当前位置:文档之家› Zemax中的点列图的分析方法

Zemax中的点列图的分析方法

Zemax中的点列图的分析方法
Zemax中的点列图的分析方法

点列图的原理是显示光学系统在IMA面上的成像。换句话说,它就是通过计算,把一系列物方的点通过光学系统以后,成像在IMA面上的情况给实际绘制出来。

为了表现方便,它可以选择一系列预定的模板形式,具体来说,比如一个在轴上的点,从无限远成像到IMA面上,ZEMAX就模拟在无限远有若干个发光点(光束),这些点平行射入入瞳,然后经过光学系统,最后成像在IMA面上。显然如果光学系统是完美的光学系统,那么这些点成像点为一个理想的点。但对于实际的光学系统,就会成像为一个弥散斑。那么这个弥散斑在IMA面上的像,就是Spot Diagram。同理,在非轴上点,也可以参照主光线的角度和位置,形成一系列的发光点,经过入瞳最后成像在IMA面上最后也形成一个弥散斑。

如何通过Spot Diagram观察出光学设计的质量,简单说,这个弥散斑越小越好。如果你发现弥散斑足够小,满足你对光学系统最小弥散斑的要求(spot diagram的单位是微米)那么你的光学系统就完全可以进行实际的加工了。换句话说,就是你的光学系统已经可以设计完成了。

如何才知道你的光学系统足够的好?这里有个参考,就是airy 斑的参考。airy斑是物理光学的一个概念。它指出在形成的弥散斑直径在2.44*F*(主波长)以内的时候,该光学系统可以认为是理想(完美)光学系统。这样当你在Spot Diagram图中,在setting菜单中,设置显示airy斑。然后发现你的点列图完全都在airy斑环之内,你就可以认为你的光学系统设计已经完美。但实际上,很少有光学系统,可以满足符合airy斑直径的要求。那么说明你的光学系统有像差。

究竟是哪种像差在起主要作用?主要的像差有,球差,慧差,像散,场曲,畸变。这些像差在spot diagram上的表现各不相同。但由于一个光学系统通常是各种像差的混合。因此需要你对spot diagram的形状进行判断。确认是主要是哪种像差,然后通过修改玻璃,或者曲率以及光阑的位置等加以调整。

不同的像差有不同的像表现,同时随着像差的大小不同,这个像,也叫斑点的大小也不一样,显然像差越小的光学系统,其斑点也越小。衡量这个斑点大小有个定义,就是RMS半径定义,另外还有一个就是几何半径的定义。RMS是均方根半径,可以定量的反映这个系统实际的斑点大小。

在Spot Diagram中还有几个参数可以参考,RMS RADIUS,均平方根半径是一个重要的半径参数,它是弥散斑各个点坐标,参考中心点,进行的坐标平方和后,除以点数量,然后开方的值,这个值的半径可以反映一个典型的弥散斑的大小,以定量的反映这个系统实际的斑点大小。但它不是全部弥散斑的直径,全部弥散斑的直径是GEO RADIUS。RMS RADIUS是重要的反映弥散质量的参数,它和在优化中和MF的值极大的吻合。(就是说MF的某个视场最后值就是RMS的半径)

需要说明的是:不同的射入入瞳的光线排列会对最后的RMS半径等有影响,但并不大。

关键影响RMS半径的是,每个airy斑的中心点参考点的选择:一种选择的方式是根据主光线的位置做为斑点中心光线的中点。另外一种方式是采用斑点的实际重心做为斑点中点。

对于一个轴对称系统,在轴上,显然主光线中心和斑点重心是一点没有差别,但在轴外点成像。主光线的中心计算出来的RMS显然要比斑点重心计算的RMS半径要大。其实,通常采用的是斑点重心的参考中点方式。

Spot Diagram与Ray Fan的区别:

Spot Diagram的形成,我们也可以在轴外子午面上选择一点做为发光点。这个点同样将光线射向系统的入瞳和光阑位置。和Ray Fan 不同的就是,这次我们考虑的更全面些。这一束光线不是Ray Fan 的一个子午面方式,而是一个面阵的方式发散。而是全面的射入入瞳。为了计算和比较,有几种布置光线的方式可以选择,比如随机点方式,矩形方式,圆形方式,还有三角方式等等。目的是能尽量保证平衡射入这个系统

如有侵权请联系告知删除,感谢你们的配合!

公差分析

例子1公差(Tolerancing) 1-1概论 公差分析将有系统地分析些微扰动或色差对光学设计性能的影响。公差分析的目的在于定义误差的类型及大小,并将之引入光学系统中,分析系统性能是否符合需求。Zemax内建功能强大的公差分析工具,可帮助在光学设计中建立公差值。公差分析可透过简易的设罝分析公差范围内,参数影响系统性能的严重性。进而在合理的费用下进行最容易的组装,并获得最佳的性能。 1-2公差 公差值是一个将系统性能量化的估算。公差分析可让使用者预测其设计在组装后的性能极限。设罝公差分析的设罝值时,设计者必须熟悉下述要点: ●选取合适的性能规格 ●定义最低的性能容忍极限 ●计算所有可能的误差来源(如:单独的组件、组件群、机械组装等等…) ●指定每一个制造和组装可允许的公差极限 1-3误差来源 误差有好几个类型须要被估算 制造公差 ●不正确的曲率半径 ●组件过厚或过薄 ●镜片外型不正确 ●曲率中心偏离机构中心

●不正确的Conic值或其它非球面参数 材料误差 ●折射率准确性 ●折射率同质性 ●折射率分布 ●阿贝数(色散) 组装公差 ●组件偏离机构中心(X,Y) ●组件在Z.轴上的位置错误 ●组件与光轴有倾斜 ●组件定位错误 ●上述系指整群的组件 周围所引起的公差 ●材料的冷缩热胀(光学或机构) ●温度对折射率的影响。压力和湿度同样也会影响。 ●系统遭冲击或振动锁引起的对位问题 ●机械应力 剩下的设计误差 1-4设罝公差 公差分析有几个步骤须设罝: ●定义使用在公差标准的」绩效函数」:如RMS光斑大小,RMS波前误差,MTF需求, 使用者自定的绩效函数,瞄准…等 ●定义允许的系统性能偏离值 ●规定公差起始值让制造可轻易达到要求。ZEMAX默认的公差通常是不错的起始点。 ●补偿群常被使用在减低公差上。通常最少会有一组补偿群,而这一般都是在背焦。 ●公差设罝可用来预测性能的影响 ●公差分析有三种分析方法: ?灵敏度法 ?反灵敏度法

Zemax中的点列图的分析方法

点列图的原理就是显示光学系统在IMA面上的成像。换句话说,它就就是通过计算,把一系列物方的点通过光学系统以后,成像在IMA面上的情况给实际绘制出来。 为了表现方便,它可以选择一系列预定的模板形式,具体来说,比如一个在轴上的点,从无限远成像到IMA面上,ZEMAX就模拟在无限远有若干个发光点(光束),这些点平行射入入瞳,然后经过光学系统,最后成像在IMA面上。显然如果光学系统就是完美的光学系统,那么这些点成像点为一个理想的点。但对于实际的光学系统,就会成像为一个弥散斑。那么这个弥散斑在IMA面上的像,就就是Spot Diagram。同理,在非轴上点,也可以参照主光线的角度与位置,形成一系列的发光点,经过入瞳最后成像在IMA面上最后也形成一个弥散斑。 如何通过Spot Diagram观察出光学设计的质量,简单说,这个弥散斑越小越好。如果您发现弥散斑足够小,满足您对光学系统最小弥散斑的要求(spot diagram的单位就是微米)那么您的光学系统就完全可以进行实际的加工了。换句话说,就就是您的光学系统已经可以设计完成了。 如何才知道您的光学系统足够的好?这里有个参考,就就是airy 斑的参考。airy斑就是物理光学的一个概念。它指出在形成的弥散斑直径在2、44*F*(主波长)以内的时候,该光学系统可以认为就是理想(完美)光学系统。这样当您在Spot Diagram图中,在setting 菜单中,设置显示airy斑。然后发现您的点列图完全都在airy斑环之内,您就可以认为您的光学系统设计已经完美。但实际上,很少有光学系统,可以满足符合airy斑直径的要求。那么说明您的光学系统有像差。

统计公差分析方法概述

统计公差分析方法概述(2012-10-23 19:45:32) 分类:公差设计统计六标准差 统计公差分析方法概述 一.引言 公差设计问题可以分为两类:一类是公差分析(Tolerance Analysis ,又称正计算) ,即已知组成环的尺寸和公差,确定装配后需要保证的封闭环公差;另一类是公差分配(Tolerance Allocation ,又称反计算) ,即已知装配尺寸和公差,求解组成环的经济合理公差。 公差分析的方法有极值法和统计公差方法两类,根据分布特性进行封闭环和组成环公差的分析方法称为统计公差法.本文主要探讨统计公差法在单轴向(One Dimension)尺寸堆叠中的应用。 二.Worst Case Analysis 极值法(Worst Case ,WC),也叫最差分析法,即合成后的公差范围会包括到每个零件的最极端尺寸,无论每个零件的尺寸在其公差范围内如何变化,都会100% 落入合成后的公差范围内。 <例>Vector loop:E=A+B+C,根据worst case analysis可得 D(Max.)=(20+0.3)+(15+0.25)+(10+0.15)=45.7,出现在A、B、C偏上限之状况 D(Min.)=(20-0.3)+(15-0.25)+(10-0.2)=44.3,出现在A,B、C偏下限之状况 45±0.7适合拿来作设计吗? Worst Case Analysis缺陷: ?设计Gap往往要留很大,根本没有足够的设计空间,同时也可能造成组装困难; ?公差分配时,使组成环公差减小,零件加工精度要求提高,制造成本增加。

以上例Part A +Part B+ Part C,假设A、B、C三个部材,相对于公差规格都有3σ的制程能力水平,则每个部材的不良机率为1-0.9973=0.0027;在组装完毕后所有零件都有缺陷的机率为:0.0027^3=0.000000019683。这表明几个或者多个零件在装配时,同一部件的各组成环,恰好都是接近极限尺寸的情况非常罕见。 三.统计公差分析法 ?由制造观点来看,零件尺寸之误差来自于制程之变异,此变异往往呈现统计分布的型态,因此设计的公差规格常被视为统计型态。 ?统计公差方法的思想是考虑零件在机械加工过程中尺寸误差的实际分布,运用概率统计理论进行公差分析和计算,不要求装配过程中100 %的成功率(零件的100 %互换) ,要求在保证一定装配成功率的前提下,适当放大组成环的公差,降低零件(组成环) 加工精度,从而减小制造和生产成本。 ?在多群数据的线性叠加运算中,可以进行叠加的是『变异』值。 四.方和根法 计算公式(平方相加开根号) 假设每个尺寸的Ppk 指标是1.33并且制程是在中心

ZEMAX软件基础介绍

ZEMAX是美国 Radiant Zemax 公司所发展出的光学设计软件,可做光学组件设计与照明系统的照度分析,也可建立反射,折射,绕射等光学模型,并结合优化,公差等分析功能,是套可以运算sequential及Non-Sequential的软件。ZEMAX 有三种不同的版本:Standard 标准版(原SE);Professional 专业版(原EE);Premium 旗舰版(原IE)。 1主要特色 1.1分析 提供多功能的分析图形,对话窗式的参数选择,方便分析,且可将分析图形存成图文件,例如:*.BMP, *.JPG...等,也可存成文字文件*.txt。 1.2优化 表栏式merit function参数输入,对话窗式预设merit function参数,方便使用者定义,且多种优化方式供使用者使用,诸如Local Optimization可以快速找到佳值,Global/Hammer Optimization可找到最好的参数。 1.3公差分析 表栏式Tolerance参数输入和对话窗式预设Tolerance参数,方便使用者定义。 报表输出 多种图形报表输出,可将结果存成图文件及文字文件。 2应用领域 含括Projector,Camera,Scanner,Telescope,光纤耦合,照明系统、夜视系统等。

Zemax 软件的界面 1 Zemax 软件的工作窗口 Figure 1 Zemax 默认的工作窗口 2 Zemax 透镜数据编辑器(LDE ) 2.1 表面类型 Zemax 在标准面型下有平面、球面和二次曲面等选项。 LDE 的Surface Type (表面类型)栏分为两列,左边一列分为OBJ 、STO 和IMA 三行,它们分别对应物面、光阑面和像面;右边一列的三行是左边三种表面的类型。默认的表面类型是标准型,用Standard 表示。 OBJ 即物面被默认为0面。 表格 1 不同表面的二次曲面系数 菜单栏 工具栏 LDE 表面类型 曲率半径 厚度 玻璃 半口径

公差模型和公差分析方法的研究

生 产现场 S H O P S O L U T I O N S 金属加工 汽车工艺与材料 A T&M 2009年第7期 50 机械装配过程中,在保证各组成零件适当功能的前提下,各组成零件所定义的、允许的几何和位置上的误差称为公差。公差的大小不仅关系到制造和装配过程,还极大影响着产品的质量、功能、生产效率以及制造成本。公差信息是产品信息库中的重要 内容,公差模型就是为表示公差信息而建立的数学及物理模型,它是进行公差分析的理论基础。 公差分析或称偏差分析,即通过已知零部件的尺寸分布和公差,考虑偏差的累积和传播,以计算装配体的尺寸分布和装配公差的过程。公差分析的目的在于判断零部件的公差分布是否满足装配功能要求,进而评价整个装配的可行性。早期公差分析方法面向的是一维尺寸公差的分析与计算。Bjorke 则将公差分析拓展到三维空间。Wang 、C h a s e 、P a b o n 、H o f f m a n 、Lee 、Turner 、Tsai 、Salomons 、Varghese 、Connor 等许多学者也分别提出了各自的理论和方法开展公差分析的研究。此后,人工智能、专家系统、神经网络、稳健性理论等工具被引入公差分析领域当中,并分别构建了数学模型以解决公差分析问题。 1 公差模型 公差模型可分为零件层面的公差信息模型和装配层面的公差拓扑关系模型。Shan 提出了完整公差模型的建模准则,即兼容性和可计算性准则。兼容性准则是指公差模型满足产品设计过程的要求,符合ISO 和ASME 标准,能够完整表述所有类型的公差。可计算性准则是指公差模型可实现与CAD 系统集成、支持过/欠约束、可提取隐含尺寸信息、可识别公差类型,以检查公差分配方案的可行性等。目前已经提出了很多公差模型表示法,但每一种模型都是基于一些假设,且只部分满足了公差模型的建模准则,至今尚未出现统一的、公认的公差模型。以下将对几种典型的公差模型加以介绍和评价。1.1 尺寸树模型 Requicha 最早研究了零件层面的公差信息表示,并首先提出了应用于一维公差分析的尺寸树模型。该模型中,每一个节点是一个水平特征,节点间连线表示尺寸,公差值附加到尺寸值后。由于一维零件公差不考虑旋转偏差,所有公差都可表示为尺寸值加公差值的形式。该模型对于简单的一维公差分析十 分有效,但却使尺寸和公差的概念模糊不清,而且没有考虑到形状和位置公差的表示。1.2 漂移公差带模型 Requicha 从几何建模的角度,于20世纪80年代提出了漂移公差带模型以定义形状公差。在这个模型中,形状公差域定义为空间域,公差表面特征需位于此空间域中,同时采用边界表示法(Breps )建立传统的位置和尺寸公差模型。对于表面特征和相关公差信息则运用偏差图(VGraph )来表示。VGraph 主要是作为一种分解实体表面特征的手段,将实体的边界部分定义为特征,公差信息则封装在特征的属性中。漂移公差带模型很好地表达了轮廓公差,轮廓公差包含了所有实际制造过程中的偏差。该模型提供了公差的通用理论且易于实现,但是不能区分不同类型的形状公差。1.3 矢量空间模型 Hoffmann 提出了矢量空间模型,Turner 扩展了这一模型。矢量空间模型首先需要定义公差变量、设计变量和模型变量。公差变量表示零件名义尺寸的偏差。设计变量由设计者确定,用以表示最终装配体的多目标优化函数。模型变量是控制零件各个公差的独立变量。由 公差模型和公差分析方法的研究 讨论了目前工程设计、制造中具有代表性的公差模型的建模、描述和分析的方法。在此基础上,对于面向刚性件和柔性件装配的公差分析方法的研究现状分别进行了综述和评价,通过对比说明各种分析方法的算法、应用范围及不足。最后,展望了公差模型和公差分析方法的研究方向及其发展动态。 奇瑞汽车股份有限公司 葛宜银 李国波

ZEMAX软件基础介绍教学文案

Z E M A X软件基础介绍

Zemax软件的介绍 ZEMAX是美国 Radiant Zemax 公司所发展出的光学设计软件,可做光学组件设计与照明系统的照度分析,也可建立反射,折射,绕射等光学模型,并结合优化,公差等分析功能,是套可以运算sequential及Non-Sequential的软件。ZEMAX 有三种不同的版本:Standard 标准版(原SE);Professional 专业版(原EE);Premium 旗舰版(原IE)。 1主要特色 1.1分析 提供多功能的分析图形,对话窗式的参数选择,方便分析,且可将分析图形存成图文件,例如:*.BMP, *.JPG...等,也可存成文字文件*.txt。 1.2优化 表栏式merit function参数输入,对话窗式预设merit function参数,方便使用者定义,且多种优化方式供使用者使用,诸如Local Optimization可以快速找到佳值,Global/Hammer Optimization可找到最好的参数。 1.3公差分析 表栏式Tolerance参数输入和对话窗式预设Tolerance参数,方便使用者定义。 1.4报表输出 多种图形报表输出,可将结果存成图文件及文字文件。 2应用领域 含括Projector,Camera,Scanner,Telescope,光纤耦合,照明系统、夜视系统等。

Zemax 软件的界面 1 Zemax 软件的工作窗口 Figure 1 Zemax 默认的工作窗口 2 Zemax 透镜数据编辑器(LDE ) 2.1 表面类型 Zemax 在标准面型下有平面、球面和二次曲面等选项。 LDE 的Surface Type (表面类型)栏分为两列,左边一列分为OBJ 、STO 和IMA 三行,它们分别对应物面、光阑面和像面;右边一列的三行是左边三种表面的类型。默认的表面类型是标准型,用Standard 表示。 OBJ 即物面被默认为0面。 表格 1 不同表面的二次曲面系数 菜单栏 工具 LDE 表面类型 曲率半径 厚 度 玻璃 半口径

ZEMAX中像差分析及理解

Z E M A X中像差分析及 理解 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

Z E M A X中像差分析及理解1、轴上点球差和轴向色差、轴上点垂轴色差 在ZEMAX的分析菜单中有“longitudinalaberration”项目,实际上就是“轴上点的球差分析”,不过直译过来是“纵向像差”,这实际上是外国人的说法罢了。在这个分析图中,纵轴是“光瞳”,横轴是“像差”值。分析图描述了F、d、C三个描述光波的球差情况,实际上也反映了轴向色差的情况,就是F、C光的数值差。 在“RayAbberation”(横向特性曲线)的0视场分析图中,也反映了轴上点像差和轴向色差的情况。在该分析图中,数值反映的是“在像面上,各个孔径的光线与像面交点的高度与主光线与像面交点高度的差值”。轴上点与其差别为: 其中是几何像差表示的轴上点球差,表示的是横向特性曲线数值,是该对子午光线出射夹角。 轴上点的“垂轴色差”就是“RayAbberation”0视场的F、C光线数据差值。 2、??轴外球差和轴外色差 “RayAbberation”光性特性曲线其他分析图反映的是物面不同高度或者不同视场的“轴外点球差和轴外点色差”,但是都反映的是像面上交点高度的差。需要获得确切的数据值

需要角度之间的转换,这是比较复杂的一件事情。但是,从图上我们可以反映出轴外点球差和色差的大体值,一般而言其数据不会超出一个数量级。 3、??彗差与色彗差 “RayAbberation”不但反映了系统球差和色差的大体情况,而且反映了彗差的情况。按照像差理论,彗差是与孔径和视场都有关的一个像差,主要反映了经过光学系统后与主光线原对称的光线对不再与主光线对称的情形,能量上反映了对于中心点的不对称,也就是“彗尾现象”。 彗差的大体数值可以使用以下方法大体判断。如图。 特性曲线的端点代表代表光线对在像面上的不同交点,连接两点与纵轴有一个交点A,B。A点与原点的距离大体上可以描述该视场下的彗差数值。而AB两点之间的距离表示两种不同波长光之间的“色彗差”。 4、??场曲、畸变和像散、色场曲、色畸变 场曲和畸变是有专门的特性曲线描述的。当然,其中的不同波长之间的场曲差异以及畸变差异就反映了“色场曲”和“色畸变”像差。 至于“像散”,从其定义可以从场曲图中分析出来,主波长光线的“子午场曲和弧矢场曲之差”。ZEMAX描述的场曲为“宽光束场曲”而非“细光束场曲”。

zemax像差图分析报告

ZEMAX像差深入以及像差各种图表分 析 初级像差深入 近轴光线和远轴光线的概念。 近轴光线和远轴光线都是指与光轴平行的光线,它们都成像在光轴上(下图中画的是主光轴情况)缩小的光圈可以拦去远轴光线,而由近轴光线来成像。 总的来说,镜头的像差可以分成两大类,即单色像差及色差。镜头的单色像差五种,它们分别是影响成像清晰度的球差、彗差、象散、场曲,以及影响物象相似度的畸变 光线称远轴光线 主光轴 /isnonci.oon 以下就分别介绍五种不同性质的单色像差: 球差

是由于镜头的透镜球面上各点的聚光能力不同而引起的。从无穷远处来的平行光线在理论上应该会聚 在焦点上。但是由于近轴光线与远轴光线的会聚点并不一致,会聚光线并不是形成一个点,而是一个以光轴为中心对称的弥散圆,这种像差就称为球差。球差的存在引起了成像的模糊,而从下图可以看出,这种模糊是与光圈的大小有关的。 小光圈时,由于光阑挡去了远轴光线,弥散圆的直径就小,图像就会清晰。大光圈时弥散圆直径就大, 图像就会比较模糊。 必须注意,这种由球差引起的图像模糊与景深中的模糊完全是两会事,不可以混为一谈的。球差可以 通过复合透镜或者非球面镜等办法在最大限度下消除的。在照相镜头中,光圈(孔径)数增加一档(光 孔缩小一档),球差就缩小一半。我们在拍摄时,只要光线条件允许,可以考虑使用较小的光圈 (孔 径)来减小球差的影响。

实用文案彗差

是在轴外成像时产生的一种像差。从光轴外的某一点向镜头发岀一束平行光线,经光学系统后,在像平面上并不是成一个点的像,而是形成不对称的弥散光斑,这种弥散光斑的形状象彗星,从中心到边缘拖着一个由细到粗的尾巴,首端明亮、清晰,尾端宽大、暗淡、模糊。这种轴外光束引起的像差就称为彗差。彗差的大小既与光圈仔L径)有关,也与视场有关。我们在拍摄时也可以采取适当采用较小的光圈(孔径)来减少彗差对成象的影响。 像散 也是一种轴外像差。与彗差不同,像散仅仅与视场有关。由于轴外光束的不对称性,使得轴外点的子午细光束(即镜头的直径方向)的会聚点与弧矢细光束(镜头的园弧方向)的会聚点位置不同,这种现象称为象散。像散可以对照眼睛的散光来理解。带有散光的眼睛,实际上是在两个方向上的晶状体曲率不一致,造成看到的点弥散成了一条短线。象散也使得轴外成像的像质大大地下降。像散的大小只与视场角有关,与孔径是没有关系的。即使光圈开得很小,在子午和弧矢方向仍然无法同时获得非常清晰的像。在广角镜头中,由于视场角比较大, 像散现象就比较明显。我们在拍摄的时候应该尽量使被摄体处于画面的中心。这好象与构图要求不把 主要表现对象放在图面正中央有些冲突,如何掌握就要看实际情况了。

统计公差分析方法概述

统计公差分析方法概述 一、引言 公差设计问题可以分为两类:一类就是公差分析(Tolerance Analysis ,又称正计算) ,即已知组成环的尺寸与公差,确定装配后需要保证的封闭环公差;另一类就是公差分配(Tolerance Allocation ,又称反计算) ,即已知装配尺寸与公差,求解组成环的经济合理公差。 公差分析的方法有极值法与统计公差方法两类,根据分布特性进行封闭环与组成环公差的分析方法称为统计公差法、本文主要探讨统计公差法在单轴向(One Dimension)尺寸堆叠中的应用。 二、Worst Case Analysis 极值法(Worst Case ,WC),也叫最差分析法,即合成后的公差范围会包括到每个零件的最极端尺寸,无论每个零件的尺寸在其公差范围内如何变化,都会100% 落入合成后的公差范围内。 <例>Vector loop:E=A+B+C,根据worst case analysis可得 D(Max、)=(20+0、3)+(15+0、25)+(10+0、15)=45、7,出现在A、B、C偏上限之状况 D(Min、)=(20-0、3)+(15-0、25)+(10-0、2)=44、3,出现在A,B、C偏下限之状况 45±0、7适合拿来作设计不? Worst Case Analysis缺陷: ?设计Gap往往要留很大,根本没有足够的设计空间,同时也可能造成组装困难; ?公差分配时,使组成环公差减小,零件加工精度要求提高,制造成本增加。 以上例Part A +Part B+ Part C,假设A、B、C三个部材,相对于公差规格都有3σ的制程能力水平,则每个部材的不良机率为1-0、9973=0、0027;在组装完毕后所有零件都有缺陷的机率为:0、0027^3=0、3。这表明几个或者多个零件在装配时,同一部件的各组成环,恰好都就是接近极限尺寸的情况非常罕见。 三、统计公差分析法 ?由制造观点来瞧,零件尺寸之误差来自于制程之变异,此变异往往呈现统计分布的型态,因此设计的公差规格常被视为统计型态。?统计公差方法的思想就是考虑零件在机械加工过程中尺寸误差的实际分布,运用概率统计理论进行公差分析与计算,不要求装配过程中100 %的成功率(零件的100 %互换) ,要求在保证一定装配成功率的前提下,适当放大组成环的公差,降低零件(组成环) 加工精度,从而减小制造与生产成本。 ?在多群数据的线性叠加运算中,可以进行叠加的就是『变异』值。

Zemax中的点列图的分析方法

点列图的原理是显示光学系统在IMA面上的成像。换句话说,它就是通过计算,把一系列物方的点通过光学系统以后,成像在IMA面上的情况给实际绘制出来。 为了表现方便,它可以选择一系列预定的模板形式,具体来说,比如一个在轴上的点,从无限远成像到IMA面上,ZEMAX就模拟在无限远有若干个发光点(光束),这些点平行射入入瞳,然后经过光学系统,最后成像在IMA面上。显然如果光学系统是完美的光学系统,那么这些点成像点为一个理想的点。但对于实际的光学系统,就会成像为一个弥散斑。那么这个弥散斑在IMA面上的像,就是Spot Diagram。同理,在非轴上点,也可以参照主光线的角度和位置,形成一系列的发光点,经过入瞳最后成像在IMA面上最后也形成一个弥散斑。 如何通过Spot Diagram观察出光学设计的质量,简单说,这个弥散斑越小越好。如果你发现弥散斑足够小,满足你对光学系统最小弥散斑的要求(spot diagram的单位是微米)那么你的光学系统就完全可以进行实际的加工了。换句话说,就是你的光学系统已经可以设计完成了。 如何才知道你的光学系统足够的好?这里有个参考,就是airy 斑的参考。airy斑是物理光学的一个概念。它指出在形成的弥散斑直径在2.44*F*(主波长)以内的时候,该光学系统可以认为是理想(完美)光学系统。这样当你在Spot Diagram图中,在setting菜单中,设置显示airy斑。然后发现你的点列图完全都在airy斑环之内,你就可以认为你的光学系统设计已经完美。但实际上,很少有光学系统,可以满足符合airy斑直径的要求。那么说明你的光学系统有像差。

究竟是哪种像差在起主要作用?主要的像差有,球差,慧差,像散,场曲,畸变。这些像差在spot diagram上的表现各不相同。但由于一个光学系统通常是各种像差的混合。因此需要你对spot diagram的形状进行判断。确认是主要是哪种像差,然后通过修改玻璃,或者曲率以及光阑的位置等加以调整。 不同的像差有不同的像表现,同时随着像差的大小不同,这个像,也叫斑点的大小也不一样,显然像差越小的光学系统,其斑点也越小。衡量这个斑点大小有个定义,就是RMS半径定义,另外还有一个就是几何半径的定义。RMS是均方根半径,可以定量的反映这个系统实际的斑点大小。 在Spot Diagram中还有几个参数可以参考,RMS RADIUS,均平方根半径是一个重要的半径参数,它是弥散斑各个点坐标,参考中心点,进行的坐标平方和后,除以点数量,然后开方的值,这个值的半径可以反映一个典型的弥散斑的大小,以定量的反映这个系统实际的斑点大小。但它不是全部弥散斑的直径,全部弥散斑的直径是GEO RADIUS。RMS RADIUS是重要的反映弥散质量的参数,它和在优化中和MF的值极大的吻合。(就是说MF的某个视场最后值就是RMS的半径) 需要说明的是:不同的射入入瞳的光线排列会对最后的RMS半径等有影响,但并不大。 关键影响RMS半径的是,每个airy斑的中心点参考点的选择:一种选择的方式是根据主光线的位置做为斑点中心光线的中点。另外一种方式是采用斑点的实际重心做为斑点中点。 对于一个轴对称系统,在轴上,显然主光线中心和斑点重心是一点没有差别,但在轴外点成像。主光线的中心计算出来的RMS显然要比斑点重心计算的RMS半径要大。其实,通常采用的是斑点重心的参考中点方式。

统计公差分析方法概述

统计公差分析方法概述 一.引言 公差设计问题可以分为两类:一类是公差分析(Tolerance Analysis ,又称正计算) ,即已知组成环的尺寸和公差,确定装配后需要保证的封闭环公差;另一类是公差分配(Tolerance Allocation ,又称反计算) ,即已知装配尺寸和公差,求解组成环的经济合理公差。 公差分析的方法有极值法和统计公差方法两类,根据分布特性进行封闭环和组成环公差的分析方法称为统计公差法.本文主要探讨统计公差法在单轴向(One Dimension)尺寸堆叠中的应用。 二.Worst Case Analysis 极值法(Worst Case ,WC),也叫最差分析法,即合成后的公差范围会包括到每个零件的最极端尺寸,无论每个零件的尺寸在其公差范围内如何变化,都会100% 落入合成后的公差范围内。 <例>Vector loop:E=A+B+C,根据worst case analysis可得 D(Max.)=(20+0.3)+(15+0.25)+(10+0.15)=45.7,出现在A、B、C偏上限之状况 D(Min.)=(20-0.3)+(15-0.25)+(10-0.2)=44.3,出现在A,B、C偏下限之状况 45±0.7适合拿来作设计吗? Worst Case Analysis缺陷: ?设计Gap往往要留很大,根本没有足够的设计空间,同时也可能造成组装困难; ?公差分配时,使组成环公差减小,零件加工精度要求提高,制造成本增加。 以上例Part A +Part B+ Part C,假设A、B、C三个部材,相对于公差规格都有3σ的制程能力水平,则每个部材的不良机率为1- 0.9973=0.0027;在组装完毕后所有零件都有缺陷的机率为:0.0027^3=0.000000019683。这表明几个或者多个零件在装配时,同一部件的各组成环,恰好都是接近极限尺寸的情况非常罕见。 三.统计公差分析法 ?由制造观点来看,零件尺寸之误差来自于制程之变异,此变异往往呈现统计分布的型态,因此设计的公差规格常被视为统计型态。?统计公差方法的思想是考虑零件在机械加工过程中尺寸误差的实际分布,运用概率统计理论进行公差分析和计算,不要求装配过程中100 %的成功率(零件的100 %互换) ,要求在保证一定装配成功率的前提下,适当放大组成环的公差,降低零件(组成环) 加工精度,从而减小制造和生产成本。 ?在多群数据的线性叠加运算中,可以进行叠加的是『变异』值。

ZEMAX软件基础介绍

Zemax软件的介绍 ZEMAX是美国 Radiant Zemax 公司所发展出的光学设计软件,可做光学组件设计与照明系统的照度分析,也可建立反射,折射,绕射等光学模型,并结合优化,公差等分析功能,是套可以运算sequential及Non-Sequential的软件。ZEMAX 有三种不同的版本:Standard 标准版(原SE);Professional 专业版(原EE);Premium 旗舰版(原IE)。 1主要特色 1.1分析 提供多功能的分析图形,对话窗式的参数选择,方便分析,且可将分析图形存成图文件,例如:*.BMP, *.JPG...等,也可存成文字文件*.txt。 1.2优化 表栏式merit function参数输入,对话窗式预设merit function参数,方便使用者定义,且多种优化方式供使用者使用,诸如Local Optimization可以快速找到佳值,Global/Hammer Optimization可找到最好的参数。 1.3公差分析 表栏式Tolerance参数输入和对话窗式预设Tolerance参数,方便使用者定义。 报表输出 多种图形报表输出,可将结果存成图文件及文字文件。 2应用领域 含括Projector,Camera,Scanner,Telescope,光纤耦合,照明系统、夜视系统等。

Zemax 软件的界面 1 Zemax 软件的工作窗口 Figure 1 Zemax 默认的工作窗口 2 Zemax 透镜数据编辑器(LDE ) 2.1 表面类型 Zemax 在标准面型下有平面、球面和二次曲面等选项。 LDE 的Surface Type (表面类型)栏分为两列,左边一列分为OBJ 、STO 和IMA 三行,它们分别对应物面、光阑面和像面;右边一列的三行是左边三种表面的类型。默认的表面类型是标准型,用Standard 表示。 OBJ 即物面被默认为0面。 表格 1 不同表面的二次曲面系数 菜单栏 工具栏 LDE 表面类型 曲率半径 厚度 玻璃 半口径

统计公差分析方法概述

统计公差分析方法概述(总5 页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

统计公差分析方法概述(2012-10-23 19:45:32) 分类:公差设计统计六标准差 统计公差分析方法概述 一.引言 公差设计问题可以分为两类:一类是公差分析(Tolerance Analysis ,又称正计算) ,即已知组成环的尺寸和公差,确定装配后需要保证的封闭环公差;另一类是公差分配(Tolerance Allocation ,又称反计算) ,即已知装配尺寸和公差,求解组成环的经济合理公差。 公差分析的方法有极值法和统计公差方法两类,根据分布特性进行封闭环和组成环公差的分析方法称为统计公差法.本文主要探讨统计公差法在单轴向(One Dimension)尺寸堆叠中的应用。 二.Worst Case Analysis 极值法(Worst Case ,WC),也叫最差分析法,即合成后的公差范围会包括到每个零件的最极端尺寸,无论每个零件的尺寸在其公差范围内如何变化,都会100% 落入合成后的公差范围内。 <例>Vector loop:E=A+B+C,根据worst case analysis可得 D(Max.)=(20++(15++(10+=,出现在A、B、C偏上限之状况 D(Min.)=++=,出现在A,B、C偏下限之状况 45±适合拿来作设计吗 Worst Case Analysis缺陷: 设计Gap往往要留很大,根本没有足够的设计空间,同时也可能造成组装困难; 公差分配时,使组成环公差减小,零件加工精度要求提高,制造成本增加。

公差分析的方法与比较

公差分析的方法與比較 PSBU-RDD4-MDD 工程師朱誠璞 alex.chu@https://www.doczj.com/doc/3617655966.html, 2002/11/14 PM 04:32 version 1.1 A.公差分析的傳統方法( I)----Worst Case 法 首先,必須解釋在公差分析時所用的兩種方法: 公差合成與公差分配. 而在以下兩個例子中用來運算公差範圍的數學方法為 Worst Case 法,這是傳統的做法 : 1.公差的合成(使用Worst Case 法運算) Part A 與 Part B 必須接合在一起,合成後的尺寸與公差範圍會是如何呢? 在這個例子中,可以得到一個很直觀的結果------當Part A 與 Part B相接後所得到的 Part A+B 長度和公差範圍都是Part A + Part B 的結果. 也就是說:合成後的公差範圍會包括到每個零件的最極端尺寸,無論每個零件的尺寸在其公差範圍內如何變化,都會 100% 落入合成後的公差範圍內. 聽起來相當合理,不是嗎? 稍後會解釋這樣做的缺點.

2.公差的分配(使用Worst Case 法運算) 現在 Part A+B 必須放入 Part C 的開口處,而開口的尺寸與公差如圖所示,那麼 Part A 與 B 的分別的公差範圍又應該是多少呢? 我們以最簡單的方法 : 平均分配給其中所有的零件,所以 Part A 與 B 各得50 %,當然也可以按照其他的比例來調整,並沒有絕對的優劣之分. B. Worst Case法的問題 1.控制公差範圍難以被控制在設計的需求範圍中. 由於 Worst Case 法合成時要求100 % 的可以容許單一零件的公差變化,會造成合成後的公差範圍變的較大,對設計者而言,是非常容易造成零件組裝後相互干涉或間隙過大. 在以上的例子中,如果要將 Part A+B 放入 Part C 時,會發生過緊干涉的情況,因為 Part C 最窄只有 10.75 mm,但是 Part A+B 卻可能有 11.50 mm的情況則有 0.75 mm 的干涉;另一方面,當 Part C 最寬11.25 mm,而 Part A+B 為10.5 mm 的最小值時,又有 0.75 mm的間隙產生.由此可知公差範圍過大所造 成的難以控制的缺點. 2.決定公差範圍的過程缺乏客觀及合邏輯的程序 以此類方式決定的公差範圍尺寸,必須仰賴設計者的經驗,且必須經過多次的試作才可真正決定;若生產條件改變:如更換生產廠商,模具修改…等,皆有可能使原訂之公差範圍無法達成,而被迫放寬或產生大量不良品的損失.

ZEMAX中像差分析及理解

Z E M A X中像差分析及理解1、轴上点球差和轴向色差、轴上点垂轴色差 在ZEMAX的分析菜单中有“longitudinalaberration”项目,实际上就是“轴上点的球差分析”,不过直译过来是“纵向像差”,这实际上是外国人的说法罢了。在这个分析图中,纵轴是“光瞳”,横轴是“像差”值。分析图描述了F、d、C 三个描述光波的球差情况,实际上也反映了轴向色差的情况,就是F、C光的数值差。 在“RayAbberation”(横向特性曲线)的0视场分析图中,也反映了轴上点像差和轴向色差的情况。在该分析图中,数值反映的是“在像面上,各个孔径的光线与像面交点的高度与主光线与像面交点高度的差值”。轴上点与其差别为: 其中是几何像差表示的轴上点球差,表示的是横向特性曲线数值,是该对子午光线出射夹角。 轴上点的“垂轴色差”就是“RayAbberation”0视场的F、C光线数据差值。 2、??轴外球差和轴外色差 “RayAbberation”光性特性曲线其他分析图反映的是物面不同高度或者不同视场的“轴外点球差和轴外点色差”,但是都反映的是像面上交点高度的差。需要获得确切的数据值需要角度之间的转换,这是比较复杂的一件事情。但是,从图上我们可以反映出轴外点球差和色差的大体值,一般而言其数据不会超出一个数量级。 3、??彗差与色彗差 “RayAbberation”不但反映了系统球差和色差的大体情况,而且反映了彗差的情况。按照像差理论,彗差是与孔径和视场都有关的一个像差,主要反映了经过光学系统后与主光线原对称的光线对不再与主光线对称的情形,能量上反映了对于中心点的不对称,也就是“彗尾现象”。 彗差的大体数值可以使用以下方法大体判断。如图。 特性曲线的端点代表代表光线对在像面上的不同交点,连接两点与纵轴有一个交点A,B。A点与原点的距离大体上可以描述该视场下的彗差数值。而AB两点之间的距离表示两种不同波长光之间的“色彗差”。 4、??场曲、畸变和像散、色场曲、色畸变

线性尺寸的公差分析方法概述

Tolerance Analysis of Linear Dimensional Chains
Page 1 of 13
线性尺寸链公差分析. 性尺寸链公差分析
程序设计用于(1D)线性尺寸链公差分析。程序解决以下问题: 1. 公差分析,使用算术法"WC"(最差条件worst case)综合和最优化尺寸链,也可以使用统计学计算"RSS"(Root Sum Squares)。 2. 温度变化引起的尺寸链变形分析。 3. 使用"6 Sigma"的方法拓展尺寸链统计分析。 4. 选择装配的尺寸链公差分析,包含组装零件数的最优化。 所有完成的任务允许在额定公差值内运行,包括尺寸链的设计和最优化。 计算中包含了ANSI, ISO, DIN以及其他的专业文献的 数据,方法,算法和信息。标准参考表: ANSI B4.1, ISO 286, ISO 2768, DIN 7186
计算的控制,结构及语法。 算的控制,
计算的控制与语法可以在此链接中找到相关信息 "计算的控制,结构与语法".
项目信息。 目信息。
“项目信息”章节的目的,使用和控制可以在"项目信息"文档里找到.
理论-原理。 原理。
一个线性尺寸链是由一组独立平行的尺寸形成的封闭环。他们可以是一个零件的相互位置尺寸(Fig.A)或是组装单元中各 个零件尺寸 (Fig. B).
一个尺寸链由分开的部分零件(输入尺寸)和一个封闭零件(结果尺寸)组成。部分零件(A,B,C...)可以是图面中的直 接尺寸或者是按照先前的加工工艺,组装方式。 所给尺寸中的封闭零件(Z)表现为加工工艺或组装尺寸的结果,结果 综合了部分零件的加工尺寸,组装间隙或零件的干涉。结果尺寸的大小,公差和极限直接取决于部分尺寸的大小和公 差,取决于部分零件的变化对封闭零件变化的作用大小,在尺寸链中分为两类零件: - 增加零件 - 部分零件,该零件的增加导致封闭零件的尺寸增加 - 减少零件 - 部分零件,封闭零件尺寸随着该零件的尺寸增加而减小 在解决尺寸链公差关系的时候,会出现两类问题: 1. 公差分析 - 直接任务,控制 使用所有已知极限偏差的部分零件,封闭零件的极限偏差被设置。直接任务在计算中是明确的同时通常用于在给 定图面下检查零件的组装与加工。 2. 公差合成 - 间接任务,设计 出于功能需要使用封闭零件的极限偏差,来设计部分零件的极限偏差。间接任务用来解决设计功能组及组装。 公差计算方法的选择以及尺寸链零件的极限偏差影响组装精度和零件的组装互换性。因此,产品的经济性和运转性取决 于此。在尺寸链中解决公差关系,工程实践使用三个基本方法: 算数计算法 统计学计算法 成组交替性计算方法 术计算方法 算术计算方法 - WC method (Worst Case). 最常使用的方法,有时叫做最大-最小计算方法。它用于在任何部分零件的实际尺寸的任意组合下保证封闭零件的所需 极限偏差,也就是最大和最小极限尺寸。 这个方法保证了零件的完全装配和工作交替性。但是,由于封闭零件的高精 度要求,导致部分零件的公差值太极限,因此带来高的加工成本。因此WC方法主要适合用于计算小数量零件尺寸链或 结果尺寸的公差是可以接受的 情况。最常用于单间或小批量生产。 WC 方法计算得出的结果尺寸是部分尺寸的算术和。因此封闭零件的尺寸决定于其中心值:
2013/4/7

zemax操作详解

ZEMAX光学设计软件操作说明详解 找到一些资料希望对大家有用! 【ZEMAX光学设计软件操作说明详解】 介绍 这一章对本手册的习惯用法和术语进行说明。ZEMAX使用的大部分习惯用法和术语与光学行业都是一致的,但是还是有一些重要的不同点。 活动结构 活动结构是指当前在镜头数据编辑器中显示的结构。详见“多重结构”这一章。角放大率 像空间近轴主光线与物空间近轴主光线角度之比,角度的测量是以近轴入瞳和出瞳的位置为基准。 切迹 切迹指系统入瞳处照明的均匀性。默认情况下,入瞳处是照明均匀的。然而,有时入瞳需要不均匀的照明。为此,ZEMAX支持入瞳切迹,也就是入瞳振幅的变化。 有三种类型的切迹:均匀分布,高斯型分布和切线分布。对每一种分布(均匀分布除外),切迹因素取决于入瞳处的振幅变化率。在“系统菜单”这一章中有关于切迹类型和因子的讨论。 ZEMAX也支持用户定义切迹类型。这可以用于任意表面。表面的切迹不同于入瞳切迹,因为表面不需要放置在入瞳处。对于表面切迹的更多信息,请参看“表

面类型”这一章的“用户定义表面”这节。 后焦距 ZEMAX对后焦距的定义是沿着Z轴的方向从最后一个玻璃面计算到与无限远物体共轭的近轴像面的距离。如果没有玻璃面,后焦距就是从第一面到无限远物体共轭的近轴像面的距离。 基面 基面(又称叫基点)指一些特殊的共轭位置,这些位置对应的物像平面具有特定的放大率。基面包括主面,对应的物像面垂轴放大率为+1;负主面,垂轴放大率为-1;节平面,对应于角放大率为+1;负节平面,角放大率为-1;焦平面,象空间焦平面放大率为0,物空间焦平面放大率为无穷大。 除焦平面外,所有的基面都对应一对共轭面。比如,像空间主面与物空间主面相共轭,等等。如果透镜系统物空间和像空间介质的折射率相同,那么节面与主面重合。 ZEMAX列出了从象平面到不同象方位置的距离,同时也列出了从第一面到不同物方平面的距离。 主光线 如果没有渐晕,也没有像差,主光线指以一定视场角入射的一束光线中,通过入瞳中央射到象平面的那一条。注意,没有渐晕和像差时,任何穿过入瞳中央的光线也一定会通过光阑和出瞳的中心。 如果使用了渐晕系数,主光线被认为是通过有渐晕入瞳中心的光线,这意味着主光线不一定穿过光阑的中央。 如果有瞳面像差(这是客观存在的),主光线可能会通过近轴入 瞳中心(如果没有使用光线瞄准)或光阑中央(如果使用光线瞄准),但一般说来,不会同时通过二者中心。 如果渐晕系数使入瞳减小,主光线会通过渐晕入瞳中心(如果不使用光线瞄准)或者渐晕光阑中心(如果使用光线瞄准)。 常用的是主光线通过渐晕入瞳的中心,基本光线通过无渐晕的光阑中心。ZEMAX 不使用基本光线。大部分计算都是以主光线或者中心光线作为参考。优先使用中心光线,因为它是基于所有照射到象面的光线聚合效应,而不是基于选择某一条

ZEMAX光学设计软件操作说明详解

ZEMAX光学设计软件操作说明详解】 介绍 这一章对本手册的习惯用法和术语进行说明。ZEMAX使用的大部分习惯用法和术语与光学行业都是一致的,但是还是有一些重要的不同点。 活动结构 活动结构是指当前在镜头数据编辑器中显示的结构。详见“多重结构”这一章。 角放大率 像空间近轴主光线与物空间近轴主光线角度之比,角度的测量是以近轴入瞳和出瞳的位置为基准。 切迹 切迹指系统入瞳处照明的均匀性。默认情况下,入瞳处是照明均匀的。然而,有时入瞳需要不均匀的照明。为此,ZEMAX支持入瞳切迹,也就是入瞳振幅的变化。 有三种类型的切迹:均匀分布,高斯型分布和切线分布。对每一种分布(均匀分布除外),切迹因素取决于入瞳处的振幅变化率。在“系统菜单”这一章中有关于切迹类型和因子的讨论。 ZEMAX也支持用户定义切迹类型。这可以用于任意表面。表面的切迹不同于入瞳切迹,因为表面不需要放置在入瞳处。对于表面切迹的更多信息,请参看“表面类型”这一章的“用户定义表面”这节。 后焦距 ZEMAX对后焦距的定义是沿着Z轴的方向从最后一个玻璃面计算到与无限远物体共轭的近轴像面的距离。如果没有玻璃面,后焦距就是从第一面到无限远物体共轭的近轴像面的距离。基面 基面(又称叫基点)指一些特殊的共轭位置,这些位置对应的物像平面具有特定的放大率。基面包括主面,对应的物像面垂轴放大率为+1;负主面,垂轴放大率为-1;节平面,对应于角放大率为+1;负节平面,角放大率为-1;焦平面,象空间焦平面放大率为0,物空间焦平面放大率为无穷大。 除焦平面外,所有的基面都对应一对共轭面。比如,像空间主面与物空间主面相共轭,等等。如果透镜系统物空间和像空间介质的折射率相同,那么节面与主面重合。 ZEMAX列出了从象平面到不同象方位置的距离,同时也列出了从第一面到不同物方平面的距离。 主光线 如果没有渐晕,也没有像差,主光线指以一定视场角入射的一束光线中,通过入瞳中央射到象平面的那一条。注意,没有渐晕和像差时,任何穿过入瞳中央的光线也一定会通过光阑和出瞳的中心。 如果使用了渐晕系数,主光线被认为是通过有渐晕入瞳中心的光线,这意味着主光线不一定穿过光阑的中央。 如果有瞳面像差(这是客观存在的),主光线可能会通过近轴入 瞳中心(如果没有使用光线瞄准)或光阑中央(如果使用光线瞄准),但一般说来,不会同时通过二者中心。 如果渐晕系数使入瞳减小,主光线会通过渐晕入瞳中心(如果不使用光线瞄准)或者渐晕光阑中心(如果使用光线瞄准)。 常用的是主光线通过渐晕入瞳的中心,基本光线通过无渐晕的光阑中心。ZEMAX不使用基本光线。大部分计算都是以主光线或者中心光线作为参考。优先使用中心光线,因为它是基

相关主题
文本预览
相关文档 最新文档