当前位置:文档之家› 详解动力电池组均衡设计原理及意义

详解动力电池组均衡设计原理及意义

详解动力电池组均衡设计原理及意义
详解动力电池组均衡设计原理及意义

详解动力电池组均衡设计原理及意义

2011-12-0619:51:36来源:互联网

分享到:标签:电池组剩余电量平衡算法

引言

随着电池作为电源使用而日益受到欢迎,又出现了一种同样强劲的需求,即最大限度地延长电池的使用寿命。电池不平衡(即组成一个电池组的各节电池的充电状态失配)在大型锂离子电池组中是个问题,这个问题是由制造工艺、工作条件和电池老化的差异造成的。不平衡可能降低电池组的总容量,并有可能损坏电池组。不平衡使电池从充电状态到放电状态都无法跟踪,而且如果没有密切监视,可能导致电池过度充电或过度放电,这将永久性地损坏电池。电池制造商按照容量和内部电阻对混合电动型汽车以及电动型汽车电池组中使用的电池进行分类,以在交付给客户的特定批次中,减少电池之间的差异。然后,再仔细挑选电池来构成汽车电池组,以改善电池组中每两节电池之间的匹配。理论上,这应该能防止电池组中产生大量的不平衡,但是尽管如此,普遍的共识是,当构成大型电池组时,既需要电池监视、又需要电池平衡,以在电池组寿命期内保持大的电池容量。

要理解平衡的重要性,第一步是利用两个相同的电池组来评估两种基本的电池管理策略。该测试将探究,在电池寿命期内,电池组的总容量是怎样受到影响的。为了评估这两种策略,要设计一个电池监视系统(BMS)。该电池监视系统由3个部分组成:监视硬件、平衡硬件和控制器。用在测试中的电池监视系统能监视电池电压和电池负载电流、平衡电池,并能控制电池与负载及电池充电器的连接。

监视硬件

一个简单的电池监视器和平衡系统如图1所示。该电池监视系统的硬件是围绕高度集成的LTC6803-1多节电池监视IC设计的。每个LTC6803-1能测量多达12节电池,并允许以可连接多个IC的串行菊花链形式连接,从而使一个系统能通过一个串行端口监视超过100个电池。当设计一个电池监视系统时,某些规范应当给以特殊考虑,首先是电池电压准确度。当试图决定单个电池的充电状态时,电池电压的准确度至关重要,而且一节电池能否在接近工作极限的条件下工作,电池电压的准确度是限制因素之一。LTC6803具 1.5mV的分辨率,准确度为 4.3mV。这将允许该控制器就电池状态做出准确决策,而不论使用的是什么样的电池化学组成。其次,电池组不平衡的一个主要来源是,电池监视电路本身的电源和备用电流的差异。在汽车应用中,备用电流尤其重要,因为大多数汽车在大部分时间里都是熄火的,这时电池监视系统处于备用模式。LTC6803仅具12uA备用电流,电流范围规定为6uA至18uA,从而可保证在一个大型电池组中,最严重的不平衡为12uA,这使每月不平衡低于10mAhr。有两个ADC输入可用来监视电池温度或其他的传感器数据。图1中显示的设计用Vtemp1输入测量电池电流。电流用LT1999测量。LT1999是一款高压双向电流检测放大器,具-5V至80V的输入范围,而且在本文所述测试情况下,设置为监视电池组高压端的±10A。LTC6803上的两个GPIO引脚用来控制一个有源负载和一个充电器。当充电结束或达到放电点时,这允许LTC6803断开电池与充电器或负载的连接。

图1:6节电池监视系统的简化原理图。LTC6803测量电池电压并

控制外部电池放电晶体管。LT1999测量至电池组的充电和放电电流。

平衡硬件

利用跨电池组中每一节电池的旁路电阻器和开关实现无源平衡硬件。平衡电阻器的使用一般采用两种方式之一(图2)。电阻器可用来导引充电电流绕过电池,以便具较低充电状态(SOC)的电池能以较高的速率保持充电,而不会使具有高SOC的电池有过充电和损坏的风险。该电阻器也可用来使具较高充电状态的电池泄放过多的电荷,以使这些电池与具较低SOC的电池实现均衡。

图2:无源电池平衡的两种选择。电阻值决定主要功能

硬件设计的主要关注之处是确定合适的平衡电流,该电流由所用旁路电阻器的值设定。所需的平衡电流大部分取决于电池的容量、可允许的平衡时间、预期的不平衡程度以及电阻器将怎样使用。如果电阻器用来旁路充电器的电流,那么它将设定为分流几个安培的电流。如果平衡电阻器用来泄放过多的电荷,那么该电阻器的大小要满足所希望的平衡时间。无源平衡仅能纠正源自电池组加载的SOC不平衡,而电池组加载则是由电池监视电路、电池本身放电以及内部电阻效应引起的。如果持续监视,那么这些SOC不平衡的来源每天应该仅产生少量的不平衡。用于这次实验室评估的电池监视系统采用了一个33Ω的平衡电阻器,该电阻器设定大约100mA的平衡电流,就小型电池而言,这一平衡电流很大,但是这样的

平衡电流允许平衡操作用更短的时间来完成。

控制策略

电池监视系统硬件的控制程序设计为既监视电池状态,又管理电池不平衡。该系统的无源平衡功能可以接通或断开,以决定平衡对电池组的影响。实验室测试在Turnigy公司制造的两个相同的电池组上以及通过多个充电/放电周期进行。为了比较方便,仅监视第一个电池组,以确保每节电池的电压都保持在正常工作范围。第二个电池组既受到监视,又接受周期性无源平衡。这个实验中使用的两个电池组由6个串联锂离子聚合物电池组成,总容量为 2.2AHr。单个电池的最大终端电压为 4.2V,最小终端电压为3V。为了模拟实时使用情况并加速老化,两个电池组都在电池监视系统的监察下连续充电和放电。放电周期采用固定的2C至3C、4.4A至 6.6A速率,同时电池以1C至2C、2.2A至 4.4A的恒定电流充电。基本监视系统设定为监视单个电池电压的欠压和过压情况以及任何过流故障。在放电时,电池组中任何电池达到 3.005V的欠压限制都会终止放电周期。在充电周期,如果电池组中的任何电池达到了 4.19V的过压状态,电池充电就终止。每个电池组都重复充电和放电100个周期,以加速老化。

无源平衡的目标是调节电池组中所有电池的SOC,以便能够从电池组中安全地抽取最多的能量。无源平衡器不产生或向电池组提供电荷,这意味着,电池组中容量最低的电池将决定电池组的有用容量。为了最大限度地提高电池组的容量,平衡器需要确保使容量和SOC 较低的电池完全充电和放电。仅当电池能完全充电和完全放电时,该电池存储的总能量才能使用,这意味着最薄弱的电池应该是最先完成充电和放电的电池。对无源平衡方法的主要担心之处是,能否识别具较高容量的电池。电池的SOC体现在电池的开路电压中,也是剩余能量的百分比指示器。两节电池有相同的SOC,不意味着这两节电池存储了相同数量的能量,与容量较低的电池相比,在给定SOC下,容量较大的电池存储的能量总是更多。

平衡软件控制算法用来利用充电器协调平衡,而且在充电周期开始时启动。既然无源平衡仅能从电池组去除能量,那么当电池组放电时,平衡就没有意义了。这也消除了使容量较低的电池和容量较高的电池SOC相等的可能性,这在放电时会降低可用容量。充电周期一启动,就将电池电压存储起来,然后才连接充电器。在充电周期开始时,平衡器应该决定哪一节电池的电压最低,这节电池将被称为Clow。充电周期结束的标志是,某一节电池达到预定的最大电压限制,当充电周期结束时,电池电压再次存储起来。在两种情况下,电池电压都是用无负载电流测量的,而且经过了短期稳定。如果充电周期结束后,所测得的Clow电压不是最高电压,那么就需要平衡。充电周期之后Clow的电压设为Vbalance。对于电池组中所测得的电压高于Vbalance的电池,要启动泄放电阻器。平衡开关应该保持接通,直到所有电池电压都等于Vbalance电压为止。达到平衡以后,电池恢复充电,以使电池完全充电。为了观察无源平衡的影响,做了两个测试,结果如下。

测试结果:电池组1

电池组1经过了100个充电/放电周期,图3显示若干周期后记录6节电池的电压。该图显示,经过短暂停顿后,在一个完整的充电周期结束时所测得的电池电压。充电后,电池电压之间的不平衡与容量和内部电阻的小量变化有关。在第一个完整的周期中,测得的电池组容量为 2.072AHr,经过100个周期后,所测得的容量为 2.043AHr,随着周期数增加,容量有少量下降。还有一种趋势,即随着充电/放电周期数的增加,充电后电池的最终电压下降了,100个周期以后,这种趋势尤其显著。这种趋势最有可能是因为电池老化引起电池内部电阻的小量增加导致的。内部电阻增加使电池更快地达到充电结束门限。尽管在工作时没有平衡,这个电池组在100个周期中自始至终保持着同样程度的不平衡。能像这个电池组一样,每节电池自然而然相互匹配的电池组相当罕见。

图3:充电周期之后电池组1中电池的电压

测试结果:电池组2

第二个电池组评估时采用了无源平衡算法。在进行任何平衡之前,电池组经过10次充电/放电。电池组2的初始电压如图4所示。与电池组1不同,制造商没有对这些电池的SOC进行很好的匹配。遇到这种类型失配的可能性要大得多。电池组2需要平衡,然后才能提供总的潜在容量。这种情况是更加典型的。

图4:充电周期之后电池组1中电池的电压

5号电池与其余电池之间存在很大和高于100mV的不平衡。这种不平衡对电池的容量有极大的影响。在一个完整的周期之后,该电池组显示所测得的容量为 1.765AHr。经过10个周期之后,不平衡依然存在,平衡算法启动。平衡器给所有电池放电,以与5号电池匹配,经过一个完整的充电周期之后,所记录的SOC为 2.043AHr,与初始SOC相比有16%的改进。平衡算法依然保持运行,但是在接下来的50个周期中,校正作用非常小,50个周期之后,所测得的容量为 2.044AHr。

即使经过大量平衡周期之后,该电池组仍然没有利用全部可能使用的能量。主要限制是,该平衡算法没有考虑电池内部电阻这个因素。1号电池有较高的内部电阻,总是在5号电池之前完成充电,从而使5号电池无法完全充电。在50个周期后,对平衡算法进行修改,以观察电池组容量是否能得到改善。平衡算法修改为,让放电电阻器跨电池两端连接,同时如果任何电池的电压高于Clow,就连接充电器。这允许比较薄弱的电池在充电器断接之前获得更多电荷,也是图2中提到的导引充电电流方法的一个例子。这种充电策略的改变使可用容量提高到了 2.051AHr,并改善了平衡时间。该电池组再充电和放电50次,即总共

100个周期,那么100个周期之后所测得的容量为2.054AHr。电池组2的容量在测试过程中一直保持恒定,且当平衡策略改善后,容量提高了。即使最初某节电池与其他电池严重失配,这种改进依然可以实现。

结论

如果电池组物理上很小,电池节数很少,那么初始查验步骤就能保证在电池的寿命期内使电池保持很好的匹配状态。在小型电池组中,电池的负载和温度条件一般是很好匹配的。测试显示,少量不平衡将随着充电/放电周期数的增加而增大,电池组1损失了 1.4%的容量。第二个电池组从一开始就显示需要平衡硬件,如果没有平衡硬件,电池组的效用就完全由电池制造商决定了,而且对电池组的误差根本无法校正。在有平衡系统的情况下,电池组2能够在测试中自始至终保持其容量,而电池组1的容量则稳步下降。总之,在整个工作寿命期内,平衡系统有助于扩大电池组容量。对平衡算法的改进可能包括使用电池特征数据以及特定电池的建模。这允许控制器更准确地确定电池组中各节电池的能量水平,从而甚至当使用相同的平衡电流时,也能使控制器更准确地平衡电池,并缩短平衡时间。

电动汽车动力蓄电池尺寸相关标准

一、电动汽车用动力蓄电池标准尺寸 1.圆柱形电池单体 序号N1N2 118±2.0mm65±2.0mm 221±2.0mm70±2.0mm 326±2.0mm65±2.0mm/70±2.0mm 432±2.0mm70±2.0mm/134±5.0mm 2.方形电池单体

序号N1N2N3 120±2.0mm65±2.0mm138±5.0mm 2(20/27)±2.0mm70±2.0mm(107/120/130)±5.0mm 3(12/20)±2.0mm100±5.0mm(140/310)±5.0mm 4(12/20)±2.0mm120±5.0mm(80/85)±2.0mm 527±2.0mm135±5.0mm(192/214)±5.0mm 6(20/27/40/53/57/7 9/86)±2.0mm 148±5.0mm(91/95/98)±2.0mm/ (129/200/396)±5.0mm 7(12/20/32/40/45/4 8/53/71)±2.0mm 173±5.0mm85±2.0mm/ (110/125/137/149/166/184/ 200)±5.0mm 8(32/53)±2.0mm217±5.0mm98±2.0mm 注:考虑整车布置的需要,推荐方形电池极柱高度不超过10mm 3.电池模组 序号N1N2N3 1211~515mm141mm211/235mm 2252~590mm151mm108/119/130/141mm 3157mm159mm269mm 4285~793mm178mm130/163/177/200/216/240/255/265mm 5270~793mm190mm47/90/110/140/197/225/250mm 6191/590mm220mm108/294mm 7547mm226mm144mm 8269~319mm234mm85/297mm 9280mm325mm207mm

生物工程工厂设计-物料衡算

红霉素生产物料衡算 1、红霉素发酵工艺流程示意图 工艺流程如下:沙土管包子母瓶斜面培养子瓶斜面培养种子培养液小罐种子液中罐种子液大罐发酵放罐放罐发酵液预处理碱化(使PH为8.0-8.4)板框过滤滤液(加萃取溶媒)轻液结晶洗水干燥成品检验合格产品包装(不合格产品回收)。 一般红霉素工艺如下图所示: 空气原料孢子 加压配料斜面培养 冷却发酵摇瓶培养 除水碱化一级种子 过滤补萃取补二级种子 料料 豆油离心糖 丙醇成盐水 淋洗 烘干包装销售 图1:红霉素生产工艺流程示意图 2、工艺技术指标及基础数据 (1)主要技术指标见表

表1:红霉素发酵工艺主要技术指标 指标名称单位指标数指标名称单位指标数 生产规模m t/a 1600 二级种子罐通气及取样 损失比s 1 % 10 生产方法发酵,萃取,成盐一级种子罐通气及取样 损失比s 2 % 10 年生产天数t d/a 330 发酵罐接种比j0% 14 产品质量μ 1 750 U/mg 二级种子罐接种比j1% 14 倒罐率r % 3 一级种子罐接种比j2% 12 发酵罐发酵周期T1h 168 发酵罐补料比i0% 10 二级种子罐发酵周期T2h 28 发酵罐装料系数k0% 87 一级种子罐发酵周期T3h 30 二级种子罐装料系数k1% 84 发酵液密度ρ Kg/m31050 一级种子罐装料系数k2% 84 二级种子罐发酵液密度ρ 1 Kg/m31150 放罐发酵单位μ2 U/ml 6000 一级种子罐发酵液密度ρ 2 Kg/m31200 提取总收率n % 84 发酵罐通气及取样损失比s % 10 表2:培养基配比(质量分数): 成分大罐配比% 中罐配比% 小罐配比% 补全料配比% 淀粉 5.00 1.80 1.80 4.380 豆粉 2.20 1.50 1.50 3.000 玉米粉 1.80 0.60 0.60 1.250 氯化钠0.65 0.30 0.30 1.630 豆油0.50 0.60 0.60 0.880 碳酸钙0.65 0.50 0.50 0.063 碳酸铵0.18 0.12 0.12 0.175 生物氮0.80 0.00 0.00 0.000 糊精0.00 1.20 1.20 1.500

卷绕式锂离子电池设计规范

卷绕式锂离子电池设计规范 一、观察给定型号和客户需求 1、型号制定了电池的尺寸(以063048为例,尺寸为6.0×30×48mm) 2、客户要求的容量和电池的放电类别(动力型、高温型、普通型),通常而言电 池所能达到的容量一般为普通型>高温型>动力型(以便确定所需要的材料) 3、材料的选用: 3.1容量≥1000mAh的型号,如果客户无容量或高温要求的用正极CN55系列 3.2有高温要求的型号,正极材料必须使用Co系列,电解液必须用高温电解液 二、卷芯设计 1、容量设计 根据客户要求的最小容量来确定设计容量。 设计容量(mAh)= 要求的最小容量×设计系数=(长×2-刮粉)×宽÷10000×面密度×理论克容量 注:设计系数: 标称容量≤200mAh设计系数一般取1.10~1.20; 标称容量200<C≤350mAh设计系数一般取1.08±0.02; 标称容量C>350mAh设计系数一般取1.07±0.02。 2、卷针的设计 2.1 卷针的宽度 Wj=电芯的宽度-卷针厚度-电芯的厚度-1.7(根据实际情况而定) 2.2 卷针厚度 Tj由卷针的宽度决定,具体见卷针统计表。 3、包装膜尺寸设计 3.1包装膜膜腔长度的确定: 膜腔长度=成品高-顶封宽度(5mm) 3.2包装膜膜腔长度的确定: 膜腔宽度=成品宽-1.2mm 3.3 槽深的设计: 槽深H与电芯厚度的关系如下:H = T-α 其中: T —电芯的厚度; α—当型号为双坑电池时,α取0.2 当型号为单坑电池时,α取-0.2 3.4 包装袋长、宽尺寸的确定: 3.4.1 包装袋宽度: a. 厚度≤5mm的电池铝塑膜宽度为电池本体宽度+(45~50mm),取代5mm 的整数倍为规格; b. 厚度﹥5mm的电池铝塑膜宽度为电池本体宽度+(55~60mm),取代5mm 的整数倍为规格; 3.4.2包装袋长度: 铝塑膜长度=成品电池长度×2+10mm

动力电池高压连接器(单芯)技术规范

目录 1 、目 的 ........................................................... . (2) 2 、适用范 围 ........................................................... (2) 3 、定 义 ........................................................... . (2) 4 、职责分 配 ........................................................... (2) 5 、流程 图 ........................................................ .. .. (2) 6 、程序内 容 ..................................................... ..... (2) 6.1 动力电池高压连接器技术参数要 求 (3) 6.1.1 高压连接器性能要 求 (4) 6.1.2 高压连接器技术参数要 求 (4) 6.2 高压连接器结构设计要 求 (5)

6.2.1 高压连接器插座中接触件与动力电池主电路连接端设计要求 (7) 6.2.2 高压连接器插座固定于箱体面设计要 求 (7) 6.2.3 高压连接器插座与插头连接触件设计要 求 (7) 6.2.4 高压连接器插件的绝缘防触摸设计要 求 (8) 6.2.5 高压连接器的保护壳体设计要 求 (8) 6.2.6 高压连接器的防呆设计要 求 (8) 6.2.7 高压连接器的防呆设计要 求 (8) 6.2.8 高压连接器的高压互锁设计要 求 (9) 6.2.9 高压连接器的温控互锁设计要 求 (9) 6.2.10 高压连接器的动力线缆设计要 求 (9) 6.2.11 高压连接器的互换性设计要 求 (9) 6.3 动力电池高压连接器检验标准要 求 (11) 6.4供应商送样承认要 求 (13) 7、相关文 件 ...........................................................

动力电池系统设计讲解

深入浅出史上最易懂的动力电池系统 设计讲解 2 [摘要]动力电池系统设计要以满足整车的动力要求和其他设计为前提,同时要考虑电池系统自身的内部结构和安全及管理设计等方面。 动力电池系统指用来给电动汽车的驱动提供能量的一种能量储存装置,由一个或多个电池包以及电池管理(控制)系统组成。动力电池系统设计要以满足整车的动力要求和其他设计为前提,同时要考虑电池系统自身的内部结构和安全及管理设计等方面。 比如整车厂会针对要设计的整车,在考虑安全设计、线束连接线设计、接插件设计等相关要求后,形成一个有限的动力电池系统空间大小。然后在有限的空间约束下,进行电池模组、电池管理系统、热管理系统、高压系统等布置,保证电池单体及模块均匀散热,保证电池的一致性,提高电池系统的寿命与安全。设计时要考虑到的一些整体和通用性原则包括安全性好、高比能量、高比功率、温度适应性强、使用寿命长、安装维护性强、综合成本低等。

一种典型的动力电池系统 由于不同种类电动汽车的结构和工作模式的不同,导致对动力电池的性能要求也不一样。纯电动汽车行驶完全依赖于动力电池系统的能量,电池系统容量越大,可以续航里程越长,但所需电池系统的体积和重量也越大。虽然混合动力汽车对动力电池系统的容量要求比纯电动汽车要低,但要能够在某些时候提供较大的瞬时功率。而串联式和并联式混合动力汽车对电池系统的要求又有所区别。 因此动力电池系统的设计流程一般如下:(1)先确定整车的设计要求;(2)然后确定车辆的功率及能量要求(3)选择所能匹配合适的电芯(4)确定电池模块的组合结构形式(5)确定电池管理系统设计及热管理系统设计要求(6)仿真模拟及具体试验验证。

生物工程工厂设计

生物工程工厂设计概论复习思考题 1、项目建议书和可研报告一般应分别包括哪些内容? 项目建议书的内容:1、项目名称2、项目建设的必要性和依据3、产品方案、市场预测、拟建规模和建设地点的初步设想;4、资源情况、建设条件、协作关系和技术、设备可能的引 进国别、厂商的初步分析;5、环境保护;6、投资估算和资金筹措设想,包括偿还贷款能力的大体预算;7、项目实施规划设想;8、工厂组织和劳动定员估算;9、经济效果和社会效 益的初步估算。 可行性研究报告的内容:1、总论2、市场需求预测和建设规模3、原材料、燃料及资源情况 4、建厂条件和厂址方案 5、设计方案 6、环境保护调查环境情况,预测项目对环境的影响, 提出环境保护和三废治理的初步方案7、企业组织、劳动定员和人员培训8、投资估算和资 金筹措 2、初步设计可以分为哪三种情况?初步设计阶段包括哪些内容? 按工程规模的大小、工程的重要性、技术的复杂性、设计条件的成熟度及设计水平的高低分为三阶段设计、两阶段设计、一阶段设计三种情况。 主要内容有:1、设计文件(1)、设计依据及设计范围(2)、设计的指导思想、建设规模和产品方案(3)、生产方法及工艺流程的比较、选择和阐述(4)、主要生产技术经济指标和生 产定额(5)、主要设备的选型及计算(6)、车间布置的说明(7)、存在的问题及解决问题的建议2、设计图纸(1)、生产流程图(2)、车间设备布置图(3)全厂总平面布置图(4)、主要生产设备和电动机一览表(5)、主要材料估算表等。 3、厂址选择的重要性。厂址选择应当考虑哪些因素? 厂址选择正确与否,不仅关系到建厂过程中能否以最省的投资费用,按质按量按期完成工厂 设计中所提出的各项指标,而且对投产后的长期生产、技术管理和发展远景,都有着很大的影响,并同国家地区的工业布局和城市规划有着密切的关系。因此,厂址选择是百年大计问题,至关重要。 厂址选择的概念包括地点选择和场地选择两个层次。地点选择是对所建厂在某地区内的方位 (即地理坐标)及其所处的自然环境状况,进行勘测调查,对比分析。场地选择是对所建厂 在某地点处的面积大小、场地外形及其潜在的技术经济性,进行周密的调查、预测、对比分析,作为确定厂址的依据。 (1)、厂址位置要符合城市规划和微生物发酵工厂对环境的特殊要求(2)、厂址要接近原料、燃料基地和产品销售市场,还要接近水源和电源(3)、具有良好的交通运输条件(4)、场地有效利用系数高,并有远景规划的总体布局(5)、有一定的基建施工条件和投产后的协作条 件(6)、厂址选择要有利于竺废”处理,保证环境卫生。 4、厂址选择工作一般分为准备工作、现场勘查与编写报告三个阶段,请简单介绍这三个阶段分别应当做些什么工作? 准备工作阶段:1、组织准备:由主管建厂的国家部门组织建设、设计、勘测等单位有关人员组成选厂工作组。2、技术准备:选厂工作人员在深入了解设计任务书内容和上级机关对建设的指示精神的基础上,拟订选厂工作计划,编制选厂各项指标及收集厂址资料提纲,包括厂区自然条件、技术经济条件的资料提纲。 现场勘查工作阶段:1、选厂工作组向厂址地区有关领导机关说明选厂工作计划。要求给予 支持与协助,听取地区领导介绍厂址地区的政治、经济概况及可能作为几个厂点的具体情况。 2、进行踏测与勘探,摸清厂址厂区的地形、地势、地质、水文、场地外形与面积等自然条件,绘制草测图等。同时摸清厂址环境情况、动力资源、交通运输、给排水、可供利用的公用、生活设施等技术经济条件,以使厂址条件具体落实。

动力电池系统技术规范

密级:项目内部 动力电池系统技术规范项目代号: 文件编号: 编写:时间: 校核:时间: 批准:时间: 天津易鼎丰动力科技有限公司 1.文件范围 本文件规范了XX公司XX车型所用XX动力电池必须满足的技术性能要求。 2.术语定义和及产品执行标准 .术语定义 电动汽车(electricvehicle,EV):指以车载能源为动力,由电动机驱动的汽车; 电芯(cell):一个单一的电化学电池最小的功能单元; 模组(module):指由多个电芯的并联组装集合体,是一个单一的机电单元; 电池组(batterypack):由一个或多个模组连接组成的单一机械总成; 电池管理系统(batterymanagementsystem,BMS):指任何通过监控充电电池的状态、计算二次数据并报告该等数据、保护该等充电电池、设置报警信号、与设备中的其他子系统进行电子通信、控制充电电池内部的环境或平衡该等充电电池或环境等方式来管理该等充电电池的电子设备,包括软件、硬件和运算法则; 动力电池系统(batterysystem):动力电池系统是指由动力电池组、电池箱体、电池管理系

统、电器元件及高低压连接器等组成的总成部件,功能为接收和储存由车载充电机、发电机、制动能量回收装置或外置充电装置提供的高压直流电,并且为电驱动系统及电辅助系统提供高压直流电; 整车控制器(vehiclecontrollerunit):检测控制电动汽车系统电路的控制器; 高电压(HighVoltage,HV):特指电动汽车200VDC以上高压系统; 低电压(LowVoltage,LV):指任何信号或功率型能量低于50VDC,本文中特指整车12VDC电源系统; 荷电状态(state-of-charge,SOC):电池放电后剩余容量与全荷电容量的百分比; 寿命初始(BeginningOfLife,BOL):指动力电池系统刚交付使用的状态; 寿命终止(EndOfLife,EOL):动力电池系统能量降低到初始能量的80%,或者实时峰值 功率低于初始峰值功率的85%时,视为寿命终止; 电磁兼容性(Electro-MagneticCompatibility,EMC):在同一电子环境中,两种或多种电子 设备能互不干扰进行正常工作的能力; 高低压互锁(HighVoltageInter-Lock,HVIL):特指低压断电时,通过低压信号控制能够 同时将高压回路切断; CAN(ControllerAreaNetwork):控制器局域网; DFMEA(FailureModeandEffectsAnalysis):设计故障模式及失效分析; MTBF(MeanTimeBetweenFailure):平均无故障时间; 额定容量:在25℃±2℃下,以1I1(A)电流恒电流充电至动力电池系统总电压或最高单体 电压达到规定电压值,以恒定电压充电至电流小于(A)时停止充电,休眠10分钟后,以1I1(A)电流放电达到规定的终止电压时停止放电,整个测试过程放出的容量为额定容量,单位为Ah; 额定能量:在25℃±2℃下,以1I1(A)电流恒电流充电至动力电池系统总电压达到或最高 单体电压达到规定电压值,以恒定电压充电至电流小于时停止充电,休眠10分钟后,以1I1(A)电流放电达到规定的终止电压时停止放电,整个测试过程放出的能量为额定能量,(Wh),此值可由电压-容量曲线的覆盖面积积分得到; 可用能量:在25±2℃、-5±2℃两种温度条件下,按照《动力电池可用能量测试规范》分 别做NEDC测试,动力电池系统在放电率允许的范围内实际放出的电量的平均值。 额定电压:额定能量除以额定容量,标定为额定电压; 峰值功率:本项目峰值功率标定为XXkW。 产品执行标准 表1.产品执行标准 备注:未经特殊说明,本规范中涉及到的术语定义、检测方法、判断标准等都以上述标准为准。

电动汽车动力电池系统总体方案设计

电动汽车动力电池系统总体方案设计 1.1 额定电压及电压应用范围 对于高速电动车辆动力电池系统的额定电压等级,参照《GB/T31466-2015 电动车辆高压系统电压等级》可选择144V、288V、320V、346V、400V、576V等。对于微型低速电动车动力电池系统的电压等级,100V以下主要以48V、60V、72V和96V为主。 动力电池系统的额定电压及电压范围必须与整车所选用的 电机和电机控制器工作电压相匹配,因此为保证整车动力系统的可靠运行,需要根据电动整车电机的电压等级及工作电压范围要求,选择合适的单体电池规格(化学体系、额定电压、容量规格等)并确定单体电池的串联数量、系统额定电压及工作电压范围。通常允许使用的电压范围上限为系统额定电压的115%~120%,下限为系统额定电压的75%~80%。

1.2 动力电池系统容量 整车概念设计阶段,从整车车重和设定的典型工况出发,续驶里程、整车性能(最高车速、爬坡度、加速时间等)要求,可以计算出汽车行驶所需搭载的总能量需求。动力电池系统容量主要基于总能量和额定电压来进行计算。 1.3 功率和工作电流 整车在急加速情况下,动力电池系统需要提供短时脉冲放电功率,对应的工作电流为峰值放电电流;在紧急刹车情况下,需要提供短时能量回收功率,对应的回馈电流为峰值充电电流。

整车在平路持续加速或长坡道时,动力电池系统需要提供稳定的持续放电功率,此时要求能够长时间稳定输出一定额度的电流,即持续放电工作电流。 1.4 可用SOC范围 在动力电池系统产品设计上,由于SOC可用范围会直接影响总能量的设计,直接体现到单体电池的选型及数量要求,因此,也会对电池箱体的包络尺寸设计、内部布置及安装空间间隙以及对总体成本等方面产生最直接的影响。动力电池系统SOC应用范围的选择首先考虑整车对充放电功率和可用能量等方面的需求,同时结合单体电池在不同温度条件下的充放电能力(功率和能量)、存储性能(自放电率)、寿命、安全特性,以及电池管理系统的SOC估算精度等影响因素来确定。

特斯拉电动汽车动力电池管理系统解析(苍松书屋)

特斯拉电动汽车动力电池管理系统解析 1. Tesla目前推出了两款电动汽车,Roadster和Model S,目前我收集到的Roadster 的资料较多,因此本回答重点分析的是Roadster的电池管理系统。 2. 电池管理系统(Battery Management System, BMS)的主要任务是保证电池组工作在安全区间内,提供车辆控制所需的必需信息,在出现异常时及时响应处理,并根据环境温度、电池状态及车辆需求等决定电池的充放电功率等。BMS的主要功能有电池参数监测、电池状态估计、在线故障诊断、充电控制、自动均衡、热管理等。我的主要研究方向是电池的热管理系统,因此本回答分析的是电池热管理系统 (Battery Thermal Management System, BTMS). 1. 热管理系统的重要性 电池的热相关问题是决定其使用性能、安全性、寿命及使用成本的关键因素。首先,锂离子电池的温度水平直接影响其使用中的能量与功率性能。温度较低时,电池的可用容量将迅速发生衰减,在过低温度下(如低于0°C)对电池进行充电,则可能引发瞬间的电压过充现象,造成内部析锂并进而引发短路。其次,锂离子电池的热相关问题直接影响电池的安全性。生产制造环节的缺陷或使用过程中的不当操作等可能造成电池局部过热,并进而引起连锁放热反应,最终造成冒烟、起火甚至爆炸等严重的热失控事件,威胁到车辆驾乘人员的生命安全。另外,锂离子电池的工作或存放温度影响其使用寿命。电池的适宜温度约在10~30°C之间,过高或过低的温度都将引起电池寿命的较快衰减。动力电池的大型化使得其表面积与体积之比相对减小,电池内部热量不易散出,更可能出现内部温度不均、局部温升过高等问题,从而进一步加速电池衰减,缩短电池寿命,增加用户的总拥有成本。 电池热管理系统是应对电池的热相关问题,保证动力电池使用性能、安全性和寿命的关键技术之一。热管理系统的主要功能包括:1)在电池温度较高时进行有效散热,防止产生热失控事故;2)在电池温度较低时进行预热,提升电池温度,确保低温下的充电、放电性能和安全性;3)减小电池组内的温度差异,抑制局部热区的形成,防止高温位置处电池过快衰减,降低电池组整体寿命。 2. Tesla Roadster的电池热管理系统 Tesla Motors公司的Roadster纯电动汽车采用了液冷式电池热管理系统。车载电池组由6831节18650型锂离子电池组成,其中每69节并联为一组(brick),再将9组串联为一层(sheet),最后串联堆叠11层构成。电池热管理系统的冷却液为50%水与50%乙二醇混合物。

动力镍氢电池设计规范

动力镍氢电池设计规范 1、适用范围 本规范适用于常规应用的金属氢化物镍单体蓄电池的设计,包括结构设计、性能设计、成本设计和工艺设计等方面。 参考标准: QC/T744-2006 电动道路车辆用金属氢化物镍蓄电池 企业标准动力(功率)型密封金属氢化物镍蓄电池(草案) 2、单体电池设计准则 (1)必须满足用户要求或相关标准; (2)必须满足批量化生产要求; (3)必须满足生产设备及工艺要求; (4)在允许的尺寸、重量范围内进行结构和工艺设计,使其满足整机系统的用电要求; (5)在满足性能的前提下,尽量降低成本。 3、电池零部件的设计与选择 电池零部件包括单体电池应用的金属部件和非金属部件等。零部件的设计与选择除特殊要求外,应选择标准件或通用件。 3.1极柱的设计与选择 3.1.1极柱材料 冷拉圆钢11-35/45 极柱表面应镀镍,镀镍层厚度为30~50μm 3.1.2极柱结构 采用双叉式极柱,极耳与极柱的连接采用点焊式连接方式。极耳和叉的重合面积应占极柱叉一个表面的70%以上。极柱两叉之间的距离应根据极组厚度进行设计,使极耳焊接后最外侧极片和中间极片的极耳受力、弯曲等一致。 3.1.3极柱直径 针对不同的应用和电池,选用不同直径的极柱,使用过程中各极柱承受的电流按如下选择:(材料为铁)

容许电流的计算方法: IFe2=(C·ρ密度·S2·ΔT)/(ρ电阻率·t) C为材料比热,Fe为0.4501J/gK,Cu为0.378 J/gK; ρ密度为材料密度,Fe为7.874g/cm3,Cu为8.96 g/cm3; S为极柱截面积,单位mm; ΔT为要控制的温升(绝热条件),初步设定控制为50℃; ρ电阻为材料电阻率,Fe为0.0978Ωmm2/m,Cu为0.01637Ωmm2/m; t为电流持续时间,连续按3600s计算,间歇按30s计算,启动按10s计算。 3.1.4极柱高度 根据电池选用的另部件(如绝缘垫、螺母、电池盖、红蓝垫圈、大垫圈、螺母等)以及电池组合应用的连接部件(垫圈、跨接片、螺母等)来确定极柱高度,电池模块组合后极柱不得高出组合用螺母上端2mm。 3.2螺母的设计与选择 螺母选择GB6173与极柱相配套的标准件。 螺母表面应镀镍,镀镍层厚度为3~5μm(不锈钢螺母不镀镍) 3.3密封圈的设计与选择 材料:三元乙丙橡胶EP35 或E740-75 选用标准: a.125℃22h压缩永久变形小于20%; b.绝缘电阻500V大于2MΩ; c.120℃70h耐碱测试总重量变化小于±1%;

动力电池系统设计输入地要求

纯电动大巴车用动力电池系统设计输入要求 一.设计输入--项目可行性报告 1、车辆技术参数: 车辆尺寸(车辆三维模型) 总质量 kg 轴荷分配 kg 主传动比 最大车速 km/h 常规车速 km/h 爬坡车速 km/h 最大爬坡度 % 迎风面积 m2 风阻系数 车轮的滚动半径 m 2、车辆性能: 车速、加速性、行驶距离、车速变化曲线 3、使用环境: 路面、全年早晚温度变化与负荷变化关系曲线、全年雨量分布、湿度范围、 4、运行工况:

负荷变化曲线、每天运行时间 实际路测数据输入: 1)行驶里程(平路里程和坡道里程)按满备质量计算 2)运行的最高车速 3)运行的平均车速 4)爬坡车速 5)满载质量波动 5、驱动电机参数: 电机结构、工作电压范围、工作温度范围 电动机的额定功率、扭矩、转速、尺寸、重量等基本参数 电动机的瞬时最大功率、扭矩、转速等参数 变速箱的主减速比、传动比等基本参数 电机制动参数 6、控制器参数 7、充电机参数 二.根据需求输入及汽车改装的实际情况,编制技术协议--项目设计任务书,需要提供的参数: 1.提出电池箱最大包络; 2.确定电池箱体固定安装方式、固定点及定位销位置(三维模型);

3.明确接插件及管脚定义; 4.提出电性能指标(电压等级﹑能量密度﹑功率密度﹑寿命等)及试验工况要求; 5.提出环境适应性能指标(防腐等级﹑冲击振动﹑高低温等);6.提出安全性能指标(过充﹑过放﹑短路﹑挤压﹑针刺﹑跌落等; 高压安全,碰撞与高压安全,绝缘安全,防水安全等); 7.提出上下电及相关逻辑; 8.确定通信协议(和VCU﹑CHARGER); 9.确定故障定义及故障分类,并设置合理的阀值; 10.对售后服务提出一定的要求。 三.动力电池组设计输入要求 纯电动电池pack性能

动力电池设计规范

议的各方研究是否可使用这些文件的最新版本。 次设计开发。 凡是不注日期的文件, 其最新版本适用于本 GB/T 18384.1-2001 GB/T 18384.2-2001 GB/T 18384.3-2001 GB/T 18385 -2005 电动汽车安全要求 电动汽车安全要求 电动汽车安全要求 电动汽车动力性能 第 1 部分:车载储能装置 第 2 部分:功能安全和故障保护 第 3 部分:人员触电 试验方法 GB/T 18386 -2005 电动汽车能量消耗率和续驶里程 试验方法 GB/T 18388 -2005 GB/T 18487.1-2001 GB/T 18487.2-2001 GB/T 18487.3-2001 电动汽车定型试验规程 电动车辆传导充电系统 电动车辆传导充电系统 电动车辆传导充电系统 一般要求 电动车辆与交流 / 直流电源的连接要求 电动车辆与交流 /直流充电机 (站) GB/T 17619-1998 机动车电子电器组件的电磁辐射抗扰性限值和测量方法 GB/T 18387-2008 电动车辆的电磁场辐射强度的限值和测量方法 带宽9KHz ?30MHz 1 综述 电动车的的电池就好比汽车油箱里的汽油。 它是由小块单元电池通过串并联方式级联后, 通过BMS 勺管理,将电能传递到高压配电盒,然后分配给驱动电机和各个高压模块 (DC/DC 、 空调压缩机、PTC 等)。电池管理系统(BMS )采用的是一个主控制器 (BMU )和多个下一级电池 采集模块 (LECU )组成模块化动力电池管理系统, 是一种具有有效节省电池电能、 提高车辆安 全性、实现充放电均衡和降低运行成本功能的电池管理系统模式。 高压控制系统的预充电及正负极高压继电器均由 BMS 控制,设置了充电控制继电器, 增 加高压充电时的安全性 。 2 设计标准 F 列文件为本次 MAOO-ME1O0设计整改参考标准。凡是注日期的文件,其随后所有的修 改单(不包括勘误的内容 )或修订版均不适用于本次设计开发, 然而,鼓励根据本文件达成协 QC/T 743-2006 电动汽车用锂离子蓄电池 QC/T 413-2002 汽车电气设备基本技术条件 ISO 11898-1-2003 道路车辆 控制面网络 (CAN ) 第 1 部分:数据链接层和物理信号 ISO 11898-2-2003 道路车辆 控制器局域网 (CAN ) 第 2部分:高速媒体访问单元 ISO7637-2 道路车辆由传导和耦合引起的电骚扰(电源线瞬态传到干扰抗绕性试验) ISO11452-2 道路车辆窄带辐射的电磁能量产生的电干扰的部件试验方法 (吸波屏蔽外 壳) 3 动力电池的标准 动力电池设计方案

动力电池智能制造技术【全面解析】

动力电池智能制造技术 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、数控系统、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 1新能源汽车动力电池的智能制造 我国已成为名副其实的全球最大的新能源汽车市场。动力电池作为最为核心的 关键零部件,它的相关技术必须与电动汽车的发展相适应。新能源汽车能走多远, 最终取决于动力电池能走多远。综合各类电池的技术优势及发展趋势,锂离子电池 在混合动力汽车、插电式混合动力汽车和纯电动汽车领域,将会有越来越广泛的应 用。该类电池技术对新能源汽车产业发展的意义重大。 当前国内生产动力电池的企业约有上百家,但由于自动化程度低,不少企业呈 现出生产效率低、产品良品率低和运营信息互联互通效率低的“三低”特点。这使 得动力电池在技术以及一致性问题上一直很难有实质性突破,严重影响了动力电池 的整体性能,也制约了我国新能源汽车产业的发展。 基于此,动力电池的智能制造应运而生。什么是动力电池的智能制造?它是指, 动力电池生产智能工厂综合运用ERP系统、MES系统等软件,并实现全周期生产的 可视化、自动化、智能化。未来,包括动力电池在内的新能源汽车制造,未来必然 走向大规模和智能化,呈现高精度、高速度和高可靠性的“三高”特点。而以无人 化、可视化和信息化为代表的“三化”是实现“三高”的利器,亦是智能制造的范 畴。 2动力电池工艺装备智能制造技术的发展水平

作为动力电池制造环节必需的工具,动力电池生产工艺装备对动力电池规模化生产条件下的技术发展起着极为关键的作用,近年来动力电池装备产业发展势头迅猛。结合动力电池生产工艺流程,我们将从动力电池电芯生产的前、中、后各段工序以及电池组模组及系统装配工序对动力电池装备产业的智能制造技术发展现状进行分析。 1.动力电池电芯生产前段工序的技术水平 作为动力电池整条产线最为关键的环节,生产前段工序对动力电池产品品质一致性和性能稳定性产生直接影响。动力电池电芯生产前段工序是指实现锂离子动力电池从原材料输送到模切的极片加工成型的过程。自动加料系统、搅拌机、涂布机、辊压机和模切机等是动力电池制造过程的核心工艺装备。 由于前段工艺装备对动力电池性能影响较大,各项技术指标要求高,且设备技术复杂程度高,前几年国产装备技术相对较为落后,在效率、精度、稳定性等方面与国外还存在一定差距,尤其是涂布机。近年来随着行业技术日趋成熟,国内装备行业快速发展,自动加料系统、大容积自动搅拌机、高速涂布机、高速模切机等高端设备逐步实现国产化,并在实际应用中产生了较好效果。 表1. 国内电池电芯前段工序设备情况 2.动力电池电芯生产中段工序的技术水平 传统工艺主要以手工作业和单机自动化为主,近年来随着大规模生产对生产效率和过程控制的要求,动力电池生产中段装配工序已逐步实现整线自动化控制。通过对自动化工作站、上下料机构、自动传输机构、多轴机器人等部件的连接整合,采用高精度传感器技术实现对过程数据数据的自动采集、监控和反馈,并结合设备MES系统的应用,实现动力电池中段工序智能化生产。

电池尺寸规则

本文介绍常见电池型号规格及尺寸等基础知识。在电池体上看到的AAA、AA、C、D、N、F、SC等标识都是美国型号标识,在我国除了几种按号称呼之外,其它还是采用美国的命名方式。此外,针对二次锂电池的型号表示方法是采用五位数(圆柱型)或六位数(方型),如14500、103450... 步骤/方法 1.一、常见电池型号、尺寸对照表 平头,指的是电池正极是平的,没有突起,使用做电池组点焊使用的电池芯,一般同等型号尖头的(可以用作单体电池供电的),在高度上就多了0.5mm。 以此类推,我不逐一解释。还有,电池很多的时候并不是规规矩矩的"AAA,AA,A,SC,C,D,N,F"这些主型号,前面还时常有分数"1/3,2/3,1/2,2/3,4/5,5/4,7/5",这些分数表示的是池体相应的高度,例如"2/3AA"就是表示高是一般AA电池的2/3的充电电池;再如"4/5A"就是表示高是一般A电池的4/5的充电电池。

2.二、锂离子电池芯型号、尺寸 (1) 圆柱型锂离子电池芯:通常用五位数字表示,前两位数字是指池体直径, 后三位数字是指池体高,例如14500就是指AA电池,即大约14mm直径,50mm高。常见的型号:14500,14650, 17490,18500, 18650,26500。 常见比克、三洋圆柱电芯规格型号: 比克18650 2200mAh 3.7V ,比克18650 2600mAh 3.7V ,比克18650 2000mAh 3.6V 三元长寿命 三洋18650 2100mAh 3.7V ,三洋18650 2500mAh 3.7V ,三洋18650 1500 mAh 3.7V18650 (2) 方型锂离子电池芯:通常用六位数字表示,分别表示电池的厚度、宽度和 高度,单位毫米,例如103450 即10(厚度) ×34(宽度) ×50(高度)mm。若厚度数值大于宽度数值,则厚度要*0.1,例如433861 即4.3(43*0.1)×38×61mm。 常见比克、三洋方型电芯规格型号: 比克523450A 1000mAh 3.7V ,比克063450A 1200mAh 3.7V ,比克633770A 2020mAh 3.7V 三洋UF103450P 1880mAh 3.7V ,三洋UF653450R 1100mAh 3.7V 103450

生物工程工厂设计综述

生物工程工厂设计综述 摘要:探究生物工程工厂设计得方法与设计得具体步骤,加强加深对生物工程工厂设计得理解,旨在更深得理解与意识设计工作得重要性,即设计就是将科学转化为生产力得重要学科。 关键词:生物工程工厂;设计 生物工程工厂设计就是一门以生物工艺学、生物制药学、GMP与工程学及相关科学理论与工程技术为基础,综合性、实践性很强得应用性工程学科,其目得就是培养学生具备生物工程工厂设计得工程能力与工程素质,完成工程师得综合性基本训练,其中生物工程工厂设计得任务与目得分别就是加建设项目得决策,编制各个阶段设计文件,配合施工与参加验收,进行总结得全过程;作出体现国家有关 方针政策,切合实际,安全适用,技术先进,经济效益与环境效益好得设计,为我国社会注意现代化建设服务。 1资料与方法 1、1基本建设程序: 一个新建项目从计划建设到建成投产,按照建设项目发展得内在联系与发展过程,建设程序一般要经历:建设前期、建设期与交付使用期三个阶段。其中建设前期得得工程程序主要有以下几个方面:项目建议书、可行性报告、设计任务书、初步设计、总概算。而项目申请报告主要有项目申请单位情况、拟建项目情况、建设用地及相关规划、资源利用与能源耗用分析、生态环境分析、经济与社会效益分析、建设与实施、结论与建设、等内容。另外可行性研究报告内容主要有根据经济预测、市场预测确定项目建设规模与产品方案;资源、原材料、动力、运输、供水等配套条件及公用设施落实情况等。 1、2厂址选择与工厂总平面设计 厂址得选择主要需要符合工业布局、符合所在地区、城市规划得要求,按照国家有关法律、法规及建设前期工作得规定进行,然后利用各地区得有利条件,避开

最新生物工程工厂设计概论

绪论 生物工程工厂设计概论:是一门以生物工艺学、生物制药学、GMP和工程学及相关科学理论和工程技术为基础,综合性、实践性很强的应用性工程学科,是在学生基本学完大学全部课程,扎实掌握基本理论、工程技能及专业理论、专业知识的基础上开设的。其目的是培养学生具备生物工程工厂设计的工程能力和工程素质,结束毕业实习和毕业设计,完成工程师的综合性基本训练。 工厂设计基本的任务:是要作出体现国家有关方针政策,切合实际,安全适用,技术先进,经济效益和环境效益好的设计,为我国社会注意现代化建设服务。 工厂设计工作的内容包括参加建设项目的决策,编制各个阶段设计文件,配合施工和参加验收,进行总结的全过程。 第一章:基本建设程序 一个新建项目从计划建设到建成投产,按照建设项目发展的内在联系和发展过程,建设程序一般要经历:建设前期、建设期和交付使用期三个阶段。 建设前期的工程程序:1、项目建议书2、可行性报告3、设计任务书4、初步设计5、总概算 项目申请报告的主要内容:1、项目申请单位情况2、拟建项目情况3、建设用地及相关规划4、资源利用和能源耗用分析5、生态环境分析6、经济和社会效益分析7、建设与实施8、结论与建设9、有关附件 可行性研究报告内容:1、总类2、根据经济预测、市场预测确定项目建设规模和产品方案3、资源、原材料、动力、运输、供水等配套条件及公用设施落实情况4、建厂条件、厂址选择方案及总图布置方案5、工艺技术、主要设备选型、建设标准和相应的技术经济指标6、主要单项工程、公用辅助设备、总体布置方案和土建工程量估算7、环境保护、安全生产、劳动卫生、消防、GMP等要求和采取的相应措施方案8、企业组织、劳动定员和人员培训设想9、建设工期和实施进度10、投资估算和资金筹措11、经济效益和社会效益评价12、总论 设计任务书:是一个指令性的文件,是确定基本建设项目,编制设计文件的主要依据。 第二章:厂址选择与工厂总平面设计 厂址选择的总原则: 第一:厂址选择必须符合工业布局、符合所在地区、城市规划的要求,按照国家有关法律、法规及建设前期工作的规定进行。 第二:充分利用各地区的有利条件,避开或克服不利条件;充分利用当地人力、物力、财力和自然资源,环境保护;节约用地,不占用良田及经济效益高的土地,并符合国家现行土地管理、环境保护、水土保持等法规有关规定。 第三:使企业接近原料、能源产地和产品消费区,消除不合理运输;总体经济效益好,有利于加快国民经济发展和人民生活的提高。 具体厂址所在地点的选择,则要从场地的自然条件、技术经济条件及所在行业的特点三方面考虑,依次满足相应的条件

电动汽车动力电池系统五大国标最详解读

电动汽车动力电池系统五大国标最详解读 [导读]国标针对动力电池系统,建立了常规性能和功能要求,范围覆盖了电芯、模组、动力电池包、动力电池系统这4个层级,产品类型包括混合动力、插电式/增程式混合动力、纯电动乘用车和商用车,已基本上了构成了一个完整的体系。 关键词:电池系统电动汽车 国标针对动力电池系统,建立了常规性能和功能要求——容量、能量、功率、效率、标准循环寿命、工况循环寿命、存储、荷电保持、容量恢复、倍率性能、高低温性能等,建立了安全防护要求——操作安全、故障防护、人员触电防护、滥用防护、环境适应性、事故防护、用户手册和特殊说明等,范围覆盖了电芯、模组、动力电池包、动力电池系统这4个层级,产品类型包括混合动力、插电式/增程式混合动力、纯电动乘用车和商用车,已基本上了构成了一个完整的体系。 一、构建标准体系 电动汽车早期的发展过程中,GB或GB/T国家标准的缺失在一定程度上造成了行业的良莠不齐和鱼龙混杂。仅依靠汽车行业的QC/T推荐标准作为一种参考,并不具有权威性和广泛性,整车企业和电池企业要么茫无头绪,要么各行其是、各执一词,缺乏一个统一的衡量标准。 随着2015年新版GB/T国家推荐标准的陆续发布,我国电动汽车产业围绕动力电池系统已基本上构建了完整的标准体系,形成了行业的准入门槛,有利于行业的规范发展和优胜劣汰。 新国标在2015年5月颁布(部分标准将在10月份或年底颁布),与旧标准之间有一年的过渡期,从2016年开始,相关企业都将遵循新的标准进行相关检测。新国标与工信部2015年3月发布的《汽车动力蓄电池行业规范条件》一起,将加速动力电池行业的洗牌,提高行业集中度水平。

生物工程工厂设计

生物工程工厂设计概论复习思考题 、项目建议书和可研报告一般应分别包括哪些内容? 项目建议书的内容: 、项目名称 、项目建设的必要性和依据 、产品方案、市场预测、拟建规模和建设地点的初步设想; 、资源情况、建设条件、协作关系和技术、设备可能的引进国别、厂商的初步分析; 、环境保护; 、投资估算和资金筹措设想,包括偿还贷款能力的大体预算; 、项目实施规划设想; 、工厂组织和劳动定员估算; 、经济效果和社会效益的初步估算。 可行性研究报告的内容: 、总论 、市场需求预测和建设规模 、原材料、燃料及资源情况 、建厂条件和厂址方案 、设计方案 、环境保护调查环境情况,预测项目对环境的影响,提出环境保护和三废治理的初步方案 、企业组织、劳动定员和人员培训 、投资估算和资金筹措 、初步设计可以分为哪三种情况?初步设计阶段包括哪些内容? 按工程规模的大小、工程的重要性、技术的复杂性、设计条件的成熟度及设计水平的高低分为三阶段设计、两阶段设计、一阶段设计三种情况。 主要内容有: 、设计文件( )、设计依据及设计范围( )、设计的指导思想、建设规模和产品方案( )、生产方法及工艺流程的比较、选择和阐述( )、主要生产技术经济指标和生产定额( )、主要设备的选型及计算( )、车间布置的说明( )、存在的问题及解决问题的建议 、设计图纸( )、生产流程图( )、车间设备布置图( )全厂总平面布置图( )、主要生产设备和电动机一览表( )、主要材料估算表等。 、厂址选择的重要性。厂址选择应当考虑哪些因素? 厂址选择正确与否,不仅关系到建厂过程中能否以最省的投资费用,按质按量按期完成工厂设计中所提出的各项指标,而且对投产后的长期生产、技术管理和发展远景,都有着很大的影响,并同国家地区的工业布局和城市规划有着密切的关系。因此,厂址选择是百年大计问题,至关重要。 厂址选择的概念包括地点选择和场地选择两个层次。地点选择是对所建厂在某地区内的方位(即地理坐标)及其所处的自然环境状况,进行勘测调查,对比分析。场地选择是对所建厂在某地点处的面积大小、场地外形及其潜在的技术经济性,进行周密的调查、预测、对比分析,作为确定厂址的依据。 ( )、厂址位置要符合城市规划和微生物发酵工厂对环境的特殊要求( )、厂址要接近原料、燃料基地和产品销售市场,还要接近水源和电源( )、具有良好的交通运输条件( )、场地有效利用系数高,并有远景规划的总体布局( )、有一定的基建施工条件和投产后的协作条件( )、厂址选择要有利于 三废 处理,保证环境卫生。

相关主题
文本预览
相关文档 最新文档