当前位置:文档之家› RLC电路弹簧耦合系统的非线性动力学分析

RLC电路弹簧耦合系统的非线性动力学分析

RLC电路弹簧耦合系统的非线性动力学分析
RLC电路弹簧耦合系统的非线性动力学分析

11.-无砟轨道结构动力学理论

11. 无砟轨道结构动力学理论 11.1 列车-无碴轨道耦合动力学模型 将机车车辆视为由车体、构架及轮对组成的多刚体系统,考虑车体、前后构架及轮对的垂向、横向、沉浮、点头、侧滚、摇头自由度以及车辆悬挂系统中的非线性因素。轮轨之间的法向作用力由赫兹非线性弹性接触理论确定,切向蠕滑力先由Kalker线性蠕滑理论确定,再进行非线性修正。将钢轨视为弹性点支承基础上的Bernoulli-Euler梁,分别考虑左、右股钢轨的垂向、横向及转动自由度,钢轨支承点间隔为扣件间距。轨道板(道床板)垂向视为弹性基础上的弹性薄板,轨道板(道床板)的横向视为刚体运动,考虑平动和转动自由度,凸形挡台及CA砂浆对轨道板(道床板)的提供横向弹性约束。混凝土底座同样视为弹性地基上的弹性薄板。图11.1~图11.7为列车-无碴轨道空间耦合动力学模型。 图11.1 列车-双块式轨道耦合动力学模型(侧视图)钢轨道床板

图11.2 列车-板式轨道耦合动力学模型(侧视图) 图11.3 列车-双块式轨道耦合动力学模型端视图 图11.4 列车-板式轨道耦合动力学模型端视图钢轨 轨道板 混凝土底座

图11.5 路基上双块式轨道-有碴轨道过渡段耦合动力学模型 图11.6 路基上板式轨道-有碴轨道过渡段耦合动力学模型 图11.7 路基上板式轨道-有碴轨道过渡段耦合动力学模型(辅助轨)

11.2 无碴轨道动力学方程 将钢轨视为弹性点支承基础上Bernoulli-Euler 梁,在机车车辆荷载作用下,钢轨的垂向、横向振动以及扭转振动可表示为 ()() ()()()()4242 11,,s w N N r r r ry r r rVi Fi Vj Pj i j z x t z x t E J A F t x x P t x x x t ρδδ==??+=--+-??∑∑ (11.1) ()() ()()()()4242 11 ,,s w N N r r r rz r r rHi Fi Hj Pj i j y x t y x t E J A F t x x P t x x x t ρδδ==??+=--+-??∑∑ (11.2) ()()()22022 11 (,)(,) () s w N N r r r r r rt rTi Si Tj Pj i j x t x t J G J F t x x P t x x t x ?φ?φρδδ??==+=--+-∑∑ (11.3) 采用Ritz 法可将上述偏微分方程转换为关于钢轨正则坐标 () t q zk 、 () t q yk 、()t q tk 的二阶常微分方程组 ()4 11()()() (=1~)s w N N r y zk zk rVi k Fi Vj k Pj Z i j r r E I k q t q t F Z x P Z x k N A l πρ==??+=-+ ???∑∑ (11.4) ()4 11()()() (=1~)s w N N r z yk yk rHi k Fi Hj k Pj Y i j r r E I k q t q t F Y x P Y x k N A l πρ==?? +=-+ ???∑∑ (11.5) ()211 0()()() (=1~)s w N N r rt tk tk rTi k Si Tj k Pj T i j r r G J k q t q t F x P x k N J l πρ==?? +=-Φ+Φ ???∑∑ (11.6) 设轨道板长度为1a ,宽度为1b ,阻尼为1C ,弯曲刚度为1D ,单位面积质量为1m ,轨道板上的扣结点数为P N ,对应的扣结点枕上压力为F rv 。根据弹性薄板的振动理论,轨道板的垂向振动方程可写为 ()()()()()()()()()()()1111111111111 CA P 44424224 2N N rVi Pi Pi j Fj Fj i=1j=1 w x,y,t w x,y,t w x,y,t w x,y,t w x,y,t C m +2+++x x y y D t D t = F t x-x y-y F t x-x y-y D D δδδδ???????????-∑∑ (11.7) 采用双向梁函数组合级数逼近方法来求解轨道板振动方程,轨道板的挠度可设为

第2章电路的基本分析方法

第2章电路的基本分析方法 一、填空题: 1. 有两个电阻,当它们串联起来的总电阻为10Q,当他们并联起来的总电阻为 2.4 Q 这两个电阻的阻值分别为_4Q _和__6Q — 2. 下图所示的电路,A B之间的等效电阻R= 1Q 电路的等效电阻R A B=60Q R CD 5. _______________________________________________________ 下图所示电 路中的A B两点间的等效电阻为12KQ _______________________________ 图中所示 的电流l=6mA则流经6K电阻的电流为2mA ;图中所示方向的电压U为12V 此 6K电阻消耗的功率为24mW 。 4. 3.下图所示的电路, 下图所示电路,每个电阻的阻值均为30 Q, B o B之间的等效电阻R A E=3Q O 6Q 3Q 2Q 2 Q 2 Q 2Q

鼻s Ik 10k皐 A Q T 1 L__JI 1_ () --------------------- 10kQ知 ]6k j L + B O ------ o

6. 下图所示电路中,ab 两端的等效电阻为12Q , cd 两端的等效电阻为4 Q 8.下图所示电路中,ab 两点间的电压U ab 为io V 。 + iov a 24V 已知U F 3V, I S = 3 A 时,支路电流I 才等于2A 。 10. 某二端网络为理想电压源和理想电流源并联电路, 则其等效电路为 理想电压 源。 11. 已知一个有源二端网络的 开路电压为20V,其短路电流为5A,则该有源二端 网络外接4 Q 电阻时,负载得到的功率最大, 最大功率为 25W 12. 应用叠加定理分析线性电路时, 对暂不起作用的电源的处理,电流源应看作 开路,电压 7?下图所示电路a 、 6 Q a i — 5 Li b 间的等效电阻Rab 为4" 9.下图所示电路中, d 15 Q b Hi BO

刚柔耦合动力学的建模方法

第42卷第11期 2008年11月 上海交通大学学报 JOU RN AL O F SH AN G HA I JIA OT O N G U N IV ERSIT Y Vol.42No.11 Nov.2008 收稿日期:2007 10 08 基金项目:国家自然科学基金资助项目(10772113);高等学校博士学科点专项科研基金资助项目(20040248013) 作者简介:洪嘉振(1944 ),男,浙江宁波市人,教授,博士生导师,研究方向:多体系统动力学与控制.电话(T el.):021 ********; E mail:jzhong@s https://www.doczj.com/doc/34102469.html,. 文章编号:1006 2467(2008)11 1922 05 刚柔耦合动力学的建模方法 洪嘉振, 刘铸永 (上海交通大学工程力学系,上海200240) 摘 要:对柔性多体系统动力学研究的若干阶段和研究现状进行回顾,对已有的刚柔耦合动力学建模方法进行总结.为了对已有的建模方法进行评价,提出了5项指标:科学性、通用性、识别性、兼容性和高效性,指出现有的建模方法尚无法满足工程实际应用的需要,应研究满足全部评价指标的刚柔耦合动力学建模方法.文中对今后柔性多体系统刚柔耦合动力学的几个研究方向进行展望,包括理论建模、计算方法和试验研究等方面. 关键词:刚柔耦合系统;动力学;建模方法;评价指标中图分类号:O 313 文献标识码:A Modeling Methods of Rigid Flexible Coupling Dynamics H ON G J ia z hen, L I U Zhu y ong (Department of Engineering M echanics,Shanghai Jiaotong Univ er sity,Shanghai 200240,China)Abstract:A brief review about several phases and present status o f flexible multi bo dy dynamics w as given and the ex isting m odeling m ethods o f r ig id flex ible coupling dynam ics w ere sum marized.Five indexes,in cluding scientific index,g eneral index,identifiable index,compatible index and efficient index ,w ere pro posed to evaluate the ex isted mo deling methods.It show s that the ex isted m odeling metho ds can no t satis fy the actual needs of eng ineer ing application and new modeling m ethod w hich satisfies all the evaluating index es should be inv estig ated.T he r esearch tar gets including modeling theor y,com putational methods and exper im ents w er e sugg ested for the rigid flexible co upling dynamics o f the flex ible multi body sys tems. Key words:rigid flex ible coupling sy stem s;dy nam ics;mo deling methods;evaluating index 柔性多体系统是指由多个刚体或柔性体通过一定方式相互连接构成的复杂系统,是多刚体系统动力学的自然延伸.考虑刚柔耦合效应的柔性多体系统动力学称之为刚柔耦合系统动力学,主要研究柔性体的变形与其大范围空间运动之间的相互作用或相互耦合,以及这种耦合所导致的动力学效应.这种耦合的相互作用是柔性多体系统动力学的本质特 征,使其动力学模型不仅区别于多刚体系统动力学,也区别于结构动力学.因此,柔性多体系统动力学是 与经典动力学、连续介质力学、现代控制理论及计算机技术紧密相联的一门新兴交叉学科[1 3],它对高技术、工业现代化和国防技术的发展具有重要的应用价值. 根据力学的基本原理,基于不同的建模方法,得

限幅与钳位电路分析

欢迎光临实用电子技术网愿你在这里有所收获! 实用电子技术网 返回电子知识 限幅与箝位电路 一、限幅电路 图一是二极管限幅电路,电路(a)是并联单向限同上电路,电路(b)是串联单向限幅电路;电路(C)是双向限幅电路,三种电路的工作原理相同,现以电路(C)说明:分析电路原理时认为二极管的正向电阻Rf为零反向电阻Rr为无限大,当Ui>E1时,D1导通,则Uo=E1;反之,当Ui

图三、任意电平箝位电路 箝位电路可以把信号箝位于某一固定电平上,如图三(a)电路,当输入Ui=0期间,D截止,Uo=-Eo;而当输入Ui突变到Um瞬间,电容C相当短路,输出Uo由-Eo突变至Um,这时D截止,C经R及Eo充电,但充电速度很慢,使Uo随C充电稍有下降;当Ui从Um下降为零瞬间,Uo也负跳幅值Um,此时D导通,C放电很快,因此输出信号起始电平箝位于-Eoo同理,电路(b)的输出信号箝位于Eoo值得注意的是,箝位电路不仅使输出信号的起始电平箝位于某一电平,而且能使输出信号的顶部电平箝位于某一数值,电路元件估算公式如下: -------------------------------------------------式一 式中:Rf、Rr为二极管正向、反向电阻。箝位电路的电容量为: C= ---------------------------------------------------------------式二 式中:C′≤T ρ/3Rs+Rf C″≥100(Tr/R) 其中Tp为输入脉冲信号持续期,Tr为间歇期,Rs为输入信号源内阻。要选用正、反电阻相差大的二极管,如要求变化速度快及反向 恢复时间短,则选硅二极管如2CK型为宜,若要求箝位靠近零电平,则选锗二极管2AK型为合适。

三种耦合方式下放大电路交流负载线的特性

三种耦合方式下放大电路交流负载线的特性摘要:通过对常见的阻容耦合、变压器耦合及直接耦合方式下共发射极放大电路交流负载线特性的研究,给出了三种耦合方式下放大电路交流负载线的共同形式,以及常见三种耦合方式下共发射极放大电路交流负载线的具体形式,阐述了这三种耦合方式下放大电路交流负载线的相同和不同之处,以及三种耦合方式直流负载线方程与交流负载线方程的关系。 0 引言 图解法在用于放大电路分析时,由于其形象直观而常用于放大电路静态工作点及波形失真问题的分析。 其中,交流负载线则用于估算最大不失真输出电压。但是,目前高等院校电子线路教材并没有给出交流负载线方程的形式及其推导过程,只给出交流负载线的斜率和画法。因此,在一些文献中采用戴维南定理或叠加定理等方法推导和讨论了共射极阻容耦合放大电路或直接耦合放大电路的交流负载线方程,但是对变压器耦合放大电路并未作推导和讨论。 本文对反映放大电路输出特性的阻容耦合、变压器耦合以及直接耦合方式下共发射极接法放大电路的交流负载线进行了分析和研究,给出了这三种耦合方式下共发射极放大电路交流负载线的特性,并对变压器耦合放大电路的交流负载线方程进行了推导。 1 交流负载线及其方程形式 放大电路在交流信号源和直流信号电源共同作用时,晶体管管压降△uce 和集电极电流△i c 通过交流等效负载R'L 所表现出的关系△ic= f ( △uce ) 描述了交流信号输入后动态工作点移动的轨迹,这一直线我们将其称之为交流负载线。 由文献[ 8] 知,阻容耦合、变压器耦合及直接耦合方式共射极放大电路的交流通路输出端均为如图1 所示的形式。其输出端交流电压、电流关系为: 对阻容耦合及直接耦合而言,集电极负载是Rc 和RL 的并联值,即R' L = Rc//RL 。对变压器耦合而言,集电极负载是R'L = n2RL ,n 为变压器变比。 将交流量、直流量和总的瞬时量之间的关系△i c=I c+ i c,△uce= Uce+ uce 代入式( 1) 得: 式( 2) 代表了通过Q 点,斜率为- 1/ R'L 的直线,即为放大电路交流负载线方程。该方程在纵轴上的截距为I c + Uce/ R'L ,在横轴上的截距为Uce + I cR'L 。若设V'= Uce + I cR' L ,则其在纵轴和横轴上的截距也可分别表示为V'/ R'L 及V',这与直流负载线在纵轴和横轴上的截距表现形式完全相同。

电路的基本分析方法

第2章电路的基本分析方法 电路的基本分析方法贯穿了整个教材,只是在激励和响应的形式不同时,电路基本分析方法的应用形式也不同而已。本章以欧姆定律和基尔霍夫定律为基础,寻求不同的电路分析方法,其中支路电流法是最基本的、直接应用基尔霍夫定律求解电路的方法;回路电流法和结点电压法是建立在欧姆定律和基尔霍夫定律之上的、根据电路结构特点总结出来的以减少方程式数目为目的的电路基本分析方法;叠加定理则阐明了线性电路的叠加性;戴维南定理在求解复杂网络中某一支路的电压或电流时则显得十分方便。这些都是求解复杂电路问题的系统化方法。 本章的学习重点: ●求解复杂电路的基本方法:支路电流法; ●为减少方程式数目而寻求的回路电流法和结点电压法; ●叠加定理及戴维南定理的理解和应用。 2.1 支路电流法 1、学习指导 支路电流法是以客观存在的支路电流为未知量,应用基尔霍夫定律列出与未知量个数相同的方程式,再联立求解的方法,是应用基尔霍夫定律的一种最直接的求解电路响应的方法。学习支路电流法的关键是:要在理解独立结点和独立回路的基础上,在电路图中标示出各支路电流的参考方向及独立回路的绕行方向,正确应用KCL、KVL列写方程式联立求解。支路电流法适用于支路数目不多的复杂电路。 2、学习检验结果解析 (1)说说你对独立结点和独立回路的看法,你应用支路电流法求解电路时,根据什么原则选取独立结点和独立回路? 解析:不能由其它结点电流方程(或回路电压方程)导出的结点(或回路)就是所谓的独立结点(或独立回路)。应用支路电流法求解电路时,对于具有m条支路、n个结点的电路,独立结点较好选取,只需少取一个结点、即独立结点数是n-1个;独立回路选取的原则是其中至少有一条新的支路,独立回路数为m-n+1个,对平面电路图而言,其网孔数即等于独立回路数。 2.图2.2所示电路,有几个结点?几条支路?几个回路?几个网孔?若对该电路应用支

简单非线性电阻电路的分析

第五章 简单非线性电阻电路的分析 5-1 含一个非线性元件的电阻电路的分析 一、含一个非线性元件的电阻电路都可用电源等效定理来等效 N 为含源线性网络。 二、非线性电路的一般分析方法 1、图解法 2、代数法 3、分段分析法 4、假定状态分析法 1、图解法 设非线性电阻的V AR 为 在如上图所示u 和i 的参考方向如下,线形部分的V AR 为 将 代入上式得 通常,用图解法求解u 和i 如图5-2 两曲线的交点Q 是所求解答。直线称为负载线 在求出端口电压 u Q 和 i Q 后。就 可用置换定理求出线性单口网络内部的电 ) (u f i =i R u u oc 0-=)(u f i =oc oc u u u f R u f R u u =+-=)()(00

压电流。 例5-1 电路如图5-3(a)所示,二极管特性曲线如图(d)所示,输入电压随时间变化。 (1)试求所示电路输出电压u0对输入电压u i的曲线,即u0-u i转移特性; (2)若输入电压的波形如图(e)所示,试求输出电压u0的波形。 解戴维南等效电路 由电路可知 2 i oc u u= i u u30 0 + =

若 u i 变化时(交流),戴维南等效电压源也是时变的。但Ro 是定值,所以 线性网络的负载线具有不变的斜率 -1/Ro ,在 u-i 平面上作平行移动,每一时 刻负载线在电压轴的截距总是等于等效电压源在该时刻的瞬时值,负载线与二极管特性曲线的交点也在移动,即二极管的电压、电流都随时间而变。 求u 0-u i 转移特性曲线 由图(a )可得 当 时,0u 由 确定。 当 时,0i =, 可得转移特性曲线如图5-4所示 2、代数法 若i=f(u)中的f(u)可用初等函数表示,那么可利用节点法或回路法求解。 例5-2 如图5-5所示电路中,已知非线性电阻的V AR 为 试求电流i 。 030u u i =+0>i u i u u o 30+=0

电路的耦合方式

电路的耦合方式 一级:组成多级放大电路的每一个基本放大电路称为一级。 级间耦合:级与级之间的连接称为级间耦合。 多级放大电路的耦合方式:直接耦合、阻容耦合、变压器耦合和光电耦合。 ★直接耦合 直接耦合:将前一级的输出端直接连 接到后一级的输入端。 如右图所示为直接耦合电路。 直接耦合方式的缺点:采用直接耦合 方式使各级之间的直流通路相连,因而静 态工作点相互影响。有零点漂移现象。 直接耦合方式的优点:具有良好的低频特性,可以放大变化缓慢的信号;由于电路中没有大容量电容,易于将全部电路集成在一片硅片上,构成集成电路。 ★阻容耦合方式 阻容耦合方式:将放大电路的前级输出端通过电容接到后级输入端,称为阻容耦合方式。 如下图所示为两级阻容 耦合放大电路。 直流分析:由于电容对 直流量的电抗为无穷大,因 而阻容耦合放大电路各级之 间的直流通路不相通,各级 的静态工作点相互独立。 交流分析:只要输入信号频率较高,耦合电容容量较大,前级的输出信号可几乎没有衰减地传递到后级的输入端。因此,在分立元件电路中阻容耦合方式得

到非常广泛的应用。 阻容耦合电路的缺点:低频特性差,不能放大变化缓慢的信号;在集成电路中制造大容量的电容很困难,因此阻容耦合方式不便于集成化。 ★变压器耦合 变压器耦合:将放大电路前级的输出端通过变压器接到后级的输入端或负载电阻上,称为变压器耦合。 如右图所示为变压器耦合共射放大电路。 电路缺点:变压器耦合电路的前后级靠磁 路耦合,它的各级放大电路的静态工作点相互 独立。它的低频特性差,不能放大变化缓慢的 信号,且非常笨重,不能集成化。 电路优点是可以实现阻抗变换,因而在分 立元件功率放大电路中得到广泛应用。 如下图所示,设原边电流有效值为I1,副边电流有效值为I2,将负载折合到原边的等效电阻为 变压器原边线圈匝数N1,副边线匝数N2,

限幅电路

你问的是这个问题吗? 下图:是二极管限幅电路,电路(a)是并联单向限同上电路,电路(b)是串联单向限幅电路;电路(C)是双向限幅电路,三种电路的工作原理相同,现以电路(C)说明:分析电路原理时认为二极管的正向电阻Rf为零反向电阻Rr为无限大,当Ui>E1时,D1导通,则Uo=E1;反之,当Ui

导通,u O s=E;当ui低于E时,D截止,u O=ui。它的限幅特性如图Z1610所示。显然,这是一个上限幅器。 将上、下限幅器组合在一起,就组成了如图Z1611所示的双向限幅电路,它的限幅特性如图Z1612所示。当输入一个振幅较大的正弦信号时,输出波形见图Z1613。 2.三极管限幅器 利用三极管的截止和饱和特性也可构成限幅电路(如图Z1614所示),这类电路还兼有放大作用。为了满足一些较高的技术要求,还可以用集成运放构成限幅电路。 备做一个限幅电路的整理,在学校内学的如下图:

一种流体-结构耦合计算问题的

一种流体-结构耦合计算问题的 网格数据交换方法 徐敏,史忠军,陈士橹 (西北工业大学航天工程学院,陕西西安710072) 摘要:气动/结构耦合数值模拟是研究非线性气动弹性的基础。数据交换和插值是非线性气动弹性仿真问题的关键。目前的插值方法不能满足非线性气动弹性问题。本文提出了一种有限元四节点(FEFN)插值方法。该方法是一种局部插值方法,并不依赖于结构模型带来的整体信息。以圆柱体为具体算例,插值结果与有限平板插值方法(IPS)进行了算例对比,表明FEFN方法更能代表计算物体的表面,且计算简单、计算量小、误差小,是一种适合计算流体力学(CFD)/计算结构动力学(CSD)耦合仿真的界面数据交换工具。 关键词:流固耦合,非线性气动弹性,耦合CFD/CSD界面算法 伺服气动弹性分析是多学科之间的耦合问题。其第一步最基础的问题是气动/结构耦合响应的计算。在实际计算中,气动数值计算要求计算网格从物体表面伸展到空间相对计算模型特征长度足够大处,而结构有限元计算要求计算网格从物体表面延伸到物体内部。另一方面,气动数值计算一般在物体表面斜率变化大处,网格的密度需要增大,而结构动力学计算则要求物体表面网格尽量划分均匀,以便能方便地求出刚度矩阵。由此可知,要实现气动/结构耦合计算,重要的是如何设计两网格系统的数据交换界面,即寻求一种方便的、质量高的插值方法,将计算结构动力学得到的变形网格的位移插值到气动网格上,并将气动网格上的气动载荷插值到结构网格节点上。给出一种适合解决这种数据交换界面设计问题 的插值方法是一件艰难的工作。 早在1970年,Harder和Desmarais[1]发展了无限平板样条(IPS)内插值方法,该方法是基于无限平板的偏微分平衡方程的叠加结果。Appa[2]将IPS插值方法改进为有限表面插值(FSS)。Duchon[3]通过最小能量函数法对IPS方法进行了改进,在薄板插值的基础工作方面做了大量的工作,完成了平板三维无规则表面插值。IPS方法和其它插值方法发展到如今已成为处理机翼气动弹性计算数据交换较为流行的方法[4]。然而这些样条插值仅适合于薄板处于最小弯曲能(平衡位置)所确定的位置,并且应在满足流体表面和结构表面一致的条件下才能得到理想的结果。严格地说,在气动弹性耦合仿真中,流体表面和结构表面一致的条件不可能存在。为了处理表面不匹配问题,本文提出了一种有限元四节点(FEFN)插值方法。以圆柱体为具体算例,采用无限平板样条(IPS)方法和有限元四节点(FEFN)方法直接从较稀疏的结构变形网格插值到气动网格,并进行了两种插值结果比较和误差分析。最后,文中对一机翼进行了CFD和CSD耦合计 算网格的插值计算。 1 有限元四节点(FEFN)方法

二极管限幅电路实验报告(最新整理)

R u i D u O E t 一、实验目的 实验:设计和探究二极管限幅电路 1、了解限幅电路的构成 2、掌握限幅电路的工作原理和分析方法 3、测量限幅电路的传输特性二、实验仪器 1、双踪示波器 2、直流源 3、函数发生器 4、高频电子线路实验箱三、实验原理和装置图 1、二极管下限幅电路 在下图所示的限幅电路中,因二极管是串在输入、输出之间,故称它为串联限幅电路。图中, 若二极管具有理想的开关特性,那么,当u i 低于 E 时,D 不导通, u o =E ;当 u i高于 E 以 后,D 导通, u o = u i 。该限幅器的限幅特性如图所示,当输入振幅大于 E 的正弦波时,输 出电压波形见。可见,该电路将输出信号的下限电平限定在某一固定值 E 上,所以称这种限幅器为下限幅器。如将图中二极管极性对调,则得到将输出信号上限电平限定在某一数值上的上限幅器。 D E u i 幅限特性 2、二极管上限幅电路 在下图所示二极管上限限幅电路中,当输入信号电压低于某一事先设计好的上限电压时,输出电压将随输入电压而增减;但当输入电压达到或超过上限电压时,输出电压将保持为一个固定值,不再随输入电压而变,这样,信号幅度即在输出端受到限制。 u i u E R u i u O u O E E t t t

R u i D 1 D2 u O E E t 3、 二极管双向限幅电路 将上、下限幅器组合在一起,就组成了如图所示的双向限幅电路。 u i u E E E E 四、实验内容 1、实验电路图如下图所示。 2、观察输出电压与输入电压的波形并记录,测试输出电压与输入电压的关系,即进行传输特性测试并记录。 3、对结果进行分析,并得出结论五、数据记录 A : -3.751V -2.145V -1.140V 1.340V 2.279 5.525 7.726 B: -2.547V -2.145V -1.139V 1.340V 2.279 5.429 5.563 六、数据处理和实验结论 1. 这些数据都几乎一样,没什么太大差别。 2. 结论:二极管最基本的工作状态是导通和截止两种。 信号幅度比较小时的电路工作状态,即信号幅度没有大到让限幅电路动作的程度,这时限幅电路不工作。 信号幅度比较大时的电路工作状态,即信号幅度大到让限幅电路动作的程度,这时限幅电路工作,将信号幅度进行限制。 第三小组: 时间:2012 年 5 月 10 日星期四 t

电路的耦合方式

电路的耦合方式 一级:组成多级放大电路的每一个基本放大电路称为一级。 级间耦合:级与级之间的连接称为级间耦合。 多级放大电路的耦合方式:直接耦合、阻容耦合、变压器耦合和光电耦合。 ★直接耦合 直接耦合:将前一级的输出端直接连 接到 后一级的输入端。 如右图所示为直接耦合电路。 直接耦合方式的缺点:采用直接耦合 方式 使各级之间的直流通路相连,因而静 态工作点 相互影响。有零点漂移现象。 直接耦合方式的优点:具有良好的低 频特性,可以放大变化缓慢的信号;由于电路中没有大容量电容,易于将全部电 路集成在一片硅片上,构成集成电路。 ★阻容耦合方式 阻容耦合方式:将放大电路的前级输出端通过电容接到后级输入端,称为阻 容耦合方式。 ---- i ------------------ Y + 如下图所示为两级阻容 耦 合放大电路。 直流分析:由于电容对 直 流量的电抗为无穷大,因 而阻容 耦合放大电路各级之 间的直流通 路不相通,各级 的静态工作点相 互独立。 交流分析:只要输入信号频率较高,耦合电容容量较大,前级的输出信号可 几乎没有衰减地传递到后级的输入端。因此,在分立元件电路中阻容耦合方式得 到非常广泛的应用。 @)第一级电路与 第二级电路直接连接 两级阻容耦合放大电路

变压器耦合的阻抗变换 变压器原边线圈匝数N1,畐寸边线匝数N2, 可得变压器共射放大电路的电压放大倍数 阻容耦合电路的缺点:低频特性差,不能放大变化缓慢的信号;在集成电路 中制造大容量的电容很困难,因此阻容耦合方式不便于集成化。 ★变压器耦合 变压器耦合:将放大电路前级的输出端通过变压器接到后级的输入端或负载 电阻上,称为变压器耦合。 如右图所示为变压器耦合共射放大电路。 电路缺点:变压器耦合电路的前后级靠磁 路耦合,它的各级放大电路的静态工作点相互 独立。它的低频特性差,不能放大变化缓慢的 信号,且非常笨重,不能集成化。 电路优点是可以实现阻抗变换,因而在分 A .n 立元件功率放大电路中得到广泛应用。 变压器耦合共射放大电路 如下图所示,设原边电流有效值为11,副边电流有效值为12,将负载折合到 原边的等效电阻为 T I

高速铁路路基结构时变系统耦合动力分析

第28卷第5期铁 道 学 报Vol.28 No.5 2006年10月J OU RNAL OF T H E CHINA RA IL WA Y SOCIET Y October2006 文章编号:100128360(2006)0520065206 高速铁路路基结构时变系统耦合动力分析 马学宁1, 梁 波2 (1.兰州交通大学土木工程学院,甘肃兰州 730070;2.重庆交通大学土木建筑学院,重庆 400074) 摘 要:在车辆的走行过程中,上部与下部是相互作用和影响的,因此,轨道交通问题实际上就是线路上下部结 构和车辆系统的体系匹配问题。本文针对列车走行的实际情况,将轨道2路基作为参振子结构纳入车辆计算模 型,建立了包含车辆、钢轨、轨枕、道床和路基作为一体的二系垂向耦合动力分析模型。作为模型的验证,结合京 秦线提速改造工程进行了列车2路基动力仿真计算,得出在不同行车速度条件下,机车车辆通过路基段加固前后 状态下的车体加速度、动轮载、轮重减载率及道床和路基主要动力性能指标,并与实车试验进行对比。试验测试 结果验证了理论模型和分析方法的有效性,为高速铁路路基的动力特性分析和设计提供一些参考。 关键词:车辆;路基;时变;耦合;动力响应 中图分类号:U211.5 文献标识码:A A Time2varying Coupling Model for Dynamic Analysis of High Speed R ail w ay Subgrade MA Xue2ning1, L IAN G Bo2 (1.School of Civil Engineering,Lanzhou Jiaotong University,Lanzhou730070,China; 2.School of Civil Engineering and Architect ure,Chongqing Jiaotong University,Chongqing400074,China) Abstract:Track t ransportation can be divided into t he t rack system above and t he t rack system below.While t he t rain is moving,t he part s above and below are interacted and mut ually influenced.Therefore,t he p roblem of t rack t ransportation is act ually t he matching between t he vehicle and t he railway line system.In t his paper, keeping to t he conditions of t rain running and taking t he t rack2subgrade as a part of t he vibration st ruct ure of t he vehicle mode1,a vehicle2subgrade model of t he secondary suspension vertically coupled system including t he vehicle,rail,sleeper,ballast and subgrade is established.Dynamic comp uter simulation of t he vehicle2subgrade system is performed in combination wit h speed raising reconst ruction project of t he Jingqin Railway Line as t he verification of t he model.Regarding t he t rain t ravelling at different speeds and t hrough subgrade sections ahead of and subsequent to strengt hening,dynamic responses such as t he acceleration of t he vehicle,dynamic wheel load and rate of wheel load reduction and t he main dynamic characters of ballast and subgrade are calculated and compared wit h t he experimental result s.The effectiveness of t he t heoretical model and simulation analysis are verified by t he test result s.Reference is made to analysis of t he dynamic characters and design of t he subgrade of high2speed railways. K ey w ords:vehicle;subgrade;time varying;coupling;dynamic response 高速、重载已成为当今铁路发展的趋势,列车速度的提高导致机车车辆对路基结构动力作用明显增大,收稿日期:2006204205;修回日期:2006206227 基金项目:甘肃省自然科学基金资助项目(ZS0312B2520052G); 重庆市教委科学技术研究项目(K J060404); 重庆市自然基金资助项目; 兰州交通大学“青蓝工程”基金资助项目 作者简介:马学宁(1974—),男,宁夏中卫人,讲师,博士研究生。 E2m ail:mxn1974@https://www.doczj.com/doc/34102469.html, 因而对其提出了更高的要求。近年来对路基结构动力特性的研究,出现了各种计算模型[1~6],分别从不同角度进行了研究,在模型描述方面对机车车辆较为详细,而对轨道、路基部分较为简单,没有将车辆、轨道、路基作为一个系统来加以考虑,大多是在模拟动荷载的基础上分析轨下基础的应力、变形等问题,不能充分反映车2路体系在行进中的动力特性。文献[7,8]对于一系

(整理)基本放大电路的分析方法.

3.2 基本放大电路的分析方法 3.2.1 放大电路的静态分析 放大电路的静态分析有计算法和图解分析法两种。 (1)静态工作状态的计算分析法 根据直流通路可对放大电路的静态进行计算 (03.08) I = I B (03.09) C V =V CC-I C R c (03.10) CE I 、I C和V CE这些量代表的工作状态称为静态工作点,用Q表示。 B 在测试基本放大电路时,往往测量三个电极对地的电位V B、V E和V C即可确定三极管的工作状态。 (2)静态工作状态的图解分析法 放大电路静态工作状态的图解分析如图03.08所示。 图03.08 放大电路静态工作状态的图解分析 直流负载线的确定方法:

1. 由直流负载列出方程式V CE=V CC-I C R c 2. 在输出特性曲线X轴及Y轴上确定两个特殊点 V CC和V CC/R c,即可画出直流负载线。 3. 在输入回路列方程式V BE =V CC-I B R b 4. 在输入特性曲线上,作出输入负载线,两线的交点即是Q。 5. 得到Q点的参数I BQ、I CQ和V CEQ。 例3.1:测量三极管三个电极对地电位如图03.09所示,试判断三极管的工作状态。 图03.09 三极管工作状态判断 例3.2:用数字电压表测得V B=4.5V 、V E=3.8V 、V C =8V,试判断三极管的工作状态。 电路如图03.10所示 图03.10 例3.2电路图 3.2.2 放大电路的动态图解分析 (1) 交流负载线 交流负载线确定方法:

1.通过输出特性曲线上的Q点做一条直线,其斜率为1/R L'。 2.R L'= R L∥R c,是交流负载电阻。 3.交流负载线是有交流输入信号时,工作点Q的运动轨迹。 4.交流负载线与直流负载线相交,通过Q点。 图03.11 放大电路的动态工作状态的图解分析 (2) 交流工作状态的图解分析 动画 图03.12 放大电路的动态图解分析(动画3-1)通过图03.12所示动态图解分析,可得出如下结论: 1. v i→↑ v BE→↑ i B→↑ i C→↑ v CE→↓ |-v o|↑; 2. v o与v i相位相反; 3.可以测量出放大电路的电压放大倍数; 4.可以确定最大不失真输出幅度。 (3) 最大不失真输出幅度 ①波形的失真

电路的分析方法电子教案

第2章 电路的分析方法 本章要求: 1. 掌握支路电流法、叠加原理和戴维宁定理等电路的基本分析方法。 2. 理解实际电源的两种模型及其等效变换。 3. 了解非线性电阻元件的伏安特性及静态电阻、动态电阻的概念,以及简单非线性电阻电路的图解分析法。 重点: 1. 支路电流法; 2. 叠加原理; 3.戴维宁定理。 难点: 1. 电流源模型; 2. 结点电压公式; 3. 戴维宁定理。 2.1 电阻串并联联接的等效变换 1.电阻的串联 特点: 1)各电阻一个接一个地顺序相联; 2)各电阻中通过同一电流; 3)等效电阻等于各电阻之和; 4)串联电阻上电压的分配与电阻成正比。 两电阻串联时的分压公式: 2.电阻的并联 特点: 1)各电阻联接在两个公共的结点之间; 2)各电阻两端的电压相同; 3)等效电阻的倒数等于各电阻倒数之和; 4)并联电阻上电流的分配与电阻成反比。 U R R R U 2111+=U R R R U 2 122+=

两电阻并联时的分流公式: 2.3 电源的两种模型及其等效变换 1.电压源 电压源是由电动势 E 和内阻 R 0 串联的电源的电路模型。若 R 0 = 0,称为理想电压源。 特点: (1) 内阻R 0 = 0; (2) 输出电压是一定值,恒等于电动势(对直流电压,有 U ≡ E ),与恒压源并联的电路电压恒定; (3) 恒压源中的电流由外电路决定。 2.电流源 电流源是由电流 I S 和内阻 R 0 并联的电源的电路模型。若 R 0 = ∞,称为理想电流源。 特点: (1) 内阻R 0 = ∞ ; (2) 输出电流是一定值,恒等于电流 I S ,与恒流源串联的电路电流恒定; (3) 恒流源两端的电压 U 由外电路决定。 3.电压源与电流源的等效变换 等效变换条件: E = I S R 0 0 R E I = S 注意: ① 电压源和电流源的等效关系只对外电路而言,对电源内部则是不等效的。 ② 等效变换时,两电源的参考方向要一一对应。 ③ 理想电压源与理想电流源之间无等效关系。 ④ 任何一个电动势 E 和某个电阻 R 串联的电路,都可化为一个电流为 I S 和这个电阻并联的电路。 4.电源等效变换法 (1) 分析电路结构,搞清联接关系; (2) 根据需要进行电源等效变换; (3) 元件合并化简:电压源串联合并,电流源并联合并,电阻串并联合并; I R R R I 2121+=I R R R I 2 112+=

相关主题
文本预览
相关文档 最新文档