伯努利方程流体能量转换实验(参考课件)
- 格式:ppt
- 大小:175.50 KB
- 文档页数:14
(一)不可压缩流体定常流能量方程(伯努利方程)实验一、实验目的要求:1、掌握流速、流量、压强等动水力学水力要素的实验量测技术;2、验证流体定常流的能量方程;3、通过对动水力学诸多水力现象的实验分析研究,进一步掌握有压管流中动水力学的能量转换特性。
实用文档实用文档自循环伯努利方程实验装置图本实验的装置如图所示,图中:1.自循环供水器;2.实验台;3.可控硅无级调速器;4.溢流板;5.稳水孔板; 6.恒压水箱; 7.测压计; 8.滑动测量尺; 9.测压管; 10.实验管道; 11.测压点; 12.毕托管 13.实验流量调节阀。
三、实验原理:在实验管路中沿水流方向取n 个过水截面。
可以列出进口截面(1)至截面(i)的能量方程式(i=2,3,.....,,n)W i hg g p Z g g p Z i i i -+++=++12222111νρνρ选好基准面,从已设置的各截面的测压管中读出g p Z ρ+值,测出通过管路的流量,即可计算出截面平均流速ν及动压g22,从而可得到各截面测管水头和总水头。
四、实验方法与步骤:1、熟悉实验设备,分清各测压管与各测压点,毕托管测点的对应关系。
2、打开开关供水,使水箱充水,待水箱溢流后,检查泄水阀关闭时所有测压管水面是否齐平,若不平则进行排气调平(开关几次)。
3、打开阀13,观察测压管水头线和总水头线的变化趋势及位置水头、压强水头之间的相互关系,观察当流量增加或减少时测压管水头的变化情况。
4、调节阀13开度,待流量稳定后,测记各测压管液面读数,同时测记实验流量(与毕托管相连通的是演示用,不必测记读数)。
5、再调节阀13开度1~2次,其中一次阀门开度大到使液面降到标尺最低点为限,按第4步重复测量。
五、实验结果及要求:实用文档实用文档1、把有关常数记入表2.1。
2、量测(g pZ ρ+)并记入表2.2。
3、计算流速水头和总水头。
4、绘制上述结果中最大流量下的总水头线和测压管水头线(轴向尺寸参见图2.2,总水头线和测压管水头线可以绘在图2.2上)。
能量方程(伯努利方程)实验能量方程(伯努利方程)实验姓名:史亮班级:9131011403学号:913101140327处的7根皮托管测压管测量总水头或12根普通测压管测量测压管水头,其中测点1、6、8、12、14、16和18均为皮托管测压管(示意图见图3.2),用于测量皮托管探头对准点的总水头H ’(=2gu2++r p Z ),其余为普通测压管(示意图见图3.3),用于测量测压管水头。
图3.2 安装在管道中的皮托管测压管示意图 图3.3安装在管道中的普通测压管示意图3.3 实验原理当流量调节阀旋到一定位置后,实验管道内的水流以恒定流速流动,在实验管道中沿管内水流方向取n 个过水断面,从进口断面(1)至另一个断面(i )的能量方程式为:2g v2111++r p Z =fiih r p Z +++2gv 2i=常数 (3.1) 式中:i=2,3,······ ,n ;Z ──位置水头;rp──压强水头; 2gv 2──速度水头;fh ──进口断面(1)至另一个断面(i )的损失水头。
从测压计中读出各断面的测压管水头(r pZ +),通过体积时间法或重量时间法测出管道流量,计算不v2,从同管道内径时过水断面平均速度v及速度水头2g而得到各断面的测压管水头和总水头。
3.4 实验方法与步骤1)观察实验管道上分布的19根测压管,哪些是普通测压管,哪些是皮托管测压管。
观察管道内径的大小,并记录各测点管径至表3.1。
2)打开供水水箱开关,当实验管道充满水时反复开或关流量调节阀,排除管内气体或测压管内的气泡,并观察流量调节阀全部关闭时所有测压管水面是否平齐(水箱溢流时)。
如不平,则用吸气球将测压管中气泡排出或检查连通管内是否有异物堵塞。
确保所有测压管水面平齐后才能进行实验,否则实验数据不准确。
3)打开流量调节阀并观察测压管液面变化,当最后一根测压管液面下降幅度超过50%时停止调节阀门。
实验四伯努利方程实验一、实验目的1、观察流体流经伯努利方程试验管的能量转化情况,对实验中出现的现象进行分析,加深对伯努利方程的理解;2、掌握一种测量流体流速的原理;3、验证静压原理。
二、实验仪器装置如图1所示图1 伯努利方程仪1.水箱及潜水泵2.上水管3.溢流管4.整流栅5.溢流板6.定压水箱7.实验细管8. 实验粗管9.测压管10.调节阀11.接水箱12.量杯13.回水管14.实验桌三、实验步骤1、关闭调节阀,打开进水阀门,启动水泵,待定压水箱接近放满时,适度打开调节阀,排净管路和测压管中的空气;2、关闭调节阀,调节进水阀门,使定压水箱溢流板有一定溢流;3、测出位置水头,并记录位置水头和试验管测试截面的内径;4、打开调节阀至一定开度,待液流稳定,且检查定压水箱的水位恒定后,测读伯努利方程试验管四个截面上测压管的液柱高度;5、改变调节阀的开度,在新工况下重复步骤4;6、关闭调节阀,测读伯努利方程试验管上各个测压管的液柱高度,记下数据。
可以观察到各测压管中的水面与定压水箱的水面相平,以此验证静压原理;7、实验结束,关闭水泵。
四、数据处理实验数据填入表1表1 实验记录表1、计算出伯努利方程试验管各测试截面的相应能量损失水头和压强水头,填写在表中。
速度水头:22gV=总水头-测压管水头压强水头:P=测压管水头-位置水头能量损失水头:wh=静水头-总水头五、思考题1、为什么能量损失是沿着流动的方向增大的?2、为什么在实验过程中要保持定压水箱中有溢流?3、测压管工作前为什么要排尽管路中的空气?其测量的是绝对压力还是表压力?。
流体能量的转换一一伯努利方程的应用实验数据大气温度t= 大气压力P 大气=毕托管校正系数ξ= 多管压力计水柱起点位置x mm P 全mm 水柱P 静mm 水柱P 动 mm 水柱x mm P 全 mm 水柱P 静mm 水柱P 动 mm 水柱0 20 40 60数据整理()2732.2874.1+××==t kRT at tt V V M 喉=将上列数据整理成图表 参考图讨论由测得结果可以看出:沿管道长度方向上的全压力下降很少。
入口处与出口处的全压力非常接近,而这时静压力和动压力的变化却非常大,这就很好地证明了流体流动时,能量守恒与转换原理,伯努利方程的正确性。
由测得结果还可以看出:测得压力变化算出的速度比⎟⎠⎞⎜⎝⎛喉V V 测和由宽度变化计算出的速度比⎟⎠⎞⎜⎝⎛喉V V计,在收缩段和喉管处,数值非常接近,图示曲线比较吻合,而在扩张段则出现较大的偏差,越向出口端,其偏差越大,造成这种偏差的原因是由于附面层的影响。
在收缩段和流速较快的喉管,附面层较薄,故其对速度比⎟⎠⎞⎜⎝⎛喉V V测的影响较小,而在扩张段,附面层厚度不断增厚,故其影响也就越来越大。
由于附面层中流体速度逐渐降为0,当里面粘附一层具有一定厚度(可达2—3毫米)的附面层时,实际上就等于减小了管道的宽度,因而增加了()B B /喉值。
这就是为什么根据管道宽度变化()B B /喉计算所得的⎟⎠⎞⎜⎝⎛喉V V计与测得的⎟⎠⎞⎜⎝⎛喉V V测差别的原因。
不可压缩流体恒定流能量方程(伯努利方程)实验一、实验背景1726年,伯努利通过无数次实验,发现了“边界层表面效应”:流体速度加快时,物体与流体接触的界面上的压力会减小,反之压力会增加。
为纪念他的贡献,这一发现被称为“伯努利效应”。
伯努利效应适用于包括气体在内的一切流体,是流体作稳定流动时的基本现象之一,反映出流体的压强与流速的关系,即在水流或气流里,如果速度大,压强就小,如果速度小,压强就大。
1738年,在他的最重要的著作《流体动力学》中,伯努利将这一理论公式化,提出了流体动力学的基本方程,后人称之为“伯努利方程”。
书中还介绍了著名的伯努利实验、伯努利原理,用能量守恒定律解决了流体的流动问题,这对流体力学的发展,起到了至关重要的推动作用。
伯努利简介丹尼尔伯努利(Daniel Bernouli,1700~1782),瑞士物理学家、数学家、医学家,被称为“流体力学之父”。
1700年2月8日生于荷兰格罗宁根,1782年3月17日逝世于巴塞尔。
他是伯努利这个数学家族(4代10人)中最杰出的代表,16岁时就在巴塞尔大学攻读哲学与逻辑,后获得哲学硕士学位。
17~20岁时,违背家长要他经商的愿望,坚持学医,并于1721年获医学硕士学位,成为外科名医并担任过解剖学教授。
他在父兄熏陶下最后仍转到数理科学。
伯努利在25岁时应聘为圣彼得堡科学院的数学院士,8年后回到瑞士的巴塞尔,先任解剖学教授,后任动力学教授,1750年成为物理学成教授。
他还于1747年当选为柏林科学院院士,1748年当选为巴黎科学院院士,1750年当选英国皇家学会会员。
在1725~1749年间,伯努利曾十次荣获法国科学院的年度奖。
除流体动力学这一主要领域外,丹尼尔·伯努利的研究领域极为广泛,他的工作几乎对当时的数学和物理学的研究前沿的问题都有所涉及。
他最出色的工作是将微积分、微分方程应用到物理学,研究流体问题、物体振动和摆动问题,因此他被推崇为数学物理方法的奠基人.二、实验目的要求1.验证流体恒定总流的能量方程;2.通过对动水力学诸多水力现象的实验分析,进一步掌握有压管流中动水力学的能量转换特性;3.掌握流速、流量、压强等动水力学水力要素的实验量测技能。