当前位置:文档之家› rtv涂层检测报告

rtv涂层检测报告

rtv涂层检测报告
rtv涂层检测报告

瑞典绝缘子RTV涂层跟踪检测报告

(第14年报告)

Andreas Dernfalk

客户资料 1.1

版权保护:如果没有来自STRI AB 的书面同意,该报告内容以任何复印、发信等形式出版或复制都是不允许的。质量保证:该报告已根据STRI的质量保证体系进行校验和批准。该报告原件在STRI存档10年。

STRI AB 商业地址:www.stri.se V A T No.556314-821101 Box 707 Lyviksvagen 8 info@stri.se

在20世纪90年代初,旨在评估一批安装在瑞典的绝缘子所涂RTV涂层憎水性、性能和寿命的一个项目开始启动。所使用的涂料是由德国瓦克化学公司提供的Powersil 566。

所跟踪的绝缘子安装在哥特兰岛的Slite站、邻近Ringhals核电站的Lahall 站、哥德堡的Repeshall站、Degerfors的钢铁厂、基律纳(瑞典北部港口城市,是重要的采铁区中心)的LKAB以及Barseback核电站。根据IEC60816,所选择这些地点的污染等级为重污染至严重污染(Ⅲ到Ⅳ级)。这些绝缘子从安装到2000年进行了几次监测,这些监测结果见2001年发表的STRI报告中(即:第10年暨10年总结报告)。

除了安装在哥特兰岛的Slite站的绝缘子拆除退役之外,所有的绝缘子都在服役中。2006年春夏期间对这些绝缘子进行了新一轮评估。在此次监测时,这些绝缘子已经运行了9-14年。监测结果见本报告。

总的来说,所跟踪的绝缘子没有一个显现出这些涂层已经达到它们最大寿命的任何迹象。此外,没有观测到附着不牢或侵蚀等问题。在Barseback站的绝缘子上最初所见的涂层损伤,最后发现是维护和改造工作中的机械损伤所致。

从2000年的评估以来,这次监测也显示出涂层的憎水性有些微的变化。对绝缘子不同部位的憎水性测量(主体护套、伞裙的上沿和下沿,以及不同的朝向)显示,这些绝缘子的憎水性平均值在HC2-5范围之内。

此外,没有一个被涂绝缘子在跟踪测试期间发生任何闪络,而就在同一地方安装的没有涂层的陶瓷绝缘子却有闪络发生。

最后,根据全程跟踪测试期间的监测,其结论是,安装在瑞典污染地方的RTV 涂层的寿命超过14年。此外,由于没有观测到清晰的老化迹象,因此有理由相信这些涂层将继续很好地运行许多年。

STRI AB 商业地址:www.stri.se V A T No.556314-821101 Box 707 Lyviksvagen 8 info@stri.se

摘要........................................................... .. 2

1 背景........................................................ (4)

2 所跟踪的绝缘子.............................................. . (4)

3 监测程序.................................................... . (5)

4 2006年监测结果 (5)

4.1 Repesh?ll (6)

4.2 Lahall (7)

4.3 Kiruna (9)

4.4 Degerfors (10)

4.5 Barseb?ck (12)

5 总结 (14)

参考资料 (14)

附录

1 监测数据 (15)

1.1 Lahall绝缘子监测数据......... (15)

1.2 Repesh?ll绝缘子监测数据 (17)

1.3 Kiruna绝缘子监测数据 (20)

1.4 Baresb?ck绝缘子监测数据 (22)

1.5 Degerfors绝缘子监测数据 (25)

STRI AB 商业地址:www.stri.se V A T No.556314-821101 Box 707 Lyviksvagen 8 info@stri.se

STRI AB 商业地址: www.stri.se V A T No.556314-821101 Box 707

Lyviksvagen 8 info@stri.se 1 背景

自20世纪90年代初以来,对一批安装在瑞典不同地方的绝缘子RTV 涂层通过监测憎水性、性能和寿命进行了评估。这些涂料是由德国瓦克化学公司提供的,其型号是Powersil 566。所跟踪的绝缘子安装在哥特兰岛的Slite 站、邻近Ringhals 核电站的Lahall 站、哥德堡的Repeshall 站、Degerfors 的钢铁厂、基律纳的LKAB 以及Barseback 核电站。

在先前发表的STRI-2001年报告(第10年暨10年总结报告)[1]的评估结果显示,在典型的斯堪的纳维亚环境中,这些涂层至少具有10年的寿命。除了Slite 站的绝缘子拆除退役之外,因为所有跟踪的绝缘子一直都在服役之中,所以,在2006年春夏期间开展的新一轮评估就是指对这些此时已经服役了9-14年的绝缘子进行的。结果发布在本报告中。

2 所跟踪的绝缘子

所跟踪的绝缘子安装于瑞典的不同地方,站址和环境条件概况见表1。

表1 所跟踪的RTV 涂层绝缘子

Box 707

Lyviksvagen 8 info@stri.se 3 监测程序

根据STRI 指南 [2] ,通过对憎水性的定期观测和视觉监测来评估涂层的状态。在经过STRI 人员的初始监测后,其余的监测由设备运行单位或设备所有者的人员进行监测。

每年计划两次初始的监测,一次是在春夏期间,一次是在秋季。做这样的计划安排是为了包括可能的季节变化。这个项目被跟踪到1998年时,由于这其间发现老化即使有也是非常之缓慢,因此将最终监测首次推移到2000年,下一轮则被推移到6年后的2006年。

4 2006年监测结果

对憎水性(HC ,目前根据IEC TS 62073 [3] 被称为可湿性等级WC )的检测,在伞裙的上沿(T )、下沿(B )以及主体护套侧面(S )上进行,见图1。

图1:HC 值检测部位示意图

2006年绝缘子监测中所测试的HC 值概况列于表2中。在夏季的5至8月期间,对所有的绝缘子进行了测试。遗憾的是,由于难以获得为完成本次

任务的临时停电,在Degerfors 只有一个绝缘子进行了测试。

测试的详细结果见附录1。

对比上期憎水性测试显示,这些绝缘子的HC 值总体上与上期报告的HC 值相当,也就是说,涂层的憎水性能没有值得关注的恶化。

表2 2006年监测结果概要,根据[2]HC 测量的精确度为±1个单位

STRI AB 商业地址: www.stri.se V A

T No.556314-821101 Box 707

Lyviksvagen 8 info@stri.se

4.1 Repesh?ll

所涂的断路器支柱绝缘子照片见图2。这个绝缘子原安装在Larje 站,直到1994年11月从运行中撤下。被闲置户外一个冬季后,1995年4月又重新安装在Repesh?ll 站。在运输和安装期间,一些伞裙上的涂层遭到损伤。这些损伤的地方在1995年秋季监测时重涂了新的RTV 涂料。

在2006年监测时,观察到伞裙顶层有灰色污染层。当底层测得HC 值为1时,顶层的憎水性等级为2-3,原来损伤部位的涂层状况很好,没有发现任何附着不良的迹象。尔后,在一个较底端的伞裙发现了一个小小的损伤(直径大约5mm ),然而,它对于绝缘子性能的影响可以忽略不计。

在全程跟踪测试期间所测得的平均HC 值列于图3和图4中。

图2 Repesh ?ll 的绝缘子

STRI AB 商业地址: www.stri.se V A T No.556314-821101 Box 707

Lyviksvagen 8 info@stri.se

图3 安装在Repesh?ll 的绝缘子上沿(T )、下沿(B )和主体护套侧面(S )的平均HC 值.

图4 安装在Repeshall 的绝缘子朝东和朝西两侧表面平均的HC 值。大海位于东方。

4.2 Lahall

所涂绝缘子南侧和西侧紧临大海(3公里),临近还有一家造纸厂。在高盐密期间启用洒水系统清洗绝缘子。图5是这个绝缘子的照片。

STRI AB 商业地址: www.stri.se V A T No.556314-821101 Box 707

Lyviksvagen 8 info@stri.se

图5 安装在Lahall 的RTV 涂层绝缘子

在2006年测试中,没有发现涂层损伤或值得关注的老化迹象。其表面与2000年测试相比更憎水,从2000年的HC4变为HC3。此外,测试时发现涂层变灰,变成的灰色不能被水清洗清除。最后,没有发现微生物生长的痕迹。概括地说,运行13年

后,RTV 涂层没有显现任何老化或已经达到其最大寿命的迹象。

在全程跟踪测试期间所检测的平均HC 值显示在图6和图7中。

图6 安装在Lahall 的绝缘子上沿(T )、下沿(B )和主体护套侧面(S )的平均HC 值。

STRI AB 商业地址: www.stri.se V A T No.556314-821101 Box 707

Lyviksvagen 8 info@stri.se

图7 安装在Lahall 的绝缘子朝北(N )和朝南(S )的平均HC 值。大海位于南和西向。

4.3 Kiruna

临近Kirunavaara 的Kiruna 变电站中的三个支柱绝缘子于1994年涂了RTV 涂料,其照片显示在图8中。遗憾的是,在运输和安装过程中,涂层受到了损伤,损伤部位于1996年10月清理后重新做了涂覆,1997年5月又在第一片的顶层进行了第二次施涂。自那以后,没有发现损伤或附着不良的问题。在这次监测中发现憎水性对应于HC3。

图8 安装在Kiruna 的被涂绝缘子.

在全程跟踪测试期间所检测的平均HC 值显示于图9和图10中。

STRI AB 商业地址: www.stri.se V A T No.556314-821101 Box 707

Lyviksvagen 8 info@stri.se

图9 安装在Kiruna 的绝缘子上沿(T )、下沿(B )和主体护套侧面(S )的平均HC 值.

图10 安装在Kiruna 的绝缘子朝北(N )和朝南(S )的平均HC 值。矿山在北方。

4.4 Degerfors

1996年,两个涂了RTV 涂料的绝缘子被安装在Degerfors 钢铁厂的变电站。由于难于获得临时停电,在1998年期间没有进行测试。此外,在2000年期间因为同样的原因只有其中的一个绝缘子(编号OL8S8)进行了测试。在这个期间,这个绝缘子被严重污染了。另一个绝缘子(编号T404-A130-F )上次测试是在1997年,其HC 值与OL8S8相似。绝缘子OL8S8的照片见图11。

STRI AB 商业地址: www.stri.se V A T No.556314-821101 Box 707

Lyviksvagen 8 info@stri.se

图11 安装在Degerfors 的被涂绝缘子

在2006年测试时,憎水性的平均等级是HC4,也就是说,与上期(2000年)测试的结果一样,而且没观测到损伤、老化或微生物生长。总而言之,在运行10年之后,涂层没有显现值得关注的老化或接近最大有效寿命的任何迹象。

在全程跟踪测试期间所检测到的平均HC 值显示在图12和图13中。

图12 安装在Degerfors 的绝缘子上沿(T )、下沿(B )和主体护套侧面(S )的平均HC 值

STRI AB 商业地址: www.stri.se V A T No.556314-821101 Box 707

Lyviksvagen 8 info@stri.se

图13 安装在Degerfors 的绝缘子朝东(E )、朝西(W )向的憎水性平均值。污染源(碳酸工厂和钢铁厂)分别位于西北和西南,因此,2006年HC 值又分别对北(N )、南(S )两侧表面做了测试(测试数据见附录)。 4.5 Barseb?ck

被涂绝缘子在1994年夏季安装。随后于1995年对带电的绝缘子进行了HC 值的观测和评估,其方法是通过使用洒水系统对绝缘子清洗后对绝缘子进行观测。其憎水性等级被评估为HC2-4级,此间没有详细地细节测试。由于没有计划内的临时停电时间,1998年和1999年没有进行测试。在随后的2000年测试中,HC 值为3。这个绝缘子的照片显示在图14中。

图14 安装在Barseback 的绝缘子

STRI AB 商业地址: www.stri.se V A T No.556314-821101 Box 707

Lyviksvagen 8 info@stri.se 在2006年5月测试时,观察到RTV 涂层有几处损伤。根据损伤的特点可以推断,最可能的是机械损伤,如意外撞击、工具或云梯磨擦所致。这个结论可以由损伤的部位获得支持——都在或靠近伞裙的外边缘。

在以前的——即2000年夏天——监测中,测试项目的支柱绝缘子所支持的载波器被移动了位置,因此有理由相信所观察到的损伤是因为这次施工造成的。 损伤的范围很小,那个被蹭掉的最大单个涂层面积5平方厘米,而其他的损伤就小的多了,因此,根据损伤的部位和范围可以得出结论,它们对于绝缘子性能的影响是可以忽略不计的。

关于HC ,所观察到的憎水性有所下降,从2000年的HC3下降到HC5。 图15给出了在全程跟踪测试期间,不分朝向的上沿(T )、下沿(B )和主体护套侧面(S )的平均HC 值。朝东(E )、朝西(W )两侧的HC 值见图16。

图15 安装在Barseback 的绝缘子上沿(T )、下沿(B )和主体护套侧面(S )的平均HC 值

图16 安装在Barseback 的绝缘子朝东(E )、朝西(W )两侧的平均HC 值。海在西面。由于没有沿这些方向进行监测,所列2006年的HC 值是总平均值。

STRI AB 商业地址: www.stri.se V A T No.556314-821101 Box 707

Lyviksvagen 8 info@stri.se 5 总结

总结概括描述于下表3中。

表3 所跟踪的绝缘子及2006年检测结果

所跟踪的绝缘子已运行了10-14年,没有一个显现出任何明显的老化迹象。这些绝缘子暴露于自来于大海的海盐以及像钢铁厂和汽车厂那样的工业污染之中。根据IEC60815,这些地方污染的严重程度,至少在最严重的时期,被分级为重污染至严重污染(Ⅲ至Ⅳ级)。

根据测试结果可以得出结论,在瑞典污染的环境中RTV 涂层的寿命超过14年。此外,所有跟踪的绝缘子没有观测到任何老化的迹象,因此有理由相信,这些涂层还可以很好地运行许多年。

参考资料

[1] H. Wieck, 1999-2000年RTV 涂层绝缘子跟踪,STRI 报告H01-402, 2001 [2] STRI 指南 92/1, 憎水性分级指南

[3]

IEC TS 62073, 绝缘子表面可湿性测量指南,2003

STRI AB 商业地址: www.stri.se V A T No.556314-821101 Box 707

Lyviksvagen 8 info@stri.se 附录 1 监测数据

1.1 Lahall 的绝缘子监测数据

这个绝缘子发现有点变灰,变成的灰色水冲洗并不能清除。此外,发现有一个小小的损伤,大概是安装所致。最后,没有发现微生物生长迹象。

将整根绝缘子分成两段对RTV 涂层的憎水性进行了测试,其结果列在表4中。

表4 安装在Lahall 的绝缘子憎水性

执行监测: Bengt Ung, Vattenfall Service Syd, 2006年5月

STRI AB 商业地址:www.stri.se V A T No.556314-821101 Box 707 Lyviksvagen 8 info@stri.se

STRI AB 商业地址: www.stri.se V A T No.556314-821101 Box 707

Lyviksvagen 8 info@stri.se 1.2 Repesh?ll 的绝缘子监测数据

由于污染层可能通过水清洗而清除了,因此可以看到伞裙上沿表面的灰色。此外,在一片伞裙上还看到了一个直径约5mm 的损伤,见图17。1995年所修复的运输损伤状况良好,而且修复处没有显现任何附着不良的迹象。在下端法兰的沙浆部位涂层有一个裂缝,见图18。最后,没有微生物生长迹象。

对整根绝缘子所有伞裙的RTV 涂层憎水性进行了测试,结果列在表5中。

表5 安装在Repesh?ll 的绝缘子憎水性

监测执行: Mia ?sterstr?m, Vattenfall Service Syd, 2006年6月15日

STRI AB 商业地址: www.stri.se V A T No.556314-821101 Box 707

Lyviksvagen 8 info@stri.se

图17 所观测到的图层损伤

图18 在下端法兰的沙浆粘接部位RTV 涂层的裂缝

STRI AB 商业地址:www.stri.se V A T No.556314-821101 Box 707 Lyviksvagen 8 info@stri.se

STRI AB 商业地址: www.stri.se V A T No.556314-821101 Box 707

Lyviksvagen 8 info@stri.se 1.3 Kiruna 的绝缘子监测数据

朝西北方向污染源的伞裙的上侧,发现被褐色的铁矿粉灰污染了,大约0.1mm 厚,没有发现有关附着不良或老化的迹象。照片显示在图19至22中。

沿绝缘子长度分三段测得的RTV 涂层HC 值见表6。

表6 安装在Kiruna 的绝缘子HC 值

监测执行:Ans Olofsson, Vattenfall Lule?, 2006年9月8日.

图19 伞裙顶部的褐色铁矿粉灰(朝北) 图20 朝向北方的中间部位

图21 朝北的下端部位 图22 朝南的中间部位

防火涂层规范

4.9.2 钢结构防火涂料的品种和技术性能应符合设计要求,并应经过具有资质的检测机构检测符合国家现行有关标准的规定。检查数量:全数检查。 检验方法:检查产品的质量合格证明文件、中文标志及检验报告等。 14.3.1 防火涂料涂装前钢材表面除锈及防锈底漆涂装应符合设计要求和国家现行 有关标准的规定。 检查数量:按构件数抽查10%,且同类构件不应少于 3 件。检验方法:表面除锈用铲刀检查和用现行国家标准《涂装前钢材表面锈蚀等级和除锈等级》GB8923 规定的图片对照观察检查。底漆涂装用干漆膜测厚仪检查,每个构件检测 5 处,每处的数值为 3 个相距50mm 测点涂层干漆膜厚度的平均值。14.3.2 钢结构防火涂料的粘结强度、抗压强度应符合国家现行标准《钢结构防火涂料应用技术规程》CECS24:90 的规定。检验方法应符合现行国家标准《建筑构件防火喷涂材料性能试验方法》GB 9978 的规定。 检查数量:每使用100t 或不足100t 薄涂型防火涂料应抽检一次粘结强度;每使用 500t 或不足500t 厚涂型防火涂料应抽检一次粘结强度和抗压强度。 检验方法:检查复检报告

14.3.3 薄涂型防火涂料的涂层厚度应符合有关耐火极限的设计要求。厚涂型防火涂 料涂层的厚度,80%及以上面积应符合有关耐火极限的设计要求,且最薄处厚度不应 低于设计要求的85%。 检查数量:按同类构件数抽查10%,且均不应少于 3 件。 检验方法:用涂层厚度测量仪、测针和钢尺检查。测量方法应符合国家现行标准 《钢结构防火涂料应用技术规程》CECS24:90 的规定及本规范附录F。 14.3.4 薄涂型防火涂料涂层表面裂纹宽度不应大 于0.5mm;厚涂型防火涂料涂层表 面裂纹宽度不应大于1mm。 检查数量:按同类构件数抽查10%,且均不应少于 3 件。 检验方法:观察和用尺量检查。 4.9.3 防腐涂料和防火涂料的型号、名称、颜色及有效期应与其质量证明文件相符。 ~ 1 / 2 ~ 开启后,不应存在结皮、结块、凝胶等现象。 检查数量:按桶数抽查5%,且不应少于 3 桶。 检验方法:观察检查。 14.3.5 防火涂料涂装基层不应有油污、灰尘和泥砂等污垢。

油漆涂层附着力检测方法(百格测试)

油漆涂层附着力检测方法 ——百格测试 含义及测试方法 含义:一般而言是测试对象在经过涂装之后测试其附着度的工具,按照日本工业标准(JIS),分为1~5级,级数越高,要求越严格,当客户规范当中要求是第5级时,表示完全不能有脱落。参考标准:《GBT9286-1998 色漆和清漆漆膜的划痕实验》 测试方法:用百格刀在测试样本表面划10×10个(100个)1mm×1mm小网格,每一条划线应深及油漆的底层;用毛刷将测试区域的碎片刷干净;用3M600号胶纸或等同效力的胶纸牢牢粘住被测试小网格,并用橡皮擦用力擦拭胶带,以加大胶带与被测区域的接触面积及力度;用手抓住胶带一端,在垂直方向(90°)迅速扯下胶纸,同一位置进行2次相同试验。实验条件及标准 规定利用3M600或610的胶带黏贴于百格中,快速拉起3M胶带,其面漆或电度层被胶带黏起的数量依照百格的百分比: ISO等级:0 =ASTM等级:5B 切口的边缘完全光滑,格子边缘没有任何剥落。 ISO等级:1 =ASTM等级:4B 在切口的相交处有小片剥落,划格区内实际破损≤5% 。 ISO等级:2 =ASTM等级:3B 切口的边缘和/或相交处有被剥落,其面积大于5%~15% 。 ISO等级:3 =ASTM等级:2B 沿切口边缘有部分剥落或整大片剥落,或部分格子被整片剥落。剥落的面积超过15%~35% 。 ISO等级:4 =ASTM等级:1B 切口边缘大片剥落/或者一些方格部分或全部剥落,其面积大于划格区的35%~65% 。 ISO等级:5 =ASTM等级:0B 在划线的边缘及交叉点处有成片的油漆脱落,且脱落总面积大于65%。 依照客户要求B数测试是否通过百格实验,一般手机业界客户要求在4B以上。 正式的话是使用百格刀,横向与纵向各划1刀及型成100各细小方格.如无百格刀利用美工刀也可以. 利用3M600或610的胶带黏贴于百格中,快速拉起3M胶带,测试脱落数量。 操作步骤: 用划格器在涂层上切出十字格子图形,切口直至基材; 用毛刷对角线方向各刷五次,用胶带贴在切口上再拉开; 观察格子区域的情况,可用放大镜观察。 划格结果附着力按照第二项的标准等级。 相关测试工具产品参数 百格测试仪(漆膜划格仪,漆膜划格器) 产品说明: 根据ISO2409-1992标准设计制造的。 适用于GB/T9286-98、BS 3900 E6/ASTM D3359。 特点: 用于均匀划出一定规格尺寸的方格,通过评定方格内涂膜的完整程度来评定涂膜对基材附着程度,以‘级’表示。它主要用于有机涂料划格法附着力的测定,不仅适用于实验室,也可用于各种条件下的施工现场。 用途:

钢结构涂层厚度检测报告(20201101110720)

统表C02-102 钢结构涂层厚度检测报告

我国现行标准规范GB14907 £002《钢结构防火涂料》,对钢结构防火涂料的分类和质量要求作出了明确的规定。国家消防产品质量监督检验机构对超薄型、薄型、厚型钢结构防火涂料产品,分别进行2±0.2mm 、5±0.2 mm 和25±2mm 三个标准涂层厚度的型式检验,将检验结果(涂层厚度和耐火性能试验时间)作为该产品型式认可证书的产品名称和规格型号的证书内容。 一、钢结构防火涂料按使用场所可分为: a) 室内钢结构防火涂料:用于建筑物室内或隐蔽工程的钢结构表面; b) 室外钢结构防火涂料:用于建筑物室外或露天工程的钢结构表面。钢结构防火涂料 按使用厚度可分为: a) 超薄型钢结构防火涂料:涂层厚度小于或等于3 mm; b) 薄型钢结构防火涂料:涂层厚度大于3 mm 且小于或等于7 mm; c) 厚型钢结构防火涂料:涂层厚度大于7 mm 且小于或等于45 mm。 二、涂层厚度与耐火极限 钢结构防火涂料的质量受多种因素的影响。不同的生产厂家,由于原材料、生产工艺、配方等因素,其产品质量是不同的。相同的生产厂家、相同类型的不同批次的产品,其产品质量也存在差异。如表 3 所示。 表3、某厂家钢结构防火涂料耐火极限检测数据涂料名称产品批次编号涂层厚度(mm) 耐火极限(min) 超薄型钢结构防火涂料CB -1 2.68 > 120 CB -2 1.80 > 90 CB -3 1.50 > 90 CB -4 2.53 112 CB -5 2.57 61 CB -6 0.68 > 30 CB -7 1.18 33 薄型钢结构防火涂料 B -1 4.68 > 160 B-28.20 141 B-3 4.80 120 B-4 4.80 120 B-5 3.39 > 90 B-6 3.50 87 B-7 4.70 110 B-8 1.20 > 32 厚型钢结构防火涂料H -1 30.0 212 H -2 30.8 130 H -3 26.0 > 180 H -4 37.0 > 180 H -5 30.0 180 H -6 38.7 182 H -7 20.0 > 120 H -8 17.8 98

检测报告模板

检测报告 XDJSJC-001 工程名称: 委托部门:金属实验室 建设单位:兴达新能源有限公司 设计单位: 施工单位:电建一公司 监理单位:胜利监理 金属实验室 年月日

声明 1、本检测报告无检测、审核、批准人签字无效。 2、本检测报告涂改、换页、漏页无效。 3、对本检测报告若有异议或需要说明之处,应于收到报告之日起 十五日内向我部门书面提出,本部门将给予及时的解释或答 复。 检测机构: 单位地址: 邮政编码: 联系电话:

检测机构名称 报告编号: 工程名称 工程地点 委托单位 检测时间环境条件(晴、阴、雨) ℃ 抽样数量见报告检验类别委托 检验项目 1、基础混凝土的抗压强度检测; 2、网架结构检测。(焊接质量、构件尺寸偏差、网架整体挠度、涂装工 程、钢结构的安装质量(偏差) 检验仪器检测仪器设备:金属超声仪、涂层厚度仪、钢板厚度仪、水准仪、测距 仪、钢尺等 检验依据 1、设计图纸及相关技术资料 2、《建筑结构检测技术标准》GB/T50344-2004 3、《网架结构工程质量检验评定标准》JGJ78-91 4、《建筑钢结构焊接技术规程》JGJ81-2002 5、《钢结构工程施工质量验收规范》GB50205-2001 6、《回弹法检测混凝土抗压强度技术规程》JGJ/T23-2001 7、其它相关技术标准及通过鉴定的新检测方法或科研成果等等 检测结论 检测结论: 1、该工程基础混凝土强度是否符合设计要求。 2、该工程焊接质量是否满足设计或规范要求。 3、构件尺寸偏差是否满足设计或规范要求。 4、网架整体挠度是否满足设计或规范要求。 5、涂装工程是否满足设计或规范要求。 6、钢结构的安装质量(偏差)是否满足设计或规范要求。 (本页以下无正文) 检测机构(章) 年月日 批准:审核:检测:(两人以上签章)

关于涂层测厚检测实验报告

关于涂层测厚检测实验报告 1、 实验目的 1、 熟悉防腐层的用途和种类 2、 掌握各种防腐层质量检测的方法并熟悉设备使用 2、 实验设备 磁阻测厚仪、超声波测厚仪、针孔电火花检测仪 3、 实验原理 主要针对防腐层厚度和点蚀进行检测 1、 磁阻测厚仪:采用磁感应原理,利用从测头经过非铁磁覆层而流入铁磁基体的磁通的大小,来测定覆层厚度,也可以测定与之对应的磁阻的大小,来表示其覆层厚度。覆层越厚,则磁阻越大,磁通越小。 2、 超声波测厚仪:超声波测厚仪主要有主机和探头两部分组成。主机电路包括发射电路、接收电路、计数显示电路三部分,由发射电路产生的高压冲击波激励探头,产生超声波发射脉冲波,脉冲波经介质介面反射后被接收电路接收,通过单片机计数处理后,经液晶显示器显示测厚数值,它主要根据声波在试样中的传播速速乘以通过试样的时间的一半而得到试样的厚度。 3、 针孔电火花检测仪——检测时该仪器的高压探头贴近被检测物,移扫时,当一旦遇到针孔、气泡等类似质量缺陷,高压电将此处的气隙击穿产生电火花,此时仪器就发出报警声,也可以通过观察火花来判断表面涂覆层质量和焊缝质量。电离物质得到能力,电子激发,电子激发形成电火花。击穿,非导电介质,被击穿变成导体。 4、 实验步骤 1、 超声波测厚仪 1)测量准备 将探头插头插入主机探头插座中, 按ON键开机,全屏幕显示数秒后显示上次关机前使用的声速,如下图所示,此时可开始测量。

2)声速的调整 如果当前屏幕显示为厚度值,按 VEL 键进入声速状态,屏幕将显示当前声速存储单元的内容。每按一次,声速存储单元变化一次,可循环显示五个声速值。如果希望改变当前显示声速单元的内容,用▲或▼键调整到期望值即,时将此值存入该单元。 3)校准 在每次更换探头、更换电池之后应进行校准。此步骤对保证测量准确度十分 关键。如有必要,可重复多次。 将声速调整到 5900m/s 后按 ZERO 键,进入校准状态,屏幕显示:

钢结构涂层厚度检测

作业指导书 批 准 人: 颁布日期: 实施日期: 审 核: 编 写: 河 北 博 瑞 建 工 技 术 有 限 公 司 作业指导书 第 1 页 共 5 页 第A 版 第 0 次 修订 主题:钢结构涂层厚度 颁布日期:2008年06月01日

目 录 1适用范围 ............................................... 3 2检测目的 ............................................... 3 3应用标准 ............................................... 3 4仪器设备 ............................................... 3 5收集资料 ............................................... 3 6现场检测 ............................................... 4 7检测过程中注意事项 ..................................... 4 8检测报告 ............................................... 5 河 北 博 瑞 建 工 技 术 有 限 公 司 作业指导书 第 1 页 共 5 页 第A 版 第 0 次 修订 主题:钢结构涂层厚度 颁布日期:2008年06月01日

钢结构涂层厚度 1适用范围 本作业指导书适用于钢结构的防腐涂料(油漆类)涂装和防火涂料涂装工程的检测。 2检测目的 钢结构涂层厚度 3应用标准 GB/T 50344-2004《建筑结构检测技术标准》 GB 50205-2001《钢结构工程施工质量验收规范》 CECS24《钢结构防火涂料应用技术规程》 4仪器设备 涂层厚度测定仪,测针,钢尺 5收集资料 现场检测前,需要收集以下资料: (1)工程名称及设计、施工、监理和建设单位名称; 河 北 博 瑞 建 工 技 术 有 限 公 司 作业指导书 第 1 页 共 5 页 第A 版 第 0 次 修订 主题:钢结构涂层厚度 颁布日期:2008年06月01日

检测报告模板

阅读使人充实,会谈使人敏捷,写作使人精确。——培根 告测报检 XDJSJC-001 工程名称:委托部门:金属实验室建设单位:兴达新能源有限公司 设计单位:电建一公司施工单位:胜利监理监理单位:金属实验室日月年 法拉兹·日·阿卜——学问是异常珍贵的东西,从任何源泉吸收都不可耻。. 阅读使人充实,会谈使人敏捷,写作使人精确。——培根

声明 1、本检测报告无检测、审核、批准人签字无效。 2、本检测报告涂改、换页、漏页无效。 3、对本检测报告若有异议或需要说明之处,应于收到报告之日起十五日内向我部门书面提出,本部门将给予及时的解释或答复。 检测机构: 单位地址: 邮政编码: 联系电话: 法拉兹·日·阿卜——学问是异常珍贵的东西,从任何源泉吸收都不可耻。. 阅读使人充实,会谈使人敏捷,写作使人精确。——培根 检测机构名称 报告编号:

批准:审核:检测:(两人以上签章) 法拉兹·日·阿卜——学问是异常珍贵的东西,从任何源泉吸收都不可耻。. 阅读使人充实,会谈使人敏捷,写作使人精确。——培根

检测报告 一、工程概况 工程名称及位置、结构形式、建筑面积。 工程开工时间、建设单位名称、设计单位名称、施工单位名称、监理单位名称。 检测原因(不符合基本建设程序或质量事故等)、委托单位及进场检测日期。 二、检测目的 通过现场检测对该工程基础、主体钢结构的工程质量是否满足设计要求进行评定。 三、检测依据 1、设计图纸及相关技术资料 2、《建筑结构检测技术标准》GB/T50344-2004 3、《网架结构工程质量检验评定标准》JGJ78-91 4、《建筑钢结构焊接技术规程》JGJ81-2002 5、《钢结构工程施工质量验收规范》GB50205-2001 6、《回弹法检测混凝土抗压强度技术规程》JGJ/T23-2001 7、其它相关技术标准及通过鉴定的新检测方法或科研成果等等 四、检测项目 1、基础混凝土强度检测; 2、焊接球节点无损检测及尺寸偏差检验; 3、焊接钢板节点无损检测和尺寸偏差检验;

防火涂层厚度检测作业指导书(含全部附表)

MC-LWI-09(A0) 1编制依据 《钢结构现场检测技术标准》GB/T 50621-2010。 2适用范围 本方法适用于钢结构的防火涂层的检测。 3作业程序 执行程序形成的记录 3.1接受任务编制检测方案。 3.2 根据检测方案的技术要求准备仪器设备。 3.3 进行现场检测做好相关数据的记录填写完成表JSJL-02-13-A《防火涂层厚度检测记录》。 3.4分析检测数据,编制检测报告。 4检测准备 4.1 收集钢结构构件下列资料: (1)工程名称、地点、结构设计概况及设计、施工、监理、建设单位名称;

(2)钢结构设计图纸及相关文件; (3)了解涂层材料类型、涂层设计厚度等情况。 4.2 进行下列工作: (1)检测仪器准备,核定校验情况; (2)编制检测方案; (3)进行安全技术交底。 5 检测方法 5.1 防火涂层检测 防火涂层厚度可采用探针和卡尺进行检测。测量设备的量程应大于被测防火涂层的厚度。 5.1.1 检测条件 防火涂料涂装基层不应有油污、灰尘和泥沙等污垢。防火涂料不应有误涂、漏涂,涂层应闭合无脱层、空鼓、明显凹陷、粉化松散和浮浆等外观缺陷,乳突已剔除。 5.1.2检测数量 按照《建筑防火涂料(板)工程设计、施工与验收规程》DB11/1245-2015,钢结构防火涂料涂层厚度检测数量按照构件数的30%进行抽取,一般不得少于3件。 5.1.3检测方法 根据《建筑防火涂料(板)工程设计、施工与验收规程》(DB11/1245-2015)钢结构防火涂料涂层厚度的测定采用涂层厚度仪进行。测试时,将测厚仪探头垂直压置在被涂钢构件表面,记录测厚仪读数。检查数量按构件数的30%进行抽取,一般不得少于3件。 5.1.4测点的选择

涂层厚度检测报告OK

委托编号: /报告日期 2014-11-01 工程名称坦桑尼亚终点站检测内容涂装厚度 检测目的技术厚度要求施工单位青岛市鑫光正钢结构材料有限公司检测日期2014-11-01 一、检测概况 对坦桑尼亚终点站的防腐漆涂层厚度进行检测。钢构件外表面喷砂除锈后表面涂装采用两遍红丹防锈漆,漆模型面不低于60UM。 二、检测方法 根据有关检测规程及委托方要求,钢构件外表面采用“90-10”规则判定,即允许有10%的读数可低于规定值,但每一单独读数不得低于规定值的90%。漆膜厚度测定点的最大值不能超过工艺要求厚度的3倍。以钢梁杆件为一测量单元,在特大杆件表面上以10 m2为一测量单元,每个测量单元选取三处基准表面,每一基准表面测量5点,其测量分布如下图,取其算术平均值。 三、检测依据 1、《钢结构工程施工质量验收规范》(GB 50205-2001); 2、《色漆和清漆漆膜厚度的测定》(GB/T 13452.2-2008/ISO 2808:2007)。

四、检测仪器 仪器名称规格型号编号检定日期有效期 测膜仪器DR320 100038 2014年2月19日一年 五、检测结果 所检---工程所用钢构件防腐涂料涂层厚度检测结果见附表。 六、检测结论 所检---工程所用钢构件防腐涂料涂层厚度均符合设计要求。 七、注意事项 1.检测报告无公司报告专用章和检测资质章无效。 2.检测报告复印和涂改无效。 3.检测报告无主检、批准人签字无效。 4.对检测报告若有异议,应于收到报告之日起十五日内向检测单位提出,逾期不予受理。 质量鉴 定情况主检 批准 有限公司(印章) 2014年 11月01日

Q SQR.04.025-2005 涂层附着力试验方法-划格法(试行)

Q/SQR 奇瑞汽车有限公司发布

前言 本标准以产品标准为前提,符合国家标准、行业标准,在满足市场需求和产品性能的实际情况下制定的。本标准规定了奇瑞汽车金属或非金属基材油漆涂层附着力特性的试验方法等。同时在格式和内容的编排上均符合GB/T1.1-2000和GB/T1.2-2002的规定。 本标准满足奇瑞汽车产品性能要求的前提,作为公司开发新产品、检验产品质量以及试验产品性能的依据。 本次更改内容为:本次修订了胶带粘着力、型号,划格器刀口宽度按基材分开,划格提出了明确要求、胶带的压实做了要求,添加了评定等级的图示。 本标准由奇瑞汽车有限公司汽车工程研究院提出。 本标准由奇瑞汽车有限公司汽车工程研究院归口。 本标准由奇瑞汽车有限公司汽车工程研究院负责起草。 本标准主要起草人:张伟宏宁小岳陈良印

涂层附着力试验方法-划格法(试行) 1 范围 本规范规定了金属或非金属基材油漆涂层附着力特性的试验方法,此方法不适用于总厚度大于250μm的涂层,合成纤维涂层,以及粗糙表面的涂层。本标准由范围,规范性引用文件,试验目的,试验设备,取样或样板制作,试验过程等内容组成。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 无 3 术语 无 4 试验目的 通过从基材上脱落的油漆涂层来评定涂层附着力。 5 试验设备 5.1 划格器(用于正确地切割切痕,试验时可使用一切切割引导工具) 5.1.1 单列刀片,20-30度刀口。 5.1.2 1mm,2mm或3mm的多列刀片。 5.2 软毛刷 5.3 压敏胶带,推荐胶带:宽25mm,粘着力40-50N/100mm或商定,推荐3M-600或3M-610胶带; 5.4 目视放大镜:手把式,放大倍数2—3倍。 6 试验准备 6.1 试样地尺寸要求能在三个不同的部位进行试验,(特殊情况特殊对待,如把手等产品尺寸过小)6.2 试板准备 6.2.1 清洁试板表面,保证涂层表面无水、油、蜡或其它残余物 6.2.2 试板表面的流挂、气泡或其它明显缺陷区域,不作为试验部位,附着力测试作为其他试验完后性能考核项目的情况除外。 6.2.3试验前,试板应在温度23±2℃,相对湿度为(50±5)%环境下静置16小时(在线检测等特殊情况在涂膜成膜后涂膜表面温度达到现场环境温度即可测试) 7 试验过程 7.1刀具选用: 根据涂层的厚度选用不同刀锯的划格器: 软基材

T漆膜耐冲击测定法

GB/T 1732-93 漆膜耐冲击测定法 中华人民共和国国家标准 GB/T 1732-93 漆膜耐冲击测定法 1 主题内容与适用范围本标准规定了以固定质量的重锤落于试板上而不引起漆膜破坏的最大高度(cm)表示的漆膜耐冲击性试验方法。本标准适用于漆膜耐冲击性能的测定。 2 引用标准 GB 308 滚动轴承钢球 GB 708 冷轧钢板和钢带的尺寸、外形、重量及允许偏差 GB 1727 漆膜一般制备法 GB 1764 漆膜厚度测定法 GB 3186 涂料产品的取样 GB 9271 色漆和清漆标准试板 3 仪器及设备 3.1 放大镜4 倍放大镜。 3.2 冲击试验器 3.2.1 冲击试验器如图所示,由下列各件组成:座1;嵌于座中之铁砧2;冲头3;

滑筒4;重锤5及重锤控制器。 控制器装置由下列部件组成;制动器器身6;控制销7;控制销螺钉8;制动器固定螺钉10及定位标11;横梁15用两根柱子16与座相联;在横梁中心装有压紧螺帽12;冲头可在其中移动,用螺钉14将圆锥13连接在横梁上。滑筒之一端旋入锤体中,而另一端则为盖9;滑筒中的重锤可自由移动,重锤借控制装置固定,并可移动凹缝中的固定螺钉,将其维持在范围内的任何高度上。滑筒上有刻度以便读出重锤所处位置。 3.2.2 冲击试验器各部件的规格 滑筒上的刻度应等于50±0.1cm,分度为1cm。 重锤质量为1000±1g,应能在滑筒中自由移动。 冲头上的钢球,应符合GB 308 8IV的要求,冲击中心与铁砧凹槽中心对准,冲头进入凹槽的深度为2±0.1mm。 铁砧凹槽应光滑平整,其直径为15±0.3mm,凹槽边缘曲率半径为2.5~3.0mm。3.3 校正冲击试验器用的金属环及金属片 3.3.1 金属环:外径30mm,内径10mm,厚3±0.05mm。 3.3.2 金属片:30mm×50mm,厚1±0.05mm。 3.4 冲击试验器的校正把滑筒旋下来,将3mm厚的金属环套在冲头上端,在铁砧表面上平放一块1±0.05mm厚的金属片,用一底部平滑的物体从冲头的上部按下去,

涂层附着力检测方法的详细介绍

涂层附着力的检测方法 摘要:介绍了防腐蚀涂料涂层附着力的机理,并对附着力检测的标准划格法、划X法以及拉开法的测试方法和程序,作了详细说明。 关键词:涂层、附着力、划格法、拉开法 1.涂层附着力 涂装工程中,对于防腐蚀涂料的涂层附着力检测是涂层保护性能相当重要的指标,越来越被业主和监理所重视。除了在试验室内的检测外,防腐蚀涂料的选用过程中,对涂料产品进行的样板附着力测试,以及施工过程中现场附着力的检测,也越来越普遍。 有机涂层与金属基底间的附着力,与涂层对金属的保护有着密切的关系,它主要是由附着力与有机涂层下金属的腐蚀过程所决定的。有机涂层下金属的腐蚀主要是由相界面的电化学腐蚀引起的,附着力的好坏对电化学腐蚀有明显的影响。良好的附着力能有效地阻挡外界电解质溶液对基体的渗透,推迟界面腐蚀电池的形成;牢固的界面附着力可以极大地阻止腐蚀产物——金属阳离子经相间侧面向阴极区域的扩散,这些阳离子扩散是为了平衡阴极反应所生成的带负电荷的氢氧根离子,这虽然是一个相当缓慢的过程,但是一旦附着力降低,阳离子从相间侧面向阴极扩散的扩散则容易得多。 有机涂层的附着力,应该包括两个方面,首先是有机涂层与基底金属表面的黏附力(adhesion),其次是有机涂层本身的凝聚力(Cohesion)。这两者对于涂层的防护作用来说缺一不可。有机涂层在金属基底表面的附着力强度越大越好;涂层本身坚韧致密的漆膜,才能起到良好的阻挡外界腐蚀因子的作用。涂层的不能牢固地黏附于基底表面,再完好的涂层也起不到作用;涂层本身凝聚力差,漆膜容易开裂而失去保护作用。这两个方面缺一不可,附着力不好,再完好的涂层也起不到作用;而涂层本身凝聚力差,则漆膜容易龟裂。这两者共同决定涂层的附着力,构成决定涂层保护作用的关键因素。 有关涂层附着力的研究有相当多的理论学说,影响涂层附着力有基本因素主要有两个,涂料对底材的湿润性和底材的粗糙度。涂层对金属底材的湿润性越强,附着力越好;一定的表面粗糙度对涂层起到了咬合锚固(Anchor Pattern)的作用。 检测涂层与底材之间的附着力有多种方法,很多机构制订了相应的标准,同时也制备了很多的仪器工具来进行附着力的检测。 适用于现场检测附着力的方法主要有两大类,用刀具划X或划格法,以及拉开法。这两种方法除了可以在实验室内使用外,更适合于在施工现场中应用。主要的应用标准如表1。 表1 涂层附着力的检测方法和标准 美国材料试验协会制订的ASTM D3359-02是目前最新版的有关划X法的标准。它适用于干膜厚度高于125微米的情况,对最高漆膜厚度没有作出限制.而相对应的划格法通常适用于250微米以下的干膜厚度。 测试所要有的工具比较简单,锋利的刀片,比如美工刀、解剖刀;25mm(1in.)的半透

涂层附着力测定

在任何涂料防腐工程施工之前,都应当先对防腐涂料的附着力进行测试,凡附着力不合乎要求的涂料都不能在工程中使用。因为该项性能的不合格,将导致整个防腐蚀涂装工程的不合格。该项指标的测定可根据现场情况采用相关标准方法进行检测。目前常用的检测标准有GB/T9286-1998《色漆和清漆漆膜的划格试验》: 该方法使用漆膜划格器,利用十字划格法在漆膜上垂直交叉划刻出方格,要求将漆膜划透。根据漆膜的破坏的情况将附着力分为5级,切割时,可使用单刀锋或多刀锋,应保持刀间距相等(间距应为1mm或2mm),间距的大小取决于涂层的薄厚,涂层越薄,间距越小。一般在涂层试片上切割互相平行的6或10道,将切割后得到的方格用软毛刷刷掉切割下的碎屑后,得到的涂层的附着力将作如下分级评价: 0级:切割边缘完全平滑,无一格脱落; 1级:切割处有少许薄片剥离,但划格区影响不大; 2级:切割处过切口边缘脱落比例大于5%,但受影响不大于15%; 3级:涂层沿切割边缘部分或全部以大碎片脱落,脱落的比例大于15%,且受影响的区域不大于35%; 4级:涂层沿切割边缘,以大碎片脱落,或一些方格部分或全部出现脱落,脱落的比例大于35%,且受影响的区域不大于65%;5级:大于第4级的严重剥落。 涂膜的附着力也可以通过间接方法,利用对涂膜冲击强度、柔韧性等指标的测试来间接评价。 美国ASTM D-1002制定了一种专用于管道防腐层与金属粘结的剪切强度试验方法。它使用力学拉力试验机,采用的试片是由两片同样规格的钢片组成。两钢试片间用涂料单面粘结在一起,在涂料完全固化后,用拉力试验机将两试片拉开。再根据拉力和粘结面积来计算剪切强度。 GB/T5210是采用拉开法来测定附着力的,也是通过拉力机拉开的力的测定来计算涂料的粘结强度。 涂装质量的好坏,最终必须体现在涂膜质量的优劣上,所以涂装后的质量检测主要是对涂膜性能的检测,包括涂膜的机械性能(如附着力、柔韧性、冲击强度、硬度、光泽等)和具有保护功能的特殊性能(如耐候性、耐酸碱性、耐油性等)两个方面。其中机械性能是涂装质量检测中必须检测的基本常规性能,而具有保护功能的特殊性能则可根据不同使用要求选择性的进行检测。涂装后质量检测是评判涂装质量的最终依据和确保质量的重要环节。涉及涂装后质量检测的标准检测方法如下。 (1)GB1720-89(79)漆膜附着力测定法; (2)GB/T1731-93漆膜柔韧性测定法; (3)GB/T1732-93漆膜耐冲击性测定法; (4)GB/T1730-93漆膜硬度测定法摆杆阻尼试验; (5)GB/T6739-1996涂膜硬度铅笔测定法; (6)GB5210-85涂层附着力的测定法拉开法; (7)GB1743-89(79)漆膜光泽测定法; (8)GB1768-89(79)漆膜耐磨性测定法; (9)GB1769-89(79)漆膜磨光性测定法; (10)GB1770-89(79)底漆、腻子膜打磨性测定法; (11)GB9286-88清漆和色漆漆膜的划格试验; (12)GB6742-86漆膜弯曲试验(圆柱轴); (13)GB/T1733-93漆膜耐水性测定法; (14)GB/T1734-93漆膜耐汽油性测定法; (15)GB1735-89(79)漆膜耐热性测定法; (16)GB1738-89(79)绝缘漆漆膜吸水率测定法; (17)GB1739-89(79)绝缘漆漆膜耐油性测定法; (18)GB1740-89(79)漆膜耐湿热测定法; (19)GB1741-89(79)漆膜耐霉菌测定法; (20)GB1761-89(79)漆膜抗污气性测定法; (21)GB1763-89(79)漆膜耐化学试剂性测定法; (22)GB/T1766-1995色漆和清漆涂层老化的评级方法; (23)GB/T1771-91色漆和漆耐中性盐雾性能的测定; (24)GB1865-89(80)漆膜老化(人工加速)测定法; (25)GB5370-85防污漆样板浅海浸泡试验方法; 在上述这些检测项目中,使用者应按照上节所述的漆膜一般制备方法制备标准试验样板,检测最常规的涂膜机械物理性能,用以评判涂膜的基本性能的优劣。可针对不同涂料的特殊功用,检测其中的一些防腐保护及装饰性能的好坏。其中最常用的一些检测项目如下。

桥梁防腐漆涂层厚度检测报告2

委托编号号报告日期 工程名称---- 检测内容--- 建设单位---- 检测目的--- 委托单位--- 监理单位--- 施工单位--- 检测日期--- 一、检测概况 我公司受---的委托,对---工程的防腐漆涂层厚度进行检测。钢构件外表面(桥面铺装部位除外)喷砂除锈后表面涂装采用环氧富锌底漆(干漆膜厚度为60μm)+环氧(云铁)漆(干漆膜厚度为140μm)+丙烯酸脂肪族聚氨酯面漆(干漆膜厚度为80μm),该工程钢构件外表面防腐漆涂层设计总干漆膜厚度为280μm。 二、检测方法 根据有关检测规程及委托方要求,钢构件外表面采用“90-10”规则判定,即允许有10%的读数可低于规定值,但每一单独读数不得低于规定值的90%。漆膜厚度测定点的最大值不能超过工艺要求厚度的3倍。以钢梁杆件为一测量单元,在特大杆件表面上以10 m2为一测量单元,每个测量单元选取三处基准表面,每一基准表面测量5点,其测量分布如下图,取其算术平均值。 三、检测依据 1、《钢结构工程施工质量验收规范》(GB 50205-2001); 2、《铁路钢桥制造规范》(TB 10212-2009); 3、《铁路钢桥保护涂装》(TB/T 1527-2004); 4、《公路桥梁钢结构防腐涂装技术条件》(JT/T 722-2008); 5、《色漆和清漆漆膜厚度的测定》(GB/T 13452.2-2008/ISO 2808:2007)。

四、检测仪器 仪器名称规格型号编号检定日期有效期涂层测厚仪TT260 100038 2011年5月5日一年 五、检测结果 所检---工程所用钢构件防腐涂料涂层厚度检测结果见附表。 六、检测结论 所检---工程所用钢构件防腐涂料涂层厚度均符合设计要求。 七、注意事项 1.检测报告无公司报告专用章和检测资质章无效。 2.检测报告复印和涂改无效。 3.检测报告无主检、报告、复核、批准人签字无效。 4.对检测报告若有异议,应于收到报告之日起十五日内向检测单位提出,逾期不予受理。 主检 报告 复核 批准 南京工大建设工程技术有限公司 2012年-月-日

涂料检验报告

检验报告 TEST REPORT 广西壮族自治区产品质量监督检验院 Guangxi Zhuang Autonomous Region Institute of Supervision & Testing on Product Quality

广西产品质量监督检验院编号:Q13-001533 检验报告受检单位───── 任务来源───── 委托单位 名称市业扬建材厂 样品名称外墙腻子粉 型号规格P型 地址市旱塘路5号商标───── 邮政编码─────等级───── 生产单位市业扬建材厂 原编号───── 生产日期───── 抽样地点───── 抽样方式───── 抽样基数───── 抽样者───── 抽样数量───── 抽样日期───── 送样者雪青 样品状况粉状,塑料袋装,满足检验要求。收样日期2013-07-29 样品数量20kg 检验依据JG/T 157-2009《建筑外墙用腻子》 检验结论 送检样品按JG/T 157-2009判定:合格。 签发日期:2013年07月29日 备注委托单位对样品及其相关信息的真实性负责。 批准:审核:编制:

广西产品质量监督检验院第2页共 2 页检验报告

№:ST131347 检验报告 Test Report 样品名称: 立邦QC+629改性丙烯酸外墙面涂白色Sample Description 商标/型号 立邦 ------ Brand/Model 委托单位: 立邦涂料 Applicant 检验类别: 委托检验 Test Type 国家涂料产品质量监督检验中心() China National Quality Supervision and Testing Center for Paintings and Dopes(Guangdong) 2013年05月16日

防火涂料规范要求

14 钢结构涂装工程 14.1 一般规定 14.1.1本章适用于钢结构的防腐涂料(油漆类)涂装和防火涂料涂装工程的施工质量验收。 14.1.2钢结构涂装工程可按钢结构制作或钢结构安装工程检验批的划分原则划分成一个或若干个检验批。 14.1.3钢结构普通涂料涂装工程应在钢结构构件组装、预拼装或钢结构安装工程检验批的施工质量验收合格后进行。钢结构防火涂料涂装工程应在钢结构安装工程检验批和钢结构普通涂料涂装检验批的施工质量验收合格后进行。 14.1.4涂装时的环境温度和相对湿度应符合涂料产品说明书的要求,当产品说明书无要求时,环境温度宜在5~38℃之间,相对湿度不应大于85%。涂装时构件表面不应有结露;涂装后4h内应保护免受雨淋。 14.2 钢结构防腐涂料涂装 Ⅰ主控项目 14.2.1涂装前钢材表面除锈应符合设计要求和国家现行有关标准的规定。处理后的钢材表面不应有焊渣、焊疤、灰尘、油污、水和毛刺等。当设计无要求时,钢材表面除锈等级应符合表14.2.1的规定。 检查数量:按构件数抽查10%,且同类构件不应少于3件。

检验方法:用铲刀检查和用现行国家标准《涂装前钢材表面锈蚀等级和除锈等级》GB 8923规定的图片对照观察检查。 表14.2.1 各种底漆或防锈漆要求最低的除锈等级 14.2.2 涂料、涂装遍数、涂层厚度均应符合设计要求。当设计对涂层厚度无要求时,涂层干漆膜总厚度:室外应为150μm,室内应为125μm,其允许偏差为-25μm。每遍涂层干漆膜厚度的允许偏差为-5μm。 检查数量:按构件数抽查10%,且同类构件不应少于3件。 检验方法:用干漆膜测厚仪检查。每个构件检测5处,每处的数值为3个相距50mm测点涂层干漆膜厚度的平均值。

钢结构涂层厚度检测报告

5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。我们只说喜欢,就算喜欢也是偷偷摸摸的。” 6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。” 7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。 8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。 9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。 统表C02-102 钢结构涂层厚度检测报告 工程名称:编号: 2.老人们都笑了,自巨石上起身。而那些身材健壮如虎的成年人则是一阵笑骂,数落着自己的孩子,拎着骨棒与阔剑也快步向自家中走去。

5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。我们只说喜欢,就算喜欢也是偷偷摸摸的。” 6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。” 7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。 8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。 9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。 我国现行标准规范GB14907–2002《钢结构防火涂料》,对钢结构防火涂料的分类和质量要求作出了明确的规定。国家消防产品质量监督检验机构对超薄型、薄型、厚型钢结构防火涂料产品,分别进行2±0.2mm、5±0.2 mm和25±2mm 三个标准涂层厚度的型式检验,将检验结果(涂层厚度和耐火性能试验时间)作为该产品型式认可证书的产品名称和规格型号的证书内容。 一、钢结构防火涂料按使用场所可分为: a) 室内钢结构防火涂料:用于建筑物室内或隐蔽工程的钢结构表面; b) 室外钢结构防火涂料:用于建筑物室外或露天工程的钢结构表面。 钢结构防火涂料按使用厚度可分为: a) 超薄型钢结构防火涂料:涂层厚度小于或等于3 mm; b) 薄型钢结构防火涂料:涂层厚度大于3 mm且小于或等于7 mm; c) 厚型钢结构防火涂料:涂层厚度大于7 mm且小于或等于45 mm。 二、涂层厚度与耐火极限 钢结构防火涂料的质量受多种因素的影响。不同的生产厂家,由于原材料、生产工艺、配方等因素,其产品质量是不同的。相同的生产厂家、相同类型的不同批次的产品,其产品质量也存在差异。如表3所示。 表3、某厂家钢结构防火涂料耐火极限检测数据 涂料名称产品批次编号涂层厚度(mm) 耐火极限(min) 超薄型钢结构防火涂料CB – 1 2.68 > 120 CB – 2 1.80 > 90 CB – 3 1.50 > 90 CB – 4 2.53 112 CB – 5 2.57 61 CB – 6 0.68 > 30 CB – 7 1.18 33 薄型钢结构防火涂料 B – 1 4.68 > 160 B – 2 8.20 141 B – 3 4.80 120 B – 4 4.80 120 B – 5 3.39 > 90 B – 6 3.50 87 B – 7 4.70 110 1.“噢,居然有土龙肉,给我一块!” 2.老人们都笑了,自巨石上起身。而那些身材健壮如虎的成年人则是一阵笑骂,数落着自己的孩子,拎着骨棒与阔剑也快步向自家中走去。

涂层附着力试验的方法及判定

涂层附着力试验的方法及判定 涂层附着力测定方法和标准 漆膜与被涂面之间结合的坚牢程度称为附着力。附着力是涂料的重要指针。漆膜的牢固附着是涂料实现对基体材料保护的重要基础。因此,漆膜附着力的测定受到涂料、涂装行业的广泛关注。 涂层的附着力包括两个方面:有机涂层与底材金属表面的附着力(adhesion);有机涂层本身的内聚力(cohesion) 有机涂层与金属表面的附着力强度越大越好;涂层本身坚韧致密的漆膜两者共同作用才能更好的阻挡外界腐蚀因子对金属的腐蚀,从而达到对金属的良好的保护。 涂层不能牢固的附着于金属表面,再完好的涂层也起不到作用(adhesion failure);涂层本身内聚力差,漆膜容易开裂(checking、cracking)而失去作用。 以上两者共同决定涂层的附着力,构成决定涂层保护作用的关键因素。 涂层附着力的检测:现场检测实验室检测 现场检测:用刀具划X(ASTM D3359 Method A X-cut tape test)或划格法(ASTM D3359 Method B Cross-cut tape test)以及拉开法(ISO 4624 Pull off test for adhesion); 实验室检测:划圈法(GB 1720) 适用范围:划X法用于干膜厚度高于125μm的情况下;划格法适用于干膜厚度在250μm 的情况。 1.划X法(X-cut tape test) 测试程序 使用工具:美工刀、半透明压敏胶袋: 1涂层表面要求清洁干燥,高温和高湿会影响胶带的附着力; 2用美工刀沿直线稳定的切割涂膜至底材,夹角为30°~45°,划线长度约40mm,交叉点在划线的中间,确保划线至金属底材; 3把胶带放在切割线交点处,用手抹平(胶带的颜色可以帮助判断与漆膜的接触密实程度); 4将胶带以180°从漆膜表面撕开,观察涂层拉开后的状态 a.5A 没有脱落; b.4A 沿刀痕有脱落的痕迹; c.3A 刀痕两边都有缺口状脱落达1.6mm; d.2A 刀痕两边都有缺口状脱落达3.2mm; e.1A 胶带下X区域内大片脱落; f.脱落面积超过X区域。 示意图如下:

防火涂层规范

钢结构防火涂料的品种和技术性能应符合设计要求,并应经过具有资质的检测机构检测符合国家现行有关标准的规定。 检查数量:全数检查。 检验方法:检查产品的质量合格证明文件、中文标志及检验报告等。 防火涂料涂装前钢材表面除锈及防锈底漆涂装应符合设计要求和国家现行 有关标准的规定。 检查数量:按构件数抽查 10%,且同类构件不应少于 3 件。 检验方法:表面除锈用铲刀检查和用现行国家标准《涂装前钢材表面锈蚀等级和除锈等级》GB8923 规定的图片对照观察检查。底漆涂装用干漆膜测厚仪检查,每个构件检测 5 处,每处的数值为 3 个相距 50mm 测点涂层干漆膜厚度的平均值。 钢结构防火涂料的粘结强度、抗压强度应符合国家现行标准《钢结构防火涂料应用技术规程》CECS24:90 的规定。检验方法应符合现行国家标准《建筑构件防火喷涂材料性能试验方法》 GB 9978 的规定。 检查数量:每使用 100t 或不足 100t 薄涂型防火涂料应抽检一次粘结强度;每使用

500t 或不足 500t 厚涂型防火涂料应抽检一次粘结强度和抗压强度。 检验方法:检查复检报告 薄涂型防火涂料的涂层厚度应符合有关耐火极限的设计要 求。厚涂型防火涂 料涂层的厚度,80%及以上面积应符合有关耐火极限的设计要求,且最薄处厚度不应 低于设计要求的 85%。 检查数量:按同类构件数抽查 10%,且均不应少于 3 件。 检验方法:用涂层厚度测量仪、测针和钢尺检查。测量方法应符合国家现行标准 《钢结构防火涂料应用技术规程》CECS24:90 的规定及本规范附录 F。 薄涂型防火涂料涂层表面裂纹宽度不应大于;厚涂型防火涂料涂层表 面裂纹宽度不应大于 1mm。 检查数量:按同类构件数抽查 10%,且均不应少于 3 件。 检验方法:观察和用尺量检查。

相关主题
文本预览
相关文档 最新文档