当前位置:文档之家› 两个稳压管反向串联

两个稳压管反向串联

两个稳压管反向串联
两个稳压管反向串联

6方面谈稳压二极管的使用问题

稳压二极管工作在反向击穿状态时,其两端的电压是基本不变的。利用这一性质,在电路里常用于构成稳压电路。

稳压二极管构成的稳压电路,虽然稳定度不很高,输出电流也较小,但却具有简单、经济实用的优点,因而应用非常广泛。在实际电路中,要使用好稳压二极管,应注意如下几个问题。

1、要注意一般二极管与稳压二极管的区别方法。不少的一般二极管,特别是玻璃封装的管,外形颜色等与稳压二极管较相似,如不细心区别,就会使用错误。区别方法是:看外形,不少稳压二极管为园柱形,较短粗,而一般二极管若为园柱形的则较细长;看标志,稳压二极管的外表面上都标有稳压值,如5V6,表示稳压值为5.6V;用万用表进行测量,根据单向导电性,用X1K挡先把被测二极管的正负极性判断出来,然后用X10K挡,黑表笔接二极管负极,红表笔接二极管正极,测的阻值与X1K挡时相比,若出现的反向阻值很大,为一般二极管的可能性很大,若出现的反向阻值变得很小,则为稳压二极管。

2、注意稳压二极管正向使用与反向使用的区别。稳压二极管正向导通使用时,与一般二极管正向导通使用时基本相同,正向导通后两端电压也是基本不变的,都约为0.7V。从理论上讲,稳压二极管也可正向使用做稳压管用,但其稳压值将低于1V,且稳压性能也不好,一般不单独用稳压管的正向导通特性来稳压,而是用反向击穿特性来稳压。反向击穿电压值即为稳压值。有时将两个稳压管串联使用,一个利用它的正向特性,另一个利用它的反向特性,则既能稳压又可起温度补偿作用,以提高稳压效果。

3、要注意限流电阻的作用及阻值大小的影响。在稳压二极管稳压电路中,一般都要串接一个电阻R,如图1或2示。该电阻在电路中起限流和提高稳压效果的作用。若不加该电阻即当R=0时,容易烧坏稳压管,稳压效果也会极差。限流电阻的阻值越大,电路稳压性能越好,但输入与输出压差也会过大,耗电也就越多。

4、要注意输入与输出的压差。正常使用时,稳压二极管稳压电路的输出电压等于稳压管反向击穿后两端的稳压值,若输入到稳压电路中的电压值小于稳压管的稳压值,则电路将失去稳压作用,只有是大于关系时,才有稳压作用,并且压差越大,限流电阻的阻值也应越大,否则会损坏稳压管。

5、稳压管可串联使用。几个稳压管串联后,可获得多个不同的稳压值,故串联使用较常见。下面举例说明两个稳压管串联使用后,如何求得稳压值。若一个稳压管的稳压值为5.6V,另一个稳压值为3.6V,设稳压管正向导通时电压均为0.7V,则串联后共有四种不同的稳压值,如图1示。

6、稳压管一般不并联使用。几个稳压管并联后,稳压值将由最低(包括正向导通后的电压值)的一个来决定。还是以上述两个稳压管为例,来说明稳压值的计算方法。两个并联后共有四种情况,稳压值只有两个,如图2示。除非特殊情况,稳压二极管都不并联使用。

稳压二极管正向导通电压为0.7V,反向为稳压值。

串联

1、两只二极管都反接,反接电压是稳压值,为6+8=14V

2、6V的正接,8V的反接,正接的是0.7V,反接的是8V 得8+0.7=8.7V

3、同理6V的反接,8V的正接,6+0.7=6.7V

4、两个二极管都反接0.7+0.7=1.4V

并联

1、两只二极管都反接,电压小的将先导通,则是6V

2、一只正接一只反接,电压小的将先导通,则是0.7V

发表于: 2010-07-11 07:55|点击: 214 次|分类: 串联并联|来源: 转载

你好:

——★1、楼上说的很好,很全面。有一点要注意:“达到击穿电压时电阻急剧变小接近于零”是不妥的,否则就不是稳压管了。具体情况是,(有限流电路存在的情况下)电压上升至管子的稳压值时,稳压管开始有电流通过,电压再加大,流过管子的电流会有所增加,但管子的电压是保持基本不变的。

——★2、你的稳压电路中(即6。2V稳压二极管),“在4点几伏,它就开始导通”说明管子性能不良,稳压特性不好;正常时,外加电压值在管子的稳定电压以下时,管子的电压是与此电压相同的。

——★3、你“把稳压二极管的负极接正电压,正极接负电压”原则上是对的,但必须加装限流电阻的,你要计算一下流过稳压管的电流,不要超过管子的“最大稳定电流”,否则会烧毁的。最大稳定电流在手册上可以查到。

——★4、多说一句:“有时将两个稳压管反向串联,进行温度系数补偿,这样的稳压管接入电路时不分正负”是对的,但是前提是正、反两只管子的稳压值必须一致。例如国产的3WD7就是三只脚的6V双稳压管,方便串联使用的。

二极管和二极和二极整流电路练习题资料讲解

二极管和二极和二极整流电路练习题

晶体二极管和二极管整流电路复习题 复习题一(二极管的单向导电性) 一、填空题: 1、晶体二极管加时导通,加电压时截止,这一导电特性称为晶体二极管的单向导电性。 二、判断题: 1、二极管加上反向电压时,它的正极电位比负极电位高。() 2、由于二极管具有单向导电性,所以二极管要正向接入电路才能发挥作用。() 3、二极管两端加上正向电压就导通。() 4、二极管导通时两端所加的是正向偏置电压。() 三、选择题: 1、晶体二极管的阳极电位是-10V,阴极电位是-5V,则该晶体二极管处于()状态。 A零偏B反偏D正偏 2、如果把二极管的阳极接到6V的电源正极,把阴极接到电源的负极,二极管会()。 A正偏B反偏C不允许这样接 3、晶体二极管正偏时相当于() A断开的开关B闭合的开关C以上都不对 4、二极管具有() A信号放大作用B单向导电性C双向导电性D负阻特性 四、问答题: 1、如图所示的电路中,当输入端a b间输入交流电压时,通过R1、R2两电阻上的是交流电,还是直流电。 2、二极管电路如下图所示,判断图中二极管的状态是导通还是截止,并确定输出电压为多少

3、如下图所示,二极管导通电压约为0.7V,试分析开关断开和闭合时R上的电压各为多少。 4、在下图所示的电路中,灯会亮吗?

复习题二(PN结) 一、填空题: 1、半导体是指导电性能的物体。 2、在半导体中存在两种载流子:一种是,带电;一种 是,带电。 3、称为本征半导体。 4、P型半导体又称半导体,其内部空穴数量(填“多于”或“少于”)自由电子数量,是多数载流子。 5、P型半导体又称半导体,其内部空穴数量(填“多于”或“少于”)自由电子数量,是多数载流子。 6、在本征半导体中加入微量的硼元素可得到型半导体,在本征半导体中加入微量的磷元素可得到型半导体。 7、在硅或锗单晶基片上加工出P型区和N型区,二极管的正极从区引出,负极从区引出。在P型区和N型区的结合部是一个特殊的薄层,称为。 8、二极管之所以具有单向导电性,是因为其内部有一个具有单向导电性 的。 二、判断题: 1、空穴是半导体中特有的一种带正电的电荷。() 2、N型半导体中导电的是自由电子。() 3、硅和锗是制作半导体器件的主要材料。() 4、在半导体内部,只有空穴是载流子。() 5、在P型半导体中多数载流子是空穴,少数载流子是自由电子。() 6、半导体中导电的是多数载流子。() 7、把一块P型半导体和一块N型半导体接触在一起就能形成PN结。() 8、PN结具有单向导电性。() 9、在二极管中由P型区引出的管脚是二极管的阴极。() 三、选择题: 1、在P型半导体中参与导电的是() A离子B自由电子C空穴 D B和C 2、PN结正向导通的条件是() A N区电位高于P区电位 B P区电位高于N区电位 C N区电位等于P区电位D都不对 3、关于N型半导体,下列说法错误的是() A空穴是少数载流子 B在二极管中由N型区引出的管脚是二极管的阳极 C在纯净的硅晶体中加入磷可形成N型半导体

抑制功率二极管反向恢复几种方案的比较

抑制功率二极管反向恢复几种方案的比较 0 引言 高频功率二极管在电力电子装置中的应用极其广泛。但PN结功率二极管在由导通变为截止状态过程中,存在反向恢复现象。这会引起二极管损耗增大,电路效率降低以及EMI增加等问题。这一问题在大功率电源中更加突出。常用RC吸收、串入饱和电抗器吸收、软开关电路等开关软化方法加以解决,但关于其效果对比的研究报道尚不多见。本文以Buck电路为例,对这几种方案进行了比较,通过实验及仿真得出有用的结论。 1 二极管反向恢复原理 以普通PN结二极管为例,PN结内载流子由于存在浓度梯度而具有扩散运动,同时由于电场作用存在漂移运动,两者平衡后在PN结形成空间电荷区。当二极管两端有正向偏压,空间电荷区缩小,当二极管两端有反向偏压,空间电荷区加宽。当二极管在导通状态下突加反向电压时,存储电荷在电场的作用下回到己方区域或者被复合,这样便产生一个反向电流。 2 解决功率二极管反向恢复的几种方法 为解决功率二极管反向恢复问题已经出现了很多种方案。一种思路是从器件本身出发,寻找新的材料力图从根本上解决这一问题,比如碳化硅二极管的出现带来了器件革命的曙光,它几乎不存在反向恢复的问题。另一种思路是从拓扑角度出发,通过增加某些器件或辅助电路来使功率二极管的反向恢复得到软化。目前,碳化硅二极管尚未大量进入实用,其较高的成本制约了普及应用,大量应用的是第二种思路下的软化电路。本文以一个36V输入、30V/30A输出、开关频率为62.5kHz电路(如图1所示)为例,比较了几种开关软化方法。 图1 Buck电路

2.1 RC吸收 这是解决功率二极管反向恢复问题的常用方法。在高频下工作的功率二极管,要考虑寄生参数。图2(a)为电路模型,其中D为理想二极管,Lp为引线电感,Cj为结电容,Rp为并联电阻(高阻值),Rs为引线电阻。RC吸收电路如图2(b)所示,将C1及R1串联后并联到功率二极管D0上。二极管反向关断时,寄生电感中的能量对寄生电容充电,同时还通过吸收电阻R1对吸收电容C1充电。在吸收同样能量的情况下,吸收电容越大,其上的电压就越小;当二极管快速正向导通时,C1通过R1放电,能量的大部分将消耗在R1上。 (a) 功率二极管电路模型(b) RC吸收电路 (c) 串联饱和电抗器(d) 二极管反向恢复软化电路 图2 解决功率二极管反向恢复问题的常用方案 2.2 串联饱和电抗器 这是解决这一问题的另一种常用方法,如图2(c)所示。一般铁氧体(Ferrite)磁环和非晶合金(Amorphous)材料的磁环都可以做饱和电抗器。根据文献[1],用饱和电抗器解决二极管反向恢复问题时,常用的锰锌铁氧体有效果,但是能量损失比非晶材料大。随着材料技术的进展,近年来非晶饱和磁性材料性能有了很大提高。本文选用了东芝公司的非晶材料的磁环(型号:MT12×8×4.5W)绕2匝作饱和电抗器。 对应图3(a)和图3(b),第Ⅰ阶段通过D0的电流很大,电抗器Ls饱和,电感值很小;第Ⅱ阶段当二极管电流开始下降时,Ls仍很小;第Ⅲ阶段二极管电流反向,反向恢复过程开始(trr为反向恢复时间),Ls

常用稳压二极管大全,

常用稳压管型号对照——(朋友发的) 美标稳压二极管型号 1N4727 3V0 1N4728 3V3 1N4729 3V6 1N4730 3V9 1N4731 4V3 1N4732 4V7 1N4733 5V1 1N4734 5V6 1N4735 6V2 1N4736 6V8 1N4737 7V5 1N4738 8V2 1N4739 9V1 1N4740 10V 1N4741 11V 1N4742 12V 1N4743 13V 1N4744 15V 1N4745 16V 1N4746 18V 1N4747 20V 1N4748 22V 1N4749 24V 1N4750 27V 1N4751 30V 1N4752 33V 1N4753 36V 1N4754 39V 1N4755 43V 1N4756 47V 1N4757 51V 需要规格书请到以下地址下载, 经常看到很多板子上有M记的铁壳封装的稳压管,都是以美标的1N系列型号标识的,没有具体的电压值,刚才翻手册查了以下3V至51V的型号与电压的对 照值,希望对大家有用 1N4727 3V0 1N4728 3V3 1N4729 3V6 1N4730 3V9

1N4733 5V1 1N4734 5V6 1N4735 6V2 1N4736 6V8 1N4737 7V5 1N4738 8V2 1N4739 9V1 1N4740 10V 1N4741 11V 1N4742 12V 1N4743 13V 1N4744 15V 1N4745 16V 1N4746 18V 1N4747 20V 1N4748 22V 1N4749 24V 1N4750 27V 1N4751 30V 1N4752 33V 1N4753 36V 1N4754 39V 1N4755 43V 1N4756 47V 1N4757 51V DZ是稳压管的电器编号,是和1N4148和相近的,其实1N4148就是一个0.6V的稳压管,下面是稳压管上的编号对应的稳压值,有些小的稳压管也会在管体 上直接标稳压电压,如5V6就是5.6V的稳压管。 1N4728A 3.3 1N4729A 3.6 1N4730A 3.9 1N4731A 4.3 1N4732A 4.7 1N4733A 5.1 1N4734A 5.6 1N4735A 6.2 1N4736A 6.8 1N4737A 7.5 1N4738A 8.2 1N4739A 9.1 1N4740A 10 1N4741A 11 1N4742A 12 1N4743A 13

二极管的开关作用和反向恢复时间

二极管的开关作用和反向恢复时间 PN结二极管经常用来制作电开关。在正偏状态,即开态,很小的外加电压就能产生较大的电流,;在反偏状态,即关态,只有很小的电流存在于PN结内。我们最感兴趣的开关电路参数就是电路的开关速度。本节会定性地讨论二极管的开关瞬态以及电荷的存储效应。在不经任何数学推导的情况下,简单给出描述开关时间的表达式。 二极管的开关作用 利用二极管正、反向电流相差悬殊这一特性,可以把二极管作开关使用。 当开关K打向A时,二极管处于正向,电流很大,相当于接有负载的外回路与电源相连的开关闭合,回路处于接通状态(开态); 当开关K打向B时,二极管处于反向,反向电流很小,相当于外回路的开关断开,回路处于断开状态(关态)。 在关态时,流过负载的电流就是二极管的反向电流IR。二极管的反向恢复时间 假设外加脉冲的波形如图(a)所示,则流过二极管的电流就如图(b)所示。

外电路加以正脉冲时 导通过程中,二极管P区向N区输运大量空穴,N区向P区输运大量电子。 随着时间的延长,N区内空穴和P区内电子不断增加,直到稳态时停止。在稳态时,流入N区的空穴正好与N区内复合掉的空穴数目相等,流入P区的电子也正好与P区内复合掉的电子数目相等,达到动态平衡,流过P-N结的电流为一常数I1。 随着势垒区边界上的空穴和电子密度的增加,P-N结上的电压逐步上升,在稳态即为VJ。此时,二极管就工作在导通状态。 当某一时刻在外电路上加的正脉冲跳变为负脉冲时 正向时积累在各区的大量少子要被反向偏置电压拉回到原来的区域,开始时的瞬间,流过P-N结的反向电流很大,经过一段时间后,原本积累的载流子一部分通过复合,一部分被拉回原来的区域,反向电流才恢复到正常情况下的反向漏电流值IR。正向导通时少数载流子积累的现象称为电荷储存效应。二极管的反向恢复过程就是由于电荷储存所引起的。反向电流保持不变的这段时间就称为储存时间ts。在ts 之后,P-N结上的电流到达反向饱和电流IR,P-N结达到平衡。定义流过P-N结的反向电流由I2下降到0.1 I2时所需的时间为下降时间tf。储存时间和下降时间之和为(ts+tf)称为

常用稳压管型号参数查询

常用稳压型号参数查询 DZ是稳压管的电器编号,1N4148就是一个0.6V的稳压管,下面是稳压管上的编号对应的稳压值, 需要规格书请到以下地址下载, https://www.doczj.com/doc/351562233.html,/products/Rectifiers/Diode/Zener/ 经常看到很多板子上有M记的铁壳封装的稳压管,都是以美标的1N系列型号标识的,没有具体的电压值。

美标稳压二极管型号:

HITACHI(日立): LM7906 -6V 1A L7906,KA7906 LM7908 -8V 1A L7908 LM7909 -9V 1A L7909 LM7912 -12V 1A L7912 LM7915 -15V 1A L7915 LM7918 -18V 1A L7918 LM7924 -24V 1A L7924 78L05 5V 100mA 78L06 6V 100mA 78L08 8V 100ma 78L09 9V 100ma

78L15 15V 100ma 78L18 18V 100ma 78L24 24V 100ma 开关稳压器件(电压转换效率高) 型号说明最大输出电流LM1575T-3.3 3.3V简易开关电源稳压器1A LM1575T-5.0 5V简易开关电源稳压器1A LM1575T-12 12V简易开关电源稳压器1A LM1575T-15 15V简易开关电源稳压器1A LM1575T-ADJ 简易开关电源稳压器(可调1.23V~37V) 1A LM1575HVT-3.3 3.3V简易开关电源稳压器1A LM1575HVT-5.0 5V简易开关电源稳压器1A LM1575HVT-12 12V简易开关电源稳压器1A LM1575HVT-15 15V简易开关电源稳压器1A LM1575HVT-ADJ 简易开关电源稳压器(可调1.23V~37V) 1A LM2575T-3.3 3.3V简易开关电源稳压器1A LM2575T-5.0 5V简易开关电源稳压器1A LM2575T-12 12V简易开关电源稳压器1A LM2575T-15 15V简易开关电源稳压器1A LM2575T-ADJ 简易开关电源稳压器(可调1.23V~ 37V) 1A LM2575HVT-3.3 3.3V简易开关电源稳压器1A LM2575HVT-5.0 5V简易开关电源稳压器1A LM2575HVT-12 12V简易开关电源稳压器1A LM2575HVT-15 15V简易开关电源稳压器1A LM2575HVT-ADJ 简易开关电源稳压器(可调1.23V~37V) 1A LM2576T-3.3 3.3V简易开关电源稳压器3A LM2576T-5.0 5.0V简易开关电源稳压器3A LM2576T-12 12V简易开关电源稳压器3A LM2576T-15 15V简易开关电源稳压器3A LM2576T-ADJ 简易开关电源稳压器(可调1.23V~37V) 3A LM2576HVT-3.3 3.3V简易开关电源稳压器3A LM2576HVT-5.0 5.0V简易开关电源稳压器3A LM2576HVT-12 12V简易开关电源稳压器3A LM2576HVT-15 15V简易开关电源稳压器3A LM2576HVT-ADJ 简易开关电源稳压器(可调1.23V~37V) 3A

最新稳压二极管教学设计

《电子技术基础》教学设计 授课教师: 授课内容:第二章第二节稳压二极管 授课班级:中一数控技术(2)班 授课时间:年月日 一、教学内容: 本节课的教学主要讲解稳压二极管的基本知识及其稳压应用。 二、教学目标: 1、知识与技能目标: 掌握稳压二极管的稳压原理,并能在实际电路中正确使用稳压二极管。 2、过程与方法目标: 通过与已学的二极管知识的对比和提升,让学生能正确的理解稳压二极管在电路中的稳压过程,能用联系和对比的方法解决问题。 3、情感态度与价值观目标: 培养学生勤于思考的习惯,对本门课能产生更深的兴趣。 三、教学重点和难点: 1、教学重点: 稳压二极管在电路中的稳压作用。 2、教学难点: 稳压二极管的稳压原理。 四、教学方法:

讲授法,对比法,实例法。 五、教学准备: 1、小黑板画出稳压二极管的伏安特性曲线; 2、准备若干稳压二极管和普通二极管。 六、课时安排: 1课时 七、教学过程: 新课引入——在前面的学习中,我们已经学习了PN结和二极管, 教师活动1:提问一:二极管具有什么特性? 学生活动1:全体回答(教师进行补充说明) 教师活动2:提问二:二极管的电路符号和伏安特性曲线分别是什么样的?(叫两个学生分别在黑板上画出二极管的电路符号和伏安特性曲线,让其他同学在笔记本上画出,并检查对所学知识的掌握情况) 学生活动2:两个同学在黑板上画出,其他同学在笔记本上画出(教师对黑板上画的二极管的电路符号和伏安特性曲线进行补充和说明)通过学习,我们知道了二极管的伏安特性曲线分为正向特性和反向特性两部分,对于一般的二极管来说都工作在正向特性这一区域,那么就要使二极管的正极接电源的正极,负极接电源的负极,如果我们将二极管的正负极和电源的正负极接反的话二极管就会工作在反向特性这一区域,反向电压较大时就会反向击穿,如果反向电流超过允许值就会出现热击穿,致使二极管损坏,那么是不是所有的二极管都必须工作在正向特性这一区域呢?带着这个问题我们进入今天新课的学习(让学生将书翻到34页本节课内容处)。

常用稳压二极管技术参数及老型号代换.

常用稳压二极管技术参数及老型号代换 型号最大功耗 (mW) 稳定电压(V) 电流(mA) 代换型号国产稳压管日立稳压管 HZ4B2 500 3.8 4.0 5 2CW102 2CW21 4B2 HZ4C1 500 4.0 4.2 5 2CW102 2CW21 4C1 HZ6 500 5.5 5.8 5 2CW103 2CW21A 6B1 HZ6A 500 5.2 5.7 5 2CW103 2CW21A HZ6C3 500 6 6.4 5 2CW104 2CW21B 6C3 HZ7 500 6.9 7.2 5 2CW105 2CW21C HZ7A 500 6.3 6.9 5 2CW105 2CW21C HZ7B 500 6.7 7.3 5 2CW105 2CW21C HZ9A 500 7.7 8.5 5 2CW106 2CW21D HZ9CTA 500 8.9 9.7 5 2CW107 2CW21E HZ11 500 9.5 11.9 5 2CW109 2CW21G HZ12 500 11.6 14.3 5 2CW111 2CW21H HZ12B 500 12.4 13.4 5 2CW111 2CW21H HZ12B2 500 12.6 13.1 5 2CW111 2CW21H 12B2 HZ18Y 500 16.5 18.5 5 2CW113 2CW21J HZ20-1 500 18.86 19.44 2 2CW114 2CW21K HZ27 500 27.2 28.6 2 2CW117 2CW21L 27-3 HZT33-02 400 31 33.5 5 2CW119 2CW21M RD2.0E(B) 500 1.88 2.12 20 2CW100 2CW21P 2B1 RD2.7E 400 2.5 2.93 20 2CW101 2CW21S RD3.9EL1 500 3.7 4 20 2CW102 2CW21 4B2 RD5.6EN1 500 5.2 5.5 20 2CW103 2CW21A 6A1 RD5.6EN3 500 5.6 5.9 20 2CW104 2CW21B 6B2 RD5.6EL2 500 5.5 5.7 20 2CW103 2CW21A 6B1 RD6.2E(B) 500 5.88 6.6 20 2CW104 2CW21B RD7.5E(B) 500 7.0 7.9 20 2CW105 2CW21C RD10EN3 500 9.7 10.0 20 2CW108 2CW21F 11A2 RD11E(B) 500 10.1 11.8 15 2CW109 2CW21G RD12E 500 11.74 12.35 10 2CW110 2CW21H 12A1 RD12F 1000 11.19 11.77 20 2CW109 2CW21G RD13EN1 500 12 12.7 10 2CW110 2CW21H 12A3 RD15EL2 500 13.8 14.6 15 2CW112 2CW21J 12C3 RD24E 400 22 25 10 2CW116 2CW21H 24-1

稳压二极管工作原理

稳压二极管工作原理 一、稳压二极管原理及特性 一般三极管都是正向导通,反向截止;加在二极管上的反向电压如果超过二极管的承受能力,二极管就要击穿损毁。但是有一种二极管,它的正向特性与普通二极管相同,而反向特性却比较特殊:当反向电压加到一定程度时,虽然管子呈现击穿状态,通过较大电流,却不损毁,并且这种现象的重复性很好;只要管子处在击穿状态,尽管流过管子的电在变化很大,而管子两端的电压却变化极小起到稳压作用。这种特殊的二极管叫稳压管。 稳压管的型号有2CW、2DW 等系列,它的电路符号如图5-17所示。 稳压管的稳压特性,可用图5一18所示伏安特性曲线很清楚地表示出来。 稳压管是利用反向击多区的稳压特性进行工作的,因此,稳压管在电路中要反向连接。稳压管的反向击穿电压称为稳定电压,不同类型稳压管的稳定电压也不一

样,某一型号的稳压管的稳压值固定在口定范围。例如:2CW11的稳压值是3.2伏到4.5伏,其中某一只管子的稳压值可能是3.5伏,另一只管子则可能是4,2伏。 在实际应用中,如果选择不到稳压值符合需要的稳压管,可以选用稳压值较低的稳压管,然后串联几只硅二极管“枕垫”,把稳定电压提高到所需数值。这是利用硅二极管的正向压降为0.6~0.7伏的特点来进行稳压的。因此,二极管在电路中必须正向连接,这是与稳压管不同的。 稳压管稳压性能的好坏,可以用它的动态电阻r来表示: 显然,对于同样的电流变化量ΔI,稳压管两端的电压变化量ΔU越小,动态电阻越小,稳压管性能就越好。 稳压管的动态电阻是随工作电流变化的,工作电流越大,动态电阻越小。因此,为使稳压效果好,工作电流要选得合适。工作电流选得大些,可以减小动态电阻,但不能超过管子的最大允许电流(或最大耗散功率)。各种型号管子的工作电流和最大允许电流,可以从手册中查到。 稳压管的稳定性能受温度影响,当温度变化时,它的稳定电压也要发生变化,常用稳定电压的温度系数来表示,这种性能例如2CW19型稳压管的稳定电压Uw= 12伏,温度系数为0.095%℃,说明温度每升高1℃,其稳定电压升高11.4毫伏。为提高电路的稳定性能,往往采用适当的温度补偿措施。在稳定性能要求很高时,需使用具有温度补偿的稳压,如2DW7A、2DW7W、2DW7C 等。 二、稳压二极管稳压电路图 由硅稳压管组成的简单稳压电路如图5- l9(a)所示。硅稳压管DW与负载Rfz,并联,R1为限流电阻。

注电考试最新版教材-第18讲 第十章半导体及二极管(二)

10.3 稳压二极管 10.3.1 稳压原理及特性 稳压二极管的特性曲线与普通二极管基本相似,只是稳压二极管的反向特性曲线比较陡。 稳压二极管的正常工作范围,是在伏安特性曲线上的反向电流开始突然上升的A、B段。这一段的电流,对于常用的小功率稳压管来讲,一般为几毫安至几十毫安。 10.3.2 主要电参数 (1) 稳定电压V Z:在规定的稳压管反向工作电流I Z下,所对应的反向工作电压。 (2) 动态电阻r Z r Z愈小,反映稳压管的击穿特性愈陡。 r Z =?V Z /?I Z (3) 最大耗散功率:极限参数,取决于稳压管允许温升 (4) 最大稳定工作电流 I Zmax和最小稳定工作电流I Zmin (5)稳定电压温度系数——αV Z 温度的变化将使V Z改变,在稳压管中当?V Z?>6V时,V Z具有正温度系数,反向击穿是雪崩击穿。 当?V Z?<4 V时,V Z具有负温度系数,反向击穿是齐纳击穿。 当4 V<?V Z?<6 V时,稳压管可以获得接近零的温度系数。这样的稳压二极管可以作为标准稳压管使用。 例题: 例 1:二极管为硅管,其中R = 3 k W,试分别用二极管理想模型和恒压降模型求出V DD =3V 和V DD = 10 V 时I O 和U O 的值。

解:V DD = 3 V 理想 U O = V DD = 3 V I O = V DD / R = 3 / 3 = 1 (mA) 恒压降 U O = V DD – U D(on) = 3 - 0.7 = 2.3 (V) I O = U O / R = 2.3 / 3= 0.77 (mA) V DD = 10V 理想 I O = V DD / R =10 / 3 =3. 33(mA) 恒压降 U O = V DD – U D(on) = 10 - 0.7 = 9.3 (V) I O = U O / R = 9.3 / 3 = 3. 1(mA) V DD 大,采用理想模型 ;V DD 小, 采用恒压降模型 例2 : 试求电路中电流 I 1、I 2、I O 及输出电压 U O 的值。 解 : 假 设 二 极 管 断 开 U P = 15 V 输入电压 理想二极管 输出 电压 V A V B V 1 V 2

常用稳压管型号参数对照

常用稳压管型号参数对照 3V到51V 1W稳压管型号对照表1N4727 3V0 1N4728 3V3 1N4729 3V6 1N4730 3V9 1N4731 4V3 1N4732 4V7 1N4733 5V1 1N4734 5V6 1N4735 6V2 1N4736 6V8 1N4737 7V5

1N4739 9V1 1N4740 10V 1N4741 11V 1N4742 12V 1N4743 13V 1N4744 15V 1N4745 16V 1N4746 18V 1N4747 20V 1N4748 22V 1N4749 24V 1N4750 27V 1N4751 30V

1N4753 36V 1N4754 39V 1N4755 43V 1N4756 47V 1N4757 51V 摩托罗拉IN47系列1W稳压管IN4728 3.3v IN4729 3.6v IN4730 3.9v IN4731 4.3 IN4732 4.7 IN4733 5.1

IN4735 6.2 IN4736 6.8 IN4737 7.5 IN4738 8.2 IN4739 9.1 IN4740 10 IN4741 11 IN4742 12 IN4743 13 IN4744 15 IN4745 16 IN4746 18 IN4747 20

IN4749 24 IN4750 27 IN4751 30 IN4752 33 IN4753 34 IN4754 35 IN4755 36 IN4756 47 IN4757 51 摩托罗拉IN52系列 0.5w精密稳压管IN5226 3.3v IN5227 3.6v

二极管的反向恢复过程

二极管的反向恢复过程 一、二极管的反向恢复过程 二、在下图的电路中V上输入如下的电压波形:则二极管上的电流波形如下: 可以看到,当通入正向电压时,二极管导通,二极管上的电流为I1,当通入的电压突然反向时,二极管上的电流也瞬间反向了,随后才变小,进而进入反向截止状态。这个现象就叫二极管的反向恢复。反向电流保持不变的这段时间称为储存时间ts,反向电流由I2下降到0.1I2所需的时间称为下降时间tf。储存时间和下降时间之和(ts+tf)称为反向恢复时间。二极管反向截止后还存在的电流被称为二极管的反向漏电流IR。 二、二极管反向恢复现象的解释 在二极管的PN节上,当外加正向电压时,P区的空穴向N区扩散,N区的电子向P区扩散,这样,不仅使势垒区(耗尽区)变窄,而且使载流子有相当数量的存储,在P区内存储了电子,而在N区内存储了空穴,它们都是非平衡少数载流子,如下图所示。 空穴由P区扩散到N区后,并不是立即与N区中的电子复合而消失,而是在一定的路程LP(扩散长度)内,一方面继续扩散,一方面与电子复合消失,这样就会在LP范围内存储一定数量的空穴,并建立起一定空穴浓度分布,靠近

结边缘的浓度最大,离结越远,浓度越小。正向电流越大,存储的空穴数目越多,浓度分布的梯度也越大。电子扩散到P区的情况也类似,下图为二极管中存储电荷的分布。

我们把正向导通时,非平衡少数载流子积累的现象叫做电荷存储效应。 当输入电压突然由正向变为反向时P区存储的电子和N区存储的空穴不会马上消失,但它们将通过下列两个途径逐渐减少: ① 在反向电场作用下,P区电子被拉回N区,N区空穴被拉回P区,形成反向漂移电流IR,如下图所示; ②与多数载流子复合。 在这些存储电荷消失之前,PN结仍处于正向偏置,即势垒区仍然很窄,PN结的电阻仍很小,与电路中的负载电阻相比可以忽略,所以此时反向电流IR=(反向电压VR+VD)/负载电阻RL。VD表示PN结两端的正向压降,一般VR>>VD,即IR=VR/RL。在这段期间,IR基本上保持不变,主要由VR和RL所决定。 经过时间ts后P区和N区所存储的电荷已显著减小,势垒区逐渐变宽,反向电流IR逐渐减小到正常反向饱和电流的数值,经过时间tf,二极管转为截止。

常用稳压管型号参数大全

常用稳压管型号 2009-12-06 22:56 美标稳压二极管型号 TLV4732运算放大器,可饱和输出。当单电源供电时,可作为0V和5V的稳压器。 其他的如LM358等放大器,输出均不能达到0V或者5V,一般为4V。 1N4727 3V0 1N4728 3V3 1N4729 3V6 1N4730 3V9 1N4731 4V3 1N4732 4V7 1N4733 5V1 1N4734 5V6 1N4735 6V2 1N4736 6V8 1N4737 7V5 1N4738 8V2 1N4739 9V1 1N4740 10V 1N4741 11V 1N4742 12V 1N4743 13V 1N4744 15V

1N4746 18V 1N4747 20V 1N4748 22V 1N4749 24V 1N4750 27V 1N4751 30V 1N4752 33V 1N4753 36V 1N4754 39V 1N4755 43V 1N4756 47V 1N4757 51V 需要规格书请到以下地址下载, https://www.doczj.com/doc/351562233.html,/products/Rectifiers/Diode/Zener/ 经常看到很多板子上有M记的铁壳封装的稳压管,都是以美标的1N系列型号标识的,没有具体的电压值,刚才翻手册查了以下3V至51V的型号与电压的对照值,希望对大家有用 1N4727 3V0 1N4728 3V3 1N4729 3V6 1N4730 3V9 1N4731 4V3 1N4732 4V7

1N4734 5V6 1N4735 6V2 1N4736 6V8 1N4737 7V5 1N4738 8V2 1N4739 9V1 1N4740 10V 1N4741 11V 1N4742 12V 1N4743 13V 1N4744 15V 1N4745 16V 1N4746 18V 1N4747 20V 1N4748 22V 1N4749 24V 1N4750 27V 1N4751 30V 1N4752 33V 1N4753 36V 1N4754 39V 1N4755 43V

肖特基二极管和快恢复二极管

肖特基二极管和快恢复二极管又什么区别 快恢复二极管是指反向恢复时间很短的二极管(5us以下),工艺上多采用掺金措施,结构上有采用PN结型结构,有的采用改进的PIN结构。其正向压降高于普通二极管(1-2V),反向耐压多在1200V以下。从性能上可分为快恢复和超快恢复两个等级。前者反向恢复时间为数百纳秒或更长,后者则在100纳秒以下。 肖特基二极管是以金属和半导体接触形成的势垒为基础的二极管,简称肖特基二极管(Schottky Barrier Diode),具有正向压降低(0.4--0.5V)、反向恢复时间很短(10-40纳秒),而且反向漏电流较大,耐压低,一般低于150V,多用于低电压场合。 这两种管子通常用于开关电源。 肖特基二极管和快恢复二极管区别:前者的恢复时间比后者小一百倍左右,前者的反向恢复时间大约为几纳秒~! 前者的优点还有低功耗,大电流,超高速~!电气特性当然都是二极管阿~! 快恢复二极管在制造工艺上采用掺金,单纯的扩散等工艺,可获得较高的开关速度,同时也能得到较高的耐压.目前快恢复二极管主要应用在逆变电源中做整流元件. 肖特基二极管:反向耐压值较低40V-50V,通态压降0.3-0.6V,小于10nS的反向恢复时间。它是具有肖特基特性的“金属半导体结”的二极管。其正向起始电压较低。其金属层除材料外,还可以采用金、钼、镍、钛等材料。其半导体材料采用硅或砷化镓,多为N型半导体。这种器件是由多数载流子导电的,所以,其反向饱和电流较以少数载流子导电的PN结大得多。由于肖特基二极管中少数载流子的存贮效应甚微,所以其频率响仅为RC时间常数限制,因而,它是高频和快速开关的理想器件。其工作频率可达100GHz。并且,MIS(金属-绝缘体-半导体)肖特基二极管可以用来制作太阳能电池或发光二极管。 快恢复二极管:有0.8-1.1V的正向导通压降,35-85nS的反向恢复时间,在导通和截止之间迅速转换,提高了器件的使用频率并改善了波形。快恢复二极管在制造工艺上采用掺金,单纯的扩散等工艺,可获得较高的开关速度,同时也能得到较高的耐压.目前快恢复二极管主要应用在逆变电源中做整流元件

并联型稳压电路设计指导

项目三任务三并联型稳压电路的设计指导 学习要求 一、各学习小组3-4周完成并联型稳压电路的设计 二、用PPT写出任务报告书(电路的组成、原理、元器件的选用、常见故障及故障排除、元器件清单等) 学习指导 1 学习目标 ?了解稳压半导体的基本知识; ?理解并联稳压电路的组成及稳压原理; ?会检测稳压二极管的特性; ?会制作并联型稳压电路。 ?能测量测量并联型稳压电路的输出电压与波形。 2 工作任务 ?判别稳压二极管的质量与极性; ?检测二极管的特性; ?制作并联型稳压电路并检测调试; ?测量并联型稳压电路的输出波形和电压。 3 电子电路 如图所示电路,图中 R 为 470 Ω /1W , D1 为稳压二极管 1N4740 。 4 仪器仪表工具

0 ~30V 直流稳压电源1 台 5制作步骤: ①识读并联型稳压电路器 ②根据阻值大小和稳压二极管的型号正确选择器件。电阻选择碳膜功率电阻,色环为黄紫棕金,代表阻值470 Ω,功率为lW 。二极管选择稳压二极管,标识型号为1N4740 。 ③将电阻、二极管正确成形,注意元器件成形时尺寸须符合电路通用板插孔间距要求。 ④在电路通用板上按测试电路图正确插装成形好的元器件注意稳压二极管的正负极。 6 测试步骤 并用导线把它们连接好 ①按上述制作步骤完整接好如图所示的电路并复查,通电检测。 ②接入输入电压U1 =20V ,负载电阻R L=10k Ω,测量输出电压Uo ,并记录Uo = 。 ③改变输入电压,使U1 =25V ,负载电阻R L不变,测量输出电压Uo ,并记录U o = 。 ④改变负载电阻,使R L=5k Ω,输入电压U1不变,测量输出电压电压Uo ,并记录Uo = 。 7 分析 ①测试步骤中的步骤③的结果表明,当输入电压在一定范围内变化时,电路的输出电压( 基本保持不变/随输入电压变化而变化) 。 ②测试步骤中的步骤④的结果表明,当负载电阻在一定范围内变化时,电路的输出电压( 可以基本保持不变/随负载电阻变化而变化) 。 8 故障排除 (1)当电路输出小幅波形式时,故障原因是稳压管接反。

FR307二极管反向恢复时间测试分析

FR307二极管反向恢复时间测试分析 二极管和一般开关的不同在于,“开”与“关”由所加电压的极性决定, 而且“开”态有微小的压降V f,“关”态有微小的电流i0。当电压由正向变为反向时, 电流并不立刻成为(- i0) , 而是在一段时间ts 内, 反向电流始终很大, 二极管并不关断。经过ts 后, 反向电流才逐渐变小, 再经过tf 时间, 二极管的电流才成为(- i0) , ts 称为储存时间, tf 称为下降时间。tr= ts+ tf 称为反向恢复时间, 以上过程称为反向恢复过程。这实际上是由电荷存储效应引起的, 反向恢复时间就是存储电荷耗尽所需要的时间。该过程使二极管不能在快速连续脉冲下当做开关使用。如果反向脉冲的持续时间比tr 短, 则二极管在正、反向都可导通, 起不到开关作用。 首先进行测试的是FR307GW 二极管,其外形实物图如下图所示,使用DI-100进行测试,它可以测试快恢复二极管、场效应管(Mosfet )内建二极管、IGBT 基内建二极管。它可以测试二极管反向电流峰值100A ,二极管正向电流30A ,测量精度10nS ,测试的过程中不必担心二极管接反的问题。 图1 二极管实物及恢复特性 图2 二极管正向导通电流 图3 二极管反向恢复电流

图4二极管反向恢复电流斜率图5 二极管反向恢复时间以上波形是DI-100把偏置电压设置到150V测试的结果,综上可以看出,二极管正向导通电流:3.52A,二极管反向恢复电流:6.64A,二极管反向恢复电流斜率:7.76A/uS,二极管反向恢复时间:550nS。这个器件的参数,基本上是满足说明书要求的,应用时应该没有什么太大的问题。 接着使用DI-100测试FR307ZG二极管,二极管外形实物图如下图所示: 图1 二极管实物

稳压二极管并联型稳压电路

河北经济管理学校教案 序号:1编号:JL/JW/7.5.1.03 4.18授课主题稳压二极管并联型稳压电路 教学目的1.掌握稳压二极管并联型稳压电源电路的组成及各部分作用 2.能按工艺流程安装与测试稳压二极管并联型稳压电源电路 教学 重点、难点重点:稳压电源的组成及各部分作用 难点:稳压电源安装完成后,各部分参数的测量及故障的解决 教学准备教案,板书,教材 教学过程设计与时间分配 一、课堂导入与提问(10min) 二、讲授新课(55min) 1.直流稳压电源的概念 2.稳压电源中的稳压电路按电压调整元件与负载RL连接方式之不同可分为两种稳压类型 3.简单的直流稳压电源及其结构 4.并联型直流稳压电路的优缺点 5.串联型稳压电路简介 三、课堂小结(15min) 四、布置作业(10min)

河北经济管理学校教案 教案内容 一、导入与提问(10min) 举例手机充电器 二、讲授新课(55min) 1.直流稳压电源的概念 直流稳压电源是一种当电网电压变化时,或者负载发生变化时,输出电压能基本保持不变的直流电源 2.稳压电源中的稳压电路按电压调整元件与负载RL连接方式之不同可分为两种稳压类型(1)并联型稳压电路(2)串联型稳压电路 调整元件与负载RL并联,如上图所示 3.简单的直流稳压电源及其结构 (1)第一部分为变压器 它的作用是改变电压 我们接入的市电是交流电,电压有效值是220V,而我们平时用的直流电压较小,并且稳压

就是把原来交流电的负半周整流到正半周,而原正半周仍保持不变 (3)第三部分是一个电容器,为滤波电路 它的作用是对整流后的电流进行滤波,利用电容器的充放电功能,把原来起伏变化较大电压转换成起伏变化较小的电压 (4)第四部分为调整元件部分 它的作用是对输出电压进行稳定,使输出电压为一个稳定的值 它是利用稳压二极管的反向击穿特性,如下图所示为二极管的伏安特性曲线 二极管在反向电压击穿的时候其两端电压能其本保持稳定,即使在通过它的电流发生一些变化时也能基本保持稳定。 在这里我们把稳压二极管与负载并联后,反偏接入电路,调整电压,使其呈反向电击穿状

稳压二极管原理及故障

稳压二极管原理及故障 稳压二极管的稳压原理: 稳压二极管的特点就是击穿后,其两端的电压基本保持不变。这样,当把稳压管接入电路以后,若由于电源电压发生波动,或其它原因造成电路中各点电压变动时,负载两端的电压将基本保持不变。 稳压二极管在电路中常用“ZD”加数字表示,如:ZD5表示编号为5的稳压管。 故障特点: 稳压二极管的故障主要表现在开路、短路和稳压值不稳定。在这3种故障中,前一种故障表现出电源电压升高;后2种故障表现为电源电压变低到零伏或输出不稳定。 常用稳压二极管的型号及稳压值如下表: 型号1N47281N47291N47301N47321N47331N47341N47351N47441N47501N47511N4761 稳压值 3.3V 3.6V 3.9V 4.7V 5.1V 5.6V 6.2V15V27V30V75V 稳压管也是一种晶体二极管,它是利用PN结的击穿区具有稳定电压的特性来工作的。稳压管在稳压设备和一些电子电路中获得广泛的应用。我们把这种类型的二极管称为稳压管,以区别用在整流、检波和其他单向导电场合的二极管。如图画出了稳压管的伏安特性及其符号。 (1)稳定电压Uz Uz就是PN结的击穿电压,它随工作电流和温度的不同而略有变化。对于同一型号的稳压管来说,稳压值有一定的离散性。 (2)稳定电流Iz稳压管工作时的参考电流值。它通常有一定的范围,即Izmin——Izmax。 (3)动态电阻rz它是稳压管两端电压变化与电流变化的比值,如上图所示,即这个数值随工作电流的不同而改变。通常工作电流越大,动态电阻越小,稳压性能越好。

(4)电压温度系数它是用来说明稳定电压值受温度变化影响的系数。不同型号的稳压管有不同的稳定电压的温度系数,且有正负之分。稳压值低于4v的稳压管,稳定电压的温度系数为负值;稳压值高于6v的稳压管,其稳定电压的温度系数为正值;介于4V和6V之间的,可能为正,也可能为负。在要求高的场合,可以用两个温度系数相反的管子串联进行补偿(如2DW7)。 (5)额定功耗Pz前已指出,工作电流越大,动态电阻越小,稳压性能越好,但是最大工作电流受到额定功耗Pz的限制,超过P2将会使稳压管损坏。 选择稳压管时应注意:流过稳压管的电流Iz不能过大,应使Iz≤Izmax,否则会超过稳压管的允许功耗,Iz也不能太小,应使Iz≥Izmin,否则不能稳定输出电压,这样使输入电压和负载电流的变化范围都受到一定限制。下图示出了稳压管工作时的动态等效电路,图中二极管为理想二极管。

稳压二极管的使用方法《别下》

稳压二极管工作在反向击穿状态时,其两端的电压是基本不变的。利用这一性质,在电路里常用于构成稳压电路。 稳压二极管构成的稳压电路,虽然稳定度不很高,但却具有简单、经济实用的优点,因而应用非常广泛。 在实际电路中,要使用好稳压二极管,应注意如下几个问题。 1、要注意一般二极管与稳压二极管的区别方法。不少的一般二极管,特别是玻璃封装的管,外形颜色等与稳压二极管较相似,如不细心区别,就会使用错误。区别方法是:看外形,不少稳压二极管为园柱形,较短粗,而一般二极管若为园柱形的则较细长;看标志,稳压二极管的外表面上都标有稳压值,如5V6,表示稳压值为 5.6V;用万用表进行测量,根据单向导电性,用X1K挡先把被测二极管的正负极性判断出来,然后用X10K挡,黑表笔接二极管负极,红表笔接二极管正极,测的阻值与X1K挡时相比,若出现的反向阻值很大,为一般二极管的可能性很大,若出现的反向阻值变得很小,则为稳压二极管。 2、注意稳压二极管正向使用与反向使用的区别。稳压二极管正向导通使用时,与一般二极管正向导通使用时基本相同,正向导通后两端电压也是基本不变的,都约为0.7V。从理论上讲,稳压二极管也可正向使用做稳压管用,但其稳压值将低于1V,且稳压性能也不好,一般不单独用稳压管的正向导通特性来稳压,而是用反向击穿特性来稳压。反向击穿电压值即为稳压值。有时将两个稳压管串联使用,一个利用它的正向特性,另一个利用它的反向特性,则既能稳压又可起温度补偿作用,以提高稳压效果。 3、要注意限流电阻的作用及阻值大小的影响。在稳压二极管稳压电路中,一般都要串接一个电阻R,如图1或2示。该电阻在电路中起限流和提高稳压效果的作用。若不加该电阻即当R=0时,容易烧坏稳压管,稳压效果也会极差。限流电阻的阻值越大,电路稳压性能越好,但输入与输出压差也会过大,耗电也就越多。 4、要注意输入与输出的压差。正常使用时,稳压二极管稳压电路的输出电压等于稳压管反向击穿后两端的稳压值,若输入到稳压电路中的电压值小于稳压管的稳压值,则电路将失去稳压作用,只有是大于关系时,才有稳压作用,

相关主题
文本预览
相关文档 最新文档