当前位置:文档之家› 应用油中溶解气体分析法判断变压器故障参考文本

应用油中溶解气体分析法判断变压器故障参考文本

应用油中溶解气体分析法判断变压器故障参考文本
应用油中溶解气体分析法判断变压器故障参考文本

应用油中溶解气体分析法判断变压器故障参考文本

In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each

Link To Achieve Risk Control And Planning

某某管理中心

XX年XX月

应用油中溶解气体分析法判断变压器故

障参考文本

使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。

1 根据油中溶解气体进行变压器故障诊断

变压器油是由具有不同键能的化学键键合在一起的碳

氢化合物分子组成的。它作为良好的介质材料在变压器中

起绝缘、散热、灭弧等作用,并有其特殊的性能。

在正常运行条件下,变压器油和固体绝缘材料由于受

到电场、热、水分、氧的作用,随时间而发生速度缓慢的

老化现象,产生少量的氢、低分子烃类气体和碳的氧化物

等。

当变压器在故障状态下运行时,故障点周围的变压器

油温度升高,其化学键断裂,形成多种特征气体。因不同

键能的化学键在高温下有不同的稳定性,根据热力动力学

原理,油裂解时生成的任何一种气体,其产气速率都随温度而变化,在一特定温度下达到最大值。随着温度的上升,最大值出现的顺序是:甲烷(CH4)、乙烷(C2H6)、乙烯(C2H4)、乙炔(C2H2)。在温度高于1 000℃时,还有可能形成碳的固体颗粒及碳氢聚合物。故障下产生的气体通过运动、扩散、溶解和交换,将热解气体分子传递到变压器油的各部分。

油中溶解气体分析法就是根据故障下产气的累计性、故障下的产气速率和故障下产气的特性来检测与诊断变压器等充油电气设备内部的潜伏性故障的。

2 采用色谱法分析变压器故障的注意事项

(1) 发现特征气体组分含量增长时,应缩短跟踪分析周期,并结合历史数据、产气速率、负荷情况、电气试验、新投运设备出厂前的状况、检修工艺流程等,确定故障是由于电路还是磁路或是其它原因,如辅助设备、设备材

料、检修工艺等引起的,以缩小检修时的故障查找范围。

(2) 由于取样阀中某些特殊的材料(如含镍不锈钢合金等)的催化作用,生成大量的氢气聚集在取样阀周围;取样阀在进行焊接后,大量在高温下产生的特征气体同样会聚集在取样阀的周围,此时取样分析的结果往往会带来误判断。因此,在取样时应先充分放油,才能取得准确反映变压器运行状况的代表性油样。

(3) 放电性故障极易造成变压器事故,引起供电中断。C2H2是放电性故障的特征气体,一旦出现,即使小于规定的5 礚/L注意值,也应引起重视。同时,应分清气体来源,防止造成误判断。比如:变压器油箱带油补焊,焊接时的高温使油分解产生大量的特征气体;有载调压变压器中分接开关灭弧室的油向变压器本体渗漏;还有油冷却系统附属设备(如潜油泵)的故障都会反映到变压器本体的油中。

(4) 当变压器内部存在过热和放电故障,总烃含量很高时,应考虑变压器油老化的问题,查对油的闪点是否有下降的迹象。同时,因故障点附近的绝缘纸也会迅速裂解,使纤维素断链,产生大量的CO、CO2,因此,根据CO、CO2含量的变化,可判断故障是否涉及到固体绝缘材料。

(5) 发现油中单一的氢气组分升高时,应测定油中微水含量,以便判断是否为设备进水受潮。对于新投运的变压器,因制造和安装过程中脱气不彻底或使用绝缘材料的不同,有时也会使某些组分(如H2等)超注意值,此时应加强检测,跟踪分析。

(6) 故障变压器检修后,本体内的残油中往往残存着故障气体,另外在本体内滤油时会存在一些油循环流动的死区,这部分缺少流动的油中所含的特征气体比其它部分高,且这些气体在设备投运初期还会逐步扩散,因此在跟踪分析的初期,往往发现油中气体有明显增长的趋势。通

过多次检测,当各种特征气体的产气速率逐渐减小,并经一定时间其含量趋于稳定后,才能确定检修后投运的设备故障已消除。

请在此位置输入品牌名/标语/slogan

Please Enter The Brand Name / Slogan / Slogan In This Position, Such As Foonsion

变压器油中溶解气体在线监测概要

变压器油中溶解气体在线监测方法研究

摘要 (3) 1. 导言 (4) 2. 国内外发展现状及发展趋势 (6) 3. 变压器油中溶解气体在线监测方法的基本原理 (9) 3.1.变压器常见故障类型 (9) 3.2.变压器内部故障类型与油中溶解特征气体含量的关系 (10) 4. 基于油中特征气体组分的故障诊断方法 (14) 4.1.特征气体法 (14) 4.2.三比值法 (15) 4.3.与三比值法配合使用的其它方法 (17)

摘要 电力变压器是电力系统中最主要的设备,同时也是电力系统中发生事故最多的设备之一,对其运行状况实时监测,保证其安全可靠运行,具有十分重要的意义。变压器油中溶解气体的组分和含量在一定程度上反映出变压器绝缘老化或故障的程度,可以作为反映设备异常的特征量。如何以变压器油中溶解气体在线监测为手段,实现对运行变压器潜伏性故障的诊断和预测,是本文的出发点。 本文的目标是研究基于油中溶解气体分析(DGA)的电力变压器状态监测与故障分析方法,通过气体色谱分析方法实现对变压器油中溶解的七种特征气体(氢气H2、甲烷CH4、乙炔C2H2、乙烯C2H4、乙烷C2H6、一氧化碳CO、二氧化碳CO2)组分含量在线实时监测,从而达到对电力变压器工作状态的诊断分析。

1.导言 现代社会对能源的巨大需求促进了电力工业的飞速发展。一方面是单台电力的容量越来越大;另一方面是电力网向着超高压的方向发展,并正组织成庞大的区域性甚至跨区域的大电网。然而,随着电力设备容量的增大和电力网规模的扩大,电力设备故障给人们的生产和现代生活所带来的影响也就越来越大。这就要求供电部门在不断提高供电质量的同时,要切实采取措施来保证电力设备的正常运行,以此来提高供电的可靠性。长期以来形成的定期检修已不能满足供电企业生产目标。激烈的市场竞争迫使电力企业面临着多种棘手的问题,例如如何提高设备运行可靠性、如何有效控制检修成本、合理延长设备使用寿命等。因此,状态检修已成为必然。而状态检修的实现,必须建立在对主要电气设备有效地进行在线监测的基础上,通过实时监测高压设备的实际运行情况,提高电气设备的诊断水平,做到有针对性的检修维护,才能达到早期预报故障、避免恶性事故发生的目的。由此可见,以变压器状态监测为手段,随时对其潜伏性故障进行诊断和预测以及跟踪发展趋势是十分必要的。 对于大型电力变压器,目前几乎大多是用油来绝缘和散热,变压器油与油中的固体有机绝缘材料在运行电压下因电、热、氧化和局部电弧等多种因素作用会逐渐变质,裂解成低分子气体;变压器内部存在的潜伏性过热或放电故障又会加快产气的速率。随着故障的缓慢发展,裂解出来的气体形成气泡在油中经过对流、扩散作用,就会不断地溶解在油中。同一类性质的故障,其产生的气体量随故障的严重程度而异。由此可见,油中溶解气体的组分和含量在一定程度上反映出变压器绝缘老化或故障的程度,可以作为反映电气设备电气异常的特征量。 溶解气体分析(Dissolved Gas Analysis简称DGA)是诊断变压器内部故障的最主要技术手段之一。根据GB/T7252-2001《变压器油中溶解气体分析和判断导则》,可以通过分析油中7种分析组分H2、C2H2、C2H4、C2H6、CH4、CO和CO2的含量来判断并分析故障。通过从油样中分离出这些溶解气体,并利用色谱技术对其进行定量分析。变压器油中溶解的各种气体成分的相对数量和形成速度主要取决于故障点能量的释放形式及故障的严重程度,所以根据色谱分析结果可以进

变压器油中溶解气体的成分和含量

变压器油中溶解气体的成分和含量 与充油电力设备绝缘故障诊断的关系 摘要:介绍了通过分析变压器油中溶解气体的成分和含量以判断充油电力设备故障的机理和方法。 关键词:变压器;变压器油;气相色谱法;比值法 1 前言 气相色谱法一直是国内外许多电力设备制造厂作为检验质量、开发新产品的有力工具。实践证明,用气相色谱法能有效地发现充油电力设备内部的潜伏性故障及其发展程度,而利用其他电气试验方法很难发现某些局部发热和局部放电等缺陷。故在1999年颁布执行的电力设备预防性试验规程中,把油中气体色谱分析放在“电力变压器及电抗器”试验的首位。某些变压器厂家在其产品中还装设了DGA(dissolved gas analysis,即溶解气体分析)自动检测报警系统。 2 故障分析的机理 充油的电力设备(如变压器、电抗器、电流互感器、充油套管和充油电缆等)的绝缘主要是由矿物绝缘油和浸在油中的有机绝缘材料(如电缆纸、绝缘纸板等)所组成。其中 矿物绝缘油即变压器油,是石油的一种分镏产物,其主要成分是烷烃(C n H 2n+2 )、环烷族饱 和烃(C n H 2n )、芳香族不饱和烃(C n H 2n-2 )等化合物。有机绝缘材料主要是由纤维素(C 6 H 10 O 5 ) n 构成。在正常运行状态下,由于油和固体绝缘会逐渐老化、变质,会分解出极少量的气 体(主要有氢H 2、甲烷CH 4 、乙烷C 2 H 6 、乙烯C 2 H 4 、乙炔C 2 H 2 、一氧化碳CO、二氧化碳CO 2 等7种)。当电力设备内部发生过热性故障、放电性故障或受潮情况时,这些气体的产

量会迅速增加。表1列出气体的种类与外施能量的关系。 这些气体大部分溶解在绝缘油中,少部分上升在绝缘油的面上,例如变压器有一部分气体从油中逸出进入气体继电器(瓦斯继电器)。经验证明,油中气体的各种成分含量的多少和故障的性质及程度直接有关。因此在设备运行过程中,定期测量溶解于油中的气体组织成分和含量,对于及早发现充油电力设备内部存在的潜伏性故障有非常重要的意义。 表1 气体种类与外施能量的关系 气体CO CO2H2CH4C2H6C2H4C2H2 能量/J 3特征气体色谱的分析和判断 判断有无故障的两种方法 与油中溶解气体的正常值作比较判定有无故障 若氢和烃类气体不超过表2所列的含量,则认为电力设备运行正常。 表2 油中溶解气体的正常值 气体成分H2CH4C2H6C2H4C2H2总烃(C1+C2) 正常极限值/μ1004535555100 根据总烃产气速率判定有无故障 当总烃含量超过正常值时,应考虑采用产气速率判断有无故障。绝对产气速率V:

变压器市场情况分析

变压器市场情况分析(常规变压器) 我国电力工业已经进入“大电网、大机组、西电东送、南北互济、全国联网”的新时代,并正向高效、环保、安全、经济的更高目标迈进。“十五”期间,我国电力工业发展迅速,基本满足了国民经济和社会发展对电力的需求。电力装备水平有了很大的提高,大容量、高参数、环保型机组快速增长,电网覆盖面和现代化程度不断提高。 2006年电力供需形势: 2006年国民经济仍将以平稳较快速度发展,对电力的需求仍然强劲,各行业用电将持续快速增长,虽然高耗能行业受国家宏观调控但增速会有所放慢,但是对电力的需求仍会以较快的速度增长。预计2006年全社会用电量增长率将在12%左右,电力供应能力将进一步增强,发电装机投产规模较大。据初步调查,2006年新增发电装机将在7500万千瓦左右,是建国以来发电机组投产最多的一年,如此大的机组投产规模将决定着全国及各地区电力供应形势的变化。随着西北-华中电网的联网成功,全国除新疆、西藏和海南外,其它省区电网实际上已经联成一个全国性的大电网,电网联系将更加紧密,互供、保障及相互支援的能力将进一步增强。虽然全国电力供需矛盾依然存在,但缺电程度和缺电范围将大大降低。 我国目前电力变压器市场的供需情况:

根据国家电网公司“十一五”电网规划及2020年远景目标报告,“十一五"期间,国家电网公司将新增330千伏及以上输电线路6万千米、变电容量3亿千伏安,投资9000亿元左右;电力供应紧张问题刺激了电力投资热潮,带动输变电设备行业增长可能会持续到2008年,预计变压器行业的年需求量为3.6亿~4亿千伏安。到2010年,跨区输电能力将达到4000多万千瓦、输送电量1800多亿千瓦时。国家电网公司“十一五”期间平均每年投资1800亿元,考虑到南方电网公司投资一般为国家电网公司的1/3~1/4,国家电网跟南方电网的投资总和将可能达到2250亿元,和“十五”相比增幅达到了90%。据专家分析,2020年全社会用电将达到39400亿~43200亿千瓦时,需要装机8.2亿~9.0亿千瓦;2011~2020年年均净增电量1400亿~1660亿千瓦时,年均需净增装机2600万~3200万千瓦。变压器需求与发电设备相关,其配比按1:11测算,变压器的需求量非常可观,电气设备和输变电设备行业面临着比较光明的发展前景。 电力变压器品种: 1、配电变压器 我国中小型配电变压器最初是以绝缘油为绝缘介质发展起来的;进入20世纪90年代,干式变压器在我国才有了很快的发展。 (1)油浸式配电变压器 主要品种有S9系列配电变压器,S11系列配电变压器,卷铁心配电变压器,非晶合金铁心变压器。为了使变压器的运行更加完全、可靠,维护更加简单,更广泛地满足用户的需要,近年来油浸式变压

变压器油中气体分析

变压器油中气体分析 通过培训掌握绝缘油中气体含量分析,气相色谱技术是近年来兴起的一项新技术,能够对运行中的变压器进行实时监测,通过采集变压器箱体内的少量油样,分析油中气体的组分及其含量,就可以判断变压器是否存在故障、故障的性质以及故障的大致部位。 油浸式变压器一旦出现故障,将造成影响现场生产,甚至造成机组停机,损失巨大。及时了解油浸变压器内部运行情况并发现故障苗头,对保证变压器安全、可靠、优质运行有十分重要的意义。 一、气相色谱法的原理和意义 色谱法它是一种物理分离技术。它的分离原理是使混合物中各组分在两相间进行分配,其中一相是不动的,叫做固定相,另一相则是推动混合物流过此固定相的流体,叫做流动相。当流动相中所含的混合物经过固定相时,就会与固定相发生相互作用。由于各组分在性质与结构上的不同,相互作用的大小强弱也有差异。因此在同一推动力作用下,不同组分在固定相中的滞留时间有长有短,从而按先后秩序从固定相中流出,这种借在两相分配原理而使混合物中各组分获得分离的技术,称为色谱法。当用液体作为流动相时,称为液相色谱,当用气体作为流动相时,称为气相色谱。 气相色谱法的一般流程主要包括三部分:载气系统、色谱柱和检测器。 当载气携带着不同物质的混合样品通过色谱柱时,气相中的物质一部分就要溶解或吸附到固定相内,随着固定相中物质分子的增加,从固定相挥发到气相中的试样物质分子也逐渐增加,也就是说,试样中各物质分子在两相中进行分

配,最后达到平衡。这种物质在两相之间发生的溶解和挥发的过程,称分配过程。分配达到平衡时,物质在两相中的浓度比称分配系数,也叫平衡常数,以K表示,K=物质在固定相中的浓度/物质在流动相中的浓度,在恒定的温度下,分配系数K是个常数。 由此可见,气相色谱的分离原理是利用不同物质在两相间具有不同的分配系数,当两相作相对运动时,试样的各组分就在两相中经反复多次地分配,使得原来分配系数只有微小差别的各组分产生很大的分离效果,从而将各组分分离开来。然后再进入检测器对各组分进行鉴定。 不同的故障会产生不同的主要特征气体和次要特征气体,这些故障气体的组成和含量与故障类型及严重程度有密切关系。分析溶解于油中的气体,就能尽早发现设备内部存在的潜伏性故障,并可随时监视故障的发展状况。因此,国家规程对于变压器油中各种气体的含量有着明确而严格的要求。特别是对于乙炔,它是反映故障放电的主要指标,一旦出现,就可能是变压器内部严重故障的反应。因此对于变压器油中乙炔的含量应严格要求和追踪。对于出现含乙炔的变压器油的变压器,应严格按规定进行追踪分析判断,并结合电气试验,对变压器内部运行做出正确的分析判断。当变压器油中的油气组分超标时,我们可以认为其设备内部就可能存在故障。气相色谱技术的运用充分解决了这一难题。变压器油气的色谱分析及色谱追踪试验,能够真实有效的反映设备的运行情况,对于尽早发现设备内部过热或放电性故障,及早预防保证设备的正常运行,有着重要的作用。 二、绝缘油气体在线装置工作原理 变压器在发生故障前,在电、热效应的作用下,其内部会析出以H2为主的

变压器产品价格分析报告

深圳中企智业投资咨询有限公司

产品价格分析 (最新版报告请登陆我司官方网站联系) 公司网址: https://www.doczj.com/doc/373223150.html, 1

目录 产品价格分析 (3) 第一节一、变压器绝缘材料产品价格特征 (3) 第二节二、国内变压器绝缘材料产品当前市场价格评述 (3) 第三节三、影响国内市场变压器绝缘材料产品价格的因素 (4) 第四节四、主流厂商变压器绝缘材料产品价位及价格策略 (4) 第五节五、变压器绝缘材料产品未来价格变化趋势 (5) 2

产品价格分析 第一节一、变压器绝缘材料产品价格特征 我国变压器绝缘材料生产企业上百家,大部分企业规模较小。国内变压器绝缘材料产品市场上进出口品牌并存,价格不一。变压器绝缘材料不同品牌价格差别较大。一方面进口产品过高的价格令普通消费者望而却步,一方面质低价廉的产品又不能适应中层消费者的需求。消费者呼唤适合中国市场的品牌引领消费。 变压器绝缘材料行业上游原材料主要是纸浆、石油、化工、纺织等,原材料在整个生产成本中占比较大。部分原材料价格波动较大,多数公司直接原材料占生产成本的比例超过70%,原材料价格的波动将影响变压器绝缘材料公司生产成本进而影响变压器绝缘材料公司的盈利水平。 近几年来,国内变压器绝缘材料行业生产成本不断上涨,造成部分中小企业经营困难,国内生产成本提高主要有四个方面的原因:一是原材料价格上涨比较明显,媒体报道得也比较多;二是企业用工成本的上涨,可以说全国不少地方劳动力成本都在上升;三是像能源比如煤、电等资源价格上涨,影响企业生产经营;四是企业融资成本上升,比如由于利率上调,中小企业贷款利率上浮提高,中小企业通过民间借贷的利率也在上升,所以整个融资成本是上升的。 原材料价格上涨、能源和资源成本的大幅上涨、用工成本的增加,以及企业管理费用的提高等是变压器绝缘材料产品价格上涨的主要原因。也就是说产品价格的上涨很大部分原因是由成本推动的,假如变压器绝缘材料产品价格上涨,只是原材料价格上涨在产业链上的传导。 通常原材料涨价的成本应该通过产业链向下传导,这支持了变压器绝缘材料产品价格上涨,但最终决定价格涨跌的关键是供求关系。一些本来应该提价的产品价格提不上去,正是因为这些产品本身产能增加,竞争很激烈,价格上涨乏力。 第二节二、国内变压器绝缘材料产品当前市场价格评述图表1:2011-2014年我国变压器绝缘材料市场价格指数分析 3

应用油中溶解气体分析法判断变压器故障

编号:AQ-JS-03420 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 应用油中溶解气体分析法判断 变压器故障 Application of dissolved gas analysis in oil to judge transformer fault

应用油中溶解气体分析法判断变压 器故障 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 1根据油中溶解气体进行变压器故障诊断 变压器油是由具有不同键能的化学键键合在一起的碳氢化合物分子组成的。它作为良好的介质材料在变压器中起绝缘、散热、灭弧等作用,并有其特殊的性能。 在正常运行条件下,变压器油和固体绝缘材料由于受到电场、热、水分、氧的作用,随时间而发生速度缓慢的老化现象,产生少量的氢、低分子烃类气体和碳的氧化物等。 当变压器在故障状态下运行时,故障点周围的变压器油温度升高,其化学键断裂,形成多种特征气体。因不同键能的化学键在高温下有不同的稳定性,根据热力动力学原理,油裂解时生成的任何一种气体,其产气速率都随温度而变化,在一特定温度下达到最大

值。随着温度的上升,最大值出现的顺序是:甲烷(CH4)、乙烷(C2H6)、乙烯(C2H4)、乙炔(C2H2)。在温度高于1000℃时,还有可能形成碳的固体颗粒及碳氢聚合物。故障下产生的气体通过运动、扩散、溶解和交换,将热解气体分子传递到变压器油的各部分。 油中溶解气体分析法就是根据故障下产气的累计性、故障下的产气速率和故障下产气的特性来检测与诊断变压器等充油电气设备内部的潜伏性故障的。 2采用色谱法分析变压器故障的注意事项 (1)发现特征气体组分含量增长时,应缩短跟踪分析周期,并结合历史数据、产气速率、负荷情况、电气试验、新投运设备出厂前的状况、检修工艺流程等,确定故障是由于电路还是磁路或是其它原因,如辅助设备、设备材料、检修工艺等引起的,以缩小检修时的故障查找范围。 (2)由于取样阀中某些特殊的材料(如含镍不锈钢合金等)的催化作用,生成大量的氢气聚集在取样阀周围;取样阀在进行焊接后,大量在高温下产生的特征气体同样会聚集在取样阀的周围,此时取

变压器油中溶解气体分析与诊断

变压器油中溶解气体分析与诊断 摘要 变压器在线监测及故障诊断技术,对提高电力系统的安全稳定性具有十分重要的意义。其中基于油中溶解气体分析的在线监测技术是变压器在线监测中最普遍,也是最重要的技术。目前己投入使用的油中溶解气体在线监测系统普遍存在一些不足,如检测气体种类少、准确度及精确度不高、体积大、成本高等。 本文对变压器油色谱在线监测及故障诊断系统进行了研究,分析了其它色谱在线监测方法的种种不足,对其进行了改进,设计了一套变压器油在线监测系统,能够及时、准确地监测变压器油中溶解的各种特征气体,实时地反映设备的运行状态,并对故障诊断算法进行了仿真。在获得真实可靠的监测数据的基础上,建立了一个诊断模型,并对该模型进行了仿真,仿真结果表明三比值法、四比值法等故障诊断方法有一定的优越性,能够比较准确地定性和定量地对故障做出判断,为电力运营部门提供有用的决策依据。 分析了变压器油中溶解气体的发展变化规律,研究了变压器油中溶解气体和故障类型之间的关系。对常用的三比值模型进行深入研究,总结了各种模型的特点和适用范围。论述了用三比值进行变压器油中溶解气体分析,诊断和预测变压器故障的有效性和可行性。 关键词:变压器油中溶解气体在线监测故障诊断

目录 第一章绪论 (4) 1.1变压器 (4) 1.1.1变压器的分类 (4) 1.1.2电力变压器的选型原则 (6) 1.1.3变压器的作用及其意义 (13) 1.2变压器油 (14) 1.2.1变压器油简介 (14) 1.2.2变压器油国内外发展现状 (15) 第二章.变压器油中溶解气体分析与诊断 (17) 2.1.利用CO、CO2浓度及CO2/CO比值诊断固体绝缘老化 (17) 2.2.利用mL(CO2+CO)/g(纸)诊断变压器绝缘寿命 (19) 2.3利用油中糠醛分析诊断变压器绝缘老化 (20) 2.3.1概述 (20) 2.3.2.油中糠醛含量测试方法 (21) 2.3.4利用油中糠醛诊断变压器绝缘寿命 (23) 2.4固体绝缘老化的综合诊断 (29) 3 变压器油的运行维护 (30) 3.1变压器油的选择 (30) 3.1.1变压器油的质量标准 (30) 3.1.2变压器油在低温下的特性 (31) 3.2 混油、补油和换油 (33) 3.2.1 混油和补油 (33) 3.2.2换油 (34) 3.3 运行变压器油的防劣措施 (36) 3.3.1 隔膜密封装置 (36) 3.3.2 净油器 (37) 3.4 变压器油的金属减活(钝化)剂 (42)

变压器油中气体分析

变压器 TRANSFORMER 2000 变压器油中溶解气体的成分和含量 与充油电力设备绝缘故障诊断的关系 张利刚 摘要:介绍了通过分析变压器油中溶解气体的成分和含量以判断充油电力设备故障的机理和方法。 关键词:变压器;变压器油;气相色谱法;比值法 中图分类号:TM411;TM406 文献标识码:B 文章编号:1001-8425(2000)03-0039-04 Relation between the Composition & Contents of Dissolved Gases in Transformer Oil and Insulation Fault Diagnosis of Oil-Filled Power Equipment ZHANG Li-gang Abstract:The mechanism and method of estimating the oil-filled power equipment fault through analyzing the composition & contents of dissolved gases in transformer oil are introduced.

Key words:Transformer; Transformer oil; Gas Chromatography; Ratio method 1 前言 气相色谱法一直是国内外许多电力设备制造厂作为检验质量、开发新产品的有力工具。实践证明,用气相色谱法能有效地发现充油电力设备内部的潜伏性故障及其发展程度,而利用其他电气试验方法很难发现某些局部发热和局部放电等缺陷。故在1999年颁布执行的电力设备预防性试验规程中,把油中气体色谱分析放在“电力变压器及电抗器”试验的首位。某些变压器厂家在其产品中还装设了DGA(dissolved gas analysis,即溶解气体分析)自动检测报警系统。 2 故障分析的机理 充油的电力设备(如变压器、电抗器、电流互感器、充油套管和充油电缆等)的绝缘主要是由矿物绝缘油和浸在油中的有机绝缘材料(如电缆纸、绝缘纸板等)所组成。其中矿物绝缘油即变压器油,是石油的一种分 镏产物,其主要成分是烷烃(C n H 2n+2 )、环烷族饱和烃(C n H 2n )、芳香族不饱 和烃(C n H 2n-2 )等化合物。有机绝缘材料主要是由纤维素(C 6 H 10 O 5 ) n 构成。在 正常运行状态下,由于油和固体绝缘会逐渐老化、变质,会分解出极少 量的气体(主要有氢H 2、甲烷CH 4 、乙烷C 2 H 6 、乙烯C 2 H 4 、乙炔C 2 H 2 、一氧 化碳CO、二氧化碳CO 2 等7种)。当电力设备内部发生过热性故障、放电性故障或受潮情况时,这些气体的产量会迅速增加。表1列出气体的种类与外施能量的关系。 这些气体大部分溶解在绝缘油中,少部分上升在绝缘油的面上,例如变压器有一部分气体从油中逸出进入气体继电器(瓦斯继电器)。经验

变压器油气相色谱分析

变压器油气相色谱分析 一、基本原理 正常情况下充油电气设备内的绝缘油及有机绝缘材料,在热和电的作用下,会逐渐老化和分解,产生少量的各种低分子烃类及二氧化碳、一氧化碳等。这些气体大部分溶解在油中。当存在潜伏性过热或放电故障时,就会加快这些气体的产生速度。随着故障发展,分解出的气体形成的气泡在油里经对流、扩散,不断溶解在油中。例如在变压器里,当产气量大于溶解量时,变有一部分气体进入气体继电器。 故障气体的组成和含量与故障的类型和故障的严重程度有密切关系。 因此,在设备运行过程中定期分析溶解与由衷的气体就能尽早发现设备内部存在的潜伏性故障并随时掌握故障的发展情况。 当变压器的气体继电器内出现气体时,分析其中的气体,同样有助于对设备的情况做出判断。 二、用气相色谱仪进行气体分析的对象 氢(H2)、甲烷(CH4)、乙烷(C2H6)、乙烯(C2H4)、乙炔(C2H2)、一氧化碳(CO)、二氧化碳(CO2)、氧(O2)、氮(N2)九种气体作为分析对象。 三、试验结果的判断

1、变压器等充油电气中绝缘材料主要是绝缘油和绝缘纸。设备在 故障下产生的气体主要也是来源于油和纸的热裂解。 2、变压器内产生的气体: 变压器内的油纸绝缘材料会在电和热的作用下分解,产生各种气体。其中对判断故障有价值的气体有甲烷、乙烷、乙烯、乙炔、氢、一氧化碳、二氧化碳。在正常运行温度下油和固体绝缘正常老化过程中,产生的气体主要是一氧化碳和二氧化碳。在油纸绝缘中存在局部放电时,油裂解产生的气体主要是氢和甲烷。在故障温度高于正常运行温度不多时,油裂解的产物主要是甲烷。随着故障温度的升高,乙烯和乙烷的产生逐渐成为主要特征。在温度高于1000℃时,例如在电弧弧道温度(3000℃)的作用下,油分解产物中含有较多的乙炔。如果故障涉及到固体绝缘材料时,会产生较多的一氧化碳和二氧化碳。 有时变压器内并不存在故障,而由于其它原因,在油中也会出现上述气体,要注意这些可能引起误判断的气体来源。例如:有载调压变压器中分解开关灭弧室的有向变压器本体的渗漏;设备曾经有过故障,而故障排除后绝缘油未经彻底脱气,部分残余气体仍留在油中;设备油箱曾作过带油补焊;原注入的油就含有某些气体等。还应注意油冷却系统附属设备(如潜油泵,油流继电器等)的故障也会反映到变压器本体的油中。 3、正常设备油中气体含量 4、《导则》推荐的油中溶解气体的注意值

应用油中溶解气体分析法判断变压器故障参考文本

应用油中溶解气体分析法判断变压器故障参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

应用油中溶解气体分析法判断变压器故 障参考文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1 根据油中溶解气体进行变压器故障诊断 变压器油是由具有不同键能的化学键键合在一起的碳 氢化合物分子组成的。它作为良好的介质材料在变压器中 起绝缘、散热、灭弧等作用,并有其特殊的性能。 在正常运行条件下,变压器油和固体绝缘材料由于受 到电场、热、水分、氧的作用,随时间而发生速度缓慢的 老化现象,产生少量的氢、低分子烃类气体和碳的氧化物 等。 当变压器在故障状态下运行时,故障点周围的变压器 油温度升高,其化学键断裂,形成多种特征气体。因不同 键能的化学键在高温下有不同的稳定性,根据热力动力学

原理,油裂解时生成的任何一种气体,其产气速率都随温度而变化,在一特定温度下达到最大值。随着温度的上升,最大值出现的顺序是:甲烷(CH4)、乙烷(C2H6)、乙烯(C2H4)、乙炔(C2H2)。在温度高于1 000℃时,还有可能形成碳的固体颗粒及碳氢聚合物。故障下产生的气体通过运动、扩散、溶解和交换,将热解气体分子传递到变压器油的各部分。 油中溶解气体分析法就是根据故障下产气的累计性、故障下的产气速率和故障下产气的特性来检测与诊断变压器等充油电气设备内部的潜伏性故障的。 2 采用色谱法分析变压器故障的注意事项 (1) 发现特征气体组分含量增长时,应缩短跟踪分析周期,并结合历史数据、产气速率、负荷情况、电气试验、新投运设备出厂前的状况、检修工艺流程等,确定故障是由于电路还是磁路或是其它原因,如辅助设备、设备材

变压器油中溶解气体的分析与故障判断

变压器油中溶解气体的分析与故障判断 随着变压器运行时间的延长,变压器可能产生初期故障,油中某些可燃性气体则是内部故障的先兆,这些可燃气体可降低变压器油的闪点,从而引起早期故障。 变压器油和纤维绝缘材料在运行中受到水分、氧气、热量以及铜和铁等材料催化作用的影响而老化和分解,产生的气体大部分溶于油中,但产生气体的速率是相当缓慢的。当变压器内部存在初期故障或形成新的故障条件时,其产气速率和产气量则十分明显,绝大多数的初期缺陷都会出现早期迹象,因此,对变压器产生气体进行适当分析即能检测出故障。 1、变压器油中的气体类别 气相色谱法正是对变压器油中可燃性气体进行分析的最切实可行的方法,该方法包括从油中脱气和测量两个过程。矿物油是由大约2871种液态碳氢化合物组成的,通常只鉴别绝缘油中的氢气(H2卜氧气(02)、氮气 (N2)、甲烷(CH4)、一氧化碳(C0)、乙烷(C2H6)、二氧化碳(C02)、乙烯(C2H4)、乙炔(C2H2)9种气体,将这些气体从油中脱出并经分析,证明它们的存在及含量,即可反映出产生这些气体的故障类型和严重程度。油在正常老化过程产生的气体主要是一氧化碳(C0)和二氧化碳(C02),油绝缘中存在局部放电时(如油中气泡击穿),油裂解 产生的气体主要是氢气(H2)和甲烷(CH4)。在故障温度高于正常运行温度不多时,产生的气体主要是甲烷 (CH4), 随故障温度的升高,乙烯(C2H2)和乙烷(C2H6)逐渐成为主要物征气体;当温度高于1000 C时(如在电弧弧道温度300 C以上),油裂解产生的气体中含有较多的乙炔(C2H2),如果故障涉及到固体绝缘材料时,会产生较多的一 氧化碳(CO)和二氧化碳(C02)。 2、如何判断电气设备的故障性质 运用五种特征气体的三对比值判断电气设备的故障性质: (1) C2H2/C2H4 < 0.1 0.1 v CH4/H2V 1 C2H4/C2H6 v 1时,属变压器已正常老化。 (2) C2H2/C2H4 < 0.1 CH4/H2 v 0.1 0.1v C2H4/C2H6v1 时,属低能量密度的局部放电,是含气空腔中的放电,这种空腔是由于不完全浸渍、气体饱和或高湿度等原因造成的。 (3) 0.1 v C2H2/C2H4v 1 CH4/H2v 0.1 0.1v C2H4/C2H6v1 时,属高能量密度的局部放电(除含气空腔的放电),导致固体绝缘的放电痕迹。 (4) 1 v C2H2/C2H4v 3 0.1 v CH4/H2v 1 C2H4/C2H6>3时,有工频续流的放电、线圈、线饼、线匝之间或线圈对地之间油的电弧击穿。

变压器油的色谱分析

浅谈变压器油的色谱分析 时间:2011-04-27 15:04来源:《电气世界》 朱莉莉,朱明明摘要:从技术和专业管理的角度叙述变电站变压器、互感器内油的气相色谱分析,以分析溶解于变压器油中气体来诊断设备内部存在的故障。油气相色谱分析在检验充油设备试验中占有十分重要的地位。文章详细介绍了绝缘油、纸热解产气的理化过程。 摘要:从技术和专业管理的角度叙述变电站变压器、互感器内油的气相色谱分析,以分析溶解于变压器油中气体来诊断设备内部存在的故障。油气相色谱分析在检验充油设备试验中占有十分重要的地位。文章详细介绍了绝缘油、纸热解产气的理化过程。并对油样的提取要点进行了论述。最后根据本地区的电网等实际情况,举例说明故障后设备油中气体成份的分析判断。在研究、分析的基础上,论证了色谱分析与电气试验的关系。 关键词:变压器色谱油分析 0引言 随着地方经济迅速发展,及电气设备的不断更新换代的需要,给我们供电部门不论是从设备上还是技术上提出了更高的要求。为保证供给足够的优质电能,减少停电时间在采取原有的状态检修基础上,进一步实行在线监测。变压器类设备是变电站最关键的设备,它不仅是因为价值昂贵,最重要的是它发生事故后,影响面广,给工农业生产造成巨大的损失。目前对此类设备的安全运行给予高度的重视,而对变压器、互感器等用油的电气设备类最好的监测手段之一,就是对设备内的油进行气相色谱分析,以分析溶解于变压器油中气体来诊断设备内部存在的故障。所以油气相色谱分析在检验充油设备试验中占有十分重要的地位。我们公司从上世纪80年代中期就对220kV、110kV及35kV8000kVA及以上的主变压器、电流互感器、电压互感器、充油套管进行色谱分析,并发现了部分设备存在缺陷,及时处理保证了设备安全正常运行。 1绝缘油、纸热解产气的理化过程 变压器的绝缘材料主要是油、纸组合绝缘,变压器内部潜伏性故障产生的气体主要是来源于油和纸的热裂解。热解产气特征与材料的化学结构有着密切的关系,矿物质绝缘油的化学组成是石油烃类;绝缘纸的化学成分是纤维素。在它们的分子结构上有不同类型的化学键,键能越高,分子越稳定,由于具有不同化学键结构的碳氢化合物分子在高温下的不同稳定性,因此需要了解一下绝缘油热裂解产气的一般规律,即产生的烃类气体的不饱和度是随裂解能量密度(温度)的增加而增加的。随着热裂解温度增高的过程裂解的顺序是:烷烃—烯烃—炔烃—焦炭。 不同性质的故障,产生气体组份的特征不一样,例如局部放电时产生氢;较高温度过热时产生甲烷与乙烯,当严重过热时也会产生少量的乙炔;电弧故障时产生乙炔和氢气。另外,不同性质和不同能源大小的故障,产气量和产气速度也不一样。初始阶段的潜伏性故障产气少,产气速度慢;故障源温度高、面积大的故障产气多、产气速度快。要明白这个道理,必须对绝缘油、纸在故障下热裂解产气的化学原理有一个基本了解,这对我们分析和判断变压器类设备的故障有所帮助。 绝缘油、纸热裂解产气过程所涉及的化学原理主要有:绝缘油、纸的化学结构,热解产气过程的化学反应及其热力动力学。当然还涉及到其他理、化机理如气体的析气、溶解和扩散作用等问题。 2简述

油中气体分析技术综述

变压器油色谱在线监测 目前110kV及以上等级的大型电力变压器及电抗器主要采用油纸绝缘结构。绝缘油同时承担着绝缘介质和冷却媒质两方面的作用。在热和电的作用下,绝缘油会逐渐老化、分解而产生各种低分子烃、氢气以及有机酸和石蜡等。而以纤维素为基础的固体绝缘材料(纸和纸板)发生劣化分解时,除释放出水、醛类、酮类和有机酸外,还会产生相当数量的一氧化碳和二氧化碳。 变压器油中溶解的各种气体分析的相对数量形成速度主要取决于故障能量的释放形式以及故障的严重程度,所以根据色谱分析结果可以进一步判断设备内部是否存在异常,推断故障类型及故障能量等。对变压器油中溶解气体的分析是变压器故障诊断采用的基本方法,通过对其的分析能够发现变压器的过热、局部放电等潜伏性故障。 气相色谱分析具有选择性好、分离性高、分离时间快(几分钟到几十分钟)、灵敏度高和适用范围广等优点。但常规的色谱分析是一套庞大、精密而复杂的检测装置。整个分析时间长,需熟练的试验人员,对环境的要求高,整套设备体积较大,只适用于在试验室内进行检测。且油样从现场采集后运送到试验室进行分析,不仅耗时而且采样、运输、保存过程中还会引起气体组份的变化,更不能做到实时在线监测。为了实现在线监测油中气体分析,需要简化色谱分析装置,使之适用于在线监测和现场检测[2]。 变压器油中溶解气体在线监测原理如图1-1-1所示[3]。 图1-1-1. 变压器油中溶解气体在线监测系统结构框图监测过程可分为以下4部分: a.进行油气分离,从油中分离出需要检测的混合气体; b.利用气体分离技术把几种气体分离,再用气体检测器把气体浓度信号转

换成电压或电流信号; c.数据采集系统进行A/D转换,将电压或电流信号转换成数字信号,并上 传到工作站; d.工作站软件根据各种气体的含量对变压器运行状态进行评估,预测变压 器潜伏性故障。 在变压器溶解多种气体检测中,油中汲取气体是一个重要环节。英国中央发电局(CEGB)认为产生测量误差的原因多半是在脱气阶段。实现变压器油中多种气体在线监测,油气分离模块必须能在线、自动分离出油中溶解多种(至少六种以上)气体,并且不对变压器油箱中的油形成污染,另外油气平衡时间相对较短,一般应小于24小时,对于一些变压器运行过程中出现“紧急情况”需在线监测系统来自动看护,如内部故障发展速度较为迅速,还需要在线监测系统油气分离时间达到2小时,甚至更短。另外,油气分离的关键元件使用寿命应能满足在线监测产品正常使用,一般情况下应大于六年。 1.1.1几种常用的油气分离方法 目前油气分离技术按其取气方法可分为高分子聚合物分离方法、真空泵法、油中吹气法等几大类,其中平板分离膜、毛细管、血液透析装置、中空纤维等都属于高分子聚合物分离方法的不同运用形式。美国Sevenron公司就采用医学上的血液透析装置,研制出TrueGas变压器油中溶解气体在线监测系统。该方法透气快,效果好,但此种装置价格昂贵,在我国使用较少。目前应用比较多的几种在线油气分离方法主要有平板高分子透气膜法、真空脱气法、载气脱气法、动态顶空平衡法、动态顶空脱气法和中空纤维脱气法几种。 1.平板高分子透气膜法 这种方法的原理是利用某些合成材料薄膜(如聚酰亚胺、聚四氟乙烯、氟硅橡胶等)的透气性,让油中所溶解的气体经薄膜透析到气室里。当渗透时间相当长后,透析到气室的气体浓度c将达到稳定,它与油中溶解气体的浓度v 之间的关系如图1-1-3所示。这样,测出气室中的各气体浓度就可以换算出油中气体的含量。

变压器油色谱异常分析及处理_图文(精)

变压器油色谱异常分析及处理 (陕西延安) 摘要:介绍了延安发电厂3#主变压器油色谱分析数据超标后的检查、试验、分析判断及处理。 关键词:变压器;色谱;分析;处理 延安发电厂3#主变压器(型号SFSb-20000/110,额定容量20MW),在8月13日的油样色普分析结果中,发现乙炔含量为6.51ppm,超过注意值5.0ppm,引 起注意,及时汇报加强监督,为了进一步判断分析,在8月17日,又取油样送检,分析结果仍然是油样不合格,且乙炔含量增长较快,由6.5 1ppm 增长到7.26 ppm,在8月18日,再次送检油样,分析结果仍然是油样不合格,且乙炔含量增长较快,增长到11.76 ppm,根据三比值计算编码为102,判断设备内部存在裸金属放电故障,及时汇报,立即退出运行安排检查。 1 设备修前测量试验情况 1.1变压器油气相色谱分析报告 采样时间气体组分 (uL/L) H 2 CO CO 2 CH4 C 2H6 C 2H4 C 3H8 C 2H2 C 3H6 C 1+C2 86.95 16281514 6 5

.13 6.32 7.95 .77 .77 1.31 .51 5.36 8 .17 13.35 22 1.87 275 5.66 5 .66 2 .22 4 2.82 7 .26 5 7.96 8 .18 60.6 22 5.75 341 6.01 1 1.57 1 .82 5 4.3 1 1.76 7 9.45 8 .20 64.82 21 7.14 359 1.95 1 4.34 2 .31 6 5.67 1 4.15 9 6.47 结论根据三比值计算 编码为102,判断设 备内部存在裸金属放 电故障,建议立即停 运检修。 以8月20日的数据为依据,利用三比值法对其故障进行判断: (1)C2H2/ C2H4=14.15/65.67=0.27,比值范围的编码为:1; (2)CH4/ H2=14.34/64.28=0.22,比值范围的编码为:0; (3)C2H4/C C2H6=65.67/2.31=28.42,比值范围的编码为:2; 通过三比值计算编码为102,初步判断其故障性质为高能量放电。 1.2在西北电研院专家的指导下,对变压器进行了修前检测、试验。绕组绝缘测试合 格;绕组直流泄漏电流测试合格;各绕组介质损耗测试合格;高压侧110kv套管介质

变压器油中溶解气体分析教(学)案

变压器油中溶解气体分析 一、产气原理 (一)绝缘油的分解 大约油温在150℃时,就能产生甲烷;150-500℃左右时产生乙烷;大约500℃时产生乙烯,随着温度的逐渐升高,乙烯占总烃的比例越来越大;800-1200℃左右时产生乙炔。生成碳粒的温度约在500-800℃左右。 变压器油主要是由碳氢化合物组成(烷烃C n H2n+2,环烷烃C n H2n或C n H2n-2 ,芳香烃C n H2n-6。绝缘纸的成分主要是碳水化合物(C6H10O6)n。由电和热故障的结果可以使某些C-H键和C-C键断裂,伴随生成少量活泼的氢原子和不稳定的碳氢化合物的自由基,这些氢原子或自由基通过复杂的化学反应迅速重新化合,形成氢气和低分子烃类气体,如甲烷、乙烷、乙烯、乙炔等,也能生成碳的固体颗粒及碳氢聚合物(X-石蜡)。故障初期,所形成的气体溶于油中;当故障能量较大时,也能聚集成游离气体。碳的固体颗粒及碳氢聚合物可沉积在设备部。 低能放电,如局部放电,能过离子反应促使最弱的键C-H键断裂,主要重新化合成氢气。随着放电能量越来越高,如火花放电、电弧放电,能使C-C断裂,然后迅速以C-C键、C=C键、C≡C键的形式重新化合成烃类气体。 (二)绝缘纸的分解 纸、层压板或木块等固体绝缘材料分解时,主要产生CO、CO2,当怀疑故障涉及固体绝缘时,一般CO2/C0〈3。

(三)气体的其它来源 如分接开关油室向主油箱渗漏(C2H2高);设备油箱带油补焊(C2H2高);潜油泵出故障(是高速泵,轴和轴瓦产生磨擦,C2H2高,应改为低速泵);变压器油中含水(H2高);本体受潮(H2高)等均可产生气体。 (三)变压器部故障的类型 变压器部故障分为热性故障和电性故障两种,热性故障按温度高低又分为低温过热、中温过热和高温过热三种故障,电性故障按放电的能量密度分为局部放电、火花放电和电弧放电三种故障,现分别叙述如下。 1、热性故障 热性故障是指变压器部的局部过热温度升高,而不是变压器正常运行时由铜损和铁损转化而来的热量,使上层油温升高。 (l)热性故障的分类。当变压器部发生局部过热时,人们可以按温度的升高围分为四种情况:150℃以下属于轻微过热故障,150~300℃属于低温过热,300~700℃属于中温过热,大于700 ℃属于高温过热。 (2)热性故障产生的气体。热性故障是因热效应造成绝缘物加速裂解,所产生的特征气体主要是甲烷和乙烯,两者总量约占总烃的80%,随着故障点温度的升高,乙烯在总烃中所占的比例增大,甲烷为次,乙烷和氢气更次。其中氢气的含量一般在27%以下。通常热性故障是不产生乙炔的,但是,严重过热也会产生少量乙炔,其最大含量不超过总烃量的6%,当过热涉及固体绝缘物时,除了产生上述气体外,也会产生大量的CO和CO2。 (3)热性故障产生的原因,可以分为下列三种情况:①接点接触不良,

变压器油中溶解气体分析的原理方法

变压器油中溶解气体分析的原理及方法 充油电力变压器在正常运行过程中受到热、电和机械方面力的作用下逐渐老化,产生某些可燃性气体,当变压器存在潜伏性故障时,其气体产生量和气体产生速率将逐渐明显,人们取变压器油样使用气相色谱方法获得油中溶解的特征气体浓度后,就可以对变压器的故障情况进行分析。由于大型充油电力变压器是一个非常复杂的电气设备,变压器存在潜伏性故障时与多种因素存在耦合,特征气体形成涉及的机理十分复杂,这些机理及由这些机理导出的诊断方法对智能诊断方法有很好的借鉴意义。 1 变压器油及固体绝缘的成份及气体产生机理分析 虽然SF6 气体绝缘、蒸发冷却式气体绝缘变压器和干式变压器、交联聚乙烯绕组变压器等有着良好的发展前景,但是变压器油优良的绝缘和散热能力是它们所不能替代的,目前高电压、大容量的电力变压器仍然普遍采用充油式。充油电力变压器内部的主要绝缘材料是变压器油、绝缘纸和纸板等A 级绝缘材料,当运行年限为20年左右时,最高允许的温度为105C左右。变 压器油中特征气体是由变压器油及固体绝缘产生的,与它们的性能存在着密切的关系。 1 变压器油的成份及气体产生机理 变压器油是由天然石油经过蒸馏、精炼而获得的一种矿物油。它是由各 种碳氢化合物所组成的混合物,其中碳、氢两元素占全部重量的95%?99%。主要的碳氢化合物有环烷烃(50%以上)、烷烃(10%?40%)和芳香烃(5%?15%)组成[9]。不同变压器油各种成份的含量有些不同。 变压器油中不同烃类气体的性能是不同的。环烷烃具有较好的化学稳定性和介电稳定性,黏度随温度的变化很小。芳香烃化学稳定性和介电稳定性也较好,在电场作用下不析出气体,而且能吸收气体;但芳香烃易燃、黏度大、凝固点高,且在电弧的作用下生成的碳粒较多,会降低油的电气性能。环烷烃中的石蜡烃具有较好的化学稳定性和易使油凝固,但在电场的作用下易发生电离而析出气体,并形成树枝状的X 蜡,影响油的导热性。 变压器油在运行中受到温度、电场、氧气及水分和铜、铁等材料的催化作用会形成某些氧化物及其油泥、氢、低分子烃类气体和固体X 蜡等,这就是绝缘油的老化和劣化作用。正常的老化和劣化情况下,变压器油中仅能产生少量的气体,通常它们的含量在临界值之下。 但存在潜伏性故障时情况就不同了,当变压器油受到高电场的作用时,即使温度较低也会分解产生气体。 变压器油是由许多不同分子量的碳烃化合物分子组成的混合物,分子中存在着CH3*、CH2*和CH*等化学基团,含有C-C键和C-H键。在电或热的作用下使某些C-C键和C-H键断裂,形成了不稳定的氢原子和碳氢化合物的自由基,这些氢原子、自由基迅速重新化合生成氢气和低

相关主题
文本预览
相关文档 最新文档