当前位置:文档之家› 通信电子线路大型实验报告 zjut 浙江工业大学

通信电子线路大型实验报告 zjut 浙江工业大学

通信电子线路大型实验报告 zjut 浙江工业大学
通信电子线路大型实验报告 zjut 浙江工业大学

通信电子线路实验报告4

大连理工大学 本科实验报告 课程名称:通信电子线路实验 学院:电子信息与电气工程学部专业:电子信息工程 班级:电子0904 学号: 200901201 学生姓名:朱娅 2011年11月20日

实验四、调幅系统实验及模拟通话系统 一、实验目的 1.掌握调幅发射机、接收机的整机结构和组成原理,建立振幅调制与 解调的系统概念。 2.掌握系统联调的方法,培养解决实际问题的能力。 3.使用调幅实验系统进行模拟语音通话实验。 二、实验内容 1.实验内容及步骤,说明每一步骤线路的连接和波形 (一)调幅发射机组成与调试 (1)通过拨码开关S2 使高频振荡器成为晶体振荡器,产生稳定的等幅高频振荡,作为载波信号。拨码开关S3 全部开路,将拨码开关S4 中“3”置于“ON”。用示波器观察高频振荡器后一级的射随器缓冲输出,调整电位器VR5,使输出幅度为0.3V左右。将其加到由MC1496 构成的调幅器的载波输入端。 波形:此时示波器上,波形为一正弦波,f=10.000MHz,Vpp=0.3V。 (2)改变跳线,将低频调制信号(板上的正弦波低频信号发生器)接至模拟乘法器调幅电路的调制信号输入端,用示波器观察J19 波形,调VR9,使低频振荡器输出正弦信号的峰-峰值Vp-p 为0.1~0.2V. 波形:此时示波器上,波形为一正弦波,f=1.6kHz,Vpp=0.2V。 (3)观察调幅器输出,应为普通调幅波。可调整VR8、VR9 和VR11,

使输出的波形为普通的调幅波(含有载波,m 约为30%)。 (4)将普通的调幅波连接到前置放大器(末前级之前的高频信号缓冲器)输入端,观察到放大后的调幅波。 波形:前置放大后的一调幅波,包络形状与调制信号相似,频率特性为载波信号频率。f?=1.6kHz,Vpp=0.8V,m≈30%。 (5)调整前置放大器的增益,使其输出幅度1Vp-p 左右的不失真调幅波,并送入下一级高频功率放大电路中。 (6)高频功率放大器部分由两级组成,第一级是甲类功放作为激励级,第二级是丙类功放。给末级丙类功放加上+12V 电源,调节VR4 使J8(JF.OUT)输出6Vp-p左右不失真的放大信号,在丙类功放的输出端,可观察到经放大后的调幅波,改变电位器VR6 可改变丙类放大器的增益,调节CT2 可以看到LC 负载回路调谐时对输出波形的影响。 波形:此时示波器上为放大后的调幅波,f?=1.6kHz,Vpp=8V,m≈30%。 (二)调幅接收机的组成与调试 从GP-4 实验箱的系统电路图可以看出调幅接收机部分采用了二次变频电路,其中频频率分别为:第一中频6.455MHz,第二中频455kHz。由于该二次变频接收机的两个本机振荡器均采用了石英晶体振荡器,其中第一本振频率16.455MHz,第二本振频率6.000MHz,也就是说本振频率不可调。这样实验箱的调幅接收机可以接收的频率就因为第一本振频率不可调而被固定下来,即该机可以接收的已调波的中心频率应该为10.000MHz(第1本振频率-第1中频频率 = 16.455MHz - 6.455MHz =

三点式正弦波振荡器(高频电子线路实验报告)

三点式正弦波振荡器 一、实验目的 1、 掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计 算。 2、 通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影 响。 3、 研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。 二、实验内容 1、 熟悉振荡器模块各元件及其作用。 2、 进行LC 振荡器波段工作研究。 3、 研究LC 振荡器中静态工作点、反馈系数以及负载对振荡器的影响。 4、 测试LC 振荡器的频率稳定度。 三、实验仪器 1、模块 3 1块 2、频率计模块 1块 3、双踪示波器 1台 4、万用表 1块 四、基本原理 实验原理图见下页图1。 将开关S 1的1拨下2拨上, S2全部断开,由晶体管N1和C 3、C 10、C 11、C4、CC1、L1构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI 可用来改变振荡频率。 ) 14(121 0CC C L f += π 振荡器的频率约为4.5MHz (计算振荡频率可调范围) 振荡电路反馈系数 F= 32.0470 220220 3311≈+=+C C C 振荡器输出通过耦合电容C 5(10P )加到由N2组成的射极跟随器的输入端,因C 5容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。射随器输出信号经

N3调谐放大,再经变压器耦合从P1输出。 图1 正弦波振荡器(4.5MHz ) 五、实验步骤 1、根据图1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。 2、研究振荡器静态工作点对振荡幅度的影响。 (1)将开关S1拨为“01”,S2拨为“00”,构成LC 振荡器。 (2)改变上偏置电位器W1,记下N1发射极电流I eo (=11 R V e ,R11=1K)(将万用表红 表笔接TP2,黑表笔接地测量V e ),并用示波测量对应点TP4的振荡幅度V P-P ,填于表1中,分析输出振荡电压和振荡管静态工作点的关系,测量值记于表2中。 3、测量振荡器输出频率范围 将频率计接于P1处,改变CC1,用示波器从TP8观察波形及输出频率的变化情况,记录最高频率和最低频率填于表3中。 六、实验结果 1、步骤2振荡幅度V P-P 见表1.

高频电子线路实验说明书

高频电子线路实验 说明书

实验要求(电信111班) l.实验前必须充分预习,完成指定的预习任务。预习要求如下: 1)认真阅读实验指导书,分析、掌握实验电路的工作原理,并进行必要的估算。 2)完成各实验“预习要求”中指定的内容。 3)熟悉实验任务。 4)复习实验中所用各仪器的使用方法及注意事项。 2.使用仪器和学习机前必须了解其性能、操作方法及注意事项,在使用时应严格遵守。 3.实验时接线要认真,相互仔细检查,确定无误才能接通电源,初学或没有把握应经指导教师审查同意后再接通电源。 4.高频电路实验注意: 1)将实验板插入主机插座后,即已接通地线,但实验板所需的正负电源则要另外使用导线进行连接。 2)由于高频电路频率较高,分布参数及相互感应的影响较大。因此在接线时连接线要尽可能短。接地点必须接触良好。以减少干扰。 3)做放大器实验时如发现波形削顶失真甚至变成方波,应检查工作点设置是否正确,或输入信号是否过大。

5.实验时应注意观察,若发现有破坏性异常现象(例如有元件冒烟、发烫或有异味)应即关断电源,保持现场,报告指导教师。找出原因、排除故障,经指导教师同意再继续实验。 6.实验过程中需要改接线时,应关断电源后才能拆、接线。 7.实验过程中应仔细观察实验现象,认真记录实验结果(数据、波形、现象)。所记录的实验结果经指导教师审阅签字后再拆除实验线路。 8.实验结束后,必须关断电源、拔出电源插头,并将仪器、设备、工具、导线等按规定整理。 9.实验后每个同学必须按要求独立完成实验报告。 实验一调谐放大器 一、实验目的

1、熟悉电子元器件和高频电路实验箱。 2、熟悉谐振回路的幅频特性分析一通频带与选择性。 3、熟悉信号源内阻及负载对谐振回路的影响,从而了解频带扩展。 4、熟悉和了解放大器的动态范围及其测试方法。 二、实验仪器 1、双踪示波器 2、扫频仪 3、高频信号发生器 4、毫伏表 5、万用表 6、实验板1 三、预习要求 1、复习谐振回路的工作原理。 2、了解谐振放大器的电压放大倍数、动态范围、通频带及选择性相互之间关系。 3、实验电路中,若电感量L=1uh,回路总电容C=220pf (分布电容包括在内),计算回路中心频率 f 0 。图1-1 单调谐回路谐振放大器原理图 四、实验内容及步骤 (一)单调谐回路谐振放大器

中南大学通信电子线路实验报告

中南大学 《通信电子线路》实验报告 学院信息科学与工程学院 题目调制与解调实验 学号 专业班级 姓名 指导教师

实验一振幅调制器 一、实验目的: 1.掌握用集成模拟乘法器实现全载波调幅和抑止载波双边带调幅的方法。 2.研究已调波与调制信号及载波信号的关系。 3.掌握调幅系数测量与计算的方法。 4.通过实验对比全载波调幅和抑止载波双边带调幅的波形。 二、实验内容: 1.调测模拟乘法器MC1496正常工作时的静态值。 2.实现全载波调幅,改变调幅度,观察波形变化并计算调幅度。 3.实现抑止载波的双边带调幅波。 三、基本原理 幅度调制就是载波的振幅(包络)受调制信号的控制作周期性的变化。变化的周期与调制信号周期相同。即振幅变化与调制信号的振幅成正比。通常称高频信号为载波信号。本实验中载波是由晶体振荡产生的10MHZ高频信号。1KHZ的低频信号为调制信号。振幅调制器即为产生调幅信号的装置。 在本实验中采用集成模拟乘法器MC1496来完成调幅作用,图2-1为1496芯片内部电路图,它是一个四象限模拟乘法器的基本电路,电路采用了两组差动对由V1-V4组成,以反极性方式相连接,而且两组差分对的恒流源又组成一对差分电路,即V5与V6,因此恒流源的控制电压可正可负,以此实现了四象限工作。D、V7、V8为差动放大器V5与V6的恒流源。进行调幅时,载波信号加在V1-V4的输入端,即引脚的⑧、⑩之间;调制信号加在差动放大器V5、V6的输入端,即引脚的①、④之间,②、③脚外接1KΩ电位器,以扩大调制信号动态范围,已调制信号取自双差动放大器的两集电极(即引出脚⑹、⑿之间)输出。

图2-1 MC1496内部电路图 用1496集成电路构成的调幅器电路图如图2-2所示,图中VR8用来调节引出脚①、④之间的平衡,VR7用来调节⑤脚的偏置。器件采用双电源供电方式(+12V,-9V),电阻R29、R30、R31、R32、R52为器件提供静态偏置电压,保证器件内部的各个晶体管工作在放大状态。 四、实验结果 1. ZD.OUT波形: 2. TZXH波形:

模电实验报告一_西工大

模 拟 电 路 设 计 实 验 报 告 西北工业大学 赵致远2014302170 裘天成2014302171 2016年1月1日 实验一:电源 1.实验目的: ●学习开关型和线性型直流稳压电源原理。 ●认识电解电容与陶瓷电容的区别。 ●认识电感的作用。 ●学会通过芯片datasheet(数据表)了解其工作特性及参数指标 ●掌握直流稳压电源主要指标的意义与其测试方法。

熟悉开关型与线性型直流稳压电源的优缺点与其区别。 2.实验原理: a.线性稳压原理: 特点: 1.输出电压绝对值必须比输入电压绝对值低 2.输出三极管或者MOS管工作在放大状态,导通压降大,输入输 出电压压差大时效率较低。 3.输出电流能力较小 4.输出电压纹波小 5.无开关动作和EMI b.开关稳压原理: 降压 负压 升压

V SW I L V OUT ΔI L ΔV OUT T ON T 特点: 1.能够实现升压,降压,负压转换 2.采用开关传输能量,效率高。 3.具有大电流输出能力 4.输出纹波较大 5.开关动作产生较大EMI和系统电源噪声 3.实验内容: a.实验1:MC34063开关稳压电路 降压输出5V 负压输出-5V

1. 计算参数。 方法:依据MC34063 数据手册(datasheet)中,降压(step-down)和负压(Voltage-Inverting)部分提供的公式计算。 计算开关频率f和导通时间T ON:首先,依据选定的电容C T的值及其公式计算出T ON大小,之后根据T ON/T OFF比值公式计算出T OFF大小。T ON与T OFF之和为开关周期。计算得出开关频率大小。 通过反馈电阻R1,计算反馈电阻R2值。 已知确定R1,通过datasheet中提供的公式计算设定V OUT所需的电阻R2值。 并且调整好可调电阻大小。 计算最大输出电流I OUT(max) 2. 搭建电路。 3. 测试参数 A: 输出电压V OUT 电压表直接测量输出端的电压,并记录。 B:输出纹波 输入电压V IN=25V,负载电阻100Ω时,通过示波器AC档测试V OUT波形,读取纹波大小。 C: 开关频率f和导通时间T ON 输入电压V IN=25V,负载电阻100Ω时,测量开关节点引脚2的波形频率。 高电平时间为导通时间T ON。 D: 负载调整率 输入电压V IN=25V,在输出负载上串联电流表,接入V OUT端,调节负载电阻100Ω和50Ω变化。记录两个负载下输出电压值,计算负载调整率。 E:线性调整率 输入电压V IN在15V到25V变化,负载电阻100Ω时,记录输出电压变化值,计算线性调整率。 F:效率 输入电压V IN=25V,负载电阻100Ω时效率。 G:短路电流 输出负载0.1ohm,串联电流表,接入V OUT端,记录此时的输出电流值。b.实验2:LM7805线性降压电路

中北大学高频电子线路实验报告

中北大学 高频电子线路实验报告 班级: 姓名: 学号: 时间: 实验一低电平振幅调制器(利用乘法器)

一、实验目的 1.掌握用集成模拟乘法器实现全载波调幅和抑制载波双边带调幅的方法与 过程,并研究已调波与二输入信号的关系。 2.掌握测量调幅系数的方法。 3.通过实验中波形的变换,学会分析实验现象。 二、预习要求 1.预习幅度调制器有关知识。 2.认真阅读实验指导书,了解实验原理及内容,分析实验电路中用1496乘 法器调制的工作原理,并分析计算各引出脚的直流电压。 3.分析全载波调幅及抑制载波调幅信号特点,并画出其频谱图。 三、实验仪器设备 1.双踪示波器。 2.SP1461型高频信号发生器。 3.万用表。 4.TPE-GP4高频综合实验箱(实 验区域:乘法器调幅电路) 四、实验电路说明 图 幅度调制就是载波的振幅受 调制信号的控制作周期性的变化。 变化的周期与调制信号周期相同。 即振幅变化与调制信 号的振幅成正比。通常称高频信号为载波5-1 1496芯片内部电路图 信号,低频信号为调制信号,调幅器即为 产生调幅信号的装置。 本实验采用集成模拟乘法器1496来构成调幅器,图5-1为1496芯片内部电路图,它是一个四象限模拟乘法器的基本电路,电路采用了两组差动对由V1-V4组成,以反极性方式相连接,而且两组差分对的恒流源又组成一对差分电路,即V5与V6,因此恒流源的控制电压可正可负,以此实现了四象限工作。D、V7、V8为差动放大器V5、V6的恒流源。进行调幅时,载波信号加在V1-V4的输入端,即引脚的⑧、⑩之间;调制信号加在差动放大器V5、V6的输入端,即引脚的①、④之间,②、③脚外接 1KΩ电阻,以扩大调制信号动态范围,已调制信号取自双差动放大器的两集

通信电子线路Multisim仿真实验报告

通信电子线路实验报告Multisim调制电路仿真

目录 一、综述 .......................... 错误!未定义书签。 二、实验内容 ...................... 错误!未定义书签。 1.常规调幅AM ................... 错误!未定义书签。 (1)基本理论.................... 错误!未定义书签。 (2)Multisim电路仿真图 ........ 错误!未定义书签。 (3)结论: ...................... 错误!未定义书签。 2.双边带调制DSB ................ 错误!未定义书签。 (1)基本理论.................... 错误!未定义书签。 (2)Multisim电路仿真图 ........ 错误!未定义书签。 3.单边带调制SSB ................ 错误!未定义书签。 (1)工作原理.................... 错误!未定义书签。 (2)Multisim电路仿真图 ........ 错误!未定义书签。 4.调频电路FM ................... 错误!未定义书签。 (1)工作原理.................... 错误!未定义书签。 (2)Multisim电路仿真图 ........ 错误!未定义书签。 5.调相电路PM ................... 错误!未定义书签。 (1)工作原理.................... 错误!未定义书签。 (2)Multisim电路仿真图............ 错误!未定义书签。 三、实验感想 ...................... 错误!未定义书签。

西工大高频第二次实验报告

实验二调幅接收系统实验 一、实验目的和内容: 图2为实验中的调幅接收系统结构图(虚框部分为实验重点,低噪放电路下次实验实现,本振信号由信号源产生。)。通过实验了解和掌握调幅接收系统,了解和掌握三极管混频器电路、中频放大/AGC电路、检波电路。 图2 调幅接收系统结构图 二、实验原理: 1、晶体管混频电路: 给出原理图,并分析其工作原理。 原理:混频电路将高频载波信号或已调波信号经过滤波、放大,将其频率变换为固定频率的信号且该高频滤波信号的频谱内部结构和调制类型保持不变,仅仅改变其频率。 2、中频放大/AGC和检波电路: 给出原理图,并分析其工作原理。 原理:中频输入信号通过中放电路放大中频信号,抑制干扰信号,连接AGC电路实现自动增益控制,接着连接二极管检波电路和低通滤波器,从中取出调制信号。 3、调幅接收系统: 给出系统框图,并简述其工作原理。 检波 低噪放混频 中放 /AGC 本振

工作原理:天线接收信号通过滤波器滤波然后低噪放放大幅度,晶体振荡器振荡出所需的本振信号,让本振信号和其进行混频然后滤波,AGC对其进行放大,输出稳定值,再进行滤波并解调检波,经过功率放大器输出。 三、实验步骤: 1、晶体管混频电路: 1)先调整静态工作点,测量2R4两端电压,调节2W1,使2R4两端电压为0; 2)在V2-5输入10.455MHz,250mV的本振信号,在V2-1输入10MHz、30mV的单载波信号,在V2-3处观测,调节2C3和2B1的大小,改变中频输出,当输出为455KHz的最大不失真稳定正弦波时,完成调试并记录此时的中频输出峰峰值。 3)改变基极偏置电阻2W1,使2R4端电压分别为0.5,1,1.5,2,2.5,3V,重复上述步骤2),记录下不同静态工作点下的中频输出的峰峰值,并计算混频增益,完成表2-1. 2、中频放大/AGC和检波电路: 1)调节直流静态工作点:闭合开关K3,电路仅接入12v直流电压,调节可调电阻3W1、3W2,为使静态电流不超过1mA,应使3R7,3R13两端电压为0.5V,0.033V。 2)调节交流工作:第一,调节函数发生器产生频率455KHZ的标准正弦信号,接入3K1。将示波器接于V3-2。 第二,调节可调电容3C4,使输出波形幅度最大不失真。 第三,将示波器加于V3-4,调节可调电容3C7,使输出波形最大不失真。 3)测试动态范围:开关3K2断开,开关3K3闭合。调节输入信号Vi幅值,使其分别为10,20…100,200mv…1V,示波器分别接到V3-2、V3-4、V3-5,,将分别测得的波形峰峰值记入表2-2,即分别为V01,V02,Vc,同时用示波器接V3-6处记录电压值(即AGC检波输出电压)。 4)检波失真观测:第一,输入信号455KHz、10mVpp,调制1KHz信号,调制度50%调幅信号,将示波器接到V3-6处即可观察到正常无失真的波形输出并记录;第二,增大直流负载电阻3W4,观察示波器直到观测到失真波形,即为对角线失真,记录波形;第三,再次调整3W4使波形正常不失真,减小交流电阻即闭合3K4,观察示波器输出波形产生负峰切割失真,记录波形。 3、调幅接收系统: 1、晶体管混频电路:1)2K1接入调制频率1KHz正弦波,载波频率10MHz,幅度为30mVp-p ,调制度50%的调幅波信号。 2)2K3接入本振信号10.455MHz,250mVp-p的正弦信号,将示波器接在V2-3处观察波形,记录参数、波形。 2、中频放大电路3K1打至中频输入端。 3K2、3K4断开,3K3闭合,,将示波器接到V3-6观察检波输出的波形,调节3W4,使其达到最大不失真波形,记录波形。 3、测试系统性能:1)灵敏度。不断减小输入调幅波信号的幅值,同时观察检波输出波形,使示波器波形出现明显失真的输入幅值为该系统的最小可接收幅值。 四、测试指标和测试波形: 3.1.晶体管混频电路:

高频小信号放大器实验报告

基于Multisim的通信电路仿真实验 实验一高频小信号放大器 1.1 实验目的 1、掌握高频小信号谐振电压放大器的电路组成与基本工作原理。 2、熟悉谐振回路的调谐方法及测试方法。 3、掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。 1.2 实验内容 1.2.1 单调谐高频小信号放大器仿真 图1.1 单调谐高频小信号放大器 1、根据电路中选频网络参数值,计算该电路的谐振频率ωp。 ωp=1/(L1*C3)^2=2936KHz fp=ωp/(2*pi)=467KHz 2、通过仿真,观察示波器中的输入输出波形,计算电压增益Av0。

下图中绿色为输入波形,蓝色为输出波形 Avo=Vo/Vi=1.06/0.252=4.206 3、利用软件中的波特图仪观察通频带,并计算矩形系数。 通频带BW=2Δf0.7=7.121MHz-28.631KHz=7.092MHz 矩形系数Kr0.1=(2Δf0.1)/( 2Δf0.7)= (14.278GHz-9.359KHz)/7.092MHz=2013.254 4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出

电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~Av 相应的图,根据图粗略计算出通频带。 Fo(KHz ) 65 75 165 265 365 465 1065 1665 2265 2865 3465 4065 Uo(mV ) 0.66 9 0.76 5 1 1.05 1.06 1.06 0.97 7 0.81 6 0.74 9 0.65 3 0.574 0.511 Av 2.65 5 3.03 6 3.96 8 4.16 7 4.20 6 4.20 6 3.87 7 3.23 8 2.97 2 2.59 1 2.278 2.028 5、在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形,体会该电路的选频作用。 2次谐波 4次谐波

通信电子线路实物实验报告

东南大学电工电子实验中心 实验报告 课程名称:电子电路与综合实验 第一次实物实验 院(系):信息科学与工程学院专业:信息工程姓名:陈金炜学号:04013130 实验室:高频实验室实验组别: 同组人员:陈秦郭子衡邹俊昊实验时间:2015年11月21日评定成绩:审阅教师:

实验一常用仪器使用 一、实验目的 1. 通过实验掌握常用示波器、信号源和频谱仪等仪器的使用,并理解常用仪器的基本工作 原理; 2.通过实验掌握振幅调制、频率调制的基本概念。 二、实验仪器 示波器(带宽大于 100MHz) 1台 万用表 1台 双路直流稳压电源 1台 信号发生器 1台 频谱仪 1台 多功能实验箱 1 套 多功能智能测试仪1 台 三、实验内容 1、说明频谱仪的主要工作原理,示波器测量精度与示波器带宽、与被测信号频率之间关系。 答: (1)频谱仪结构框图为: 频谱仪的主要工作原理: ①对信号进行时域的采集,对其进行傅里叶变换,将其转换成频域信号。这种方法对于AD 要求很高,但还是难以分析高频信号。

②通过直接接收,称为超外差接收直接扫描调谐分析仪。即:信号通过混频器与本振混频后得到中频,采用固定中频的办法,并使本振在信号可能的频谱范围内变化。得到中频后进行滤波和检波,就可以获取信号中某一频率分量的大小。 (2)示波器的测量精度与示波器带宽、被测信号频率之间的关系: 示波器的带宽越宽,在通带内的衰减就越缓慢; 示波器带宽越宽,被测信号频率离示波器通带截止频率点就越远,则测得的数据精度约高。 2、画出示波器测量电源上电时间示意图,说明示波器可以捕获电源上电上升时间的工作原理。 答: 上电时间示意图: 工作原理: 捕获这个过程需要示波器采样周期小于过渡时间。示波器探头与电源相连,使示波器工作于“正常”触发方式,接通电源后,便有电信号进入示波器,由于示波器为“正常”触发方式,所以在屏幕上会显示出电势波形;并且当上电完成后,由于没有触发信号,示波器将不再显示此信号。这样,就可以利用游标读出电源上电的上升时间。 3、简要说明在FM 调制过程中,调制信号的幅度与频率信息是如何加到FM 波中的? 答: 载波的瞬时角频率为()()c f t k u t ωωΩ=+,(其中f k 为与电路有关的调频比例常数) 已调的瞬时相角为00 t ()()t t c f t dt t k u t dt θωωθΩ =++? ?()= 所以FM 已调波的表达式为:000 ()cos[()]t om c f u t U t k u t dt ωθΩ =++? 当()cos m u t U t ΩΩ=Ω时,00()cos[sin ]om c f u t U t M t ωθ=+Ω+ 其中f M 为调制指数其值与调制信号的幅度m U Ω成正比,与调制信号的角频率Ω反比,即 m f f U M k Ω=Ω 。这样,调制信号的幅度与频率信息是已加到 FM 波中。

西工大高频第二次实验报告

实验二 调幅接收系统实验 一、实验目的与内容: 图2为实验中的调幅接收系统结构图(虚框部分为实验重点,低噪放电路下次实验实现,本振信号由信号源产生。)。通过实验了解与掌握调幅接收系统,了解与掌握三极管混频器电路、中频放大/AGC 电路、检波电路。 图2 调幅接收系统结构图 二、实验原理: 1、晶体管混频电路: 给出原理图,并分析其工作原理。 原理:混频电路将高频载波信号或已调波信号经过滤波、放大,将其频率变换为固定频率的信号且该高频滤波信号的频谱内部结构和调制类型保持不变,仅仅改变其频率。 2、中频放大/AGC 和检波电路: 给出原理图,并分析其工作原理。 检波 低噪放 混频 中放 /AGC 本振

原理:中频输入信号通过中放电路放大中频信号,抑制干扰信号,连接AGC电路实现自动增益控制,接着连接二极管检波电路和低通滤波器,从中取出调制信号。 3、调幅接收系统: 给出系统框图,并简述其工作原理。 工作原理:天线接收信号通过滤波器滤波然后低噪放放大幅度,晶体振荡器振荡出所需的本振信号,让本振信号与其进行混频然后滤波,AGC对其进行放大,输出稳定值,再进行滤波并解调检波,经过功率放大器输出。 三、实验步骤: 1、晶体管混频电路: 1)先调整静态工作点,测量2R4两端电压,调节2W1,使2R4两端电压为0; 2)在V2-5输入10.455MHz,250mV的本振信号,在V2-1输入10MHz、30mV的单载波信号,在V2-3处观测,调节2C3和2B1的大小,改变中频输出,当输出为455KHz的最大不失真稳定正弦波时,完成调试并记录此时的中频输出峰峰值。 3)改变基极偏置电阻2W1,使2R4端电压分别为0.5,1,1.5,2,2.5,3V,重复上述步骤2),记录下不同静态工作点下的中频输出的峰峰值,并计算混频增益,完成表2-1. 2、中频放大/AGC和检波电路: 1)调节直流静态工作点:闭合开关K3,电路仅接入12v直流电压,调节可调电阻3W1、3W2,为使静态电流不超过1mA,应使3R7,3R13两端电压为0.5V,0.033V。 2)调节交流工作:第一,调节函数发生器产生频率455KHZ的标准正弦信号,接入3K1。将示波器接于V3-2。 第二,调节可调电容3C4,使输出波形幅度最大不失真。 第三,将示波器加于V3-4,调节可调电容3C7,使输出波形最大不失真。 3)测试动态范围:开关3K2断开,开关3K3闭合。调节输入信号Vi幅值,使其分别为10,20…100,200mv…1V,示波器分别接到V3-2、V3-4、V3-5,,将分别测得的波形峰峰值记入表2-2,即分别为V01,V02,Vc,同时用示波器接V3-6处记录电压值(即AGC检波输出电压)。 4)检波失真观测:第一,输入信号455KHz、10mVpp,调制1KHz信号,调制度50%调幅信号,

通信电路实验报告

实验十一包络检波及同步检波实验 一、实验目的 1、进一步了解调幅波的原理,掌握调幅波的解调方法。 2、掌握二极管峰值包络检波的原理。 3、掌握包络检波器的主要质量指标,检波效率及各种波形失真的现 象,分析产生的原因并思考克服的方法。 4、掌握用集成电路实现同步检波的方法。 二、实验内容 1、完成普通调幅波的解调。 2、观察抑制载波的双边带调幅波的解调。 3、观察普通调幅波解调中的对角切割失真,底部切割失真以及检波 器不加高频滤波时的现象。 三、实验仪器 1、信号源模块 1 块 2、频率计模块 1 块 3、4 号板 1 块 4、双踪示波器 1 台 5、万用表 1 块 三、实验原理 检波过程是一个解调过程,它与调制过程正好相反。检波器的作用是从振幅受调制的高频信号中还原出原调制的信号。还原所得的

信号,与高频调幅信号的包络变化规律一致,故又称为包络检波器。假如输入信号是高频等幅信号,则输出就是直流电压。这是检波器的一种特殊情况,在测量仪器中应用比较多。例如某些高频伏特计的探头,就是采用这种检波原理。 若输入信号是调幅波,则输出就是原调制信号。这种情况应用最广泛,如各种连续波工作的调幅接收机的检波器即属此类。从频谱来看,检波就是将调幅信号频谱由高频搬移到低频。检波过程也是应用非线性器件进行频率变换,首先产生许多新频率,然后通过滤波器,滤除无用频率分量,取出所需要的原调制信号。 常用的检波方法有包络检波和同步检波两种。全载波振幅调制信号的包络直接反映了调制信号的变化规律,可以用二极管包络检波的方法进行解调。而抑制载波的双边带或单边带振幅调制信号的包络不能直接反映调制信号的变化规律,无法用包络检波进行解调,所以采用同步检波方法。 1、二极管包络检波的工作原理 当输入信号较大(大于0.5伏)时,利用二极管单向导电特性对振幅调制信号的解调,称为大信号检波。检波的物理过程如下:在高频信号电压的正半周时,二极管正向导通并对电容器 C 充电,由于二极管的正向导通电阻很小,所以充电电流iD 很大,使电容器上的电压VC 很快就接近高频电压的峰值。 这个电压建立后通过信号源电路,又反向地加到二极管 D 的两端。这时二极管导通与否,由电容器C 上的电压VC和输入信号电

通信电子线路实验报告三点式振荡

通信电了线路课程设计 课程名称通信电子线路课程设计_________________ 专业___________________ 通信工程 ______________________ 班级___________________________________________ 学号___________________________________________ 姓名___________________________________________

指导教师________________________________________ 、八 刖 现代通信的主要任务就是迅速而准确的传输信息。随着通信技术的日益发展,组成通信系统的电子线路不断更新,其应用十分广泛。实现通信的方式和手段很多,通信电子线路主要利用电磁波传递信息的无线通信系统。 在本课程设计中,着眼于无线电通信的基础电路一一LC正弦振荡器的分析和研究。常用正弦波振荡器主要由决定振荡频率的选频网络和维持振荡的正反馈放大器组成,这就是反馈振荡器。按照选频网络所采用元件的不同,正弦波振荡器可分为LC振荡器、RC振荡器和晶体振荡器等类型。其中LC振荡器和晶体振荡器用于产生高频正弦波。正反馈放大器既可以由晶体管、场效应管等分立器件组成,也可由集成电路组成。LC振荡器中除了有互感耦合反馈型振荡器之外,其最基本的就是三端式(又称三点式)的振荡器。而三点式的振荡器中又有电容三点式振荡器和电感三点式振荡器这两种基本类型。 反馈振荡器是一种常用的正弦波振荡器,主要由决定振荡频率的选频网络和维持振荡的正反馈放大器组成。按照选频网络所采用元件的不同,正弦波振荡器可分为LC振荡器、RC振荡器和晶体振荡器等类型。本文介绍了高频电感三点式振荡器电路的原理及设计,电感三点式易起振,调整频率方便,可以通过改变电容调整频率而不影响反馈系数。正弦波振荡器在各种电子设备中有着广泛的应用。根据所产生的波形不同,可将振荡器分成正弦波振荡器和非正弦波振荡器两大类。前者能产生正弦波,后者能产生矩形波、三角波、锯齿波等。 在此次的通信电子线路课程设计中,我选做的是电感三点式振荡设计,通过为时一周的上机实验,我学到了很多书本之外的知识,在老师的指导下达到实验设计的要求指

西工大-数电实验-第二次实验-实验报告

数电实验2 一.实验目的 1.学习并掌握硬件描述语言(VHDL 或 Verilog HDL);熟悉门电路的逻辑功能,并用硬件描述语言实现门电路的设计。 2.熟悉中规模器件译码器的逻辑功能,用硬件描述语言实现其设计。 3.熟悉时序电路计数器的逻辑功能,用硬件描述语言实现其设计。 4.熟悉分频电路的逻辑功能,并用硬件描述语言实现其设计。 二.实验设备 1.Quartus开发环境 2.ED0开发板 三.实验内容 要求1:编写一个异或门逻辑电路,编译程序如下。 1)用 QuartusII 波形仿真验证; 2)下载到DE0 开发板验证。 要求2:编写一个将二进制码转换成 0-F 的七段码译码器。 1)用 QuartusII 波形仿真验证; 2)下载到 DE0 开发板,利用开发板上的数码管验证。 要求3:编写一个计数器。 1)用QuartusII 波形仿真验证; 2)下载到 DE0 开发板验证。 要求4:编写一个能实现占空比 50%的 5M 和50M 分频器即两个输出,输出信号频率分别为 10Hz 和 1Hz。 1)下载到 DE0 开发板验证。(提示:利用 DE0 板上已有的 50M 晶振作为输入信号,通过开发板上两个的 LED 灯观察输出信号)。 2)电路框图如下: 扩展内容:利用已经实现的 VHDL 模块文件,采用原理图方法,实现 0-F 计数自动循环显示,频率 10Hz。(提示:如何将 VHDL 模块文件在逻辑原理图中应用,参考参考内容 5) 四.实验原理 1.实验1实现异或门逻辑电路,VHDL源代码如下: LIBRARY IEEE; USE IEEE.STD_LOGIC_1164.ALL;

通信电子线路实验报告解析

LC与晶体振荡器 实验报告 班别:信息xxx班 组员: 指导老师:xxx

一、实验目的 1)、了解电容三点式振荡器和晶体振荡器的基本电路及其工作原理。 2)、比较静态工作点和动态工作点,了解工作点对振荡波形的影响。 3)、测量振荡器的反馈系数、波段复盖系数、频率稳定度等参数。 4)、比较LC 与晶体振荡器的频率稳定度。 二、实验预习要求 实验前,预习教材:“电子线路非线性部分”第3章:正弦波振荡器;“高频电子线路”第四章:正弦波振荡器的有关章节。 三、实验原理说明 三点式振荡器包括电感三点式振荡器(哈脱莱振荡器)和电容三点式振荡器(考毕兹振荡器),其交流等效电路如图1-1。 1、起振条件 1)、相位平衡条件:X ce 和X be 必 需为同性质的电抗,X cb 必需为异性质 的电抗,且它们之间满足下列关系: 2)、幅度起振条件: 图1-1 三点式振荡器 式中:q m ——晶体管的跨导, F U ——反馈系数, A U ——放大器的增益, LC X X X X Xc o C L ce be 1 |||| )(= -=+-=ω,即)(Au 1 * 'ie L oe m q q q Fu q ++ >

q ie——晶体管的输入电导, q oe——晶体管的输出电导, q'L——晶体管的等效负载电导, F U一般在0.1~0.5之间取值。 2、电容三点式振荡器 1)、电容反馈三点式电路——考毕兹振荡器 图1-2是基本的三点式电路,其缺点是晶体管的输入电容C i和输出电容Co对频率稳定度的影响较大,且频率不可调。 L1L1 (a)考毕兹振荡器(b)交流等效电路 图1-2 考毕兹振荡器 2)、串联改进型电容反馈三点式电路——克拉泼振荡器 电路如图1-3所示,其特点是在L支路中串入一个可调的小电容C3,并加大C1和C2的容量,振荡频率主要由C3和L决定。C1和C2主要起电容分压反馈作用,从而大大减小了C i和C o对频率稳定度的影响,且使频率可调。

通信电子线路实验报告刘紫豪

实验报告 课程名称通信电子线路 专业通信工程 班级1301 学号21 姓名刘紫豪 指导教师张鏖烽 2015年11 月10 日 实验一 OrCAD系统基本实验1、实验目的 掌握OrCAD电子设计自动化(EDA)软件的应用。 掌握基本的电子电路仿真实验方法。

2、实验环境 P4微机; OrCAD 10.5工具包。 3、实验内容 (1)实验相关的基本知识掌握 认真阅读本实验指导书的第一部分; 掌握OrCAD 10.5电子设 计自动化(EDA)软件系统 中的电子电路原理图设计包 ——Capture CIS的使用方法 和基本操作,为今后的实验 和研究作技术上的准备。 (2)给定实验内容 A. 按本实验指导书的 第一部分中介绍的方法,使 用OrCAD 10.5完成二极管限 幅电路的计算机仿真实验。 B. 利用Capture CIS为 本实验建立一个新的 PSpice项目,项目名可以自 行选取。 C. 绘制出如右图所示的给定仿真电子电路原理图,包括放置电子元器件、放置导线、放置断页连接器、修改各元器件的参数等操作。仿真电路中各元器件的参数如下表: 元件代号值仿真库备注 D1 D1N3940 DIODE.OLB D2 D1N3940 DIODE.OLB R1 1K ANALOG.OLB R2 3.3K ANALOG.OLB R3 3.3K ANALOG.OLB R4 5.6K ANALOG.OLB C1 0.47u ANALOG.OLB 0 SOURCE.OLB 零接地 V1 5V SOURCE.OLB Vin 0V SOURCE.OLB V2 SINE SOURCSTM.OLB 后面实验需要 V3 VAC SOURCE.OLB 后面实验需要 D. 完成本电路的偏置点分析参数设置(参见本指导书的6.2.1节),运行该偏置点分析,将其仿真结果(图)拷贝作为实验结果;

西北工业大学自动控制原理实验报告

实验一、二 典型环节的时间特性研究 一、目的要求 1.掌握典型环节的模拟运算电路的组成原理。 2.掌握惯性环节,比例微分环节,比例积分环节,比例,微分,积分环节,振荡环节的时间特性的实验验方法和特点。 二、实验电路及运算观察、记录 1惯性环节: 其中:T=R1C ,K=R1/R0 (1)模拟电路 图 (1) 典型惯性环节模拟电路 (2)注:‘S ST ’不能用“短路套”短接 (3)安置短路套 (4)测孔联线 (5)虚拟示波器(B 3)的联接:示波器输入 端CH 1接到A6单元信号输出端OUT (U0). 注:CH 1选“X1”档。时间量程选‘X4’档 (6)运行、观察、记录 打开计算机→我的电脑→D 盘→Aedk →LABACT.exe 进入LABACT 程序。 选择自动控制菜单下的线性系统实域分析→典型环节模拟研究分析→ 开始试验,弹出示波器显示界面,按下信号发生器(B1)阶跃信号按 钮时(0→+5v 阶跃),点击开始。测完特征后点“停止”,开始读数。 用示波器观测A6输出端(Uo )的实际响应曲线(t ),且将结果记下。 改变电容C 值(即改变时间常数),加Ui ,测Uo ,并将结果记录下来和 第一次的比较。 2.比例微分环节: )1() ()(S Kp s Ui s Uo T D += 其中: ,R3很小 (1)模拟电路

图 典型比例微分环节模拟电路 (2)输入连线 a.为了避免积分饱和,将函数发生器(B5)所产生的周期性方波信号(OUT ),代替信号发生器(B1)中的阶跃输出0/5V 作为环节的信号输入(Ui )。 b.将函数发生器(B5)中的插针‘S ST ’用短路套短接。 c.将S1拨动开关置于最上档(阶跃信号)。 d.信号周期由拨动开关S2和“调宽”旋钮调节,信号幅度由“调幅”旋钮调节(正输出宽度在70ms 左右,幅度在400mV 左右)。 注:CH1选’X1’档。时间量程选’/2’档。 (6)运行,观察,记录6单元信号输出端OUT(Uo) 操作和惯性环节实验相同,用示波器观察A6输出端(Uo)的实际响应曲线Uo(t),并将结果记下来,改变参数R1值,重新测试结果,并记录比较。 3.比例积分环节 )11()()(S Kp s Ui s Uo T I += 其中,R R Kp 01= ,C R T I 11= (1) 模拟电路

高频电子线路实验合集

实验名称:高频小信号放大器 系别:计算机系年级:2015 专业:电子信息工程 班级:学号: 姓名: 成绩: 任课教师: 2015年月日

实验一高频小信号放大器 一、实验目的 1、掌握小信号调谐放大器的基本工作原理; 2、掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算; 3、了解高频小信号放大器动态范围的测试方法; 二、主要仪器设备 在计算机上用仿真软件模拟现实的效果, 通过采用仿真技术,虚拟构建一个直观、可视化的2D、3D 实验环境,从而达到对实验现象和实验结果的虚拟仿真以及对现实实验的操作,为处于不同时间、空间的实验者提供虚拟仿真的实验环境,使学习者仿佛置身其中,对仪器、设备、内容等实验项目进行互动操作和练习。 二、实验原理 二、实验步骤 1、绘制电路 利用Mulisim软件绘制如图1-1所示的单调谐高频小信号实验电路。

图1-1 单调谐高频小信号实验电路 2、用示波器观察输入和输出波形; 输入波形:

输出波形: 3、利用软件中的波特测试仪观察通频带。 5.实验数据处理与分析 根据电路中选频网络参数值,计算该电路的谐振频率ωp ; s rad CL w p /936.210 58010 2001 16 12 =???= = -- 通过仿真,观察示波器中的输入输出波形,计算电压增益A v0。 ,708.356uV V I = ,544.1mV V O = === 357 .0544 .10I O v V V A 4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~A v 相应的图,根据图粗略计算出通频带。 f 0(KHz) 65 75 165 265 365 465 1065 1665 2265 2865 3465 4065 U 0 (mv) 0479 A V (5)在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形,体会该电路的选频作用。

通信电子线路实验三

实验三、正弦波振荡器 一、实验目的 (1)观察LC振荡器的产生和稳定过程。 (2)观察电容和电感三点式振荡器的谐振频率。 (3)研究影响震荡频率的主要因素。 二、实验说明和内容 LC振荡器振荡应满足两个条件。 1)相位平衡条件,反馈信号与输入信号同相,保证电路正反馈。 2)振幅平衡条件,反馈信号的振幅应该大于或者等于输入信号的振幅,即: ||1 AF 其中,A为放大倍数,F为反馈系数 1.电容反馈式三端振荡器 1)仿真如图1所示: 图1 2)示波器相关参数设置如下图所示。 3)仿真开始后,观察振荡波形图(可能需要数分钟)。

注意:当波形图趋于稳定后,将触发器设置为单次。将通道1和通道2分别拖至如下图所示。 问题: 1、双击示波器,其中“时间”、“通道A”和“通道B”下面的参数分别指的是? 解:“时间”指电路工作的时间;“通道A”指输入端的电压值;“通道B”指输出端的电压 2、双击光谱分析仪,将其移动到最大值,此时,测的数据是指? 解:此时的最大值表示电压的平均值。 将测量值和理论值填入下表: 实验数据与理论值间的差异分析: 1.电路元件的性能,测量仪器的精度; 2.电路结构引入的误差,如旁路电容; 3.分析电路是对电路的简化。

。 另外,要求分别利用频率计和万用表测量电容三点式的振荡器振荡频率和振荡电压幅度值。

2、电感反馈式三端振荡器 1)仿真电路如图2所示: 图2 2)示波器相关参数设置如下图所示。 3)仿真开始后,观察振荡波形图(可能需要数分钟)。 注意:当波形图趋于稳定后,将触发器设置为单次。将通道1和通道2分别拖至如下图所示。

相关主题
文本预览
相关文档 最新文档