当前位置:文档之家› 油层物理复习资料,

油层物理复习资料,

油层物理复习资料,
油层物理复习资料,

一.名词解释

天然气的体积系数:Bg定义为:一定量的天然气在油气层条件下(某一P,T)下的体积VR 与其在地面标准状态下(20℃,0.1MPa)所占的体积Vsc之比

天然气等温压缩率

压缩因子

泡点压力:温度一定时,压力降低过程中开始从液相中分离出第一批气泡时的压力。

露点压力:温度一定时,压力降低过程中开始从气相中凝结出第一批液滴是的压力。

饱和压力:当压力降到等于泡点压力时,体系将出现第一批气泡,此压力又称为该氢类体系的饱和压力所以泡点线有称为饱和压力线

差异分离(多级脱气):在脱气过程中,分几次降低压力,直到指定压力为止,每次降低压力时,分离出来的气体及时排出。

闪蒸分离(一次脱气):在等温条件下,压力逐渐降低到指定分离压力,待体系达到平衡之后,一次性的排出从原油中脱出的气体的分离方式。

微分分离:脱气过程中,微小降压后立即将从油中分离出的气体放掉,保持体系始终处于泡点分离状态,使气液脱离接触,即不断降压,不断排气,系统组成不断地变化。

地层油气两相体积系数:当地层压力低于饱和压力时地层中原油和析出气体的总体积与它在地面脱气后原油体积之比

凝析气藏:除含甲烷乙烷外,还含有一定数量的丙丁烷以及戊烷以上和少量的C7-C11的液态氢类的气藏

地层水的矿化度:地层水中矿物盐的总浓度

岩石的粒度组成:不同粒径范围(粒级)占全部颗粒的百分数(含量),通常用质量百分数表示。

比面:单位体积岩石内孔隙总内表面积或单位体积岩石内岩石骨架的总表面积。

原始水饱和度(束缚水饱和度):油藏投入开发前储层岩石孔隙空间中原始含水体积Vwi和岩石孔隙体积Vp的比值。

原始含油饱和度:地层中原始状态下含油体积Voi与岩石孔隙体积Vp之比。

残余油饱和度:经过某一采油方法或驱替作用后,仍然不能采出而残留于油层空隙中的原油称为残余油,其体积在岩石孔隙中所占体积的百分数称为残余油饱和度。

流体饱和度:储层岩石孔隙中某种流体所占的体积百分数

剩余油:一个油藏经过某一采油方法开采后,仍不能采出的地下原油。

岩石的绝对孔隙度:岩石的总孔隙体积Va与岩石外表体积Vb之比。

岩石的有效孔隙度:岩石中有效孔隙的体积Ve与岩石外表体积Vb之比。

岩石的流动孔隙度:在含油岩石中,可流动的孔隙体积Vf与岩石外表体积Vb之比。

表面活性剂:能够自发的吸附到两相界面而且能够急剧降低界面张力的物质。

两相界面层的自由表面能:表面层分子立场的不平衡使得这些表面层分子储存了多余的能量,我们把这种能量称为自由能,这就是两相界面层的自由表面能。

接触角:通过液-液-固(或气-液-固)三相交点做液-液(或液-气)界面的切线,切线与固-液界面之间的夹角称为接触角。

润湿相:当不相混两相流体与岩石固体接触时,能延岩石表面铺开的那一相称为润湿相。润湿反转:固体表面在活性物质吸附作用下润湿性发生转化的现象。

静润湿滞后:随润湿先后次序不同而润湿角改变的现象为静润湿滞后。

动润湿滞后:由于油、水界面各处运动速度不同而使接触角发生变化的现象称为动润湿滞后。斑状润湿:指在同一岩样的表面上由于矿物组成不同表现出不同的润湿性,油湿或水湿表面

无特定位置

混合润湿:指在大小不同的孔道其润湿性不同,小孔隙保持水湿不含油,而在大孔隙的砂粒表面由于与原油接触常是亲油的油可连续形成渠道流动

毛管压力:毛细管中产生的液面上升或下降的曲面附加压力。

毛管滞后:在其他条件相同的条件下,由于饱和顺序不同,毛细管中吸入过程产生液柱的高度小于驱替过程产生的液柱高度的现象

毛管压力曲线:毛细管压力与湿相(或非湿相)饱和度的关系曲线称为毛细管压力曲线

吸允过程:当岩石表面为亲水性时,水能在毛细管力作用下自动进入岩心,驱出了岩心中的油的过程

驱替过程:反之,当岩石表面亲油时,岩样不能自动吸水,如要使水进入岩心使水驱油,则必须施加一个外力克服毛管力的过程

流度:流体的有效渗透率与其粘度的比值,表示了该相流体流动的难易程度。

产水率:油水同产时产水量与总产液量的比值。

绝对渗透率:岩石中100%被一种流体所饱和时测定的渗透率。

相对渗透率:多相流体共存时,每一相流体有效孔隙度与一个基准渗透率的比值。

相渗透率:当岩石中有两种以上流体共流时,其中某一项流体通过能力称为某相的相渗透率。气体滑脱效应:由于气-固间的分子作用力远比液-固间的分子作用力小,在管壁处的气体分子仍有部分处于运动状态;另一方面,相邻层的气体分子由于动量交换,连同管壁处的气体分子一起沿管壁方向作定向流动,管壁处流速不为零形成所谓的气体滑脱效应又称克氏效应

二.简答

1.苏林水型:

(1)硫酸钠型:代表大陆冲刷环境条件下形成的水;

(2)重碳酸钠型:代表陆相沉积环境下形成的水;

(3)氯化镁型:代表海洋环境下形成的水;

(4)氯化钙型:代表深层封闭构造环境下形成的水。

2.岩石孔隙按大小分为:

(1)超毛细管孔隙:孔隙直径大于0.5mm或裂缝宽度大于0.25的孔隙;(2)毛细管孔隙:孔隙直径介于0.5~0.0002mm之间或裂缝宽度介于0.25~0.0001mm之间的孔隙;(3)微毛细管孔隙:孔隙直径小于0.0002mm、裂缝宽度小于0.0001mm的孔隙。

3.影响孔隙度大小因素:(1)颗粒的大小及排列方式(2)颗粒的分选性(3)岩石的矿物成分与胶结物质(4)埋藏深度与压实作用(5)成岩后生作用

4.影响岩石渗透率的因素

(1)沉积作用: (a)岩石骨架构成,岩石构造岩石的颗粒粒度,颗粒分选型,胶结物和层理等特性对渗透率均有影响,岩石构造对渗透率影响很大。b)岩石孔隙结构的影响粒度细,孔隙半径小,则岩石比面大,渗透率低。孔隙的连通性,迂曲度,内壁粗糙度等对岩石的渗透性也有影响。

(2)成岩作用:(a)地层静压力的影响b)胶结作用(c) 溶蚀作用

(3)构造作用与其他作用:

5.达西定律测定岩石绝对渗透率的条件是什么

绝对渗透率是岩石的固有特性,测定和计算岩石的绝对渗透率必须符合以下条件:

1.岩石中全部孔隙为单相液体所饱和,液体不可压缩,岩心中流动是稳态单相流

2.通过岩心的渗流为一维直线渗流

3.液体性质稳定,不与岩石发生物理化学作用

7.绝对,有效,流动孔隙度的区别

岩石的绝对孔隙度是岩石的总孔隙体积Va与岩石外表体积Vb之比。

岩石的有效孔隙度是岩石中有效孔隙的体积Ve与岩石外表体积Vb之比。计算储量和评价油气层特性时一般指有效孔隙度

岩石的流动孔隙度是在含油岩石中,可流动的孔隙体积Vf与岩石外表体积Vb之比。流动孔隙度与有效孔隙度不同,它既排出了死孔隙,又排除了微毛细管孔隙体积,在油气田开发中,流动孔隙度具有一定的实用价值

有上述定义可知:绝对孔隙度》有效孔隙度》流动孔隙度

8.什么是气体滑脱效应?对渗透率有何影响?常以哪种条件下测得的渗透率为准?

由于气-固间的分子作用力远比液-固间的分子作用力小,在管壁处的气体分子仍有部分处于运动状态;另一方面,相邻层的气体分子由于动量交换,连同管壁处的气体分子一起沿管壁方向作定向流动,管壁处流速不为零形成所谓的气体滑脱效应

影响:

1.同一岩石的气测渗透率值大于液测的岩石渗透率

2.平均压力越小,所测渗透率值Kg越大

3.不同的气体所测的渗透率值不同

4.岩石不同,气测Kg与液测K差值大小不同

综上所述,气体滑脱现象对气测渗透率有较大影响,特别是对于低渗透岩石,在低压下测定时影响更大。

通常以气测法测得的岩石渗透率更能真实的反应出岩石的渗透率,以它为准

6.储层岩石润湿性的影响因素

(1)岩石的矿物组成油藏岩石主要为砂岩和碳酸盐岩两类。因为构成砂岩矿物组成的多样性,使得砂岩表面性质,润湿性要比碳酸盐复杂的多。

(2)油藏流体组成的影响原油的组成非常复杂,按对润湿性的影响其物质可分为三类:非极性的烃类;含有极性的氧,硫,氮的化合物;原油中的极性物质或活性物质。原油中烃类所含碳原子数越多,接触角就越大。在同一表面上,油的性质不同,起润湿性可能为亲水性,也可能为亲油性。

(3)表面活性物质的影响表面活性物质吸附到岩石表面,可以使岩石的润湿性发生变化,甚至润湿反转,因此它对岩石润湿性的影响比极性物质的影响还要大。地层水中的表面活性物质能吸附于岩石表面上,吸附量会随水中的电解质的增加而减少。另外,存在于水中的某些金属离子也会改变岩石的润湿性。

(4)岩石孔隙表面的非均质性及粗糙度的影响实际岩石孔隙或者岩石表面粗糙不平,导致了各处的表面能的不均匀,因此岩石的润湿性在各处也有差异,出现斑状润湿和混合润湿。润湿性与孔隙结构,温度,压力等也有一定关系。

油和水在岩石中的分布有那些影响因素

1.储层岩石润湿性

亲水岩石而言,水附着于岩石颗粒表面和小孔隙

亲油岩石而言,油附着于岩石颗粒表面

2.流体饱和度大小

亲油岩石而言,随Sw升高,有的渠道减少,水的渠道增多,以油呈迂回状分布在孔隙,最终水在空隙中迂回分布

3.饱和度变化方向(即是湿相驱替非湿相还是非湿相驱替湿相)

亲油岩石,水(非湿相)驱替油(湿相)为驱替过程,最终油形成油膜附着于岩石颗粒表面毛细管力曲线的定性特征和定量特征

定性特征;

毛细管力曲线一般分为三段:初始段中间平缓段末端上翘段曲线表现两头陡,中间缓的特点

在初始段,随毛细管压力升高,润湿相饱和度缓慢降低,非润湿相饱和度缓慢增加

在中间平缓段,非湿相在该压力区间逐渐进入岩石空隙中,并且逐渐向小孔隙推进,非湿相饱和度增大很快而相应的毛细管压力变化则不大

在末端上翘段,非湿相进入岩心孔隙的量越来越小,毛管压力急剧升高,最后只有很少的孔隙还存在湿相流体,非湿相流体已不能把这些小孔隙中的湿相流体驱替出来

定量特征

1.阈压或称排驱压力Pt:阈压是指非湿相开始进入岩样时的最小压力,它对应于岩样最大孔隙的毛管压力。岩石渗透性好,孔隙半径大,排驱压力PT 较低,表明岩石物性较好,反之亦然。因此由排驱压力的大小,可评价岩石渗透性的好坏。利用PT 值还可确定岩石最大孔隙半径并判断岩石的润湿性。

2.饱和度中值压力Pc50:和度中值是指在驱替毛管压力曲线上饱和度为50%时相应的毛管压力值。此时对应的孔道半径是饱和度中值孔道半径r50 简称为饱和度中值半径。Pc50值越小r50 越大,表明岩石的孔渗特性越好。如果岩石的孔隙大小分布接近正态分布,r50 可粗略地视为岩石的平均孔道半径。

3.最小湿相饱和度Smin 最小湿相饱和度表示当驱替压力达到最高时。未被非湿相侵入的孔隙体积百分数。如果岩石亲水,则最小湿相饱和度代表了束缚水饱和度。反之,若岩石亲油,则Smin代表了残余残余油饱和度。最小湿相饱和度实际上是反映岩石孔隙结构的一个指标,岩石物性越好,其值越小。另外Smin值还取决于仪器的最高压力。当毛管压力曲线的陡峭段不平行压力轴时,仍把它作为束缚水饱和度来考虑会造成误差,特别对于低孔隙,低渗透的岩样,其误差会更大。

毛细管力曲线判断岩石物性

.相对渗透率曲线特征

1.两条曲线两条曲线是指润湿相对渗透率曲线,非润湿相对渗透率曲线。两条曲线成X型交叉,纵坐标为两相各自的相对渗透率Kri ,横坐标为湿相饱和度,或非湿相饱和度。

2.三个区域A区为单相油流区。这一曲线特征是由岩石中油水分布和流动情况所决定的。因为对于亲水岩石,但含水饱和度很小时,水分布在岩石颗粒表面及孔隙的边,角,狭窄部分,而油则处于大的流通孔隙中,因而水对油的流动影响很小,油的相对渗透率降低很小。分布在孔隙的边,角及颗粒表面的水仍处于非连续相,不能流动,因而称为束缚水。此时饱和度称为束缚水饱和度SWI, ,小于此饱和度水不能流动,也称为共存水饱和度或残余水饱和度等。B区为油水同流区。曲线特征为:随含水饱和度SW的逐渐增大,水相相对渗透率KRW 增加,而油相相对渗透率KRO下降。C区为纯水流动区、非润湿相的饱和度小于残余油饱和度Sor,非润湿相的失去了宏观流动性,油相相对渗透率KRO=0;与此同时润湿相占据了几乎所有的主要通道,非润湿相已失去连续性而分散成油滴分布于湿相水中并滞留于孔隙内。这些油滴由于贾敏效益对造成很大阻力,因而出现,含油饱和度越大,分散油滴越多,对水流造成的阻力越大,水相的相对渗透率离100%越远;反之亦然。

3.四个特征点四个特征点分别是束缚水饱和度SWI点,残余油饱和度SOR点,残余油饱和度下水相相对渗透率KRW点,两条曲线的交点。

4.湿相---非湿相体系相对渗透率曲线的共同特征

(a)对两相流体,无论湿相还是非湿相,都存在一个开始流动的最低饱和度,当流体饱和度小于最低饱和度时,流体不能流动。湿相的最低饱和度值大于非湿相最低饱和度。

(b)两相渗流时,由于毛细管压力产生的贾敏效应,使两相流体的渗滤能力都降低了,故两相流体的相对渗透率之和小于1;KRW+KRO为最小值时,两相相对渗透率相等。

(c)无论润湿相还是非润湿相,随着本身饱和度增加,相对渗透率增加,但非润湿相相对渗透率随饱和度增加的速率比润湿相要快。

影响相对渗透率的因素

1.岩石孔隙结构的影响由于流体饱和度分布及流动的渠道直接与孔隙大小分布有关,岩石中各相流动阻力大小不同,因此岩石孔隙的大小,几何形态及其组合特征,就是直接影响岩石的相对渗透率曲线。

2.岩石润湿性的影响岩石的润湿性对相对渗透率曲线的特征影响较大,一般岩石从强润湿到强非润湿时,非润湿相的相对渗透率将依次降低;相反,润湿相的相对渗透率将依次升高。

3.流体物性

(a)流体粘度的影响:由于润湿相在固体表面吸附的那部分液体可视作一层润湿膜,当非润湿相粘度很大时在其上流动,。当非润湿粘度较大时,就处于滑动效应,因而其相对渗透率增高了。

(b)流体中表面的活性物质的影响:分散体系于油水中的极性化合物的多少,这些物质的变化使油水界面张力,流体在岩石表面上的吸附作用发生变化。

4.油水饱和顺序的影响油水顺序不同,会影响流体在岩石孔道中的分布,润湿特征及其毛管压力特征也都会产生滞后现象。

5.温度对相对渗透率曲线的影响由于温度升高,分子热运动增大,结果使得原油粘度降低,岩石表面吸附层变薄,流动孔道增大,流动阻力降低,因而使得油相相对渗透率有所提高。

6.驱动因素影响

三.计算题

1.压缩因子Z P27例2-4

2.水型确定P17 例1-1

3.天然气体积系数Bg P37例2-8 2-9 2-10

4.天然气等温压缩率Cg

5.孔隙度(饱和煤油法)P125

6.流体饱和度P133 例5-1

7.储量计算

P296 297 11题12题

油层物理实验报告

油层物理实验报告

目录 实验一岩石孔隙度的测定错误!未定义书签。 实验二岩石比面的测定错误!未定义书签。 实验三岩心流体饱和度的测定错误!未定义书签。 实验四岩石碳酸盐含量的测定错误!未定义书签。 实验五岩石气体渗透率的测定错误!未定义书签。 实验六压汞毛管力曲线测定错误!未定义书签。 中国石油大学(油层物理)实验报告 实验日期:2010/10/20 成绩: 班级:石工08-X班学号:0802XXX 姓名:XX 教师:XXX 同组者: 实验一岩石孔隙度的测定

一.实验目的 1.巩固岩石孔隙度的概念,掌握其测定原理; 2.掌握测量岩石孔隙度的流程和操作步骤。 二.实验原理 根据玻义尔-马略特定律,在恒定温度下,岩心室体积一定,放入岩心室岩样的固相(颗粒)体积越小,则岩心室中气体所占体积越大,与标准室连通后,平衡压力越低;反之,当放入岩心室内的岩样固相体积越大,平衡压力越高。 绘制标准块的体积(固相体积)与平衡压力的标准曲线,测定待测岩样平衡压力,据标准曲线反求岩样固相体积。按下式计算岩样孔隙度: 式中,Φ-孔隙度,%;Vs-岩样固相体积,cm3;Vf-岩样外表体积,cm3。 三.实验流程与设备 (a)流程图

(b)控制面板 图1 QKY-Ⅱ型气体孔隙度仪 仪器由下列不见组成: ①气源阀:供给孔隙度仪调节低于10kpa的气体,当供气阀开启时,调节器通过常泄,使压力保持恒定。 ②调节阀:将10kpa的气体压力准确的调节到指定压力(小于10kpa)。 ③供气阀:连接经调节阀调压后的气体到标准室和压力传感器。 ④压力传感器:测量体系中气体压力,用来指示准确标准室的压力,并指示体系的平衡压力。 ⑤样品阀:能使标准室内的气体连接到岩心室。 ⑥放空阀:使岩心室中的初始压力为大气压,也可使平衡后岩心室与标准室的气体放入大气。四.实验步骤 1.用游标卡尺测量各个钢圆盘和岩样的直径与长度(为了便于区分,将钢圆盘从小到大编号为1、2、3、4),并记录在数据表中; 2.将2号钢圆盘装入岩心杯,并把岩心杯放入夹持器中,顺时针转动T形转柄,使之密封。打开样品阀及放空阀,确保岩心室气体为大气压; 3.关样品阀及放空阀,开气源阀和供气阀。调节调压阀,将标准室气体压力调至某一值,如560kPa。待压力稳定后,关闭供气阀,并记录标准室气体压力; 4.开样品阀,气体膨胀到岩心室,待压力稳定后,记录平衡压力; 5.打开放空阀,逆时针转动T形转柄,将岩心杯向外推出,取出钢圆盘; 6.用同样方法将3号、4号及全部(1~4号)钢圆盘装入岩心杯中,重复步骤2~5,记录平衡压力; 7.将待测岩样装入岩心杯,按上述方法测定装岩样后的平衡压力。 8.将上述数据填入原始记录表。 五.数据处理与计算 1.计算各个钢圆盘体积和岩样外表体积; 2.绘制标准曲线:以钢圆盘体积为横坐标,相应的平衡压力为纵坐标绘制标准曲线,如图所示(用坐标纸绘制); 3.据待测岩样测得的平衡压力,在标准曲线上反查出岩样固相体积; 4.计算岩样外表体积 L d V f2 4 1 π = ,求岩样的孔隙度; 5.符号说明:P—平衡压力,KPa; V s —岩样固相体积,cm3; V f—岩样外表体积,cm3;d—岩样直径,cm; L—岩样长度,cm;Φ—孔隙度,%。表一原始数据记录表

《油层物理》模拟题

《油层物理》模拟题 一、填空题 1、地层油的特点是处于地层、下,并溶有大量的。 2、在高压下,天然气的粘度随温度的升高而,随分子量的增加而。 3、岩石粒度组成的分析方法主要有、和。 4、与接触脱气相比,多级分离的特点是分离出的气量,轻质油组分,得到的地面油量。 5、当岩石表面亲水时,毛管力是水驱油的;反之,是水驱油的。 6、根据苏林分类法,地层水主要分为型、型、型和型。 7、天然气在原油中的溶解度主要受、、等的影响。 8、砂岩的胶结类型主要有、和三种,其中的胶结强度最大。。 9、火烧油层的方式主要有、和。 10、单组分烃的相图实际是该烃的线,该曲线的端点称为。 11、流度比的值越,越有利于提高原油采收率。 12、对应状态定律指出:在相同的和下,所有的纯烃气体都具有相同的。 13、油藏的驱动方式以命名。 14、一般而言,油越稠,油水过渡带越。其依据的公式是。 15、储层岩石的“孔渗饱”参数是指岩石的、和。 16、单组分气体在液体中的溶解服从定律。 二、名词解释 1、砂岩的粒度组成 2、地层油的等温压缩系数 3、润湿 4、平衡常数 5、贾敏效应 6、两相体积系数 7、压缩因子 8、溶解气油比 9、相对渗透率 10、波及系数 11、润湿反转 12、天然气的等温压缩系数 13、驱替过程 14、吸附 15、相渗透率 16、洗油效率 17、毛管力18、流度比 19、岩石的比面 20、界面张力 三、做图题 1、画出双组分烃的相图,标出临界点、气相区、液相区和两相区的位置,并简要说明其相态特征。

2、画出典型的油水相对渗透率曲线,标出三个区,并简单描述其分区特征。 3、画出单组分烃的相图,并标出临界点、气相区、液相区和两相区的位置。 4、画出典型的毛管力曲线,并标出阈压、饱和度中值压力、最小湿相饱和度。 5、岩石(a)、(b)分别放入水中,岩石下部有一油滴,形状如下图所示,试画出润湿角?并说明两岩石的润湿性? 四、简答题 1、简要说明油水过渡带含水饱和度的变化规律,并说明为什么油越稠油水过渡带越宽? 2、简要说明提高原油采收率的途径,并结合现场实际,给出现场应用的两种提高采收率方法。 3、什么是气体滑动效应?它对渗透率的测量有何影响? 4、给出两种判断岩石润湿性的方法,并简要说明其判断的依据。 5.结合自己的工作实际,各举一例说明贾敏效应的利与弊。 五、计算题 1、设某天然气的摩尔组成和临界参数如下: (1)、天然气的视分子量; (2)、天然气的相对密度(空气的分子量为29); (3)、该天然气在50℃、10MPa下的视对应温度和视对应压力。 2、一柱状岩心,长度L=5cm,直径d=2cm,岩心被100%地饱和粘度μw=1mPa.s的盐水,当岩心两端压差ΔP=0.05MPa 时,测得的流量为Q w=18.84cm3/min.,求该岩心的渗透率。 3.设一直径为2.5cm,长度为3cm的圆柱形岩心,用稳定法测定相对渗透率,岩心100%饱和地层水时,在0.3MPa 的压差下通过的地层水量为0.8cm3/s;当岩心中含水饱和度为30%时,在同样的压差下,水的流量为0.02 cm3/s,油的流量为0.2 cm3/s。油粘度为:3mPa.s,地层水的粘度为1mPa.s。求: (1)岩石的绝对渗透率? (2)Sw=30%时油水的有效渗透率、相对渗透率? 4某油藏藏含油面积A=15km2,油层有效厚度h=10m,孔隙度φ=20%,束缚水饱和度S wi=20%,在原始油藏压力

油层物理实验报告岩石孔隙度测定

中国石油大学《油层物理》实验报告 实验日期: 成绩: 班级:石工11-1班 学号: 姓名:李悦静 教师: 同组者: 徐睿智 实验一 岩石孔隙度测定 一、实验目的 1. 掌握气测孔隙度的流程和操作步骤。 2. 巩固岩石孔隙度的概念,掌握其测定原理。 二、实验原理 根据玻义尔定律,在恒定温度下,岩心室一定,放入岩心杯岩样的固相(颗粒)体积越小,则岩心室中气体所占体积越大,与标准室连通后,平衡压力越低;反之,当放入岩心室内的岩样固相体积越大,平衡压力越高。 绘制标准块的体积(固相体积)与平衡压力的标准曲线,测定待测岩样平衡压力,根据标准曲线反求岩样固相体积。按下式计算岩样孔隙度: 100%f s f V V V ?-= ? 测定岩石骨架体积可以用①气体膨胀法 11221()()Po Vo Vs PV P Vo V V -+=-+ ②气体孔隙度仪 三.实验流程

图1 实验流程图 图2 QKY-Ⅱ型气体孔隙度仪 四、实验操作步骤 1. 将钢圆盘从小到大编号为1、2、3、4; 2. 用游标卡尺测量各个钢圆盘和岩样的直径与长度,并记录在数据表中; 3. 打开样品阀及放空阀,确保岩心室气体为大气压; 4. 将2号钢圆盘装入岩心杯,并把岩心杯放入夹持器中,顺时针转动T形转柄,使之密封。 5. 关样品阀及放空阀,开气源阀、供气阀,调节调压阀,将标准室压力调至某一值,如560kPa。待压力稳定后,关闭供气阀,并记录标准室气体压力。 6. 开样品阀,气体膨胀到岩心室,待压力稳定后,记下此平衡压力。 7. 开放空阀至大气压,关样品阀,逆时针转动T形转柄一周,将岩心室向外推出,取出钢圆盘。 8. 用同样方法将3号、4号、全部(1号-4号)及两两组合的三组钢圆盘装入

油层物理复习题答案

《油层物理》综合复习资料 一、名词解释 1、相对渗透率:同一岩石中,当多相流体共存时,岩石对每一相流体的有效渗透率与岩石绝对渗透率的比值。 2、润湿反转:由于表面活性剂的吸附,而造成的岩石润湿性改变的现象。 3、泡点:指温度(或压力)一定时,开始从液相中分离出第一批气泡时的压力(或温度)。 4. 流度比:驱替液流度与被驱替液流度之比。 5、有效孔隙度:岩石在一定的压差作用下,被油、气、水饱和且连通的孔隙体积与岩石外表体积的比值。 6、天然气的压缩因子:在一定温度和压力条件下,一定质量气体实际占有的体积与在相同条件下理想气体占有的体积之比。 7、气体滑动效应:在岩石孔道中,气体的流动不同于液体。对液体来讲,在孔道中心的液体分子比靠近孔道壁表面的分子流速要高;而且,越靠近孔道壁表面,分子流速越低;气体则不同,靠近孔壁表面的气体分子与孔道中心的分子流速几乎没有什么差别。Klinbenberg把气体在岩石中的这种渗流特性称之为滑动效应,亦称Klinkenberg效应。 8、毛管力:毛细管中弯液面两侧两相流体的压力差。 9、润湿:指液体在分子力作用下在固体表面的流散现象。 10、洗油效率:在波及范围内驱替出的原油体积与工作剂的波及体积之比。 11、束缚水饱和度:分布和残存在岩石颗粒接触处角隅和微细孔隙中或吸附在岩石骨架颗粒表面的不可能流动水的体积占岩石孔隙体积的百分数称为束缚水饱和度。 12、地层油的两相体积系数:油藏压力低于饱和压力时,在给定压力下地层油和其释放出气体的总体积与它在地面脱气后的体积之比。 13、吸附:溶质在相界面浓度和相内部浓度不同的现象。 二、填空题 1、1、润湿的实质是_固体界面能的减小。 2、天然气的相对密度定义为:标准状态下,天然气的密度与干燥空气的密度之比。 3、地层油的溶解气油比随轻组分含量的增加而增加,随温度的增加而减少;当压力小于泡点压力时,随压力的增加而增加;当压力高于泡点压力时,随压力的增加而不变。 4、常用的岩石的粒度组成的分析方法有:筛析法和沉降法。 5、地层水依照苏林分类法可分为氯化钙、氯化镁、碳酸氢钠和硫酸钠四种类型。 6、砂岩粒度组成的累计分布曲线越陡,频率分布曲线尖峰越高,表示粒度组成越均匀; 7、灰质胶结物的特点是遇酸反应;泥质胶结物的特点是遇水膨胀,分散或絮凝;硫酸盐胶结物的特点是_高温脱水。 8、天然气的体积系数远远小于1。 9、同一岩石中各相流体的饱和度之和总是等于1。 10、对于常规油气藏,一般,地层流体的B o>1,B w≈1,B g<< 1 11、地层油与地面油的最大区别是高温、高压、溶解了大量的天然气。 12、油气分离从分离原理上通常分为接触分离和微分分离两种方式。 13、吸附活性物质引起的固体表面润湿反转的程度与固体表面性质、活性物质的性质、活性物质的浓度等因素有关。

油层物理岩石比面测定

中国石油大学 油层物理 实验报告 实验日期: 2011.10.13 成绩: 班级: 学号: 姓名: 教师: 张丽丽 同组者: 无 岩石比面测定 一. 实验目的: 1.巩固岩石比面的概念。 2.了解岩石比面的测定原理和方法。 二.实验原理: 比面是指单位体积岩石体积内颗粒的总表面积,或单位岩石体积内总空隙度 得表面积.比面通常可以分为以岩石外表体积估计体积和空隙体积为基数的比面,根据毛管模型,以岩石表面体积为基数的比面计算公式为: μ φφ 1 )1(14 2 3 Q H L A S v -= 式中 v S —以岩石骨架为基础的比面,32/cm cm ; φ-孔隙度,小数; A-截面积,小数; L-长度,cm ; H-岩石两端的压差,cm ; Q-通过岩心的空气流量,s cm 3 ;μ空气的粘度,mP a ·S 。 当孔隙度已知,A 和L 可以用游标卡尺直接测出,μ由查表得到后,只要通过 压力计测得空气通过岩样的压差H 和相应的流量 Q ,便可求出岩样的比面。 三、实验流程图

四、实验操作步骤 1.打开水罐进液阀放空阀,向水罐中注水,大约灌2/3体积时停止,关闭水罐进液阀及放空阀; 2.用游标卡尺测出岩样的长度和直径,计算岩样的截面积; 3.将岩样放入岩石夹持器,关闭环压放空阀,打开换压阀加压,确保岩样与夹持器之间无气体窜流; 4.准备好秒表,打开流量控制阀,并控制流出的水量,待压力计的压力稳定在某一H 值后,测量一定时间内流出得水量,用同样地方法至少测定三个水流量和与之相应的H 值。(如果岩石渗透率较低,关闭水柱阀,用汞柱差计读取岩石心上游压力,并将汞柱压力转换成水柱高度。); 5.关闭流量控制阀,关闭环压阀,缓慢打开环压放空阀,结束实验。 五、实验数据处理 空气粘度u(mP.s)=0.01819mP.s 孔隙度φ(%)=27.8% 表1、岩石比面测定原始记录 分别计算三组数据的v S 值,取平均值如下: 3 2 2 3 2 3 1/3.9400001819 .010919 .08.1706 .4784.4) 278.01(278 .0141 )1(14 cm cm Q H L A S v =? ? ? -? =-=μ φφ

油层物理期末复习

油层物理期末复习 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

油层物理复习重点 一、名词解释:7个,21分, 二、按题意完成:5个,42分, 三、计算题:3个,37分,4-5分 8-9分 20几分(多步完成,按步给分) 第一章 1.粒度组成概念,主要分析方法,粒度曲线的用途 2.比面概念,物理意义 3.空隙分类(大小,连通性,有效性;毛细管空隙,超毛细管空隙,微毛细管空隙), 孔隙度概念(绝对孔隙度,有效孔隙度,流动孔隙度,连通孔隙度的概念与区别), 孔隙度的测定(给定参数会计算,不要求测定的具体步骤) 4.岩石压缩系数及其含义,地层综合弹性压缩系数,弹性驱油量的计算 5.流体饱和度的概念(落实到具体的物质,油、水、气;初始含油、水、气饱和度,残余流体饱和度的概念,束缚水饱和度) 饱和度测定(各种饱和度,会根据给定参数计算) 7.达西定律,及达西公式的物理意义,岩石绝对渗透率感念,液测、气测渗透率的计算方法,液测气测渗透率与岩石绝对渗透率的关系,根据达西定律测定岩石渗透率要满足的三个测定条件,气体滑脱效应对气测渗透率的影响,及影响滑脱效应的因素。 8.胶结概念与类型, 粘土矿物:水敏,酸敏,速敏等,会判断具体的矿物如蒙脱石,高岭石,绿泥石 第二章 1.烃类体系P-T相图,划分相区,临界点,临界凝析温度,临界凝析压力,露点线,泡点线,等液量线,等温反凝析区等术语,露点,泡点,露点压力和泡点压力概念,等温反凝析概念,反凝析作用,对凝析气藏开发的影响,用相图判断油气藏类型。

(露点概念:气相体系生出第一滴液滴时的温度压力点;露点压力:气相体系生出第一滴液滴时的压力) 2.油气分离的两种方式,特点及其结果的差异,以及产生差异的原因,天然气分子量概念,天然气在原油中的溶解规律 3.油气高压物性参数的概念,高压物性参数随压力的变化关系,(肯定会考曲线;不考随温度的变化) 4.平衡常数概念(哪两个之间的平衡关系,) 相平衡中的一些平衡关系(物质平衡,相平衡) 第三章 1.界面张力的概念,界面吸附的两种类型 2.润湿接触角概念,润湿程度判定参数、方法(常用接触角),润湿滞后概念,前进角,后退角概念,润湿滞后对水驱油得影响。 3.油藏润湿性类型,油藏润湿性的影响因素 4毛细管压力概念,毛细管中液体上升高度计算,毛细管滞后,吸入和驱替过程等概念(毛管力是动力,阻力),毛细管压力曲线的测定方法(3种), 毛细管压力曲线的特征(定性上的曲线三段,定量上的3个参数) 毛细管压力曲线应用(判断润湿性,划分过渡带,评价孔隙结构,算驱替效率) 5.有效渗透率,相对渗透率,流度,流度比,驱替效率,含水率的概念与计算,相对渗透率曲线图形特征,相对渗透率曲线的影响因素,克雷格法则判断润湿性,相对渗透率曲线的应用(求前面的有效渗透率,相对渗透率等参数)

中国石油大学(华东)油层物理课后题问题详解

简要说明为什么油水过渡带比油气过渡带宽?为什么油越稠,油水过渡带越 宽? 答:过渡带的高度取决于最细的毛细管中的油(或水)柱的上升高度。由于 油藏中的油气界面张力受温度、压力和油中溶解气的影响,油气界面张力很 小,故毛管力很小,油气过渡带高度就很小。因为油水界面张力大于油气界 面张力,故油水过渡带的毛管力比油气过渡带的大,而且水油的密度差小于 油的密度,所以油水过渡带比油气过渡带宽,且油越稠,水油密度差越小, 油水过渡带越宽 四、简答题 1、简要说明油水过渡带含水饱和度的变化规律,并说明为什么油越稠油水过渡带越宽? 由于地层中孔隙毛管的直径大小是不一样的,因此油水界面不是平面,而是一个过渡带。从地层底层到顶层,油水的分布一般为:纯水区——油水过渡区——纯油区。由下而上,含水饱和度逐渐降低。 由式:,在PcR 一定时,油水的密度差越小,油水的过渡带将越宽。油越稠,油水密度 差越小,所以油越稠,油水过渡带越宽。 来源于骄者拽鹏 习题1 1.将气体混合物的质量组成换算为物质的量的组成。气体混合物的质量组成如下: %404-CH ,%1062-H C ,%1583-H C ,%25104-H C ,%10105-H C 。 解:按照理想气体计算: 2.已知液体混合物的质量组成:%.55%,35%,1012510483---H C H C H C 将此液体混合物的质量组成换算为物质的量的组成。

解: 3.已知地面条件下天然气各组分的体积组成:%23.964-CH ,%85.162-H C , %83.083-H C ,%41.0104-H C , %50.02-CO ,%18.02-S H 。若地层压力为15MPa , 地层温度为50C O 。求该天然气的以下参数:(1)视相对分子质量;(2)相对密度;(3)压缩因子;(4)地下密度;(5)体积系数;(6)等温压缩系数;(7)粘度;(8)若日产气为104m 3,求其地下体积。 解: (1)视相对分子质量 836.16)(==∑i i g M y M (2)相对密度 580552029 836 16..M M a g g == = γ (3)压缩因子

油层物理流体饱和度的测定实验报告

中国石油大学油层物理实验报告 实验日期: 2014.9.22 成绩: 班级: 石工1209 学号: 12021409 姓名: 陈相君 教师: 同组者: 魏晓彤,王光彬等 岩心流体饱和度的测定 一.实验目的 1.巩固和加深油、水饱和度的概念; 2.掌握干馏仪测定岩心中油、水饱和度的原理及方法。 二.实验原理 把含有油、水的岩样放入钢制的岩心筒内加热,通过电炉的高温将岩心中的油,水变为油、水蒸汽蒸出,通过冷凝后变为液体收集于量筒中,读出油、水体积,查原油体积校正曲线,得到校正后的油体积,求出岩样孔隙体积,计算油、水饱和度: %100?= p o o V V S %100?= p w w V V S 式中:S o —含油饱和度,%; S w —含水饱和度,%; V o —校正后的油量,m l ; Vp —岩心外表体积。 三.实验流程

图1流程图 (a)控制面板(b)筒式电炉 1—温度传感器插孔; 2—岩心筒盖; 3—测温管;4—岩心筒; 5—岩心筒加 热炉; 6—管式加热炉托架; 7—冷凝水出水孔;8—冷凝水进水孔;9- 冷凝器

图 2 BD-Ⅰ型饱和度干馏仪 四、实验操作步骤 1.精确称量饱和油水岩样的质量(100-175克),将其放入干净的岩心筒内,上紧上盖; 2.将岩心筒放入管状立式电炉中,使冷水循环,将温度传感器插杆装入温度传感器插孔中,把干净的量筒放在仪器出液口的下面 3.然后打开电源开关,设定初始温度为120℃,; 4.当量筒中水的体积不再增加时(约20分钟),记录下水的体积;把温度设定为300℃,继续加热20~30分钟,直至量筒中油的体积不再增加,关上电源开关,5分钟后关掉循环水,记录量筒中油的体积读值。 5.从电炉中取出温度传感器及岩心筒,用水冲洗降温后打开上盖,倒出其中的干岩样称重并记录。 为了补偿在干馏中因蒸发、结焦或裂解所导致的原油体积读值的减少,应通过原油体积校正曲线对蒸发的原油体积进行校正。根据蒸出的水量—时间关系,对水的体积进行校正(曲线初始平缓段对应水量)。 五.数据处理与计算

油层物理期末复习2017

油层物理复习重点 一、名词解释:7个,21分, 二、按题意完成:5个,42分, 三、计算题:3个,37分,4-5分8-9分20几分(多步完成,按步给分) 第一章 1.粒度组成概念,主要分析方法,粒度曲线的用途 2.比面概念,物理意义 3.空隙分类(大小,连通性,有效性;毛细管空隙,超毛细管空隙,微毛细管空隙), 孔隙度概念(绝对孔隙度,有效孔隙度,流动孔隙度,连通孔隙度的概念与区别), 孔隙度的测定(给定参数会计算,不要求测定的具体步骤) 4.岩石压缩系数及其含义,地层综合弹性压缩系数,弹性驱油量的计算 5.流体饱和度的概念(落实到具体的物质,油、水、气;初始含油、水、气饱和度,残余流体饱和度的概念,束缚水饱和度) 饱和度测定(各种饱和度,会根据给定参数计算) 7.达西定律,及达西公式的物理意义,岩石绝对渗透率感念,液测、气测渗透率的计算方法,液测气测渗透率与岩石绝对渗透率的关系,根据达西定律测定岩石渗透率要满足的三个测定条件,气体滑脱效应对气测渗透率的影响,及影响滑脱效应的因素。 8.胶结概念与类型,

粘土矿物:水敏,酸敏,速敏等,会判断具体的矿物如蒙脱石,高岭石,绿泥石 第二章 1.烃类体系P-T相图,划分相区,临界点,临界凝析温度,临界凝析压力,露点线,泡点线,等液量线,等温反凝析区等术语,露点,泡点,露点压力和泡点压力概念,等温反凝析概念,反凝析作用,对凝析气藏开发的影响,用相图判断油气藏类型。 (露点概念:气相体系生出第一滴液滴时的温度压力点;露点压力:气相体系生出第一滴液滴时的压力) 2.油气分离的两种方式,特点及其结果的差异,以及产生差异的原因,天然气分子量概念,天然气在原油中的溶解规律 3.油气高压物性参数的概念,高压物性参数随压力的变化关系,(肯定会考曲线;不考随温度的变化) 4.平衡常数概念(哪两个之间的平衡关系,) 相平衡中的一些平衡关系(物质平衡,相平衡) 第三章 1.界面张力的概念,界面吸附的两种类型 2.润湿接触角概念,润湿程度判定参数、方法(常用接触角),润湿滞后概念,前进角,后退角概念,润湿滞后对水驱油得影响。 3.油藏润湿性类型,油藏润湿性的影响因素 4毛细管压力概念,毛细管中液体上升高度计算,毛细管滞后,吸入和驱替过程等概念(毛管力是动力,阻力),毛细管压力曲线的测定方法(3种),

《油层物理》第一阶段在线作业

第1题下列关于油层物理学发展情况说法错误的是—— 您的答案:D 题目分数:0.5 此题得分:0.5 批注:油层物理学的发展概况 第2题研究地层流体物化性质的意义在于—— 您的答案:B 题目分数:0.5 此题得分:0.5 批注:地层流体物化性质研究的意义 第3题石油与天然气从化学组成上讲为同一类物质,两者只是分子量不同而已。现已确定石油中烃类主要是烷烃、环烷烃和芳香烃这三种饱和烃类构成;天然气是以——为主的烷烃。 您的答案:A 题目分数:0.5 此题得分:0.5 批注:天然气组成 第4题 .烷烃由于其分子量大小不同,存在形态也不同,在常温常压(20℃,0.1MPa)下,——为固态,即所谓石蜡,以溶解或者结晶状态存在于石油中。 您的答案:C 题目分数:0.5 此题得分:0.5 批注:烷烃常温常压存在形态 第5题下列不属于石油中烃类化合物的是—— 您的答案:D 题目分数:0.5 此题得分:0.5 批注:什么是烃类化合物 第6题国际石油市场评价石油商品性质的主要指标不包括下列—— 您的答案:C 题目分数:0.5

此题得分:0.5 批注:评价石油好坏的标准 第7题表示石油物理性质的参数不包括下列—— 您的答案:A 题目分数:0.5 此题得分:0.5 批注:石油物性参数有哪些 第8题已知60℉(15.6℃)原油相对密度为1,那么该原油的API度为—— 您的答案:B 题目分数:0.5 此题得分:0.5 批注:API度定义 第9题地面原油通常按照石油商品性质分类和评价,下列不属于地面原油分类依据的有—— 您的答案:D 题目分数:0.5 此题得分:0.5 批注:地面原油分类 第10题粘度是地层油的主要物性之一,它决定着油井产能的大小、油田开发的难易程度及油藏的最终采收率。下列不属于地层油按粘度分类的有—— 您的答案:D 题目分数:0.5 此题得分:0.5 批注:地层原油分类 第11题下列对地层流体类别划分正确的是—— 您的答案:A 题目分数:0.5 此题得分:0.5 批注:地层流体指什么 第12题下列油气藏类型中不属于按照流体特征分类的有——

西南石油大学油层物理习题答案

第一章 储层岩石的物理特性 24、下图1-1为两岩样的粒度组成累积分布曲线,请画出与之对应的粒度组成分布曲线,标明坐标并对曲线加以定性分析。 ∑Log d i W Wi 图1-1 两岩样的粒度组成累积分布曲线 答:粒度组成分布曲线表示了各种粒径的颗粒所占的百分数,可用它来确定任一粒级在岩石中的含量。曲线尖峰越高,说明该岩石以某一粒径颗粒为主,即岩石粒度组成越均匀;曲线尖峰越靠右,说明岩石颗粒越粗。一般储油砂岩颗粒的大小均在1~0.01mm 之间。 粒度组成累积分布曲线也能较直观地表示出岩石粒度组成的均匀程度。上升段直线越陡,则说明岩石越均匀。该曲线最大的用处是可以根据曲线上的一些特征点来求得不同粒度属性的粒度参数,进而可定量描述岩石粒度组成的均匀性。 曲线A 基本成直线型,说明每种直径的颗粒相互持平,岩石颗粒分布不均匀;曲线B 上升段直线叫陡,则可看出曲线B 所代表的岩石颗粒分布较均匀。 30、度的一般变化范围是多少,Φa 、Φe 、Φf 的关系怎样?常用测定孔隙度的方 法有哪些?影响孔隙度大小的因素有哪些? 答:1)根据我国各油气田的统计资料,实际储油气层储集岩的孔隙度范围大致为:致密砂岩孔隙度自<1%~10%;致密碳酸盐岩孔隙度自<1%~5%;中等砂岩孔隙度自10%~20%;中等碳酸盐岩孔隙度自5%~10%;好的砂岩孔隙度自20%~35%;好的碳酸盐岩孔隙度自10%~20%。 2)由绝对孔隙度a φ、有效孔隙度e φ及流动孔隙度ff φ的定义可知:它们之间的关系应该是a φ>e φ>ff φ。 3)岩石孔隙度的测定方法有实验室内直接测定法和以各种测井方法为基础的间接测定法两类。间接测定法影响因素多,误差较大。实验室内通过常规岩心

岩石孔隙度测定 实验报告

中国石油大学油层物理实验报告 实验日期:2010年11月22日成绩: 班级:资源(中石化)07-1班学号:07131419姓名:武鑫彪教师:张丽丽同组者:无 实验内容:岩石孔隙度测定 一、实验目的 1.悉知岩石孔隙度的概念,掌握其测定原理(膨胀法测定孔隙度)。 2.掌握气测孔隙度的流程与操作步骤。 二、实验原理 根据波义耳定律,在恒定温度下,岩心室体积一定,放入岩心室样品的固相(颗粒)体积越小,则岩心室中气体所占体积越大,与标准室连通后,平衡压力越低;反之,当放入岩心室内的岩样固相体积越大,平衡压力越高。 绘制标准块的体积(固相体积)与平衡压力的标准曲线,测定待测岩样平衡压力,据标准曲线反求岩样固相体积。按下式计算岩样孔隙度: % 100×?=f s f V V V φ三、实验流程与设备 图1.流程图 图2.控制面板

设备:QKY-II型气体孔隙度仪 仪器部件组成: 1气源阀:供给孔隙度仪调节器低于1000KPa的气体。当供气阀开启时,调节器通过常泄,使压力保持稳定。 2调节阀:将1000KPa的气体准确地调节到指定压力(小于1000KPa)。 3供气阀:连接经调节阀后的气体到标准室和压力传感器。 4压力传感器:测量体系中气体压力,用来指示准确标准室的压力,并指示体系的平衡压力。 5样品阀:能使标准室的气体连接到岩心室。 6放空阀:使岩心室中的初始压力为大气压,也可使平衡后的岩心室与标准室的气体放入大气。 四、实验步骤 1.用游标卡尺测量各个钢圆盘和岩样的直径与长度(为了便于区分,将钢圆 盘从小到大编号为1、2、3、4),并记录在数据表中。 2.将2号钢圆盘装入岩心杯,并把岩心杯放入夹持器中,顺时针转动T形 转柄,使之密封。打开样品阀及放空阀,确保岩心室气体为大气压。 3.关样品阀及放空阀,开气源阀和供气阀。调节调压阀,将标准室气体压 力调至某一值(如560KPa)。待压力稳定后,关闭供气阀,并记录标准 室气体压力。 4.开样品阀,气体膨胀到岩心室,待压力稳定后,记录平衡压力。 5.打开放空阀,逆时针转动T形转柄,将岩心杯向外推出,取出钢圆盘。 6.用同样的方法将3号、4号及全部(1-4)钢圆盘装入岩心杯中,重复步 骤2~5,记录平衡压力。 7.将待测岩样装入岩心杯,按上述方法测定装岩样后的平衡压力。 8.将上述数据填入原始记录表。 五、数据处理与计算 1.计算各个钢圆盘体积和岩样外表体积。 2.绘制标准曲线:以钢圆盘体积为横坐标,相应的平衡压力为纵坐标绘制 标准曲线。 P——平衡压力,KPa; V ——岩样固相体积,cm3; s V ——岩样外表体积,cm3; f d——岩样直径,cm; L——岩样长度,cm; Ф——孔隙度,%。

中国石油大学(北京)《油层物理》期末考试试卷

中国石油大学(北京)2008 —2009学年第二学期 《油层物理》期末考试试卷A(闭卷考试)班级:姓名:学号:分数: (试题和试卷一同交回) 一.解释下列名词与基本概念(每题3分,共12分) 1.原油相对密度 2.露点压力 3.克氏渗透率 4.双重孔隙介质 二.简述题(每题8分,共24分) 1.水敏、速敏的含义各是什么? 2.简述岩石润湿性特征的相对性和可变性,并举例说明。 3.试举例说明等渗点的定义及其渗流物理涵义。 三.论述题(每题8分,共16分) 1.什么是饱和压力?在油藏开发过程中,一般需要控制地层压力高于还是低于饱和压力?为什么? 2.论述地层原油粘度随溶解气油比和压力的变化规律(注意区分当压力低于饱和压力或高于饱和压力时)。 四.计算与求证(每题12分,共48分) 1.某油藏含油面积为A=14.4km2, 油层有效厚度h=11m, 孔隙度φ=0.21,束缚水饱和度S wi= 0.3, 原油体积系数B o=1.2,原油相对密度d420=0.87, 试计算该

油藏的原油储量(地面体积)为多少m3(8分), 合多少吨?(4分) 2.当储层中只含有油水两相时,储层岩石的综合弹性压缩系数C t为: C t = C f + C Lφ= C f+(C o S o+ C w S w)φ 式中:C L, C f ——分别为储层流体与储层岩石的压缩系数,MPa-1 C o, C w ——分别为储层中油、水的压缩系数,MPa-1 φ——岩石孔隙度,小数。 试求证:C L=C o S o + C w S w 3.在一砂岩岩样上测得油、水相对渗透率数据如下表。 试计算或回答下列问题:(1)、驱油效率。(4分) (2)、若岩芯的绝对渗透率185毫达西,求Sw=50%时油、水的有效渗透率。(4分) (3)、如果水的粘度μw=1.1mPa.s,油的粘度μo=1.9mPa.s,计算Sw=64.4%时的水的分流量fw。(4分) 4.实验室内由水驱气实验资料确定的J(Sw)函数如下表: 已知油藏数据:孔隙度Φ=0.30,渗透率K=300×10μm,天然气密度ρg=24kg/m3;水的密度ρw=1000kg/m3;气-水界面张力σgw=45dyn/cm,气-水接触角θgw=0°。试计算气藏气-水过渡带厚度。

油层物理(第二册)课后习题答案

第一章 储层岩石的物理特性 24、下图1-1为两岩样的粒度组成累积分布曲线,请画出与之对应的粒度组成分布曲线,标明坐标并对曲线加以定性分析。 Log d i W Wi 图1-1 两岩样的粒度组成累积分布曲线 答:粒度组成分布曲线表示了各种粒径的颗粒所占的百分数,可用它来确定任一粒级在岩石中的含量。曲线尖峰越高,说明该岩石以某一粒径颗粒为主,即岩石粒度组成越均匀;曲线尖峰越靠右,说明岩石颗粒越粗。一般储油砂岩颗粒的大小均在1~之间。 粒度组成累积分布曲线也能较直观地表示出岩石粒度组成的均匀程度。上升段直线越陡,则说明岩石越均匀。该曲线最大的用处是可以根据曲线上的一些特征点来求得不同粒度属性的粒度参数,进而可定量描述岩石粒度组成的均匀性。 曲线A 基本成直线型,说明每种直径的颗粒相互持平,岩石颗粒分布不均匀;曲线B 上升段直线叫陡,则可看出曲线B 所代表的岩石颗粒分布较均匀。 30、 孔隙度的一般变化范围是多少常用测定孔隙度的方法有哪些影响孔隙度 大小的因素有哪些 答:1)根据我国各油气田的统计资料,实际储油气层储集岩的孔隙度范围大致为:致密砂岩孔隙度自<1%~10%;致密碳酸盐岩孔隙度自<1%~5%;中等砂岩孔隙度自10%~20%;中等碳酸盐岩孔隙度自5%~10%;好的砂岩孔隙度自20%~35%;好的碳酸盐岩孔隙度自10%~20%。 3)岩石孔隙度的测定方法有实验室内直接测定法和以各种测井方法为基础的间接测定法两类。间接测定法影响因素多,误差较大。实验室内通过常规岩心分析法可以较精确地测定岩心的孔隙度。 # 4)对于一般的碎屑岩 (如砂岩),由于它是由母岩经破碎、搬运、胶结和压实而成,因此碎屑颗粒的矿物成分、排列方式、分选程度、胶结物类型和数量以

油层物理课后习题答案

第一章 1.将气体混合物的质量组成换算为物质的量的组成。气体混合物的质量组成如下: %404-CH ,%1062-H C ,%1583-H C ,%25104-H C ,%10105-H C 。 解:按照理想气体计算: 2.已知液体混合物的质量组成:%.55%,35%,1012510483---H C H C H C 将此液体混合物的质量组成换算为物质的量的组成。 解: 3.已知地面条件下天然气各组分的体积组成:%23.964-CH ,%85.162-H C , %83.083-H C ,%41.0104-H C , %50.02-CO ,%18.02-S H 。若地层压力为15MPa , 地层温度为50C O 。求该天然气的以下参数:(1)视相对分子质量;(2)相对密度;(3)压缩因子;(4)地下密度;(5)体积系数;(6)等温压缩系数;(7)粘度;(8)若日产气为104m 3,求其地下体积。 解:

(1)视相对分子质量 836.16)(==∑i i g M y M (2)相对密度 580552029 836 16..M M a g g ===γ (3)压缩因子 244.3624.415=== c r p p p 648.102 .19627350=+==c r T T T (4)地下密度 )(=) (3/95.11127350008314.084.0836.1615m kg ZRT pM V m g g +???===ρ

(5)体积系数 )/(10255.6202735027315101325.084.0333m m T T p p Z p nRT p ZnRT V V B sc sc sc sc gsc gf g 标-?=++??=??=== (6)等温压缩系数 3.244 1.648 0.52 []) (== 1068.0648 .1624.452 .0-???= MPa T P T C C r c r gr g (7)粘度 16.836 50 0.0117

高压物性实验报告

中国石油大学(油层物理)实验报告 实验日期: 2011-11-2 成绩: 班级: 中石化0903—26 学号: 09133206 姓名: 冯延苹 教师: 张俨彬 同组者: 金超林 、胡星杰、吕超 实验七 地层油高压物性测定 一、 实验目的 1.掌握地层油高压物性仪的结构及工作原理; 2.掌握地层油的饱和压力、单次脱气的测定方法; 3.掌握地层油溶解汽油比、体积系数、密度等参数的确定方法; 4.掌握落球法测量地层油粘度的原理及方法。 二、 实验原理 1.绘制地层油的体积随压力的关系、在泡点压力前后,曲线的斜率不同,拐点处对应的应力即为泡点压力。 2.使PVT 筒内的压力保持在原始压力,保持压力不变将PVT 筒内一定量的地层油放入分离瓶中,记录放出的地下体积,记录分离瓶中分出的油、气的体积,便可计算地层油的溶解气油比、体积系数等数据。 3.在地层条件下,钢球在光滑的盛有地层油的标准管中自由下落,通过记录钢球的下落时间,由下式计算原油的粘度: t k )(21ρρμ-= 其中 μ—原油动力粘度,mPa ·s ; t —钢球下落时间,s ; 1ρ、2ρ—钢球和原油的密度,3/cm g ; k —粘度计常数,与标准管的倾角、钢球的尺寸及密度有关。 三、实验流程 四、实验步骤 1.泡点压力测定 (1)粗测泡点压力 从地层压力起点以恒定的速度退泵,压力以恒定速度降低,当压力下降速度减慢或不下降甚至回升时,停止退泵。稳定后的压力即为粗测的泡点压力。 (2)细测泡点压力 A .升压至地层压力,让析出的气体完全溶解到油中。从地层压力开始降压,每降低一定压力(如2.0MPa )记录压力稳定后的泵体积读数; B .当压力降至泡点压力以下时,油气混合物体积每次增大一定值(如5cm 3),

中国石油大学(北京)远程教育油层物理期末复习题

《油层物理》期末复习题 一、选择题 1、根据苏林分类方法,下列不属于地层水的水型是___ A.硫酸钠水型 B.碳酸钠水型 C.氯化镁水型 D.氯化钙水型 2、粒度组成分布曲线的说法不正确的 A 曲线的尖峰越高,表明岩石的粒度组成越均匀 B 曲线的尖峰越高,表明岩石的粒度组成越不均匀 C 曲线的尖峰越靠左,表明岩石中的细颗粒越多 D 曲线的尖峰越靠右,表明岩石中的粗颗粒越多 3、关于双组分相图的说法不正确的是 A 混合物的临界压力都高于各组分的临界压力. B 两组分的浓度比例越接近,两相区的面积越大 C 混合物中哪一组分的含量占优,露点线或泡点线就靠近哪一组分的饱和蒸汽压曲线 D 随着混合物中较重组分比例的增加,临界点向左迁移 4、天然气的组成的表示方法不包括 A. 摩尔组成 B. 体积组成 C. 组分组成 D. 质量组成 5、下列关于界面张力的说法中错误的是___ A、只有存在不互溶的两相时自由界面能才存在。 B、自由界面能的大小与两相分子的性质有关系,还与两相的相态有关。 C、在两相系统表面层上既存在比界面能又存在界面张力,界面张力是真实存在的张力。 D、比界面能是单位面积具有的自由界面能,,单位是焦耳/米2,1焦耳/米2=1牛顿/米, 从因次上看,比界面能等于单位长度上的力,所以习惯上把比界面能称为界面张力。 6、根据苏林分类方法,重碳酸钠型地层水的沉积环境是 A. 大陆冲刷环境 B. 陆相沉积环境 C. 海相沉积环境 D. 深层封闭环境 7、下列关于单组分体系相图的说法不正确的是___ A、单组分物质的饱和蒸气压曲线是该物质的露点与泡点的共同轨迹线。 B、单组分物质体积的临界点是该体积两相共存的最高压力点和最高温度点。 C、饱和蒸气压曲线的左上侧是气相区,右下侧是液相区。 D、混相驱提高采收率技术选择二氧化碳和丙烷做混相剂的主要原因是,二氧化碳和丙烷 的临界点落在正常油藏温度范围内。 8、如图所示是根据实验测得的某砂岩的相对渗透率数据所绘出的油、水相对渗透率曲线,试判断该砂岩的润湿性为___

试卷(油层物理)

★编号:重科院()考字第()号 科技学院 考试试卷 20 /20 学年第学期 ( A 卷,共页) 课程名称: 适用专业/年级:学生人数:人 闭卷笔试()开卷笔试()口试()机试()其它() 考试日期:考试时间:分钟卷面总分:分 试题来源:试题库()试卷库()命题() 抽(命)题:(签名)年月日 审核: 课程负责人:(签名)年月日

专业班级: 姓 名: 学 号: 装 订 线

A.曲线的尖峰越高,表明岩石的粒度组成越均匀 B.曲线的尖峰越高,表明岩石的粒度组成越不均匀 C.曲线的尖峰越靠左,表明岩石中的细颗粒越多 D.曲线的尖峰越靠右,表明岩石中的粗颗粒越多 4.岩样的颗粒分布越均匀,则其不均匀系数越____,其分选系数越____。() A、大、小 B、大、小 C、小、大 D、小、小 5.气体滑动效应随平均孔径增加而_____,随平均流动压力增加而____。() A、增强、增强 B、增强、减弱 C、减弱、增强 D、减弱、减弱 6.在高压条件下,天然气粘度随温度增加而_____,随压力增加而____,随 分子量增加而增加。() A、增加、增加 B、增加、下降 C、下降、增加 D、下降、下降 7.砂岩储集岩的渗滤能力主要受____的形状和大小控制。() A.孔隙 B.裂隙 C.喉道 D.孔隙空间 8.液测渗透率通常___绝对渗透率,而气测渗透率通常___绝对渗透率。() A.大于、大于 B大于、小于 C.小于、大于 D.小于、小于 9.亲水岩石中水驱油毛管力是___,亲油岩石中油驱水时毛管力是___。() A、动力、动力 B、动力、阻力 C、阻力、动力 D、阻力、阻力 10.关于毛管压力曲线的说法错误的是() A岩石孔道的大小分布越集中,毛管压力曲线的中间平缓段越长,越接近水平线 B 孔道半径越大,中间平缓段越接近横轴 C 岩石的渗透性越好,则排驱压力越大 D 大孔道越多,则毛管压力曲线越靠近左下方 三、填空题:(本题共10小题,每空0.5分,共10分) 1.常用的岩石的粒度组成的分析方法有:和。 2. 砂岩粒度组成的累计分布曲线,频率分布曲线, 表示粒度组成越均匀。 3. 同一岩石中各相流体的饱和度之和总是。

长江大学油层物理习题解答

长江大学油层物理习题 解答 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

第一篇 储层流体的高压物性 第一章 天然气的高压物理性质 一、名词解释。 1.天然气视分子量(gas apparent molecular weight ): 2.天然气的相对密度g (gas relative density ) : 3.天然气的压缩因子Z(gas compressibility factor) : 4.对应状态原理(correlation state principle) : 5.天然气压缩系数Cg (gas compressive coefficient ): 6.天然气体积系数Bg (gas formation volume factor): 二.判断题。√×× ×√√×× 1.体系压力愈高,则天然气体积系数愈小。 (√ ) 2.烃类体系温度愈高,则天然气压缩因子愈小。 (× ) 3.体系压力越大,天然气等温压缩率越大。 (× ) 4.当二者组分相似,分子量相近时,天然气的粘度增加。 ( ) 5.压力不变时,随着温度的增加,天然气的粘度增加。 (× ) 6.天然气水合物形成的有利条件是低温低压。 (√ ) 7.温度不变时,压力增加,天然气体积系数减小。 (√ ) 8.温度不变时,压力增加,天然气分子量变大。 (× ) 9. 当压缩因子为1时,实际气体则成为理想气体。 (× ) 三.选择题。ACACBDB 1.理想气体的压缩系数与下列因素有关 1.理想气体的压缩系数与下列因素有关 A.压力 B.温度 C.体积 D.组成 ( A ) 2.在相同温度下,随着压力的增加,天然气压缩因子在低压区间将 在高压区间将 A.上升,上升 B.上升,下降 C.下降,上升 D.下降,下降 ( C ) 3.对于单组分烃,在相同温度下,若C 原子数愈少,则其饱和蒸气压愈 其挥发性愈 A.大,强 B.小,弱 C.小,强 D.大,弱 ( A ) 4.地层中天然气的密度 地面天然气的密度。 A.小于 B.等于 C.大于 D.视情况定 ( C ) 5.通常用来计算天然气体积系数的公式为 =Cg(273+t)/293P =V 地下/ V 地面

相关主题
文本预览
相关文档 最新文档