求解:min 100(x2-x12 )2+(1-x1)2

s.t x1≤2;

x2≤2

程序:首先建立ff6.m文件:

function f=ff6(x)

f=100*(x(2)-x(2)^2)^2+(1-x(1))^2;

然后在工作空间键入程序:

x0=[1.1,1.1];

A=[1 0;0 1];

b=[2;2];

[x,fval]=fmincon(@ff6,x0,A,b)

结果:x =

1.0000 1.0000

fval =

3.1936e-011

例7:求解:

matlab中常见函数功用

⊙在matlab中clear,clc,clf,hold作用介绍 clear是清变量, clc只清屏, clf清除图形窗口上的旧图形, hold on是为了显示多幅图像时,防止新的窗口替代旧的窗口。 ①format:设置输出格式 对浮点性变量,缺省为format short. format并不影响matlab如何计算和存储变量的值。对浮点型变量的计算,即单精度或双精度,按合适的浮点精度进行,而不论变量是如何显示的。对整型变量采用整型数据。整型变量总是根据不同的类(class)以合适的数据位显示,例如,3位数字显示显示int8范围-128:127。 format short, long不影响整型变量的显示。 format long 显示15位双精度,7为单精度(scaled fixed point) format short 显示5位(scaled fixed point format with 5 digits) format short eng 至少5位加3位指数 format long eng 16位加至少3位指数 format hex 十六进制 format bank 2个十进制位 format + 正、负或零 format rat 有理数近似 format short 缺省显示 format long g 对双精度,显示15位定点或浮点格式,对单精度,显示7位定点或浮点格式。 format short g 5位定点或浮点格式 format short e 5位浮点格式 format long e 双精度为15位浮点格式,单精度为7为浮点格式 ②plot函数 基本形式 >> y=[0 0.58 0.70 0.95 0.83 0.25]; >> plot(y) 生成的图形是以序号为横坐标、数组y的数值为纵坐标画出的折线。 >> x=linspace(0,2*pi,30); % 生成一组线性等距的数值 >> y=sin(x); >> plot(x,y) 生成的图形是上30个点连成的光滑的正弦曲线。 多重线 在同一个画面上可以画许多条曲线,只需多给出几个数组,例如 >> x=0:pi/15:2*pi; >> y=sin(x); >> w=cos(x);

2019年matlab优化工具箱的使用

优化工具箱的使用 MATLAB的优化工具箱提供了各种优化函数,这些优化函数可以通过在命令行输入相应的函数名加以调用;此外为了使用方便,MA TLAB还提供了图形界面的优化工具(GUI Optimization tool)。 1 GUI优化工具 GUI优化工具的启动 有两种启动方法: (1)在命令行输入optimtool; (2)在MA TLAB主界面单击左下角的“Start”按钮,然后依次选择“Toolboxes→Optimization→Optimization tool” GUI优化工具的界面 界面分为三大块: 左边(Problem Setup and Results)为优化问题的描述及计算结果显示; 中间(Options)为优化选项的设置; 右边(Quick Reference)为帮助。为了界面的简洁,可以单击右上角“<<”、“>>”的按钮将帮助隐藏或显示。 1、优化问题的描述及计算结果显示 此板块主要包括选择求解器、目标函数描述、约束条件描述等部分。 选择合适的求解器以及恰当的优化算法,是进行优化问题求解的首要工作。 ?Solver:选择优化问题的种类,每类优化问题对应不同的求解函数。 ?Algorithm:选择算法,对于不同的求解函数,可用的算法也不同。 Problem框组用于描述优化问题,包括以下内容: ?Objective function: 输入目标函数。 ?Derivatives: 选择目标函数微分(或梯度)的计算方式。 ?Start point: 初始点。 Constraints框组用于描述约束条件,包括以下内容: ?Linear inequalities: 线性不等式约束,其中A为约束系数矩阵,b代表约束向量。 ?Linear equalities: 线性等式约束,其中Aeq为约束系数矩阵,beq代表约束向量。 ?Bounds: 自变量上下界约束。 ?Nonlinear Constraints function; 非线性约束函数。 ?Derivatives: 非线性约束函数的微分(或梯度)的计算方式。 Run solver and view results框组用于显示求解过程和结果。 (对于不同的优化问题类型,此板块可能会不同,这是因为各个求解函数需要的参数个数不一样,如Fminunc 函数就没有Constraints框组。) 2、优化选项(Options) ?Stopping criteria: 停止准则。

(完整版)matlab函数大全(非常实用)

信源函数 randerr 产生比特误差样本 randint 产生均匀分布的随机整数矩阵 randsrc 根据给定的数字表产生随机矩阵 wgn 产生高斯白噪声 信号分析函数 biterr 计算比特误差数和比特误差率 eyediagram 绘制眼图 scatterplot 绘制分布图 symerr 计算符号误差数和符号误差率 信源编码 compand mu律/A律压缩/扩张 dpcmdeco DPCM(差分脉冲编码调制)解码dpcmenco DPCM编码 dpcmopt 优化DPCM参数 lloyds Lloyd法则优化量化器参数 quantiz 给出量化后的级和输出值 误差控制编码 bchpoly 给出二进制BCH码的性能参数和产生多项式convenc 产生卷积码 cyclgen 产生循环码的奇偶校验阵和生成矩阵cyclpoly 产生循环码的生成多项式 decode 分组码解码器 encode 分组码编码器 gen2par 将奇偶校验阵和生成矩阵互相转换gfweight 计算线性分组码的最小距离 hammgen 产生汉明码的奇偶校验阵和生成矩阵rsdecof 对Reed-Solomon编码的ASCII文件解码rsencof 用Reed-Solomon码对ASCII文件编码rspoly 给出Reed-Solomon码的生成多项式syndtable 产生伴随解码表 vitdec 用Viterbi法则解卷积码 (误差控制编码的低级函数) bchdeco BCH解码器 bchenco BCH编码器 rsdeco Reed-Solomon解码器 rsdecode 用指数形式进行Reed-Solomon解码 rsenco Reed-Solomon编码器 rsencode 用指数形式进行Reed-Solomon编码 调制与解调

最优化方法的Matlab实现(公式(完整版))

第九章最优化方法的MatIab实现 在生活和工作中,人们对于同一个问题往往会提出多个解决方案,并通过各方面的论证从中提取最佳方案。最优化方法就是专门研究如何从多个方案中科学合理地提取出最佳方案的科学。由于优化问题无所不在,目前最优化方法的应用和研究已经深入到了生产和科研的各个领域,如土木工程、机械工程、化学工程、运输调度、生产控制、经济规划、经济管理等,并取得了显著的经济效益和社会效益。 用最优化方法解决最优化问题的技术称为最优化技术,它包含两个方面的内容: 1)建立数学模型即用数学语言来描述最优化问题。模型中的数学关系式反映了最优化问题所要达到的目标和各种约束条件。 2)数学求解数学模型建好以后,选择合理的最优化方法进行求解。 最优化方法的发展很快,现在已经包含有多个分支,如线性规划、整数规划、非线性规划、动态规划、多目标规划等。 9.1 概述 利用Matlab的优化工具箱,可以求解线性规划、非线性规划和多目标规划问题。 具体而言,包括线性、非线性最小化,最大最小化,二次规划,半无限问题,线性、非线性方程(组)的求解,线性、非线性的最小二乘问题。另外,该工具箱还提供了线性、非线性最小化,方程求解,曲线拟合,二次规划等问题中大型课题的求解方法,为优化方法在工程中的实际应用提供了更方便快捷的途径。 9.1.1优化工具箱中的函数 优化工具箱中的函数包括下面几类: 1 ?最小化函数

2.方程求解函数 3.最小—乘(曲线拟合)函数

4?实用函数 5 ?大型方法的演示函数 6.中型方法的演示函数 9.1.3参数设置 利用OPtimSet函数,可以创建和编辑参数结构;利用OPtimget函数,可以获得o PtiOns优化参数。 ? OPtimget 函数 功能:获得OPtiOns优化参数。 语法:

用Matlab解微分方程

用Matlab 软件求解微分方程 1.解析解 (1)一阶微分方程 求21y dx dy +=的通解:dsolve('Dy=1+y^2','x') 求y x dx dy -+=21的通解:dsolve('Dy=1+x^2-y','x') 求?????=+=1 )0(12y y dx dy 的特解:dsolve('Dy=1+y^2',’y(0)=1’,'x') (2)高阶微分方程 求解???-='==-+'+''. 2)2(,2)2(,0)(222πππy y y n x y x y x 其中,21=n ,命令为: dsolve('x^2*D2y+x*Dy+(x^2-0.5^2)*y=0','y(pi/2)=2,Dy(pi/2)=-2/pi','x') 求042=-+'-'''x y y y 的通解,命令为: dsolve('D3y-2*Dy+y-4*x=0','x') 输出为: ans=8+4*x+C1*exp(x)+C2*exp(-1/2*(5^(1/2)+1)*x)+C3*exp(1/2*(5^(1/2)-1)*x) (3)一阶微分方程组 求???+-='+='). (3)(4)(),(4)(3)(x g x f x g x g x f x f 的通解:[f,g]=dsolve('Df=3*f+4*g','Dg=-4*f+3*g','x') 输出为: f =exp(3*x)*(cos(4*x)*C1+sin(4*x)*C2) g =-exp(3*x)*(sin(4*x)*C1-cos(4*x)*C2) 若再加上初始条件1)0(,0)0(==g f ,则求特解: [f,g]=dsolve('Df=3*f+4*g','Dg=-4*f+3*g','f(0)=0,g(0)=1','x') 输出为: f =exp(3*x)*sin(4*x) g =exp(3*x)*cos(4*x) 2.数值解 (1)一阶微分方程

matlab函数用法

A a abs 绝对值、模、字符的ASCII码值 acos 反余弦 acosh 反双曲余弦 acot 反余切 acoth 反双曲余切 acsc 反余割 acsch 反双曲余割 align 启动图形对象几何位置排列工具 all 所有元素非零为真 angle 相角 ans 表达式计算结果的缺省变量名 any 所有元素非全零为真 area 面域图 argnames 函数M文件宗量名 asec 反正割 asech 反双曲正割 asin 反正弦 asinh 反双曲正弦 assignin 向变量赋值 atan 反正切 atan2 四象限反正切 atanh 反双曲正切 autumn 红黄调秋色图阵 axes 创建轴对象的低层指令 axis 控制轴刻度和风格的高层指令 B b bar 二维直方图 bar3 三维直方图 bar3h 三维水平直方图 barh 二维水平直方图 base2dec X进制转换为十进制 bin2dec 二进制转换为十进制 blanks 创建空格串 bone 蓝色调黑白色图阵 box 框状坐标轴 break while 或for 环中断指令 brighten 亮度控制 C c

capture (3版以前)捕获当前图形 cart2pol 直角坐标变为极或柱坐标 cart2sph 直角坐标变为球坐标 cat 串接成高维数组 caxis 色标尺刻度 cd 指定当前目录 cdedit 启动用户菜单、控件回调函数设计工具cdf2rdf 复数特征值对角阵转为实数块对角阵ceil 向正无穷取整 cell 创建元胞数组 cell2struct 元胞数组转换为构架数组 celldisp 显示元胞数组内容 cellplot 元胞数组内部结构图示 char 把数值、符号、内联类转换为字符对象chi2cdf 分布累计概率函数 chi2inv 分布逆累计概率函数 chi2pdf 分布概率密度函数 chi2rnd 分布随机数发生器 chol Cholesky分解 clabel 等位线标识 cla 清除当前轴 class 获知对象类别或创建对象 clc 清除指令窗 clear 清除内存变量和函数 clf 清除图对象 clock 时钟 colorcube 三浓淡多彩交叉色图矩阵 colordef 设置色彩缺省值 colormap 色图 colspace 列空间的基 close 关闭指定窗口 colperm 列排序置换向量 comet 彗星状轨迹图 comet3 三维彗星轨迹图 compass 射线图 compose 求复合函数 cond (逆)条件数 condeig 计算特征值、特征向量同时给出条件数condest 范-1条件数估计 conj 复数共轭 contour 等位线 contourf 填色等位线 contour3 三维等位线

matlab 有关GA优化的例子

核心函数: (1)function [pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始种群的生成函数 【输出参数】 pop--生成的初始种群 【输入参数】 num--种群中的个体数目 bounds--代表变量的上下界的矩阵 eevalFN--适应度函数 eevalOps--传递给适应度函数的参数 options--选择编码形式(浮点编码或是二进制编码)[precision F_or_B],如 precision--变量进行二进制编码时指定的精度 F_or_B--为1时选择浮点编码,否则为二进制编码,由precision指定精度) (2)function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop,opts,... termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps)--遗传算法函数 【输出参数】 x--求得的最优解 endPop--最终得到的种群 bPop--最优种群的一个搜索轨迹 【输入参数】 bounds--代表变量上下界的矩阵 evalFN--适应度函数 evalOps--传递给适应度函数的参数 startPop-初始种群 opts[epsilon prob_ops display]--opts(1:2)等同于initializega的options参数,第三个参数控制是否输出,一般为0。如[1e-6 1 0] termFN--终止函数的名称,如[maxGenTerm] termOps--传递个终止函数的参数,如[100] selectFN--选择函数的名称,如[normGeomSelect] selectOps--传递个选择函数的参数,如[0.08] xOverFNs--交*函数名称表,以空格分开,如[arithXover heuristicXover simpleXover] xOverOps--传递给交*函数的参数表,如[2 02 32 0] mutFNs--变异函数表,如[boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation] mutOps--传递给交*函数的参数表,如[4 0 06 100 34 100 34 0 0] 注意】matlab工具箱函数必须放在工作目录下 【问题】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9 【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交*概率为0.95,变异概率为0.08 【程序清单】 编写目标函数 function[sol,eval]=fitness(sol,options) x=sol(1) eval=x+10*sin(5*x)+7*cos(4*x) 把上述函数存储为fitness.m文件并放在工作目录下

Matlab求解微分方程(组)及偏微分方程(组)

第四讲Matlab求解微分方程(组) 理论介绍:Matlab求解微分方程(组)命令 求解实例:Matlab求解微分方程(组)实例 实际应用问题通过数学建模所归纳得到得方程,绝大多数都就是微分方程,真正能得到代数方程得机会很少、另一方面,能够求解得微分方程也就是十分有限得,特别就是高阶方程与偏微分方程(组)、这就要求我们必须研究微分方程(组)得解法:解析解法与数值解法、 一.相关函数、命令及简介 1、在Matlab中,用大写字母D表示导数,Dy表示y关于自变量得一阶导数,D2y 表示y关于自变量得二阶导数,依此类推、函数dsolve用来解决常微分方程(组)得求解问题,调用格式为: X=dsolve(‘eqn1’,’eqn2’,…) 函数dsolve用来解符号常微分方程、方程组,如果没有初始条件,则求出通解,如果有初始条件,则求出特解、 注意,系统缺省得自变量为t 2、函数dsolve求解得就是常微分方程得精确解法,也称为常微分方程得符号解、但就是,有大量得常微分方程虽然从理论上讲,其解就是存在得,但我们却无法求出其解析解,此时,我们需要寻求方程得数值解,在求常微分方程数值解方 面,MATLAB具有丰富得函数,我们将其统称为solver,其一般格式为: [T,Y]=solver(odefun,tspan,y0) 说明:(1)solver为命令ode45、ode23、ode113、ode15s、ode23s、ode23t、ode23tb、ode15i之一、 (2)odefun就是显示微分方程在积分区间tspan上从到用初始条件求解、 (3)如果要获得微分方程问题在其她指定时间点上得解,则令tspan(要求就是单调得)、 (4)因为没有一种算法可以有效得解决所有得ODE问题,为此,Matlab提供了多种求解器solver,对于不同得ODE问题,采用不同得solver、 表1 Matlab中文本文件读写函数

matlab各种函数的用法

1 Text函数的用法: 用法 text(x,y,'string')在图形中指定的位置(x,y)上显示字符串string text(x,y,z,'string') 在三维图形空间中的指定位置(x,y,z)上显示字符串string 2, plot([0,z1,z12],'-b','LineWidth',3)[ ]里面表示数组. 3, x,y均为矩阵,plot命令就是画出x,y矩阵对应的二维平面的点形成的曲线。y(:,1)中逗号前是行,逗号后是列,冒号表示从几到几。所以y(:,1)表示第一列的所有元素。如果是y(3:5,1)则表示第一列的第3到第5行对应的元素。只要你的y矩阵有100列,那你当然可以将1改成100。同理,x矩阵也可以这样。 4 sym的意思是symbol,就是后面括号里面是个代数式,要进行符号运算,class()判断对象是什么类型。 5 matlab控制运算精度用的是digits和vpa这两个函数 xs = vpa(x,n) 在n位相对精度下,给出x的数值型符号结果xs xs = vpa(x) 在digits指定的精度下,给出x的数值型符号结果xs

digits用于规定运算精度,比如: digits(20); 这个语句就规定了运算精度是20位有效数字。但并不是规定了就可以使用,因为实际编程中,我们可能有些运算需要控制精度,而有些不需要控制。vpa就用于解决这个问题,凡是用需要控制精度的,我们都对运算表达式使用vpa函数。例如: digits(5); a=vpa(sqrt(2)); 这样a的值就是1.4142,而不是准确的1.4880 又如: digits(5); a=vpa(sqrt(2)); b=sqrt(2); 这样a的值是1.4142,b没有用vpa函数,所以b是1.4880...... 6

最优化算法实验报告(附Matlab程序)

最优化方法(Matlab)实验报告 ——Fibonacci 法 一、实验目的: 用MATLAB 程序实现一维搜索中用Fibonacc 法求解一元单峰函数的极小值问题。二、实验原理: (一)、构造Fibonacci 数列:设数列{}k F ,满足条件: 1、011F F == 2、11 k k k F F F +-=+则称数列{}k F 为Fibonacci 数列。(二)、迭代过程: 首先由下面的迭代公式确定出迭代点: 1 1 1 (),1,...,1(),1,...,1n k k k k k n k n k k k k k n k F a b a k n F F u a b a k n F λ---+--+=+ -=-=+ -=-易验证,用上述迭代公式进行迭代时,第k 次迭代的区间长度缩短比率恰好为 1 n k n k F F --+。故可设迭代次数为n ,因此有11121211221111223231 ()()......()()n n n n n n n n n F F F F F F b a b a b a b a b a F F F F F F F ------= -=?-==?-=-若设精度为L ,则有第n 次迭代得区间长度111 ()n n n b a L b a L F -≤-≤,即 就是 111 ()n b a L F -≤,由此便可确定出迭代次数n 。

假设第k 次迭代时已确定出区间[,]k k a b 以及试探点,[,]k k k k u a b λ∈并且k k u λ<。计算试探点处的函数值,有以下两种可能:(1)若()()k k f f u λ>,则令 111111111,,()() () k k k k k k k k n k k k k k n k a b b f f F a b a F λλμλμμ++++--++++-=====+-计算1()k f μ+的值。(2)()()k k f f u λ≤,则令 111121111,,()() () k k k k k k k k n k k k k k n k a a b f f F a b a F μμλμλλ++++--++++-=====+-计算1()k f λ+的值。 又因为第一次迭代确定出了两个迭代点,以后每迭代一次,新增加一个迭代点,这样在迭代n-1后便计算完了n 个迭代点。因此第n 次迭代中,选用第n-1次的迭代点以及辨别常数δ构造n λ和n μ: 1 1n n n n λλμλδ --==+再用同样的方法进行判断:(1)、若()n f λ>()n f μ则令 1 n n n n a b b λ-==(2)、若()n f λ<=()n f μ则令 1n n n n a a b μ-==这样便可确定出最优解的存在区间[,]n n a b 。

matlab基本函数的用法

一. Matlab中常见函数基本用法 1.sum (1 )sum(A)A为矩阵得出A矩阵每列的和组成的一个矢量; A为矢量得出A的各元 素之和 (2)sum(diag(A))得矩阵A的对角元素之和 (3)sum(A,dim) A为矩阵,sum(A,1)按列求和;sum(A,2)按行求和 2.max(min) (1)max(A) 若A为矩阵则得出A矩阵每列的最大元素组成的一个矢量 若A为矢量则得出A中最大的元 (2)max(A,B) A与B为同维矩阵得出取A 与B中相同位置元素中较大者组成的新矩阵 (3)max(A,[],dim) max(a,[ ],1),求每列的最大值;max(a,[ ],2)求每行的最大值 3.find (1)find(X)若X为行向量则得出X中所有非零元素所在的位置(按行)若X为列向量或矩阵则得出X中所有非零元素的位置(按列)(2)ind = find(X, k)/ind = find(X,k,'first') 返回前k个非零元的指标ind = find(X,k,'last') 返回后k个非零元的指标 (3)[row,col] = find(X) row代表行指标,col代表列指标 [row,col,val] = find(X) val表示查找到对应位置非零元的值 [row,col] = find(A>100 & A<1000) 找出满足一定要求的元素 4.reshape (1)B = reshape(A,m,n) 把A变成m*n的矩阵 5.sort (1)B = sort(A) 把A的元素按每列从小到大的顺序排列组成新矩阵

(2)B = sort(A,dim) dim=1同(1); dim=2 把A按每行从小到大的顺序排列组成新矩阵 6.cat (1)C = cat(dim, A, B) dim=1相当于[A;B];dim=2相当于[A,B] (2)C = cat(dim, A1, A2, A3, A4, ...) 类推(1) 7.meshgrid (1)[X,Y] = meshgrid(x,y) 将向量x和y定义的区域转换成矩阵X和Y,矩阵X的行向量是向量x的简单复制,而矩阵Y的列向量是向量y的简单复制。(2)[X,Y] = meshgrid(x) (1)y=x中情形 8.diag (1)X = diag(v,k) 向量v作为X的第k对角线上的元素X的其他元素为零(2)X = diag(v) (1)中k=0的情况 (2)v = diag(X,k) v为矩阵X的第k对角线的元素组成的列向量 (4)v = diag(X) (3)中k等于零的情况

优化方法MATLAB编程——大连理工大学

优化方法上机大作业 学院: 姓名: 学号: 指导老师:肖现涛

第一题 源程序如下: function zy_x = di1ti(x) %di1ti是用来求解优化作业第一题的函数。 x0=x; yimuxulong=0.000001; g0=g(x0);s0=-g0; A=2*ones(100,100); k=0; while k<100 lanmed=-(g0)'*s0/(s0'*A*s0); x=x0+lanmed*s0; g=g(x); k=k+1; if norm(g)

break; end miu=norm(g)^2/norm(g0)^2; s=-g+miu*s0; g0=g; s0=s;x0=x; end function f=f(x) f=(x'*ones(100,1))^2-x'*ones(100,1); function g=g(x) g=(2*x'*ones(100,1))*ones(100,1)-ones(100,1); 代入x0,运行结果如下: >> x=zeros(100,1); >> di1ti(x) After 1 iterations,obtain the optimal solution. The optimal solution is -0.250000. The optimal "x" is "ans". ans =0.005*ones(100,1).

Matlab中常见数学函数的使用

给自己看的----Matlab 的内部常数(转) 2008/06/19 14:01 [Ctrl C/V--学校 ] MATLAB 基本知识 Matlab 的内部常数 pi 圆周率 exp(1) 自然对数的底数e i 或j 虚数单位 Inf 或 inf 无穷大 Matlab 的常用内部数学函数

我们也可在matlab中调用maple的命令进行多项式的运算,调用格式如下: maple(’maple中多项式的运算命令’) 如何用matlab进行分式运算 发现matlab只有一条处理分式问题的命令,其使用格式如下: [n,d]=numden(f)把符号表达式f化简为有理形式,其中分子和分母的系数为整数且分子分母不含公约项,返回结果n为分子,d为分母。注意:f必须为符号表达式 不过我们可以调用maple的命令,调用方法如下: maple(’denom(f)’)提取分式f的分母 maple(’numer(f)’)提取分式f的分子 maple(’normal(f)’ ) 把分式f的分子与分母约分成最简形式 maple(’expand(f)’) 把分式f的分子展开,分母不变且被看成单项。 maple(’factor(f)’) 把分式f的分母和分子因式分解,并进行约分。 如何用Matlab进行因式分解 syms 表达式中包含的变量factor(表达式) 如何用Matlab展开 syms 表达式中包含的变量expand(表达式) 如何用Matlab进行化简 syms 表达式中包含的变量simplify(表达式) 如何用Matlab合并同类项 syms 表达式中包含的变量collect(表达式,指定的变量) 如何用Matlab进行数学式的转换 调用Maple中数学式的转换命令,调用格式如下: maple(‘Maple的数学式转换命令’) 即:maple(‘convert(表达式,form)’)将表达式转换成form的表示方式 maple(‘convert(表达式,form, x)’)指定变量为x,将依赖于变量x的函数转换成form的表示方式(此指令仅对form为exp与sincos的转换式有用) 如何用Matlab进行变量替换 syms 表达式和代换式中包含的所有变量subs(表达式,要替换的变量或式子,代换式) 如何用matlab进行复数运算 a+b*i 或 a +b*j表示复数a+bi 或a+bj real(z)求复数z的实部 imag(z)求复数z的虚部 abs(z)求复数z的模 angle(z)求复数z的辐角, conj(z)求复数z的共轭复数 exp(z)复数的指数函数,表示e^z 如何在matlab中表示集合 [a, b, c,…] 表示由a, b, c,…组成的集合(注意:元素之间也可用空格隔开) unique(A) 表示集合A的最小等效集合(每个元素只出现一次) 也可调用maple的命令,格式如下: maple('{a, b, c,…}')表示由a, b, c,…组成的集合 下列命令可以生成特殊的集合: maple(‘{seq(f(i),i=n..m)}’)生成集合{f(n), f(n+1), f(n+2), … , f(m)} 如何用Matlab求集合的交集、并集、差集和补集

最优化方法matlab作业

实用最优化方法 ——matlab编程作业

题一、 初值为[-1;1] 其中g0、g1分别为不同x值下得导数,f0、f1为函数值 MATLAB程序: x0=[-1;1]; s0=[1;1]; c1=0.1;c2=0.5;a=0;b=inf;d=1;n=0; x1=x0+d*s0; g0=[-400*(x0(2)-x0(1)^2)*x0(1)-2*(1-x0(1));200*(x0(2)-x0(1) ^2)]; g1=[-400*(x1(2)-x1(1)^2)*x1(1)-2*(1-x1(1));200*(x1(2)-x1(1) ^2)]; f1=100*(x1(2)-x1(1)^2)^2+(1-x1(1))^2; f0=100*(x0(2)-x0(1)^2)^2+(1-x0(1))^2; while((f0-f1<-c1*d*g0'*s0)||(g1'*s0

Matlab最优化编程例子

题目:分别用最速下降法、FR 共轭梯度法、DFP 法和BFGS 法求解问题: 22112212minf(x)x 2x x 4x x 3x =-++- 取初始点(1)T x (1,1)=,通过Matlab 编程实现求解过程。 公用函数如下: 1、function f= fun( X ) %所求问题目标函数 f=X(1)^2-2*X(1)*X(2)+4*X(2)^2+X(1)-3*X(2); end 2、function g= gfun( X ) %所求问题目标函数梯度 g=[2*X(1)-2*X(2)+1,-2*X(1)+8*X(2)-3]; end 3、function He = Hess( X ) %所求问题目标函数Hesse 矩阵 n=length(X); He=zeros(n,n); He=[2,-2; -2,4]; End 解法一:最速下降法 function [ x,val,k ] = grad( fun,gfun,x0 ) %功能:用最速下降法求无约束问题最小值 %输入:x0是初始点,fun 和gfun 分别是目标函数和梯度 %输出:x 、val 分别是最优点和最优值,k 是迭代次数 maxk=5000;%最大迭代次数 rho=0.5;sigma=0.4; k=0;eps=10e-6; while (k

Matlab求解微分方程(组)及偏微分方程(组)

第四讲 Matlab 求解微分方程(组) 理论介绍:Matlab 求解微分方程(组)命令 求解实例:Matlab 求解微分方程(组)实例 实际应用问题通过数学建模所归纳得到的方程,绝大多数都是微分方程,真正能得到代数方程的机会很少.另一方面,能够求解的微分方程也是十分有限的,特别是高阶方程和偏微分方程(组).这就要求我们必须研究微分方程(组)的解法:解析解法和数值解法. 一.相关函数、命令及简介 1.在Matlab 中,用大写字母D 表示导数,Dy 表示y 关于自变量的一阶导数,D2y 表示y 关于自变量的二阶导数,依此类推.函数dsolve 用来解决常微分方程(组)的求解问题,调用格式为: X=dsolve(‘eqn1’,’eqn2’,…) 函数dsolve 用来解符号常微分方程、方程组,如果没有初始条件,则求出通解,如果有初始条件,则求出特解. 注意,系统缺省的自变量为t 2.函数dsolve 求解的是常微分方程的精确解法,也称为常微分方程的符号解.但是,有大量的常微分方程虽然从理论上讲,其解是存在的,但我们却无法求出其解析解,此时,我们需要寻求方程的数值解,在求常微分方程数值解方面,MATLAB 具有丰富的函数,我们将其统称为solver ,其一般格式为: [T,Y]=solver(odefun,tspan,y0) 说明:(1)solver 为命令ode45、ode23、ode113、ode15s 、ode23s 、ode23t 、ode23tb 、ode15i 之一. (2)odefun 是显示微分方程'(,)y f t y =在积分区间tspan 0[,]f t t =上从0t 到f t 用初始条件0y 求解. (3)如果要获得微分方程问题在其他指定时间点012,,, ,f t t t t 上的解,则令 tspan 012[,,,]f t t t t =(要求是单调的). (4)因为没有一种算法可以有效的解决所有的ODE 问题,为此,Matlab 提供

最优化方法的Matlab实现(公式完整版)

第九章最优化方法的Matlab实现 在生活和工作中,人们对于同一个问题往往会提出多个解决方案,并通过各方面的论证从中提取最佳方案。最优化方法就是专门研究如何从多个方案中科学合理地提取出最佳方案的科学。由于优化问题无所不在,目前最优化方法的应用和研究已经深入到了生产和科研的各个领域,如土木工程、机械工程、化学工程、运输调度、生产控制、经济规划、经济管理等,并取得了显著的经济效益和社会效益。 用最优化方法解决最优化问题的技术称为最优化技术,它包含两个方面的内容:1)建立数学模型即用数学语言来描述最优化问题。模型中的数学关系式反映了最优化问题所要达到的目标和各种约束条件。 2)数学求解数学模型建好以后,选择合理的最优化方法进行求解。 最优化方法的发展很快,现在已经包含有多个分支,如线性规划、整数规划、非线性规划、动态规划、多目标规划等。 9.1 概述 利用Matlab的优化工具箱,可以求解线性规划、非线性规划和多目标规划问题。具体而言,包括线性、非线性最小化,最大最小化,二次规划,半无限问题,线性、非线性方程(组)的求解,线性、非线性的最小二乘问题。另外,该工具箱还提供了线性、

非线性最小化,方程求解,曲线拟合,二次规划等问题中大型课题的求解方法,为优化方法在工程中的实际应用提供了更方便快捷的途径。 9.1.1 优化工具箱中的函数 优化工具箱中的函数包括下面几类: 1.最小化函数 表9-1 最小化函数表 2.方程求解函数 表9-2 方程求解函数表

3.最小二乘(曲线拟合)函数 表9-3 最小二乘函数表 4.实用函数 表9-4 实用函数表 5.大型方法的演示函数 表9-5 大型方法的演示函数表

数学应用软件作业6-用Matlab求解微分方程(组)的解析解和数值解

数学应用软件作业6-用Matlab 求解微分方程(组)的解析解和数值解

注:上机作业文件夹以自己的班级姓名学号命名,文件夹包括如下上机报告和Matlab程序。 上机报告模板如下: 佛山科学技术学院 上机报告 课程名称数学应用软件 上机项目用Matlab求解微分方程(组)的解析解和数值解 专业班级姓名学号 一. 上机目的 1.了解求微分方程(组)的解的知识。 2.学习Matlab中求微分方程的各种解的函数,如 dsolve命令、ode45函数等等,其中注意把方程化为新的方程的形式。 3.掌握用matlab编写程序解决求解微分方程的问 题。 二. 上机内容 1、求高阶线性齐次方程:y’’’-y’’-3y’+2y=0。 2、求常微分方程组

2 210cos,2 24,0 t t t dx dy x t x dt dt dx dy y e y dt dt = - = ? +-== ?? ? ?++== ?? 3、求解 分别用函数ode45和ode15s计算求解,分别画出图形,图形分别标注标题。 4、求解微分方程 ,1 )0( ,1 '= + + - =y t y y 先求解析解,在[0,1]上作图; 再用ode45求数值解(作图的图形用“o”表示),在同一副图中作图进行比较,用不同的颜色表示。 三. 上机方法与步骤 给出相应的问题分析及求解方法,并写出Matlab 程序,并有上机程序显示截图。 题1:直接用命令dsolve求解出微分方程的通解。 Matlab程序:

dsolve('D3y-D2y-3*Dy+2*y','x') 题2:将微分方程组改写为 5cos2exp(2) 5cos2exp(2) (0)2,(0)0 dx t t x y xt dy t t x y dt x y ? =+--- ? ? ? =-+-+- ? ? == ? ? ? , 再用命令dsolve求解微分方程的通解。 Matlab程序: 建立timu2.m如下: [x,y]=dsolve('Dx=5*cos(t)+2*exp(-2*t)-x-y','Dy=-5*cos(t)+2*exp(-2*t)+x-y ','x(0)=2,y(0)=0','t') x=simple(x) y=simple(y)

多目标优化实例和matlab程序

NSGA-II 算法实例 目前的多目标优化算法有很多, Kalyanmoy Deb 的带精英策略的快速非支配排序遗传算法(NSGA-II) 无疑是其中应用最为广泛也是最为成功的一种。本文用的算法是MATLAB 自带的函数gamultiobj ,该函数是基于NSGA-II 改进的一种多目标优化算法。 一、 数值例子 多目标优化问题 424221********* 4224212212112 12min (,)10min (,)55..55 f x x x x x x x x x f x x x x x x x x x s t x =-++-=-++-≤≤??-≤≤? 二、 Matlab 文件 1. 适应值函数m 文件: function y=f(x) y(1)=x(1)^4-10*x(1)^2+x(1)*x(2)+x(2)^4-x(1)^2*x(2)^2; y(2)=x(2)^4-x(1)^2*x(2)^2+x(1)^4+x(1)*x(2); 2. 调用gamultiobj 函数,及参数设置: clear clc fitnessfcn=@f; %适应度函数句柄 nvars=2; %变量个数 lb=[-5,-5]; %下限 ub=[5,5]; %上限 A=[];b=[]; %线性不等式约束 Aeq=[];beq=[]; %线性等式约束 options=gaoptimset('paretoFraction',0.3,'populationsize',100,'generations', 200,'stallGenLimit',200,'TolFun',1e-100,'PlotFcns',@gaplotpareto); % 最优个体系数paretoFraction 为0.3;种群大小populationsize 为100,最大进化代数generations 为200, % 停止代数stallGenLimit 为200, 适应度函数偏差TolFun 设为1e-100,函数gaplotpareto :绘制Pareto 前端 [x,fval]=gamultiobj(fitnessfcn,nvars,A,b,Aeq,beq,lb,ub,options)

相关主题
文本预览
相关文档 最新文档