当前位置:文档之家› 数学之美——黄金分割图形相似汇总

数学之美——黄金分割图形相似汇总

数学之美——黄金分割图形相似汇总
数学之美——黄金分割图形相似汇总

数学之美——黄金分割

前 言

数学可以说是各学科的灵魂,数学中蕴涵着文化价值、美学价值、以及经济价值,而这些价值究竟是如何体现的?随着我国教育水平的逐步提高,我们对数学这门科学的学习更加透彻,我们就以数学中的两大宝藏之一“黄金分割”为例,黄金分割是我们最常见的一种和谐比例关系,即是毕达哥拉斯学派提出的“黄金分割”又称“黄金段”或“黄金率”。在初中教学中对黄金分割的了解还不是很深,只是对黄金分割的定义做了简单的说明和简单的练习。随着我们数学能力水平的提升,我们了解到了许多重要的与黄金分割相关联的数学知识,本节主要解决杨辉三角形等数学量与黄金分割的关系,以及与黄金分割有关的一些概念,最后,将进一步阐述黄金分割的实际应用,可见黄金分割用途之广泛,影响之深远。

另外,我真诚的希望通过本节学习,能够让学生更多的了解黄金分割的实质和内涵,对以后的学习有进一步的帮助。

一、黄金分割的起源与发展

1.1 黄金分割的定义

古希腊雅典学派的第三大数学家欧道克萨斯首先提出黄金分割。所谓黄金分割,指的是把长为L 的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比。证明方法为:

设有一根长为1的线段AB 在靠近B 端的地方取点C ,)(CB AC >使AC AB CB AC ::= 则点C 为AB 的黄金分割点。

设x AC =,则x BC -=1 代入定义式AC AB CB AC ::= 可得

x x x :1)1(:=-

即 012

=-+x x 解该二次方程:2151--=

x 2

152-=x 其中1x 为负值舍掉。 所以 2

15-=AC 约为618.0.

黄金分割又称黄金律,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值为1∶0.618或1.618∶1,即长段为全段的0.618。0.618被公认为最具有审美意义的比例数字。上述比例是最能引起人的美感的比例,因此被称为黄金分割。

有趣的是,这个数字在自然界和人们生活中到处可见:人们的肚脐是人体总长的黄金分割点,人的膝盖是肚脐到脚跟的黄金分割点。大多数门窗的宽长之比也是0.618;有些植茎上,两张相邻叶柄的夹角是137度28',这恰好是把圆周分成1:0.618的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。

建筑师们对数学0.618特别偏爱,无论是古埃及的金字塔,还是巴黎的圣母院,或者是近世纪的法国埃菲尔铁塔,都有与0.618有关的数据。人们还发现,一些名画、雕塑、摄影作品的主题,大多在画面的0.618处。艺术家们认为弦乐器的琴马放在琴弦的0.618处,能使琴声更加柔和甜美。

1.2黄金分割的发展史

据记载黄金分割是在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为“金法”,17世纪欧洲的一位数学家,甚至称它为“各种算法中最宝贵的算法”。这种算法在印度称之为“三率法”或“三数法则”,也就是我们现在常说的比例方法。

其实有关“黄金分割”,我国也有记载。虽然没有古希腊的早,但它是我国古代数学家独立创造的,后来传入了印度。经考证。欧洲的比例算法是源于我国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。

由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边

形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。

公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。

公元前300年前后欧几里得撰写《帕乔利》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。

中世纪后,黄金分割被披上神秘的外衣,意大利数学家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。

到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。

其实,黄金分割比在未发现之前,在客观世界中就存在的,只是当人们揭示了这一奥秘之后,才对它有了明确的认识。当人们根据这个法则再来观察自然界时,就惊奇的发现原来在自然界的许多优美的事物中的能看到它,如植物的叶片、花朵,雪花,五角星……许多

动物、昆虫的身体结构中,特别是人体中更是有着丰富的黄金比的关系。当人们认识了这一自然法则之后,就被广泛地应用于人类的生活之中。此后,在我们的生活环境中,就随处可见了,如建处门窗、橱柜、书桌;我们常接触的书本、报纸、杂志;现代的电影银幕。电视屏幕,以及许多家用器物都是近似这个数比关系构成的。在美术史上曾经把它作为经典法则来应用。有许多美术家运用它创造了不少不朽的著名。

早在公元前六世纪,古希腊数学家毕达哥拉斯就发现了在这种分割状态下存在的和谐美,后来古希腊美学家柏拉图正式将此称为黄金分割,并一直被认为是最佳比例--在艺术,建筑,自然界,甚至我们的生活中,这种0.618的美都处处存在。

二、黄金分割在数学中的渗透

2.1 黄金分割在数学学文化中的应用

随着新课程改革的进行,数学教学不只是简单的知识传授,更加注意对数学思想方法的总结,使之能被学生完全领悟并应用,进而更好的发挥数学的本质。

黄金分割就是数学思想的集中体现,其中特别引人注目的是“数形结合”的思想,因此,黄金分割被称之为神圣的比例,“0.618”同时也被誉为黄金数。

数学有着极其重要的价值,其文化价值的教育目的,就是让学生在学习的同时能够鉴赏和体会数学的美,促进学生形成好的数学观念,增加对数学学习的兴趣。下面我们就来了解黄金分割的数学价值。

2.2 黄金分割在初中教材中的地位和作用

《黄金分割》是北师大版八年级数学下册第四章《相似图形》第二节的内容。本章是继图形的全等之后集中研究图形形状的内容,它与前后有关几何部分的内容都有着密切的关系,是对图形全等内容的进一步拓广与发展。整个设计目的是引导学生观察、分析生活现实和数学现实中的相似现象,总结图形相似的有关特征并自觉的应用到现实之中,逐步形成正确的数学观。同时,通过“图形的相似”进一步丰富学生的数学活动经验,有意识的培养学生积极的情感、态度,认识数学丰富的人文价值,促进学生观察、分析、归纳、概括的一般能力和审美意识的发展。《黄金分割》这一节内容通过建筑、艺术等方面的实例让学生进一步体会数学与自然及人类社会的密切联系,同时在教学中让学生学会观察、操作、实验、合作与交流以及学会学习就变得更为重要。

下面我就给大家介绍怎么样才能计算出黄金分割比(0.618)它的具体做法是:

一、作一线段AB

二、过B 作一条直线垂直于AB ,在此直线上取BD ,使2

AB BD ,并联结AD 。 三、以D 为圆心,BD 长为半径作弧,交AD 于C 。

四、以A 为圆心,AC 长为半径作弧,交AB 于P ,则点P 是线段的黄金分割点。

以上这种比例性质产生了黄金分割,把它从线段推广到平面图形,可以发现不少图形,因此颇有特点。

黄金分割中特别引人注目的是“数形结合”的思想,它被世人称之为和谐性的最完美的表现,“0.618”被誉为黄金数、神圣的比例、宇宙的美神。教师在教学中引用学生非常熟悉的五角形和舞台报幕员所站位置的现实情境,将抽象的数字与其所反映的图形有机地结合起来,通过对直观图形的观察与分析,化抽象为直观,化直观为精确,进一步了解“黄金分割”的数学特征。数学教学中用“数形结合”的思想引导学生思考,在培养形象思维能力的同时,也促进了逻辑思维的发展。

随着新课程的改革,挖掘数学文化在数学教学中的价值将逐步得到确认,这也是义务教育对数学课堂教学的时代要求。在毕业后,我们将会成为数学教师,所以我们应不断地加强自身的数学文化素养,更加深入地研究数学文化与数学教学,努力在数学学习的过程中真正体会到数学的文化价值。

2.3 黄金分割在教材中的实际应用

下面继续了解黄金分割在教材中的实际作用,我们以实际例题来解决有关黄金分割的理论问题。

例1 美是一种感觉,当人体下半身长于高的比值接近618.0时,越给人一种美感。例如,某女士身高cm 165,下半身长与身高的比值是,为尽可能达到好

的效果,她应穿的高跟鞋的高度大约为( )A . 4cm B . 6cm C . 8cm D .10cm

例2 为了弘扬雷锋精神,某中学准备在校园内建造一座高为m 2的雷锋人体雕像,向全体师生征集设计方案,小兵同学查阅了有关资料,了解到黄金分割

数常用于人体雕像的设计中。小兵同学根据黄金分割数设计的雷锋人体雕像的方案,其中雷锋人体雕像下部的设计高度(精确到m 01.0,参考数据:414.12≈

732.13≈,236.25≈)A . 0.62m .B 0.76m C . 1.24m D . 1.62m

例3 校团委举办“五?四手抄报比赛”。手抄报规格统一设计成:长8.0米的黄金矩形(黄金矩形的长与宽的比是1:6.1),则宽为 米。

例4 哥哥身高68.1米,在地面上的影子长是1.2米,同一时间测得弟弟影子长8.1米,则弟弟身高是( )A . m 44.1 B .m 52.1 C .m 96.1 D .m 25.2

例5 将一矩形纸片OABC 放在平面直角坐标系中,()0,0O ,()0,6A ()3,0C ,动点Q 从点O 出发以每秒1个单位长的速度沿OC 向终点C 运动,运动23秒时

动点P 从点A 出发以相等的速度沿AO 向终点O 运动。当其中一点到达终点时,另一点也停止运动。设点P 的运动时间为t (秒)。

(1)用含t 的代数式表示OP ,OQ ;

(2)当1=t 时,如图1,将沿OPQ ?沿PQ 翻折,点O 恰好落在CB 边上的点D 处,求点D 的坐标;

(3)连接AC ,将沿PQ 翻折,得到EPQ ?,问:PQ 与AC 能否平行?PE 与AC 能否垂直?若能,求出相应的t 值;若不能,说明理由。

我们看完以上几道题,就可以知道有关黄金分割的实际例子很多,在我们初中数学教学中有极其广泛的应用。为我们解决了很多生活中实际的难题和问题。

2.4 与黄金分割有关的黄金图形

黄金分割具有很多的优点和广泛的作用,那么黄金分割是如何解决这些问题的,其根本原因是构成黄金分割的重要因素的作用,以下是构成黄金分割的基本元素:

(一)黄金分割点:

黄金分割点是分一线段为两部分,使得原来线段的长跟较长的那部分的比为黄金分割的点。线段上有两个这样的点。利用线段上的两个黄金分割点,可以作出正五角星,正五边形等。

(二)黄金分割线:

由黄金分割点联想到“黄金分割线”,并类似地给出“黄金分割线”的定义:直线L 将一个面积为S 的图形分成两部分,这两部分的面积分别为1S 、2S ,如果,21S S =那么称直线L 为该图形的黄金分割线。

(三)黄金分割三角形:

正五边形对角线连满后出现的所有三角形,都是黄金分割三角形。黄金分割三角形有一个特殊性,所有的三角形都可以用四个与其本身全等的三角形来生成与其本身相似的三角形,但黄金分割三角形是唯一一种可以用5个而不是4个与其本身全等的三角形,来生成与其本身相似的三角形的三角形。由于五角星的顶角是 36,这样也可以得出黄金分割的数值为 18sin 2。

黄金分割三角形分为两种:一种是等腰三角形,两个底角为72°顶角为36°这种三角形既美观又标准。这样的三角形的底与一腰之长之比为黄金比:2

1-5。另一种也是等腰三角形,两个底角为36°顶角为108°这种三角形一腰与底边之长之比为黄金比:

21-5。 (四)黄金矩形:

定义:一个矩形,如果从中截去一个最大的正方形,剩下的矩形的宽与长之比,与原来的矩形一样(及剩下的与原矩形相似)称具有这种宽与长之比的矩形为黄金矩形。

变形为 012=-+x x

2.5 黄金分割与杨辉三角形的联系

黄金分割与多种数学知识有着密切的联系,例如我们下面介绍的杨辉三角形,首先了解什么是杨辉三角形:

一、杨辉三角形的定义:杨辉三角形,又称贾宪三角形,帕斯卡三角形,是二项式系数在三角形中的一种几何排列。

二、杨辉三角形的性质:

1.每行数字左右对称,由1开始逐渐变大,然后变小,回到1

2.第n 行的数字个数为n 个

3.第n 行数字和为)(12-n

每个数字等于上一行的左右两个数字之和。因此,可用此性质写出整个帕斯卡三角形。

4.将第12+n 行第1个数,跟第22+n 行第3个数、第22+n 行第5个数……连成一线,这些数的和是第n 2个斐波那契数。将第n 2行第2个数,跟第12+n 行第4个数、第22+n 行第6个数……这些数之和是第12-n 个斐波那契数。

5.第n 行的第1个数为1,第二个数为n ?1,第三个数为2

11-??n n ,第四个数为 ?-?-??3

2211n n n 依此类推。 可以看出,杨辉三角形与黄金分割率有着密切的关系。

三、生活中的黄金分割

0.618,一个极为迷人而神秘的数字,而且它还有着一个很动听的名字——黄金分割律,它是古希腊著名哲学家、数学家毕达哥拉斯于2500多年前发现的。古往今来,这个数字一直

被后人奉为科学和美学的金科玉律。在艺术史上,几乎所有的杰出作品都不谋而合地验证了这一著名的黄金分割律,无论是古希腊巴特农神庙,还是中国古代的兵马俑,它们的垂直线与水平线之间竟然完全符合1比0.618的比例。

科学家和艺术家普遍认为,黄金律是建筑艺术必须遵循的规律。在建筑造型上,人们在高塔的黄金分割点处建楼阁或设计平台,便能使平直单调的塔身变得丰富多彩;而在摩天大楼的黄金分割处布置腰线或装饰物,则可使整个楼群显得雄伟雅致。古代雅典的巴特农神殿,法国的巴黎圣母院,当今世界最高建筑之一的加拿大多伦多电视塔,举世闻名的法国巴黎埃菲尔铁塔,都是根据黄金分割的原则来建造的。

除了国外著名的巴特农神殿、巴黎圣母院、多伦多电视塔、巴特农神殿、埃菲尔铁塔具有黄金分割外,位于上海黄浦江畔的东方明珠塔同样有,东方明珠塔是亚洲第一,世界第三高塔,它的塔身竟高达 462.85 米,仿佛一把刺天长剑,直冲云霄。要建造这样高而瘦长搭塔身,在造型上难免有些单调,然而设计师巧妙地在塔身上装置了晶莹耀眼的上球体、下球体和太空舱,它既可供游人登高俯瞰城市景色,又使笔直的塔身有了曲线变化,更妙的是,设计师有意将上球体选在295米之间的位置,这个位置恰好在塔身5比8的地方,这0.618的比值,使塔身显得非常协调、美观。

在日常生活中,最和谐悦目的矩形,如电视屏幕、写字台面、书籍、衣服、门窗等,其短边与长边之比为0.618,你会因此比例协调而赏心悦目。甚至连火柴盒、国旗的长宽比例设计,都恪守0.618比值。在音乐会上,报幕员在舞台上的最佳位置,是舞台宽度的0.618之处;二胡要获得最佳音色。最有趣的是,在消费领域中也可妙用0.618这个“黄金数”,获得“物美价廉”的效果。据专家介绍,在同一商品有多个品种、多种价值情况下,将高档价格减去低档价格再乘以0.618,即为挑选商品的首选价格。

体型的标准尺度,以古希腊的艺术珍品“金星女神”为模特儿,具体标准是以肚脐眼为界,向上到头顶的长度是整个身长的0.382倍;向下到脚心的长度是整个身长的0.618倍。

人体黄金分割因素包括4个方面,即18个“黄金点”,如脐为头顶至脚底之分割点、喉结为头顶至脐分割点、眉间点为发缘点至颏下的分割点等;15个“黄金矩形”,如躯干轮廓、头部轮廓、面部轮廓、口唇轮廓等;6个“黄金指数”,如鼻唇指数是指鼻翼宽度与口裂长之比、唇目指数是指口裂长度与两眼外眦间距之比、唇高指数是指面部中线上下唇红高度之比等;3个“黄金三角”,如外鼻正面观三角、外鼻侧面观三角、鼻根点至两侧口角点组成的三角等。除此之外,近年国内学者陆续发现有关的“黄金分割”数据,如前牙的长宽比、眉间距与内眦间距之比等,均接近“黄金分割”的比例关系。专家们认为,这些数据的陆续发现不仅表现人体是世界上最美的物体,而且为美容医学的发展,为临床进行人体美和容貌美的创造和修复提供了科学的依据。古希腊人以为,美是神的语言。他们找到了一条数学证据,宣称黄金分割是上帝的尺寸。几何学天才欧几里德更进一步:他发现大自然美丽的奥妙在于巧妙和谐的数学比例大多接近1比0.618。

在夏季,人们格外留恋春天的感觉,这种体验恐伯每个人都有,也不足为奇。可是你知道吗?人在春季感到舒畅,那是因为这时的环境温度正好在22至24摄氏度之间,而这种气温与人的正常体温37摄氏度正呈现微妙之处:人的正常体温37摄氏度与0.618的乘积为22.8摄氏度,人在这一环境温度中,机体的新陈代谢、生理活动均处于最佳状态。

四、黄金分割法的启示

随着社会的发展,人们发现黄金分割在自然和社会中有着极其广泛的应用。例如,优选法中有两种方法与黄金分割就有关。其一就是本文开始时指出的“0.618法”,它是美国数

学家基弗于1953年提出的一种优选法,从1970年开始在我国推广,取得很好的经济效益。

在现代最优化理论中,它能使我们用较少的实验找到合适的工艺条件和合理的配方。虽然黄金分割数是一个无理数,0.168是它的一个近似值,但在实际中使用已足够精确。其二是分数法,它取的也是黄金分割数的近似值,但不是0.618而是黄金分割数的连分数展开式的渐近分数,也就是采用某一个“斐波那契数列”分数。黄金分割运用也表现出数学发展的一个规律。它表明研究和发展数学理论是十分重要的。纯理论的发展对实践的作用也许不是直接的,但它所揭示的自然规律必将指导人们的社会实践。因此一方面我们遇到问题应该寻找数学方法解决,另一方面,我们也应为纯数学理论开辟应用领域。

最新初中数学图形的相似全集汇编附答案(3)

最新初中数学图形的相似全集汇编附答案(3) 一、选择题 1.如图,在正方形ABCD 中,3AB =,点M 在CD 的边上,且1DM =,AEM ?与 ADM ?关于AM 所在直线对称,将ADM ?按顺时针方向绕点A 旋转90°得到ABF ?,连接EF ,则cos EFC ∠的值是 ( ) A 17 1365B 6 1365 C 7 1525 D . 617 【答案】A 【解析】 【分析】 过点E 作//HG AD ,交AB 于H ,交CD 于G ,作EN BC ⊥于N ,首先证明 AEH EMG V :V ,则有 1 3 EH AE MG EM == ,设MG x =,则3EH x =,1DG AH x ==+, 在Rt AEH V 中利用勾股定理求出x 的值,进而可求 ,,,EH BN CG EN 的长度,进而可求FN ,再利用勾股定理求出EF 的长度,最后利用 cos FN EFC EF ∠= 即可求解. 【详解】 过点E 作//HG AD ,交AB 于H ,交CD 于G ,作EN BC ⊥于N ,则 90AHG MGE ∠=∠=?,

∵四边形ABCD 是正方形, ∴3,90AD AB ABC C D ==∠=∠=∠=? , ∴四边形AHGD,BHEN,ENCG 都是矩形. 由折叠可得,90,3,1AEM D AE AD DM EM ∠=∠=?====, 90AEH MEG EMG MEG ∴∠+∠=∠+∠=? , AEH EMG ∴∠=∠, AEH EMG ∴V :V , 1 3 EH AE MG EM ∴ == . 设MG x =,则3EH x =,1DG AH x ==+ 在Rt AEH V 中, 222AH EH AE +=Q , 222(1)(3)3x x ∴++= , 解得4 5 x = 或1x =-(舍去), 125EH BN ∴== ,65 CG CD DG EN =-== . 1BF DM ==Q 17 5 FN BF BN ∴=+= . 在Rt EFN △ 中, 由勾股定理得,2213EF EN FN =+=, 17 cos 1365 FN EFC EF ∴∠= =. 故选:A . 【点睛】

大自然中的黄金分割

初中数学综合实践课题设计—— 大自然中的黄金分割 龙翔学校 周福兰 ◆ 黄金分割的由来 一天,毕达哥拉斯从一家铁匠铺路过,被铺子中那有节奏的叮叮当当的打铁声所吸引,他走进作坊,拿出一把尺量了一下铁锤和铁砧的寸,发现它们之间存在着一种十分和谐的关系。回到家里,毕达哥拉斯拿出一根线,想将它分为两段。经过反复比较,他最后确定了 0.618:1的比例截断最优美。后来古希腊美学家柏拉图将这比例称为黄金分割律。中世纪的数学家开普勒对黄金分割作了很高的评价。他说:几何学有两大宝藏:一个是勾股定理,另一个是黄金分割。 那么,什么是黄金分割? ◆ 黄金分割自述 点C 把线段AB 分成两条线段AC 和CB ,如果AB AC AC CB =,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比。 那么,黄金比又是多少呢?如何计算呢? 分析:设线段AB 的长度为1个单位,AC 的长度为x 个单位,则CB 为 ()x -1个单位,根据题意列出方程: 11x x x =- 由比例的基本性质得: 21x x =- 即 012=-+x x 解这个方程求得:AC= 21 5- 所以,求出黄金比为 ≈-=215AB AC 618.0

◆你知道为什么女性爱穿高跟鞋吗? 中世纪意大利的数学家菲波那契测定了大量的人体后得知,人体肚脐以下的长度与身高之比接近0.618,其中少数人的比值等于0.618的被称为:“标准美人”。因此,艺术家们在创作艺术人体时,都以黄金比为标准进行创作。 周老师的身高为162cm,肚脐眼以上的长度为70cm,你能帮周老师挑一双最适合她身高的鞋子吗?试试吧! ◆趣味问答 (问题一):报幕员应站在舞台的什么地方报幕最佳? (问题二):人的正常体温是37℃,对大多数人来说,体感最舒适的温度是22 ℃~23 ℃。你能解释吗? ◆动动脑,画一画 你能利用黄金分割的数学知识设计一幅图案,送给老师吗?动动脑,画一画

初中八年级数学 4、图形的相似

第1页 共3页 数学测试(4) 一.选择题 1、两地实际距离是500m,画在图上的距离是25cm ,若在此图上量的A 、B 两地相距为4cm ,则A 、B 两地的实际距离是 A 、800m B 、8000m C 、32250m D 、3225m 2、如图,矩形ABCD 中,DE ⊥AC ,E 为垂足,图中 相似三角形共有(全等除外) A 、3对 B 、4对 C 、5对 D 、6对 3、如图,D 为△ABC 的边BC 上的一点,连结AD ,要 使△ABD ∽△CBA ,应具备下列条件中的( ) A 、 BC AB CD AC = B 、BD AB =2 ·BC C 、AD BD CD AB = D 、CD AC =2·BC A 、所有的等腰三角形都相似B 、有一对锐角相等的两个角三角形相似 C 、全等的三角形一定相似; D 、所有的等边三角形都相似 5、Rt ?ABC 中,CD 是斜边AB 上的高,∠BAC 的平分线分别交BC 、CD 于点E 、F 。图中共有8个三角形,如果把一定相似的三角形归为一 类,那么图中的三角形可分为( )类。 A .2 B .3 C .4 D .5 6.已知 0432≠==c b a ,则 c b a +的值为( ) A.54 B.45 C.2 D.2 1 7.已知⊿ABC 的三边长分别为2,6,2,⊿A ′B ′C ′的两边长分别是1和3,如果⊿ABC 与⊿A ′B ′C ′相似,那么⊿A ′B ′C ′的第三边长应该是( ) A.2 B. 22 C.26 D.3 3 8.如图,AB 是斜靠在墙上的长梯,梯脚B 距墙脚1.6m,梯上点D 距墙1.4m,BD 长0.55m,则梯子的长为( ) A.3.85m B.4.00m C.4.40m D.4.50m 5.如图,∠ACB=∠ADC=90°,BC=a,AC=b,AB=c,要使⊿ABC ∽⊿CAD,只要CD 等于( ) A.c b 2 B.a b 2 C.c ab D.c a 2 9.一个钢筋三角架三 长分别为20cm,50cm,60cm,现要再做一个与其相似的钢筋三角架,而只有长为30cm 和50cm 的两根钢筋,要求以其中的一根为一边,从另一根截下两段(允许有余料)作为另两边,则不同的截法有( ) A.一种 B.两种 C.三种 D.四种 10、在△ABC 与△中,有下列条件:①;⑵ ③∠A =∠;④∠C =∠。如果从中任取两个条件组成一组,那么能判断 △ABC ∽△的共有( )组。 A 、1 B 、2 C 、3 D 、4 二.填空题 11、如图,在梯形ABCD 中,AD//BC ,AC 、BD 相交于点O ,若S △OAB :S △OBC = 1:4,则S △OAD :S △OCB = 。 12、在口ABCD 中,E 为CD 上一点,DE :CE=2:3,连接AE 、BE 、BD 且AE 、BD 交于F , 则S △DEF :S △EBF :S △ABF = 。 13、如图,DE//BC ,CD 和BE 相交于点O ,S △DOE :S △COB =16:25,则AD :DB= 。 14、把正方形ABCD 沿对角线AC 的方向移动到A 1B 1C 1D 1的位置,它们重叠部分的面积是 正方形ABCD 的面积的一半,若AC=2,则平移的距离是 。 15、如图,D 为△AB C的边AC上的一点,∠DBC=∠A,BC=2,△BCD与△ABC 的面积比是2:3 ,则CD= 。 16、如图,已知△ABC中,DE//FG//BC,(1)若 AD:FD:FB=1:2:3,则S1:S2:S3= ;(2)若S1:S2:S3=1:2:3,则AD:FD:FB= 。 C B A '''C B BC B A AB ''=''C A AC C B BC ''= ''A 'C 'C B A '''第5题 A B C D E F D A B C E 第2题图 A B D C 第 3题 第8题图 第9题图 O D C B A F E D C B A E O D C B A D 1C 1 B 1 A 1D C B A 第12题图 第13题图 第14题图

初中数学例题:黄金分割

初中数学例题:黄金分割 5. 如图所示,矩形ABCD 是黄金矩形(即=≈0.618),如果在其内作正方形CDEF ,得到一个小矩形ABFE ,试问矩形ABFE 是否也是黄金矩形? 【思路点拨】(1)矩形的宽与长之比值为 ,则这种矩形叫做黄金矩形. (2)要说明ABFE 是不是黄金矩形只要证明 =即可. 【答案与解析】矩形ABFE 是黄金矩形. 理由如下:因为 = = 所以矩形ABFE 也是黄金矩形. 【总结升华】判断四边形是否是黄金矩形,要根据实际条件灵活选择判断方法. 举一反三: 【变式】以长为2的线段AB 为边作正方形ABCD ,取AB 的中点P ,连接PD ,在BA 的延长线上取点F ,使PF =PD ,以AF 为边作正方形AMEF ,点M 在AD 上,如图所示, BC AB 2 15-2 15-AB AE 215-AB AE AB ED AB AD AB ED AD -=-2 1512151)15)(15() 15(21152 -=-+=-+-+=--

(1)求AM ,DM 的长, (2)试说明AM 2 =AD ·DM (3)根据(2)的结论,你能找出图中的黄金分割点吗? 【答案】(1)∵正方形ABCD 的边长是2,P 是AB 中点, ∴AD =AB =2,AP =1,∠BAD =90°, ∴PD =。 ∵PF =PD , ∴AF = ,在正方形ABCD 中,AM =AF =,MD =AD -AM =3- (2)由(1)得AD ×DM =2(3-)=6-2, ∴AM 2 =AD ·DM . (3)如图中的M 点是线段AD 的黄金分割点. 6.美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.某女士身高165cm ,下半身长与身高的比值是0.60,为了尽可能达到好的效果,她应穿的高跟鞋的高度大约为( ). A.4cm B.6cm C.8cm D.10cm 【答案】C. 522=+AD AP 15-15-555526)15(22-=-=AM x l

人教版初中数学图形的相似全集汇编

人教版初中数学图形的相似全集汇编 一、选择题 1.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与111A B C ?相似的是( ) A . B . C . D . 【答案】B 【解析】 【分析】 根据相似三角形的判定方法一一判断即可. 【详解】 解:因为111A B C ?中有一个角是135°,选项中,有135°角的三角形只有B ,且满足两边成比例夹角相等, 故选:B . 【点睛】 本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型. 2.如图,AB 为O e 的直径,C 为O e 上一点,弦AD 平分BAC ∠,交弦BC 于点E ,4CD =,2DE =,则AE 的长为( ) A .2 B .4 C .6 D .8 【答案】C 【解析】 【分析】 根据角平分线的定义得到∠CAD=∠BAD ,根据圆周角定理得到∠DCB=∠BAD ,证明△DCE ∽△DAC ,根据相似三角形的性质求出AD ,结合图形计算,得到答案. 【详解】 解:∵AD 平分∠BAC ,

∴∠CAD=∠BAD , 由圆周角定理得,∠DCB=∠BAD , ∴∠CAD=∠DCB ,又∠D=∠D , ∴△DCE ∽△DAC , ∴DE DC DC DA =,即244AD =, 解得,AD=8, ∴AE=AD -DE=8-2=6, 故选:C . 【点睛】 本题考查的是相似三角形的判定和性质、圆周角定理,掌握相似三角形的判定定理和性质定理是解题的关键. 3.如图,在Rt △ABC 中,∠ACB =90°,∠A =60°,AC =2,D 是AB 边上一个动点(不与点A 、B 重合),E 是BC 边上一点,且∠CDE =30°.设AD =x ,BE =y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( ) A . B . C . D . 【答案】C 【解析】 【分析】 根据题意可得出4,23,AB BC ==4,23,BD x CE y =-=然后判断△CDE ∽△CBD ,继而利用相似三角形的性质可得出y 与x 的关系式,结合选项即可得出答案. 【详解】

高中数学史集黄金分割素材

黄金分割 (浙江省宁波市镇海区外语实验学校 315200)余满龙 在初中数学的相似形这一章中有“黄金分割”的简单介绍:把一条线段(PQ )分成两条线段,使其 中较大的线段(PC )是原线段(PQ )与较小线段(CQ )的比例中项,这种分法用途广泛,且美观,所以人们把它称为黄金分割也称“中外比”或“中末比”。(如图1) 世界上最早接触黄金分割的是古希腊的毕达哥拉斯学派。公元前4世纪(二千多年前),古希腊数学家欧多克斯(约公元前408~公元前355)第一个系统研究了这一问题,并建立起比例理论。他发现: 在这个几何问题里,若CQ 与PC 之比等于PC 与PQ 之比, 那么这一比值就等于…,用式子表示就是: 618.0215=-==PQ PC PC CQ 这个神奇的数字已经让我们着迷了几千年但实际上,这个黄金分割很早就存在了,我们 从 Andros 神庙(公元前10000年)就可以看出,而Kheops (公元前2800年)金字塔(如右图)表现的尤为明显。几何学家,哲学家和建筑师都认为黄金分割是一组非常奇特的比例,是一种空间的和谐,能够组成精确的比例。公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克斯的工作,系统论述了黄金分割,成为最早的有证论着。欧多克斯就是从整个比例论的角度考虑黄金分割,他还把上述的C 点分PQ 所成的比PC:CQ 叫做“中外比”。欧多克斯发现这种线段之间的中外比关系存在于许多图形中。如正五边形中, Kheops (公元前Q C P 图1

莱奥纳多·达·芬奇 相邻顶角的两条对角线互相将对方分成中外比,而较长的一段等于正五边形的边。如果将有理线段分成中外比,那末被分成的两个线段长是无理数。 文艺复兴时期的欧洲,由于绘画艺术的发展,促进了对黄金分割的研究。当时,出现了好几个身兼几何学家的画家,着名的有帕奇欧里、丢勒、达芬奇等人。他们反几何学上图形的定量分析用到一般绘画艺术,从而给绘画艺术确立了科学的理论基础。 1228年,意大利数学家斐波那契在《算盘书》的修订本中提出“兔子问题”,导致斐波那契数列:1,1 ,2,3,5,8,13,21,34,55,89,……,它的每一项与后一项比值的极限就是黄金分割数,即黄金分割形成的线段与全线段的比值。(即设F 1 =1,F 2 =1,F n = F n-2 + F n-1,n ≥3,则) 1525年丢勒制定了充分吸收黄金分割几何意义的比例法则,揭示了黄金分割在绘画中的重要地位。丢勒以为,在所有矩形中,黄金分割的矩形,即短边与长边之比为2 15 的矩形最美观。因为这样的矩形,“以短边为边,在这个矩形中分出一个 正方形后,余下的矩形与原来的矩形相似,仍是 一个黄金分割形的矩形”,这使人们产生一种 “和谐”的感觉。 后来意大利伟大画家达·芬奇(1452-1519)(如右图)把欣赏的重点转到使线段构成中外比的分割,而不是中外比本身,提出了“黄金分割”这一名称。这一命名一直延用至今。 欧洲中世纪的物理学家和天文学家开普勒(J .Kepler1571—1630),曾经说过:“几何学里有二个宝库:一个是毕达哥拉斯定理(我们称为“商

初中数学 图形的相似

图形的相似 考点一、比例线段 (3分) 1、比例线段的相关概念 如果选用同一长度单位量得两条线段a ,b 的长度分别为m ,n ,那么就说这两条线段的比是,或写成a :b=m :n 在两条线段的比a :b 中,a 叫做比的前项,b 叫做比的后项。 在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段 若四条a ,b ,c ,d 满足或a :b=c :d ,那么a ,b ,c ,d 叫做组成比例的项,线段a ,d 叫做比例外项,线段b ,c 叫做比例内项,线段的d 叫做a ,b ,c 的第四比例项。 如果作为比例内项的是两条相同的线段,即 c b b a =或a :b=b : c ,那么线段b 叫做线段a ,c 的比例中项。 2、比例的性质 (1)基本性质 ①a :b=c :d ?ad=bc ②a :b=b :c ac b =?2 (2)更比性质(交换比例的内项或外项) d b c a =(交换内项) ?=d c b a a c b d =(交换外项) a b c d =(同时交换内项和外项) (3)反比性质(交换比的前项、后项): c d a b d c b a =?= (4)合比性质: d d c b b a d c b a ±=±?= (5)等比性质: b a n f d b m e c a n f d b n m f e d c b a =++++++++?≠++++==== )0( 3、黄金分割 把线段AB 分成两条线段AC ,BC (AC>BC ),并且使AC 是AB 和BC 的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AC= 2 15-AB ≈0.618AB 考点二、平行线分线段成比例定理 (3~5分) 三条平行线截两条直线,所得的对应线段成比例。 n m b a =d c b a =

苏科版数学九年级下册教案-6.2 黄金分割

《黄金分割》教学设计 一、教材分析: 本节课是初中数学九年级下册的内容,一方面,这是在学习了线段的比的基础上,对比例性质的的进一步深入和拓展;另一方面,又为学习相似三角形等知识奠定了基础,是进一步研究相似图形及其性质的工具性内容。鉴于这种认识,本节课在此本书中有重要的地位,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。 黄金分割是现实生活中存在的一种现象,广泛的应用在设计、艺术等领域中,比如黄金矩形,就是黄金分割在设计中的一个主要应用:在设计建筑物、工艺品、日常用品涉及矩形时,如果设计成黄金矩形,看起来更具有美感.学生体会到数学与自然及人类社会的密切关系,丰富了学生的数学活动经验,促进了学生观察、分析、归纳、概括的能力和审美意识的发展。 通过学习“黄金分割”这样的题材,进一步体会数学的文化价值.有效的激发学生学习数学的兴趣,发展学生的动脑、动手能力,培养学生思维能力,增强学生学习数学自信心。有助于增强学生的创新意识和实践能力,为学生提供了实践和探索的机会。 这节课也有数学实验的味道,学生在具体活动中体验数学知识,并在现实情境中和已有知识的基础上体验和理解数学知识,是学生自己建构、探索数学知识的活动. 二、学情分析: 1、学生已有基础:学生对于真实情境以及现实生活中的数学问题具有极大的学习兴趣.而且,在前面的学习中,学生经历过探索概念的形成过程,获得了初步的数学活动经验和体验.学生对黄金分割的定义理解不存困难.也学过无理数、比例线段和一元二次方程的解法,,所以对于黄金比既能求出准确值也能算出近似值。 2、学生面临问题:学生思维能力处于发展阶段,动手能力较弱。 本节课引导学生从数学的角度思考问题,引导学生一步步的走入要解决的问题中心去,让学生自主、积极思维的同时,运用自己已有的知识去探索发现,感受数学的人文价值和与生活间的联系。

数学之美——黄金分割(图形相似)汇总

数学之美——黄金分割 前 言 数学可以说是各学科的灵魂,数学中蕴涵着文化价值、美学价值、以及经济价值,而这些价值究竟是如何体现的?随着我国教育水平的逐步提高,我们对数学这门科学的学习更加透彻,我们就以数学中的两大宝藏之一“黄金分割”为例,黄金分割是我们最常见的一种和谐比例关系,即是毕达哥拉斯学派提出的“黄金分割”又称“黄金段”或“黄金率”。在初中教学中对黄金分割的了解还不是很深,只是对黄金分割的定义做了简单的说明和简单的练习。随着我们数学能力水平的提升,我们了解到了许多重要的与黄金分割相关联的数学知识,本节主要解决杨辉三角形等数学量与黄金分割的关系,以及与黄金分割有关的一些概念,最后,将进一步阐述黄金分割的实际应用,可见黄金分割用途之广泛,影响之深远。 另外,我真诚的希望通过本节学习,能够让学生更多的了解黄金分割的实质和内涵,对以后的学习有进一步的帮助。 一、黄金分割的起源与发展 1.1 黄金分割的定义 古希腊雅典学派的第三大数学家欧道克萨斯首先提出黄金分割。所谓黄金分割,指的是把长为L 的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比。证明方法为: 设有一根长为1的线段AB 在靠近B 端的地方取点C ,)(CB AC >使AC AB CB AC ::= 则点C 为AB 的黄金分割点。 设x AC =,则x BC -=1 代入定义式AC AB CB AC ::= 可得 x x x :1)1(:=- 即 012 =-+x x 解该二次方程:2151--= x 2 152-=x 其中1x 为负值舍掉。 所以 2 15-=AC 约为618.0.

黄金分割又称黄金律,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值为1∶0.618或1.618∶1,即长段为全段的0.618。0.618被公认为最具有审美意义的比例数字。上述比例是最能引起人的美感的比例,因此被称为黄金分割。 有趣的是,这个数字在自然界和人们生活中到处可见:人们的肚脐是人体总长的黄金分割点,人的膝盖是肚脐到脚跟的黄金分割点。大多数门窗的宽长之比也是0.618;有些植茎上,两张相邻叶柄的夹角是137度28',这恰好是把圆周分成1:0.618的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。 建筑师们对数学0.618特别偏爱,无论是古埃及的金字塔,还是巴黎的圣母院,或者是近世纪的法国埃菲尔铁塔,都有与0.618有关的数据。人们还发现,一些名画、雕塑、摄影作品的主题,大多在画面的0.618处。艺术家们认为弦乐器的琴马放在琴弦的0.618处,能使琴声更加柔和甜美。 1.2黄金分割的发展史 据记载黄金分割是在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为“金法”,17世纪欧洲的一位数学家,甚至称它为“各种算法中最宝贵的算法”。这种算法在印度称之为“三率法”或“三数法则”,也就是我们现在常说的比例方法。 其实有关“黄金分割”,我国也有记载。虽然没有古希腊的早,但它是我国古代数学家独立创造的,后来传入了印度。经考证。欧洲的比例算法是源于我国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。 由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边 形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。 公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。 公元前300年前后欧几里得撰写《帕乔利》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。 中世纪后,黄金分割被披上神秘的外衣,意大利数学家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。 到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。 其实,黄金分割比在未发现之前,在客观世界中就存在的,只是当人们揭示了这一奥秘之后,才对它有了明确的认识。当人们根据这个法则再来观察自然界时,就惊奇的发现原来在自然界的许多优美的事物中的能看到它,如植物的叶片、花朵,雪花,五角星……许多

浙教版初中数学九年级比例线段及黄金分割(基础) 知识讲解

比例线段及黄金分割(基础) 知识讲解 【学习目标】 1、了解两条线段的比和比例线段的概念并能根据条件写出比例线段; 2、会运用比例线段解决简单的实际问题; 3、掌握黄金分割的定义并能确定一条线段的黄金分割点. 【要点梳理】 要点一、比例线段 【: 394495 图形的相似 预备知识】 1.成比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段. 2.比例的性质: (1)基本性质:如果 a c b d =,那么ad bc =. (2)合比性质:如果++==.a c a b c d b d b d ,那么 如果--==.a c a b c d b d b d ,那么 要点诠释: (1)两条线段的长度必须用同一长度单位表示,若单位长度不同,先化成同一单位,再求它们的比; (2)两条线段的比,没有长度单位,它与所采用的长度单位无关; (3)两条线段的长度都是正数,所以两条线段的比值总是正数. 要点二、黄金分割 1.定义: 点C 把线段AB 分割成AC 和CB 两段,如果AC BC AB AC =,那么线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比. 要点诠释: AC AB =≈叫做黄金分割值). 2.作一条线段的黄金分割点: 图4-7 如图,已知线段AB ,按照如下方法作图: (1)经过点B 作BD ⊥AB ,使BD = 2 1AB . (2)连接AD ,在DA 上截取DE =DB .

(3)在AB 上截取AC =AE .则点C 为线段AB 的黄金分割点. 要点诠释: 一条线段的黄金分割点有两个. 【典型例题】 类型一、比例线段 1. (2016?兰州模拟)若a :b=2:3,则下列各式中正确的式子是( ) A .2a=3b B .3a=2b C . D . 【思路点拨】根据比例的性质,对选项一一分析,选择正确答案. 【答案】B . 【解析】A 、2a=3b ?a :b=3:2,故选项错误; B 、3a=2b ?a :b=2:3,故选项正确; C 、=?b :a=2:3,故选项错误; D 、=?a :b=3:2,故选项错误. 故选B . 【总结升华】考查了比例的性质.在比例里,两个外项的乘积等于两个内项的乘积. 举一反三: 【变式】(2015?崇明县一模)已知=,那么下列等式中,不一定正确的是( ). A .2a=5b B. a b 52= C. a+b=7 D.a b b 72 += 【答案】C . 2. 设432z y x ==,求2222232z xy x z yz x --+-的值. 【思路点拨】由已知条件利用解方程的思想不能求出x ,y ,z 的值,因此用设参数法代入化简. 【答案与解析】设4 32z y x ===k 则x =2k ,y =3k ,z =4k 原式=2222)4(322)2()4(433)2(2k k k k k k k k -??-+??-?=222412k k --=2 1 【总结升华】解此类题学生容易误认为设k 后,未知数越多更不易解出,实际上分子、分母能产生公因式约去. 类型二、黄金分割

初中数学图形的相似图文答案(1)

初中数学图形的相似图文答案(1) 一、选择题 1.如图,在正方形ABCD 中,3AB =,点M 在CD 的边上,且1DM =,AEM ?与ADM ?关于AM 所在直线对称,将ADM ?按顺时针方向绕点A 旋转90°得到ABF ?,连接EF ,则cos EFC ∠的值是 ( ) A 171365 B 61365 C 71525 D .617 【答案】A 【解析】 【分析】 过点E 作//HG AD ,交AB 于H ,交CD 于G ,作EN BC ⊥于N ,首先证明 AEH EMG V :V ,则有13 EH AE MG EM == ,设MG x =,则3EH x =,1DG AH x ==+, 在Rt AEH V 中利用勾股定理求出x 的值,进而可求 ,,,EH BN CG EN 的长度,进而可求FN ,再利用勾股定理求出EF 的长度,最后利用cos FN EFC EF ∠= 即可求解. 【详解】 过点E 作//HG AD ,交AB 于H ,交CD 于G ,作EN BC ⊥于N ,则 90AHG MGE ∠=∠=?,

∵四边形ABCD 是正方形, ∴3,90AD AB ABC C D ==∠=∠=∠=? , ∴四边形AHGD,BHEN,ENCG 都是矩形. 由折叠可得,90,3,1AEM D AE AD DM EM ∠=∠=?====, 90AEH MEG EMG MEG ∴∠+∠=∠+∠=? , AEH EMG ∴∠=∠, AEH EMG ∴V :V , 13 EH AE MG EM ∴== . 设MG x =,则3EH x =,1DG AH x ==+ 在Rt AEH V 中, 222AH EH AE +=Q , 222(1)(3)3x x ∴++= , 解得45 x =或1x =-(舍去), 125EH BN ∴==,65 CG CD DG EN =-== . 1BF DM ==Q 175FN BF BN ∴=+= . 在Rt EFN △ 中, 由勾股定理得,2213EF EN FN =+=, 17cos 1365 FN EFC EF ∴∠= =. 故选:A . 【点睛】

初二数学知识点归纳:黄金分割数1

初二数学知识点归纳:黄金分割数1 黄金分割数: 把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是一个无理数,取其前三位数字的近似值是0618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。 黄金分割: 黄金分割又称黄金律,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值约为1∶0618或1618∶1,即长段为全段的0618。0618被公认为最具有审美意义的比例数字。上述比例是最能引起人的美感的比例,因此被称为黄金分割。 黄金分割线: 黄金分割线是一种古老的数学方法。黄金分割的创始人是古希腊的毕达哥拉斯,他在当时十分有限的科学条下大胆断言: 一条线段的某一部分与另一部分之比,如果正好等于另一部分同整个线段的比即0618,那么,这样比例会给人一种美感。 后来,这一神奇的比例关系被古希腊著名哲学家、美学家柏拉图誉为“黄金分割律”。黄金分割线的神奇和魔力,

在数学界上还没有明确定论,但它屡屡在实际中发挥着意想不到的作用。 黄金分割线的最基本公式,是将1分割为0.618和0.382,它们有如下一些特点: (1)数列中任一数字都是由前两个数字之和构成。 (2)前一数字与后一数字之比例,趋近于一固定常数,即0.618。 (3)后一数字与前一数字之比例,趋近于1.618。 (4)1.618与0.618互为倒数,其乘积则约等于1。 ()任一数字如与前面第二个数字相比,其值趋近于2.618;如与后面第二个数字相比,其值则趋近于0.382。 理顺下来,上列奇异数字组合除能反映黄金分割的两个基本比值0.618和0.382以外,尚存在下列两组神秘比值。 即:(1)0.191、0.382、0.、0.618、0.809(2)1、1.382、1.、1.618、2、2.382、2.618 黄金分割点: 把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是一个无理数,用分数表示为/2,取其前三位数字的近似值是0618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这个分割点就叫做黄金分割点(gldensetinrati通常用φ表示)这是一个十分有趣的数字,我们以0618来近似表示,通过

初中数学图形的相似难题汇编附答案

初中数学图形的相似难题汇编附答案 一、选择题 1.两个相似多边形的面积比是9∶16,其中小多边形的周长为36 cm,则较大多边形的周长为 ) A.48 cm B.54 cm C.56 cm D.64 cm 【答案】A 【解析】 试题分析:根据相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方计算即可. 解:两个相似多边形的面积比是9:16, 面积比是周长比的平方, 则大多边形与小多边形的相似比是4:3. 相似多边形周长的比等于相似比, 因而设大多边形的周长为x, 则有=, 解得:x=48. 大多边形的周长为48cm. 故选A. 考点:相似多边形的性质. 2.如果两个相似正五边形的边长比为1:10,则它们的面积比为() A.1:2 B.1:5 C.1:100 D.1:10 【答案】C 【解析】 根据相似多边形的面积比等于相似比的平方,由两个相似正五边形的相似比是1:10,可知它们的面积为1:100. 故选:C. 点睛:此题主要考查了相似三角形的性质:相似三角形的面积比等于相似比的平方. 3.如图所示,在△ABC中,∠C=90°,AB=8,CD是AB边上的中线,作CD的中垂线与CD交于点E,与BC交于点F.若CF=x,tanA=y,则x与y之间满足()

A .2244x y += B .2244x y -= C .2288x y -= D .2288x y += 【答案】A 【解析】 【分析】 由直角三角形斜边上的中线性质得出CD = 12AB =AD =4,由等腰三角形的性质得出∠A =∠ACD ,得出tan ∠ACD =GE CE =tan A =y ,证明△CEG ∽△FEC ,得出GE CE CE FE =,得出y =2FE ,求出y 2=24FE ,得出24y =FE 2,再由勾股定理得出FE 2=CF 2﹣CE 2=x 2﹣4,即可得出答案. 【详解】 解:如图所示: ∵在△ABC 中,∠C =90°,AB =8,CD 是AB 边上的中线, ∴CD = 12 AB =AD =4, ∴∠A =∠ACD , ∵EF 垂直平分CD , ∴CE =12 CD =2,∠CEF =∠CEG =90°, ∴tan ∠ACD = GE CE =tanA =y , ∵∠ACD+∠FCE =∠CFE+∠FCE =90°, ∴∠ACD =∠FCE , ∴△CEG ∽△FEC , ∴GE CE =CE FE , ∴y =2FE , ∴y 2= 24FE , ∴24y =FE 2, ∵FE 2=CF 2﹣CE 2=x 2﹣4, ∴24y =x 2﹣4, ∴24y +4=x 2,

黄金分割

《黄金分割》教案 李鹏辉 一、教材分析 《黄金分割》是北师大版数学八年级下册的一节内容。在以往的教学中,大都将“黄金分割”作为比例线段的应用来处理,学生学过以后,丝毫感受不到“黄金分割”的实用价值,体会不到“黄金分割”所带来的美的享受。因此,本节课除了讲授黄金分割的定义及其作图方法之外,让学生阅读有关资料,从日常生活中找出一些黄金分割的例子,使学生亲身感到数学知识的作用,从而更促进对知识的理解,体会黄金分割的文化价值以及在人类历史上的作用和影响。 二、教学目标 1.知识与技能 (1)了解黄金分割的有关概念。 (2)在应用中进一步理解线段的比、成比例线段等相关内容。 2.过程与方法 (1)通过自主探究学习,体验黄金分割的尺规作图的方法。 (2)通过本课知识的学习,体验问题解决的过程与方法。 3.情感态度与价值观 (1)通过发现学习,树立学习的自信心。 (2)通过学习,体会黄金分割的文化价值以及在人类历史上的作用和影响。 三、教学重点、难点分析 1.教学重点:黄金分割的定义以及应用。 2.教学难点:黄金分割的引入以及学生对黄金分割的价值的理解。 四、教学策略选择 主要采用自主学习、自我探究的学习策略。 五、教学过程 1.问题引入,引发思考 教师:利用Flash将有关图片以滚动的形式出现,教师根据图片的内容提出问题: (1)五星红旗为什么做成这种形状,不是正方形或其他形状? (2)为什么翩翩起舞的芭蕾舞演员要踮起脚尖? (3)为什么世界上许多人都对维纳斯着迷? (4)两幅相片中你觉得那幅构图美观? 学生:对问题进行思考、猜想并进行回答。 设计意图:问题的提出,激发学生学习本节课的兴趣,为本节课的内容进行了铺垫。 2.投票选举,激发兴趣 教师:让学生进行投票——在给出的一组矩形选出一个自己心目中觉得漂亮的矩形(如图2)。 学生:进行投票 设计意图:从投票中引入黄金矩形的一个典故,从中引入新课。 3.动手操作,发现新知 教师:布置任务——测量黄金矩形的长与宽,五角星中的对角线所分成的线段的比 (1)学生从操作中归纳概念。 (2)介绍黄金分割的有关概念。 学生:动手操作,并互相交流,发现黄金比,并用自己的语言说出黄金分割的概念。 设计意图:让学生主动参与学习活动,经历发现黄金比,让学生感受发现知识的乐趣,增强学习的自信心。 4.运用新知,练习训练 设计意图:通过巩固练习加深学生对黄金分割的理解(进行巡视,及时发现问题)。 5.介绍作图,验证作图

黄金分割中的数学文化

黄金分割中的数学文化 姓名:邱秀林班级:工业工程121 学号:5404312093 摘要:“数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。”数学中蕴涵的文化价值是客观存在的,数学的本质是一种文化,数学不仅闪烁着理性智慧的光芒,更有艺术审美的享受以及厚重的文化意向。“黄金分割”被誉为数学的两大宝藏之一,它来源于实际生活,并在实际生活中得到应用,只要留心,到处都可发现这位美的“使者”的足迹。黄金分割对我们的审美、思维方式、价值观念以及世界观等方面将产生重要的影响。 关键词:文化价值黄金分割数学美思想方法 黄金分割又称黄金律,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值为1∶0.618或1.618∶1,即长段为全段的0.618。0.618被公认为最具有审美意义的比例数字。上述比例是最能引起人的美感的比例,因此被称为黄金分割。 有趣的是,这个数字在自然界和人们生活中到处可见:人们的肚脐是人体总长的黄金分割点,人的膝盖是肚脐到脚跟的黄金分割点。大多数门窗的宽长之比也是0.618;有些植茎上,两张相邻叶柄的夹角是137度28',这恰好是把圆周分成1:0.618的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。 建筑师们对数学0.618特别偏爱,无论是古埃及的金字塔,还是巴黎的圣母院,或者是近世纪的法国埃菲尔铁塔,都有与0.618有关的数据。人们还发现,一些名画、雕塑、摄影作品的主题,大多在画面的0.618处。艺术家们认为弦乐器的琴马放在琴弦的0.618处,能使琴声更加柔和甜美。 一、黄金分割的起源 人们认为,黄金分割作图与正五边形、正十边形和五角星形的作图有关——特别是由五角星形作图的需要引起的。五角星形是一种很耐人寻味的图案,世界许多国家国旗上的“星”都画成五角形。现今有将近40个国家(如中国、美国、朝鲜、土耳其、古巴等等)的国旗上有五角星。为什么是五角而不是其他数目的角?也许是古代留下来的习惯。 五角星形的起源甚早,现在发现最早的五角星形图案是在幼发拉底河下游马鲁克地方(现属伊拉克)发现的一块公元前3200年左右制成的泥板上。 古希腊的毕达哥拉斯学派用五角星形作为他们的徽章或标志,称之为“健康”。可以认为毕达哥拉斯已熟知五角星形的作法,由此可知他已掌握了黄金分

九年级数学学案: 第4课时 黄金分割

天才是百分之一的天分,再加上百分之 九十九的努力 第4课时黄金分割 学习目标: 1、认识线段的黄金分割,理解黄金分割的概念. 2、会运用黄金分割进行相关计算和证明. 学习重点:比例性质的应用和黄金分割的概念. 学习难点:运用黄金分割解决实际问题. 【预习案】 一、链接 请写出比例的基本性质. 二、导读 阅读课本P95-96,回答下列问题: (1)叫做黄金分割.(2)黄金分割点是如何确定的?一条线段有几个黄金分割点? 叫做线段的黄金分割点,叫做黄金比. 【探究案】 ㈠、黄金分割的定义:

1、动手操作,然后算一算,完成下面的填空: 度量线段AC 、BC 的长度,线段AC= ,BC= , 计算AB AC = 、AC BC = , AB AC 与AC BC 的值 A B C 相等吗? ※在线段AB 上,点C 把线段AB 分成两条线段 和 ,如果 = , 那么称线段AB 被点C ,点C 叫做线段AB 的 ,AC 与AB 的比叫做 。其中AB AC = ≈ ※⑴、黄金分割是一种分割线段的方法,一条线段的黄金分割点有 个。 ⑵、黄金比是两条线段的比,没有单位,它的比值为 ,精确到0.001为 。 2、想一想:点C 是线段AB 的黄金分割点,则AB AC = 。 ㈡、确定黄金分割点: 如图,已知线段AB ,按照如下方法作图: (1)经过点B 作BD ⊥AB ,使BD= 21AB. (2)连接AD ,在DA 上截取DE=DB. (3)在AB 上截取AC=AE.点C 就是线段AB 的黄金分割点。 ㈢、黄金矩形: 宽与长的比是:的矩形叫做黄金矩形。 【训练案】 1、若点C 是线段AB 的黄金分割点,且AC >CB ,则AB :AC= ;BC :AB= . 2、若在四边形ABCD 和四边形A 1B 1C 1D 1中, =11B A AB =11C B BC 1111CD DA C D D A ==58且四边形A 1B 1C 1D 1的周长为80cm ,求四边形ABCD 的周长. 3、已知,如图在 △ABC 中 EC AE DB AD = E D A A B 5?12

初二数学知识点归纳:黄金分割数1

初二数学知识点归纳:黄金分割数1 初二数学知识点归纳:黄金分割数1 黄金分割数: 把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是一个无理数,取其前三位数字的近似值是0618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。 黄金分割: 黄金分割又称黄金律,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值约为1∶0618或1618∶1,即长段为全段的0618。0618被公认为最具有审美意义的比例数字。上述比例是最能引起人的美感的比例,因此被称为黄金分割。 黄金分割线: 黄金分割线是一种古老的数学方法。黄金分割的创始人是古希腊的毕达哥拉斯,他在当时十分有限的科学条下大胆断言: 一条线段的某一部分与另一部分之比,如果正好等于另一部分同整个线段的比即0618,那么,这样比例会给人一种美感。

后,这一神奇的比例关系被古希腊著名哲学家、美学家柏拉图誉为“黄金分割律”。黄金分割线的神奇和魔力,在数学界上还没有明确定论,但它屡屡在实际中发挥着意想不到的作用。 黄金分割线的最基本公式,是将1分割为0.618和0.382,它们有如下一些特点: (1)数列中任一数字都是由前两个数字之和构成。 (2)前一数字与后一数字之比例,趋近于一固定常数,即0.618。(3)后一数字与前一数字之比例,趋近于1.618。 (4)1.618与0.618互为倒数,其乘积则约等于1。 ()任一数字如与前面第二个数字相比,其值趋近于2.618;如与后面第二个数字相比,其值则趋近于0.382。 理顺下,上列奇异数字组合除能反映黄金分割的两个基本比值0.618和0.382以外,尚存在下列两组神秘比值。 即:(1)0.191、0.382、0.、0.618、0.809 (2)1、1.382、1.、1.618、2、2.382、2.618 黄金分割点: 把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是一个无理数,用分数表示为(√-1)/2,取其前三位数字的近似值是0618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这个分割点就叫做黄金分割点(gldensetinrati通常用φ表示)这是一个十分有趣的数字,我们以0618近似表示,通过简单的计算就可以发现:(1-0618)/0618=06一条线段

相关主题
文本预览
相关文档 最新文档