当前位置:文档之家› (完整版)氨法脱硫废水处理工艺流程.(详细方案)

(完整版)氨法脱硫废水处理工艺流程.(详细方案)

(完整版)氨法脱硫废水处理工艺流程.(详细方案)
(完整版)氨法脱硫废水处理工艺流程.(详细方案)

目录

氨法脱硫废水处理工艺流程 (2)

1、废水处理系统 (2)

1.1脱硫废水处理过程 (2)

1.2脱硫废水处理步骤 (2)

2、化学加药及压滤系统 (4)

2.1助凝剂加药系统 (4)

2.2污泥压缩系统 (7)

3、脱硫废水处理系统概述 (8)

3.1脱硫废水处理工艺 (8)

3.2化学加药系统工艺 (11)

4、污泥流程 (14)

5、运行操作及监控 (14)

5.1.1供料准备 (14)

5.1.2仪表及控制器件准备 (15)

5.1.3污泥料位测量 (15)

5.1.4浊度测量 (16)

5.2.运行及监控 (16)

6、维护及保养 (17)

6.1.运行故障及排除 (17)

6.2.机械故障处理 (17)

6.3.设备维护 (20)

6.4.设备停用 (21)

氨法脱硫废水处理工艺流程

脱硫废水处理包括以下三个分系统:废水处理系统,化学加药系统,污泥处理系统及排污系统。

1、废水处理系统

1.1脱硫废水处理过程

脱硫装置产生的废水经由废水输送泵送至废水处理系统,采用化学加药和接触泥浆连续处理废水,沉淀出来的固形物在澄清浓缩器中分离浓缩,清水排入厂区指定排放点,经澄清/浓缩器浓缩排出的泥浆送至板框压滤机脱水后外运。

1.2脱硫废水处理步骤

1)用氢氧化钙/石灰浆[Ca(OH)2]进行碱化处理,通过设定最优的PH值范围,部分重金属以氢氧化物的形式沉淀出来,并中和废水中的酸性物质。

2)通过加入有机硫,使某些重金属,如镉和汞沉淀出来。

3)通过添加絮凝剂及助凝剂,使固体沉淀物以更易沉降的大粒子絮凝物形式絮凝出来。4)在澄清浓缩器中将固形物从废水中分离。

5)将氢氧化物泥浆输送至压滤机进行脱水。

在沉淀系统中,加入絮凝剂以便使沉淀颗粒长大更易沉降,悬浮物从澄清浓缩器中分离出来后,一部分泥浆通过污泥循环泵返回到中和箱,以利于更好地沉降,另一部分则通过污泥输送泵输送至压滤机进行脱水。处理后的清水送至厂区指定的排放点。

1.3脱硫废水处理流程

处理不合格水质回流至中和箱

2、化学加药及压滤系统

废水处理所需的化学药品在此处输送、贮存、混合,配成所需浓度的溶液,以备使用。加药系统包括助凝剂(聚合电解质阴离子型)加药系统;有机硫(TMT15)加药系统;絮凝剂(FeCLSO4)加药系统;盐酸加药系统及石灰浆加药系统。所有药品均由计量泵定量加入到相应加药点。

2.1助凝剂加药系统

(1)助凝剂为粉状固体,助凝剂加药系统流程如下:

(2)重金属沉淀剂TMT15浓度约为15%,有机硫加药系统流程如下:

(3)絮凝剂FeClSO4浓度约为40%,FeClSO4加药系统流程如下:

(4)30%的HCl 溶液加入到pH 调节箱中,以调整出水的PH 值。

盐酸加药系统流程如下:

(5)清洗PH测量探头的浓盐酸需稀释至3~5%左右,其流程如下:

(6)石灰加药系统:5%~10%的石灰浆液加入到中和箱中,用作中和剂和沉淀剂。以达到设定的PH值。石灰加药系统流程如下:

2.2污泥压缩系统

污泥压缩系统 在废水加药混合澄清浓缩过程中产生的氢氧化物污泥、硫化物污泥经污泥输送泵送至压滤机进行压滤脱水。 其工艺流程为:

3、脱硫废水处理系统概述

3.1脱硫废水处理工艺

1)烟气脱硫设备产生的弱酸性废水(通常PH值为5.0~5.5左右)通过管道流入中和箱。同时,石灰浆按PH值和流量的比例及石灰浆浓度加入废水中。使废水的PH值提高到9.0~9.5左右,此PH值范围适于沉淀大多数重金属。监测废水PH 计安装在沉降箱上,当pH计显示不准确时,需对PH电极用3~5%的稀盐酸清洗,然后重新校准后使用。

为了促进反应和沉降箱、絮凝箱中絮凝粒子的形成,需要在中和箱中加入从澄清器中抽出的少许恒定量的接触泥浆。为此,需使用污泥循环泵。最佳的接触泥浆量需经实际使用确定。并非所有的重金属都可通过与石灰浆作用形成氢氧化物的形式很好地沉淀出来,其中主要是镉和汞。因此,需在沉降箱中按比例加入重金属沉淀剂TMT15,其浓度为15%。(有机硫)从废水中沉淀出来的氢氧化物、化合物及其它固形物,极细地分散在体系中,难于沉降。为了提高絮凝效果,需向反应容器絮凝箱中按比例加入絮凝剂硫酸氯化铁(FeClSO4),其浓度为40%。每个反应箱中都装有搅拌器,确保废水和化学物质的均匀混合。为了不影响絮凝粒子的形成,絮凝箱中的搅拌器转速比前两个反应箱的稍小。

2)在进一步的处理过程中,已处理的废水在重力作用下从反应容器絮凝箱经管道向下流入澄清器中,在此处将固体物质与废

水分离。废水流出絮凝箱经管道混合器,即向其中加入助凝剂(聚电解质阴离子型),以产生易于沉降的大絮凝粒子。流入澄清器的废水、固体物质的混合物首先通过浸在水中的中心导流筒流下来。这样大大降低了混合物的流动速度,而使废水中的固体物质在沉降区的较低部分沉降下来。废水在澄清器停留时间约为10小时。经澄清的清水从澄清器流出,经溢流槽沿边缘向下顺着管路自流进入出水箱中。为保证出水的PH值,出水箱上安装了PH值测量装置。如果所测的PH值在6~9范围内,利用出水输送泵将清水送至指定的排放点。如果PH值低于定义下限(PH <6),需由出水泵经管路将清水送回中和箱进行再处理。在清水离开废水处理间前,需经最终的浊度检测。由浊度测量装置来进行。如果超出上限,就要中止向主排水口排放(阀门

J0GNK43 AA051 关),出水(阀门J0GNK44 AA051开)排回至中和箱进行再处理。PH调节箱中的水位需保持在pH计探头之上,使探头能浸泡在废水中得以保护。

废水处理的物理化学过程是依据如下基本反应进行的:采用氢氧化钙/石灰浆[Ca(OH)2]进行碱化处理,以沉淀部分重金属。

加石灰浆进行废水碱化处理时,水中的酸(H2SO4 H2SO3)按如下反应得到中和:

H2SO4+Ca(OH)2-->CaSO4+2H2O

H2SO3+Ca(OH)2-->CaSO3+2H2O OH-离子数量决定了基本范围内的废水PH值。

由于各重金属离子以不同的PH值沉淀出来,因此这一步是各氢氧化物形成的决定性步骤。三价金属离子沉淀的PH值通常低于二价金属离子。此外,发生沉淀的PH值还受存在于FGD 废水中的大量的过量电解质影响。对存在于FGD废水中的大多数重金属的沉淀来说,PH值在9.0~9.5之间较为合适。二价和三价的重金属离子(Me)通过形成微溶的氢氧化物从废水中沉淀出来,如下所示:Me2++2OH--->Me(OH)2

Me3++3OH--->Me(OH)3 采用有机硫沉淀重金属并非所有的重金属都能以氢氧化物形式完全沉淀出来,尤其是镉和汞。因此,有机硫(TMT15)根据被处理的废水量按比例加入。有机硫首先与镉和汞形成微溶的化合物,以固体形式沉淀出来。固体沉淀物的絮凝从废水中沉淀出来的氢氧化物和硫化物,与FGD废水中的固体一样,粒子都很细,分散在整个体系中,很难沉降。

为了改善所有固体物的沉降行为,应向废水中加入絮凝剂(FeClSO4),形成氢氧化铁/Fe(OH)3小粒子絮凝物。重金属氢氧化物及化合物附在氢氧化铁小粒子絮凝物上,形成较大的更易沉降的絮凝物。废水中所含固体的沉降行为可以通过加入助凝剂进一步得到改善。根据经验,使用阴离子聚电解质可以达到此目的。这些物质能较大程度地降低粒子的表面张力,使其形成

易于沉降的大粒子絮凝物。沉降—固形物从废水中分离在沉降阶段,固体物质从液相中分离出来。絮凝阶段形成的大粒子絮凝物沉到澄清器的底部。这一过程是在重力作用下发生的,因为固相和液相具有不同的密度。在沉降过程中,液相的浮力必须小于固体物的沉降力。热诱导流对固形物(大粒子絮凝物)的沉降行为有不利影响。沉降阶段完成后,形成两个较易分离的物相,分别以净化废水和浓污泥的形式排出。

3.2化学加药系统工艺

1)助凝剂(FA)粒状助凝剂(FA)为袋装的,在全自动助凝剂制备装置中配成0.1%的溶液。粒状助凝剂通过加料斗由干投机定量输出,并用水深度润湿助凝剂,以防结块。

润湿的粒状物质随水(补充水)流入助凝剂溶液箱的第一室(溶解箱)。在搅拌器作用下,粒状物与稀释水充分混合配成0.1%的溶液。助凝剂溶液流过一个双层壁的溢流堰,进入溶液箱的第二室(熟化箱)。在搅拌器作用下,残余的粒状物溶解,所得溶液留待计量。制得的助凝剂溶液最后流过另一个溢流堰进入助凝剂溶液箱的第三室(储液箱)。

用于溶解的补充水通过管路加入到装置中,并通过电磁阀自动开关。水流量设定值可以通过流量测量装置就地检测。如果缺水,将会自动停止混合过程,并启动警报。由高低液位控制助凝剂的混合过程自动进行及自动停止。通过加药泵J0GNN61 AP001或J0GNN62 AP001将助凝剂溶液输送到管道混合器,

助凝剂与废水均匀混合后进入澄清浓缩器,加药泵配有变频器,按浊度及废水流量比例加入到废水中。

2)盐酸HCl 用于清洗PH测量探头以及调节出水PH值的盐酸,其使用浓度大约为30%,由酸槽车运来后经卸酸泵送入HCl储存箱中。由于HCl具有挥发性,其挥发出的气体带腐蚀性。必须通过酸雾吸收器充分吸收后排放。

3)HCl储箱安装在围堰中,并配备有液位监测系统。采用计量泵J0GNN41 AP001和J0GNN42 AP001将HCl浓溶液,加入到出水PH调节箱中,加药泵可接受4~20mA的电信号,以调整出水所需的PH值6~9。用PH计自动喷洗装置将盐酸与定量的稀释水(补充水)混合使HCl浓度达到3~5%左右,用以清洗PH测量探头。硫酸氯化铁FeClSO4 絮凝剂硫酸氯化铁桶装供应,其备用浓度大约为40%,通过人工加入到硫酸氯化铁储箱中。硫酸氯化铁储箱的液位由磁翻板液位计显示并高低液位报警。

硫酸氯化铁不经稀释直接加入到絮凝箱中。由硫酸氯化铁加药泵J0GNN71 AP001或J0GNN72 AP001输送到反应箱中,加药泵可接受4~20mA的电信号,按浊度及废水流量比例加入废水中。重金属沉淀剂TMT15 重金属沉淀剂TMT15桶装供应,其使用浓度大约为15%,通过人工加入到TMT15储箱中。TMT15储箱的液位由翻板液位计显示并高低液位报警。重金属沉淀剂不经稀释直接加入到沉降箱中。

重金属沉淀剂由加药泵J0GNN81 AP001或J0GNN82 AP001输送到沉降箱中,加药泵可接受4~20mA的电信号,按浊度及废水流量比例加入废水中。

4)石灰浆溶液配比及循环:成袋的粉状消石灰通过人工加料,通过筛滤器过滤后加入到石灰制备箱中,通过管路及箱体加入补充水,在搅拌器作用下,通过石灰浆循环泵循环,经过循环管路流回石灰浆制备箱。液位到一定高度时稀释到大约10%的计量浓度。

当石灰计量箱低位时,石灰浆通过石灰浆循环泵J0GNN11 AP001或J0GNN12 AP001将石灰浆送至石灰计量箱直至高位。石灰浆输送前均应进行循环。

调配好的石灰浆通过石灰加药泵J0GNN21 AP001或

J0GNN22 AP001加入到中和箱中,用作中和剂/沉淀剂。石灰浆的加入量应根据所设定的PH值及石灰浆浓度确定。

石灰浆的加入量可通过变频器控制石灰加药泵自动进行调整。停止石灰浆系统时,石灰浆管路必须彻底清洗,冲洗过程为自动进行。石灰浆液石灰浆溶液配比及循环:成袋的粉状消石灰通过人工加料,通过筛滤器过滤后加入到石灰制备箱中,通过管路及箱体加入补充水,在搅拌和液相具有不同的密度。在沉降过程中,液相的浮力必须小于固体物的沉降力。热诱导流对固形物(大粒子絮凝物)的沉降行为有不利影响。沉降阶段完成

后,形成两个较易分离的物相,分别以净化废水和浓污泥的形式排出。

4、污泥流程

从澄清器收集的泥浆通过污泥高度界面仪进行监测。当达到设定范围时,污泥经污泥输送泵J0GNS11/12 AP001送入压滤机压缩脱水。此外,为了促进絮凝粒子的形成,少量恒定量的污泥浆经污泥循环泵J0GNB11/12 AP001送入中和箱中。

污泥循环泵和污泥输送泵停止运行时,应进行管道冲洗,冲洗水分别排至中和箱和澄清器内,冲洗过程为自动进行。如污泥处理系统可能长时间不进行污泥处理,污泥管道要每2天进行清洗一次,清洗为人为操作自动进行。

如整个废水系统长时间不进行废水处理,一定要将澄清器内的污泥排空。如污泥在澄清器内的停留时间过长,污泥极易钙化板结,造成刮泥机的扭距过大而出现故障,给整个废水系统的正常运行造成隐患。

5、运行操作及监控

5.1.1供料准备

(1)在启动设备之前应确保检查所要求的补给水和化工原料是否已足量供应。

(2)应给整个供水系统充水、加压。

(3)贮存料斗应加满足量的助凝剂颗粒,在供料加药室应供给充足的助凝剂溶液。

(4)废水处理设备在长期停机后再次启动时,应检查助凝剂溶液的效力,在大多数情况下它的效力在大约2周后就会显著地降低。

盐酸(HCl) 应在供料箱供应足量的浓盐酸。

FeClSO4 应给供料箱供给足量的絮凝剂。

重金属沉淀剂(TMT15)应给供料箱供给足量的絮凝剂。

石灰浆液(1)应给计量箱供给足量的石灰浆。而且,特别建议一旦出现警报,就应立即给石灰浆制备箱加注溶液并将其稀释到使用所要求的浓度。由控制室的操作员用手启动控制功能组。

5.1.2仪表及控制器件准备

设备操作所需要的全部仪表和控制器件都必须处于或必须处于准备运行的正确功能状态。必须特别注意废水处理设备正确操作要求的PH值测量电极的清洁度和泥浆料位和测量探头的混浊度。

PH值的测量在每次启动废水处理设备之前都应检查测量电极的清洁度而且在需要时加以清洗。在每次清洗过程后或长期停用后都需要重新校准。校准和或重新校准都应当按生产厂的说明来进行。

5.1.3污泥料位测量

在每次启动废水处理设备之前都应检查测量探头的清洁度而且如果需要应加以清洗。

5.1.4浊度测量

在长期停用后在起动废水处理设备之前应检查测量浊度计探头的清洁度而且如果需要可以清洗。要去除粘稠的积垢,可使用3~5%的盐酸。

5.2.运行及监控

废水处理系统的运行为全自动运行,工作人员需定期巡查处理设备以便及时确定异常事故,从初期防止可能的故障。为此我们建议每个工作班进行两次巡查并在工作记录表上记录在现场发现的操作数据(压力,流量,PH值和浊度等)。

在工作巡查时应注意下列现象:

(1)是否有任何“跑、冒、滴、漏”现象?

(2)是否所有的就地检测仪器都在正常工作?

(3)是否各种仪表读数都在标称限定值范围内?

(4)是否各种辅助设备的电动机都稳定运转且无较大振动?

(5)是否各种泵的轴密封件均无任何渗漏现象?

(6)电动机/轴承的温度是否在正常限定值内?

(7)阀门的填料箱处是否有渗漏?

(8)各种水箱的水位是否在标称限定值内?

(9)在设备内是否能听到异常的噪音? 应将测量点提供数据与预先设定的标值进行经常的比较,以确定异常现象。

当所测量的值超过或者达不到所应用的限定值发出报警通知时,应启动必要的安全装置。

当发出了任何报警通知的情况时,务必要立即查找原因并采取排除故障的必要补救措施。

6、维护及保养

6.1.运行故障及排除

1)PH值与标称值的偏差过大检查PH测量电极(测量链)并在需要时清洗/重新调整。检查石灰浆加药管线在需要时加以清洗。

检查HCl加药系统(加药头中的空气,加药泵的设定值,HCl 槽中的液位)。检查控制系统的参数化状况。

2)在沉淀槽/沉降槽溢流中的固体含量过大检查絮凝剂的加药系统(加药头中的空气,加药泵的设定值,絮凝剂槽中的料位)。

在沉淀槽/沉降槽中污泥厚度过厚:应检查废水处理设备的处理量可能明显地高于设计能力减少废水通过量,如果怀疑可检查流量测量装置。

6.2.机械故障处理

如果怀疑可检查流量测量装置。忽视各种管理和保养以及不采用适当的合格的质量保证体系;使用不合格的材料或有缺陷的设计以及不适当的工艺在任何情况下都不能完全排除在外。因此在诸如泵,搅拌器,阀门等部件都可能发生机械性故障。因此特

别重要的是在这种情况中应严格遵守机械部件/辅助设备生产厂的技术说明的要求,这不仅在寻找故障的原因而且在排除故障时都是如此,因为用户可能会不再有权要求在保修情况下的索赔损坏的要求。

在稍有问题时,应确保先与生产厂和/或设备供货商进行联系以防止任何严重损坏。除了需要一般的运行及监测外,还必须进行设备的正常维护和保养。由水罐,辅助设备,阀门,仪表和监测设备的生产厂规定的维修、校准和清洗工作应当被视为是他们的相应的操作和维修说明。其中有关这些工作的执行周期仅是指导值,而实际中应根据在不同情况中工作经验来决定。

下列测量工作如其它要求一样都是维修工作的一部分:

中和/沉降/絮凝箱J0GNK10/J0GNK20/J0GNK30 BB001 每个月:排空,并清除积垢,检查搅拌器轴的紧配合。每周检查并清洗一次PH值检测探头,如需要重新校准。

澄清器J0GNB10 BB001 每班检查一次驱动装置有无噪音/渗油。每周检查并清洗一次污泥厚度测量装置。如果需要,可用浓度为3—5%的HCl(盐酸)清除积垢。

每两个月或在需要的位置:检查供液管路和溢流管并在需要时加以清洗。

污泥循环泵J0GNB11/12 AP001 每班检查一次齿轮和差压设定值。

出水箱J0GNK40 BB001 每月排空并清除积垢一次,检查

搅拌器轴的紧配合状况。每两周检查/清洗检查PH值探头一次;如需要可重新校准。出水泵J0GNK41/42 AP001 每班检查一次设备的噪音,压力和有无渗漏现象。在发现排量时应检查壳体和叶轮的积垢状况。每周更换一次备用泵。

清水泵混浊度测量装置J0GNK43 CQ001 每周或需要时检测并清洗混浊度测量装置一次,如果需要可使用浓度3-5%的盐酸清洗。助凝剂自动制备装置J0GNN60 BB001 每班检查一次在贮放料斗中的絮凝剂的料位并在需要时加满。每周检查一次混合水的流量设定值。助凝剂加药泵J0GNN61/62 AP001 每班检查一次泵的噪音,压力和有无渗漏现象。每班检查一次设定状况AUTO(自动化),行程长度的状况。每周更换一次备用泵。盐酸贮存罐/酸雾吸收器J0GNN40 BB001/J0GNN50 BB001 每班检查一次喷头有无渗漏现象。每周检查更换一次酸雾吸收器中的清洗水。

PH计自动喷洗装置J0GNN44/ J0GNN45 BN001/清洗PH值探头每班检查一次每个接头有无渗漏现象。

盐酸加药泵J0GNN41/42 AP001/清水的PH值调节每班检查一次泵的噪音,压力和有无渗漏现象。每班检查一次设定值[流量频率“f”,模拟ON(接通)和行程长度]。FeClSO4溶液箱J0GNN70 BB001 每班检查一次供料槽中的料位。FeClSO4加药泵J0GNN71/72 AP001 每班检查一次泵的噪音,压力和有无渗漏。

每班检查一次设定值(流量,频率“f”,模拟ON(接通),行程长度”。

重金属沉淀剂TMT15的供料槽J0GNN80 BB001 每班检查一次供料槽的料位。重金属沉淀剂的加药泵J0GNN81/82 AP001 每班检查一次泵的噪音,压力和有无渗漏。每班检查一次设定值(流量,频率“f”,模拟ON(通),行程长度)。石灰浆制备箱J0GNN10 BB001 每个月排空并清除积垢一次。检查搅拌器轴的紧配合状况。石灰浆循环泵J0GNN11/12 AP001 每班检查一次泵的噪音,压力和有无渗漏。在排出量减少时应检查壳体有无积垢。每周更换一次备用泵。

石灰浆计量箱J0GNN20 BB001 每个月排空并清除一次积垢。检查搅拌器轴的紧配合状况。石灰浆计量泵J0GNN21/22 AP001 每班检查一次泵的噪音,压力和有无渗漏。在排量减少时应检查壳体的积垢。每周更换一次备用泵。

6.3.设备维护

在需要时使设备停止工作。排除发生故障的原因。重新起动设备是否要把设备停机主要取决于故障的性质。已起动的设备只要发生了下列缺欠中的任何一种缺欠时都要将整个系统停止在FeClSO4溶液箱J0GNN70 CL001中的料位<最低值在TMT15溶液箱J0GNN80 CL001中的料位<最低值在HCL溶液箱J0GNN40 CL001中的料位<最低值在助凝剂溶液箱J0GNN60 CL001中的料位<最低值在石灰浆计量箱

燃煤电厂脱硫废水处理技术方案设计

脱硫废水处理工艺设计初步构思 1脱硫废水的主要来源 煤粉在锅炉燃烧后会产生烟气,烟气经电除尘器设备除尘后进入引风机再引出到脱硫系统,经增压风机、吸收塔、除雾器后,洁净的烟气通过烟囱排入大气。 在吸收塔中,随着吸收剂吸收二氧化硫过程的不断进行,吸收剂有效成分不断被消耗从而生成的亚硫酸钙经强制氧化生成石膏,在吸收剂洗涤烟气时,烟气中的氯化物也会逐渐溶解到吸收液中从而产生氯离子的富集。氯离子浓度的增高会带来两个不利的影响:一是降低了吸收液的pH值,以致引起脱硫率的下降和CaSO4结垢倾向的增大;此外,氯离子浓度过高会降低副产品(石膏)的品质,从而降低产出石膏的价值。当吸收塔浆液质量浓度达到700g/L,吸收剂基本完全反应,脱硫能力相当弱,吸收塔浆液中氯离子的质量浓度达到最大允许质量浓度(20mg/L)左右,这就要将吸收塔浆液抽出送至石膏脱水车间使用真空皮带脱水机脱水。脱硫系统排放的废水,处理的清洗系统排出的废水、水力旋流器的溢流水和皮带过滤机的滤液都是废水产生的来源。 2 脱硫废水水质的基本特点 脱硫废水的成分及浓度对处理系统的运行管理有很大影响,是影响处理设备的选择、腐蚀等的关键性因素。脱硫废水一般具有以下几个特点。 (1)水质呈弱酸性:国外 pH 值变化围为 5.0~6.5,国一般为 4.0~6.0。酸性的脱硫废水对系统管道、构筑物及相关动力设备有很强的腐蚀性。 (2)悬浮物含量高,其质量浓度可达数万mg/L,而且大部分的颗粒物黏性低。(3)COD、氟化物、重金属超标,其中包括第 1 类污染物,如 As、 Hg、Pb 等。(4)脱硫废水的一般温度在45度左右。 (5)脱硫废水生化需氧量(BOD5)低。

MDEA天然气脱硫工艺流程

《仪陇天然气脱硫》项目书 目录 1总论 (3) 1.1项目名称、建设单位、企业性质 (3) 1.2编制依据 (3) 1.3项目背景和项目建设的必要性 (3) 1、4设计范围 (5) 1、5编制原则 (5) 1.6遵循的主要标准、规范 (8) 1.7 工艺路线 (8) 2 基础数据 (8) 2.1原料气和产品 (8) 2.2 建设规模 (9) 2.3 工艺流程简介 (9) 2.3.1醇胺法脱硫原则工艺流程: (9) 2.3.2直流法硫磺回收工艺流程: (10) 3 脱硫装置 (11) 3.1 脱硫工艺方法选择 (11) 3.1.1 脱硫的方法 (11) 3.1.2醇胺法脱硫的基本原理 (12) 3.2 常用醇胺溶液性能比较 (13) 3.1.2.1几种方法性质比较 (14) 3.2醇胺法脱硫的基本原理 (17) 3.3主要工艺设备 (18) 3.3.1主要设备作用 (18) 3.3.2运行参数 (19) 3.3.3操作要点 (20) 3.4乙醇胺降解产物的生成及其回收 (21) 3.5脱硫的开、停车及正常操作 (22) 3.5.1乙醇胺溶液脱硫的开车 (22) 3.5.2保证乙醇胺溶液脱硫的正常操作 (22) 3.6胺法的一般操作问题 (23) 3.6.1胺法存在的一般操作问题 (23) 3.6.2操作要点 (24) 3.7选择性脱硫工艺的发展 (25) 4 节能 (25) 4.1装置能耗 (25) 装置中主要的能量消耗是在闪蒸罐、换热器和再生塔。 (25)

4.2节能措施 (25) 5 环境保护 (26) 5.1建设地区的环境现状 (26) 5.2、主要污染源和污染物 (26) 5.3、污染控制 (26) 6 物料衡算与热量衡算 (28) 6.1天然气的处理量 (28) 7.天然气脱硫工艺主要设备的计算 (33) 7.1MDEA吸收塔的工艺设计 (33) 7.1.1选型 (33) 7.1.2塔板数 (33) 7.1.3塔径 (34) 7.1.4堰及降液管 (36) 7.1.5浮阀计算 (37) 7.1.6 塔板压降 (37) 7.1.7塔附件设计 (39) 7.1.8塔体总高度的设计 (40) 7.2解吸塔 (41) 7.2.1 计算依据 (41) 7.2.2塔板数的确定 (41) 7.2.3解吸塔的工艺条件及有关物性的计算 (42) 7.2.4解吸塔的塔体工艺尺寸计算 (43) 8参数校核 (44) 8.1浮阀塔的流体力学校核 (44) 8.1.1溢流液泛的校核 (44) 8.1.2液泛校核 (44) 8.1.3液沫夹带校核 (45) 8.2塔板负荷性能计算 (45) 8.2.1漏液线(气相负荷下限线) (45) 8.2.2 过量雾沫夹带线 (45) 8.2.3 液相负荷下限 (46) 8.2.4 液相负荷上限 (46) 8.2.5 液泛线 (46) 9 附属设备及主要附件的选型和计算 (47) 10.心得体会 (49) 11.参考文献 (50)

脱硫脱硝方案

35t/h流化床锅炉除尘脱硫 技术方案 河北智鑫环保设备科技有限公司 编制时间:二〇二〇年四月二日

第一部分 技 术 方 案 双减法脱硫+SNCR脱硝 河北智鑫环保设备科技有限公司 企业简介 河北智鑫环保设备科技有限公司;坐落于永年县临名关镇岳庄村西中华北大街路东,占地60000余M2.注册资金2000万元。是一家级科研、设计、研发、生产、安装于一体的专业性烟气治理的知名环保企业,企业员工266人,其中设计人员58名,工程管理人员35名,下设八个施工队,豪华舒适的科研办公大楼,高标准的厂区绿化设计与优雅景观融为一体,体现典型江南园林风格造型。洁净明亮的员工公寓,让员工舒心快乐。现代化的加工厂房,面积超过二万平米,采用大量自动化数控设备技术生产的各类环保产品、品种齐全、质优价廉。公司获国家环保高科技企业、河北省高新技术企业、河北省十大环保骨干企业、河北省十大环保创新企业、河北省十大循环资源利用企业、产品荣获国家环境保护产品认定证书、国家重点新产品证书、被评为2015年中国环境保护重点实用技术示范工程,获中华人民共和国国家知识产权局颁发的二十项实用新型专利证书、五项发明专利。河北省环境保护产品认定证书,尤其是脱硫除尘装置、静电除尘器、脉冲袋式除尘器、陶瓷多管除尘器、WCR型高效除尘器获得了年度国家级新产品。我公司是河北省环境保护厅、河北省环境保护产业协会理事单位,具有河北省环境工程设计专业资质、河北省环境

工程专业施工资质,河北省环境保护产业协会会员企业,并获河北省环境保护产品 资质认证,同时作为国家环境保护重点新产品获得全面推广,2014、2015年连续柒年在环境治理污染中成绩显着,被河北省环境保护产业评为优秀单位、多年来四十 余人次获河北省环境保护产业先进个人。 企业非常注重企业文化的发展和精神文明建设,在树立品牌文化的同时,营造和谐企业环境!为丰富职工的业余文化生活,企业设立了篮球场,网球场,兵乓球室, KTV多功能厅、阅览室等。每年派出技术人员到全国各地同行业进行考察,全面提高企业的凝聚力和吸引力,把我们的产品在同行业做的更先进做的更完善。 由于公司产品遍及全国各地,每年都有来自全国各地的客户莅临公司考察,完善的综合服务体系,给客户留下深刻印象。大大提升了企业的知名度和信誉度。 企业宣传通过环保设备网、阿里巴巴、马可波罗、有色网、造纸网、冶金网等网络大力宣传企业及产品。 公司以科技为先导,在立足环保市场的基础上不断创新,自行研制生产的脱硝 氧化还原装置、电除尘器、脉冲袋式除尘器、WCR型高效湿式除尘器,设计新 颖、结构独特,本公司设计的电袋组合除尘后串除尘脱硝工程技术特别对初始 浓度10000~25000mg/Nm3的高浓度烟气治理尤为理想,已成功应用于国内众多 家企业,经环保监测部门检测,除尘效率达到%、脱硫效率达到99%、脱 硝效率达到96%,完全能解决当前低热量高含硫的劣质燃料燃烧不完全、治理难的问题,特别是针对各种沸腾炉、循环流化床锅炉、粉燃料炉、各种工业锅炉烟气治理效果尤为明显。随着科学技术的不断进步,客户对高效产品的需求量不断增加,公司在新产品研究方面倾注大量精力、人力、物力、财力,终于在新产品研制方面取得了质的飞跃,使产品更加规范、性能更加优良。尤其是我公司历经多年研制开发,成功打造出新一代WCR型系列高效领先除尘脱硫脱硝脱汞一体化装置,已分别在河北省、陕西省、河南省、云南省、内蒙古自治区、黑龙江省、山东省、山西省、湖北省、广西省、辽宁省、江西省、江苏省、浙江省、北京市、天津市、上海市、重庆市、甘肃省、青海省等近千余家企业装置成功使用。对于各种的工业炉型、所产生的颗粒、SO 2 、 NO X 脱除效果较为明显,实测工业锅炉、工业锅炉烟气排放浓度<30 mg/m3,SO 2 含量 <50mg/m3,NO X 含量<100mg/m3,低于国家环保排放指标,被国家环保部门作为重点

脱硫脱硝氨法方案

3 x 75t/h锅炉烟气炉外氨法脱硫、硝装置 技术案 科环保工程有限公司 2013年7月10日 氨法脱硫 1、氨法工艺介绍

氨法烟气脱硫技术是采用氨水作为脱硫吸收剂,与进入吸收塔的烟气接触混合,烟气中的S02与氨水反应,生成亚硫酸氨,经与鼓入的压缩空气强制氧化反应,生成硫酸铵溶液,经结晶、离心机脱水、干燥器干燥后即得化学肥料硫酸铵。 氨法脱硫工艺具有很多别的工艺所没有的特点。氨是一种良好的碱性吸收剂,从化学反应机理上分析,烟气中二氧化硫的吸收是通过酸碱中和反应来实现的。吸收剂碱性越强,越利于吸收,氨的碱性强于钙基吸收剂。而且使用氨水作为脱硫吸收剂,还可以有效的降低NOx的排放。 灰浆液吸收二氧化硫需要先有一个固—液反应过程,即固相的灰(CaCO 3) 先酸溶于亚硫酸,生成亚硫酸氢钙Ca(HSO 3)2;而氨吸收烟气中的二氧化硫是反应速率极快的气-液或气-汽反应过程,可以比较容易地达到很高的脱硫效率。由于氨的化学活性远大于灰浆,吸收塔循环喷淋量可以降至灰-膏法的1/5?1/4,脱硫塔循环喷淋的动力消耗远低于灰-膏法。 灰-膏浆液系统一旦pH值发生比较大的波动,很容易结垢并难以清除。而氨法副产品一硫酸铵的水溶性极好,其吸收液循环系统简单、工艺操作稳定性优于灰-膏法的浆液系统。系统启停快速,维护简单,占地面积小。 氨-硫铵法工艺中的氯离子可以和氨结合生成氯化铵(化肥)随副产品一并排出,补充加入的新鲜水仅用于烟气的增湿降温,因此氨法脱硫是一个完全闭路循环的吸收系统,其间不需要排放废水。 燃用高硫煤(硫含量》2%)时,氨法脱硫装置在不需要改造,不增加投资和运行费用的情况下可取得更好的效益,而灰-膏法由于适应性有限,需要增加相应投资和运行费用,煤种的选择必须控制在设计围。 采用氨法脱硫装置可为电厂提供广泛的燃料选择余地。目前市场上低硫煤价格普遍高于高硫煤,高价值脱硫副产品的销售,使得这些高硫煤不仅对环境无害而且具有经济吸引力。 脱硫副产品硫酸铵可以制作成高效的复合化肥,变废为宝,化害为利,防止二次污染。硫酸铵的销售收入基本上可冲抵脱硫剂的消耗费用,燃用高硫煤时可为电厂带来盈利。如果脱硫装置配套的是合成氨企业的热电厂,则氨法的优越性

HPF脱硫工艺流程图

粗焦炉煤气脱硫工艺有干法和湿法脱硫两大类。干法脱硫多用于精脱硫,对无机硫和有机硫都有较高的净化度。不同的干法脱硫剂,在不同的温区工作,由此可划分低温(常温和低于100 ℃) 、中温(100 ℃~400 ℃) 和高温(> 400 ℃)脱硫剂。 干法脱硫由于脱硫催化剂硫容小,设备庞大,一般用于小规模的煤气厂脱硫或用于湿法脱硫后的精脱硫。 湿法脱硫又分为“湿式氧化法”和“胺法”。湿式氧化法是溶液吸收H2S后,将H2S直接转化为单质硫,分离后溶液循环使用。目前我国已经建成(包括引进)采用的具有代表性的湿式氧化脱硫工艺主要有TH法、FRC法、ADA法和HPF法。胺法是将吸收的H2S 经再生系统释放出来送到克劳斯装置,再转化为单质硫,溶液循环使用,主要有索尔菲班法、单乙醇胺法、AS法和氨硫联合洗涤法。湿法脱硫多用于合成氨原料气、焦炉气、天然气中大量硫化物的脱除。当煤气量标准状态下大于3000m3/h 时,主要采用湿法脱硫。 HPF法脱硫工艺流程: 来自煤气鼓风机后的煤气首先进入预冷塔,与塔顶喷洒的循环冷却液逆向接触,被冷却至25℃~30℃;循环冷却液从塔下部用泵抽出送至循环液冷却器,用低温水冷却至2 3℃~28℃后进入塔顶循环喷洒。来自冷凝工段的部分剩余氨水进行补充更新循环液。多余的循环液返回冷凝工段。

预冷塔后煤气并联进入脱硫塔A、脱硫塔B,与塔顶喷淋下来的脱硫液逆流接触,以吸收煤气中的硫化氢(同时吸收煤气中的氨,以补充脱硫液中的碱源)。脱硫后煤气进入下道工序进行脱氨脱苯。 脱硫基本反应如下: H2S+NH4OH→NH4HS+H2O 2NH4OH+H2S→(NH4)2S+2H2O NH4OH+HCN→NH4CN+H2O NH4OH+CO2→NH4HCO3 NH4OH+NH4HCO3→(NH4)2CO3+ H2O 吸收了H2S、HCN的脱硫液从脱硫塔A、B下部自流至反应槽,然后用脱硫液循环泵抽送进入再生塔再生。来自空压机站压缩空气与脱硫富液由再生塔下部并流进入再生塔A、B,对脱硫液进行氧化再生,再生后的溶液从塔顶经液位调节器自流回脱硫塔循环使用。 再生塔内的基本反应如下: NH4HS+1/2O2→NH4OH+S (NH4)2S+1/2O2+ H2O→ 2NH4OH+S (NH4)2Sx+1/2O2+ H2O→2NH4OH+Sx 除上述反应外,还进行以下副反应: 2NH4HS+2O2→(NH4)2S2O3+ H2O 2(NH4)2S2O3+O2→2(NH4)2SO4+2S 从再生塔A、B顶部浮选出的硫泡沫,自流入硫泡沫槽,在此经搅拌,沉降分离,排出清液返回反应槽,硫泡沫经泡

醇胺法脱硫脱碳工艺技术及应用(最新版)

醇胺法脱硫脱碳工艺技术及应 用(最新版) Safety management is an important part of enterprise production management. The object is the state management and control of all people, objects and environments in production. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0625

醇胺法脱硫脱碳工艺技术及应用(最新版) 醇胺法和砜胺法的典型工艺流程和设备是相同的。 (一)工艺流程 醇胺法脱硫脱碳的典型工艺流程见图2-2。由图可知,该流程由吸收、闪蒸、换热和再生(汽提)四部分组成。其中,吸收部分是将原料气中的酸性组分脱除至规定指标或要求;闪蒸部分是将富液(即吸收了酸性组分后的溶液)在吸收酸性组分时所吸收的一部分烃类 通过闪蒸除去;换热是回收离开再生塔的贫液热量;再生是将富液中吸收的酸性组分解吸出来成为贫液循环使用。 图2-2中,原料气经进口分离器除去游离液体和携带的固体杂质后进入吸收塔底部,与由塔顶自上而下流动的醇胺溶液逆流接触,吸收其中的酸性组分。离开吸收塔顶部的是含饱和水的湿净化气,

经出口分离器除去携带的溶液液滴后出装置。通常,都要将此湿净化气脱水后再作为商品气或管输,或去下游的NGL回收装置或LNG 生产装置。 由吸收塔底部流出的富液降压后进入闪蒸罐,以脱除被醇胺溶液吸收的烃类。然后,富液再经过滤器进贫富液换热器,利用热贫液将其加热后进入在低压下操作的再生塔上部,使一部分酸性组分在再生塔顶部塔板上从富液中闪蒸出来。随着溶液自上而下流至底部,溶液中剩余的酸性组分就会被在重沸器中加热汽化的气体(主要是水蒸气)进一步汽提出来。因此,离开再生塔的是贫液,只含少量未汽提出来的残余酸性气体。此热贫液经贫富液换热器、溶液冷却器冷却和贫液泵增压,温度降至比塔内气体烃露点高5~6℃以上,然后进入吸收塔循环使用。有时,贫液在换热与增压后也经过一个过滤器。 从富液中汽提出来的酸性组分和水蒸气离开再生塔顶,经冷凝器冷却与冷凝后,冷凝水作为回流返回再生塔顶部。由回流罐分出的酸气根据其组成和流量,或去硫磺回收装置,或压缩后回注地层

氨法脱硫 计算过程

氨法脱硫计算过程 风量(标态):,烟气排气温度:168℃: 工况下烟气量: 还有约5%的水份 如果在引风机后脱硫,脱硫塔进口压力约800Pa,出口压力约-200Pa,如果精度高一点,考虑以上两个因素。 1、脱硫塔 (1)塔径及底面积计算: 塔内烟气流速:取 D=2r=6.332m 即塔径为6.332米,取最大值为6.5米。 底面积S=πr2=3.14×3.252=33.17m2 塔径设定时一般为一个整数,如6.5m,另外,还要考虑设备裕量的问题,为以后设备能够满足大气量情况下符合的运行要求。 (2)脱硫泵流量计算: 液气比根据相关资料及规范取L/G= 1.4(如果烟气中二氧化硫偏高,液气比可适当放大,如1.5。) ①循环水泵流量: 由于烟气中SO2较高,脱硫塔喷淋层设计时应选取为4层设计,每层喷淋设计安装1台脱硫泵,476÷4=119m3/h,泵在设计与选型时,一定要留出20%左右的裕量。裕量为: 119×20%=23.8 m3/h, 泵总流量为:23.8+119=142.8m3/h, 参考相关资料取泵流量为140 m3/h。配套功率可查相关资料,也可与泵厂家进行联系确定。 (3)吸收区高度计算 吸收区高度需按照烟气中二氧化硫含量的多少进行确定,如果含量高,可适当调高吸收区高度。 2.5米×4层/秒=10米,上下两层中间安装一层填料装置,填料层至下一级距离按1米进行设计,由于吸收区底部安装有集液装置,最下层至集液装置距离为 3.7米-3.8米进行设计。吸收区总高度为13.7米-13.8米。

(4)浓缩段高度计算 浓缩段由于有烟气进口,因此,设计时应注意此段高度,浓缩段一般设计为2层,每层间距与吸收区高度一样,每层都是2.5米,上层喷淋距离吸收区最下层喷淋为3.23米,下层距离烟气进口为5米,烟气进口距离下层底板为2.48米。总高为10.71米。 (5)除雾段高度计算 除雾器设计成两段。每层除雾器上下各设有冲洗喷嘴。最下层冲洗喷嘴距最上层(4.13)m 。冲洗水距离2.5米,填料层与冲洗水管距离为2.5米,上层除雾至塔顶距离1.9米。 除雾区总高度为: 如果脱硫塔设计为烟塔一体设备,在脱硫塔顶部需安装一段锥体段,此段高度为 1.65米,也可更高一些。 (6)烟囱高度设计 具有一定速度的热烟气从烟囱出口排除后由于具有一定的初始动量,且温度高于周围气温而产生一定浮力,所以可以上升至很高的高度。但是,高度设计必须看当地气候情况以及设备建在什么位置,如果远离市区,且周围没有敏感源,高度可与塔体一并进行考虑。一般烟塔总高度可选60-80米。 (7)氧化段高度设计 氧化段主要是对脱硫液中亚硫酸盐进行氧化,此段主要以计算氧化段氧化时间。 (8)氧化风量设计 1、需氧量A (kg/h )=氧化倍率×0.25×需脱除SO 2量(kg/h )氧化倍率一般取1.5---2 2、氧化空气量(m 3/h )=A ÷23.15%(空气中氧含量)÷(1-空气中水分1%÷100)÷空气密度1.29 (9)需氨量(T/h )根据进口烟气状态、要求脱硫效率,初步计算氨水的用量。 式中: W 氨水——氨水用量,t/h C SO2——进口烟气SO 2浓度,mg/Nm 3 V 0——进口烟气量,Nm 3/h η——要求脱硫效率 C 氨水——氨水质量百分比 (10)硫铵产量(T/h ) W3=W1×2 ×132/17。W3:硫胺产量,132为硫胺分子量,17为氨分子量

脱硫废水处理t设计方案

脱硫废水处理 设 计 方 案 责任公司 2010年12月

目录前言2 1 总论3 2 工程设计依据、原则和范围3 2.1 设计依据3 2.2 设计原则3 2.3 设计范围4 3 工程设计参数4 3.1 设计处理规模4 3.2 进水水质4 3.3 出水水质4 4 工艺流程选择与确定5 4.1工艺分析与确定5 4.2工艺特点5 4.3工艺流程5 4.4工艺流程说明6 4.5沿程水质变化分析表7 5 各处理工艺设计及计算8 5.1各处理单元参数选择及设计计算8 5.2各单元构/建筑物/设备配置15 6 工程投资估算16 6.1工程投资估算16 6.2土建部分投资估算18 6.3设备投资估算20 7运行费用分析21 7.1主要用电设备21 7.2 运行费用分析21 8 人员培训及售后服务20 8.1人员培训20 8.2售后服务21

前言 。 在污水处理站的建设中,我公司愿意真诚参与,贡献我们的技术和力量。

1 总论 脱硫废水的水质特点如下:a脱硫废水呈弱酸性,pH值一般为4~7。b悬浮物含量高,实验证明脱硫废水中的悬浮物主要是石膏颗粒、二氧化硅、以及铁、铝的氢氧化物。c 脱硫废水中的阳离子为钙、镁、铁、铝、重金属离子。d脱硫废水中的阴离子主要有C1-、SO42-、SO32-、等。e化学耗氧量与通常的废水不同。 2 工程设计依据、原则和范围 2.1 设计依据 《室外排水设计规范》GBJ50014-2006 ; 《建筑给水排水设计规范》GBJ50015-2003; 《国家污水综合排放标准》GB8978-1996; 《辽宁省污水综合排放标准》DB21/1627-2008 《地表水环境质量标准》GB3838-2002; 《废水出水水质的监测与控制符合火力发电厂废水治理设计技术规程》 DL/T5046-2006 《钢制平台扶梯设计规范》DLGJ158-2001 《钢制压力容器》GB150-1998 国内外关于此类废水处理技术资料; 污水处理有关设计和验收规范规程; 国家相关环保政策法规 2.2 设计原则 (1)严格遵守国家有关环保法律法规和技术政策,确保各项出水指标均达到排放水质要求; (2)水处理设备力求简便高效、操作管理方便、占地面积小、造价低廉、运行安全及避免对周围的环境造成污染;

合成氨精脱硫工艺介绍

氨气合成工艺流程图新乡中科化工合成氨工艺 煤…… 造气…… 净化除尘……静电除尘…… 脱硫……合成甲醇(CO+2H 2-----CH 3 OH △H1 =651kj/mol 吸热) CO置换……

脱碳…… 精制气体……制取氨气……

气体循环……气体回收 1)予脱塔 原料气进入工段经过预脱塔先进行初脱硫。 2)预热塔 用蒸汽加热到40-80℃,为接下来的水解塔工段进行做准备。 3)水解塔 使用水解催化剂,脱出无机硫。在温度为320~350℃、压力为1.3~1.5MPa的条件下,在钴钼脱硫剂的作用下进行有机硫加氢转化反应及氧化锌吸收生成H2S ZnS,排入地沟。 4)水冷器 水冷器是为使水冷却到常温,方便后一阶段的精脱硫。 5)精脱塔 这个工段脱出的是有机硫,把最后残余的硫进行精脱,减少氨气中硫的含量。 经过这5个工段后,硫的含量小于0.06×10-6,甲醇催化剂寿命大大延长, 减少更换甲醇催化剂,生产时间和能力大幅度提高。 用到的设备有预脱塔、预热器、水解塔、水冷器、精脱塔。 合成氨 氨氨(Ammonia,旧称阿莫尼亚)是重要的无机化工产品之一,在国民经济中占有重要地位。农业上使用的氮肥,除氨水外,诸如尿素、硝酸铵、磷酸铵、氯化铵以及各种含氮复合肥都是以氨为原料生产的。合成氨是大宗化工产品之一,世界每年合成氨产量已达到1亿吨以上,其中约有80%的氨用来生产化学肥料,20%作为其它化工产品的原料。 合成氨指由氮和氢在高温高压和催化剂存在下直接合成的氨。别名氨气,分子式为NH3,英文名:synthetic ammonia。世界上的氨除少量从焦炉气中回收外,绝大部分是合成的氨。 合成氨主要用于制造氮肥和复合肥料。氨作为工业原料和氨化饲料,用量约占世界产量的12%。硝酸、各种含氮的无机盐及有机中间体、磺胺药、聚氨酯、聚酰胺纤维和丁腈橡

烟气脱硫脱硝技术方案

1、化学反应原理 任意浓度的硫酸、硝酸,都能够跟烟气当中细颗粒物的酸、碱性氧化物产生化学反应, 生成某酸盐和水,也能够跟其它酸的盐类发生复分解反应、氧化还原反应,生成新酸和新盐,通过应用高精尖微分捕获微分净化处理技术产生的巨大量水膜,极大程度的提高烟气与循环 工质接触、混合效率,缩短工艺流程,在将具有连续性气、固、液多项流连续进行三次微分 捕获的同时,连续进行三次全面的综合性高精度微分净化处理。 2、串联叠加法工作原理 现有技术装备以及烟气治理工艺流程的效率都是比较偏低,例如脱硫效率一般都在98%左右甚至更低,那么,如果将三个这样工作原理的吸收塔原型进行串联叠加性应用,脱硫效率一定会更高,例如99.9999%以上。 工艺流程工作原理 传统技术整治大气环境污染,例如脱硫都是采用一种循环工质,那么,如果依次采用三种化学性质截然不同的循环工质,例如稀酸溶液、水溶液和稀碱溶液进行净化处理,当然可以十分明显的提高脱除效率,达到极其接近于百分百无毒害性彻底整治目标。 1、整治大气环境污染,除尘、脱硫、脱氮、脱汞,进行烟气治理,当然最好是一体 化一步到位,当然首选脱除效率最高,效价比最高,安全投运率最高,脱除污染因子最全 面,运行操作最直观可靠,运行费用最低的,高效除尘、脱硫、脱氮、脱汞一体化高精尖 技术装备。 2、高效除尘、脱硫、脱氮、脱汞一体化高精尖技术装备,采用最先进湿式捕获大化 学处理技术非选择性催化还原法,拥有原创性、核心性、完全自主知识产权,完全国产化,发明专利名称《一种高效除尘、脱硫、脱氮一体化装置》,发明专利号。 3、吸收塔的使用寿命大于30年,保修三年,耐酸、耐碱、耐摩擦工质循环泵,以及 其它标准件的保修期,按其相应行业标准执行。 4、30年以内,极少、甚至可以说不会有跑、冒、滴、漏、渗、堵现象的发生。 5、将补充水引进到3#稀碱池入口,根据实际燃煤含硫量和烟气含硝量调整好钠碱量 以及相应补充水即可正常运行。 6、工艺流程: 三个工质循环系统的循环工质,分别经过三台循环泵进行加压、喷淋。 (1)可以采用废水的补充水进入进行第三级处理的稀碱池,通过第三级循环泵或者称 为稀碱泵,进行第三次微分捕获微分净化处理,然后溢流至中水池。 (2)从稀碱池溢流来的稀碱水自流进入中水池,经过第二级循环泵或者称为中水泵的 加压循环,进行第二次微分捕获微分净化处理的喷淋布水。 (3)从中水池溢流来的中水进入稀酸池,第一级循环泵或者称为稀酸泵泵出的循环工 质,在进行第一级微分捕获微分净化处理循环过程当中,在稀酸池经过处理,成为多元酸, 通过补充水和澄清水保持两个循环系统工作。

天然气脱硫脱碳方法-醇胺法(新版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 天然气脱硫脱碳方法-醇胺法 (新版) Safety management is an important part of production management. Safety and production are in the implementation process

天然气脱硫脱碳方法-醇胺法(新版) 醇胺法是目前最常用的天然气脱硫脱碳方法。据统计,20世纪90年代美国采用化学溶剂法的脱硫脱碳装置处理量约占总处理量的72%,其中又绝大多数是采用醇胺法。 20世纪30年代最先采用的醇胺法溶剂是三乙醇胺(TEA)。因其反应能力和稳定性差已不再采用。目前,主要采用的是MEA、DEA、DIPA、DGA和MDEA等溶剂。 醇胺法适用于天然气中酸性组分分压低和要求净化气中酸性组分含量低的场合。由于醇胺法使用的是醇胺水溶液,溶液中含水可使被吸收的重烃降低至最少程度,故非常适用于重烃含量高的天然气脱硫脱碳。MDEA等醇胺溶液还具有在CO2存在下选择性脱除H2S 的能力。 醇胺法的缺点是有些醇胺与COS和CS2的反应是不可逆的,会造成溶剂的化学降解损失,故不宜用于COS和CS2含量高的天然气

脱硫脱碳。醇胺还具有腐蚀性,与天然气中的H2S和CO2等会引起设备腐蚀。此外,醇胺作为脱硫脱碳溶剂,其富液(即吸收了天然气中酸性组分后的溶液)在再生时需要加热,不仅能耗较高,而且在高温下再生时也会发生热降解,所以损耗较大。 云博创意设计 MzYunBo Creative Design Co., Ltd.

《氨法脱硫工艺设计》文献综述

北京化工大学北方学院 毕业设计文献综述 题目名称《氨法脱硫工艺设计》文献综述 题目类别毕业设计 专业班级应化0906 学号 090105161 姓名王冲 指导老师尹建波老师 完成时间 2012年10月25日

引言 据统计,中国1995年SO2排放量为2370万吨,占世界第1位。 SO2排放量剧增使大多数城市SO2浓度处于较高的污染水平。SO2排放量的增加,使中国的酸雨发展异常迅速,严重的酸性降水和脆弱的生态系统使我国经济损失严重,1995年,仅酸雨污染给森林和农作物造成的直接经济损失已达几百亿。随着经济的发展、社会的进步和人们环保意识的增强,工业烟气脱除SO2日益受到重视。由于历史的原因,目前主流的脱硫技术仍为钙法,但钙法脱硫的二次污染、运行不经济等问题日益显现出来,于是,氨法脱硫技术逐渐受到关注,许多的企业、研究单位对氨法脱硫技术的前景作出了乐观的评价。国内已成功地在60MW机组烟气脱硫工程上使用了氨法,其各项经济技术指标居脱硫业的领先水平。由于氨法脱硫工艺自身的一些特点,可充分利用我国广泛的氨源生产需求大的肥料,并且氨法脱硫工艺在脱硫的同时又可脱氮,是一项较适应中国国情的脱硫技术。为帮助大家全面了解氨法,本文对氨法脱硫技术的发展、机理和不同技术的特点进行简述,并侧重介绍湿式回收法氨法脱硫技术。

1. 氨法脱硫技术概况 1.1 氨法脱硫工艺特点 氨法脱硫工艺是采用氨作为吸收剂除去烟气中的SO2的工艺。氨法脱硫工艺具有很多特点。氨是一种良好的碱性吸收剂,氨的碱性强于钙基吸收剂;而且氨吸收烟气中SO2是气-液或气-气反应,反应速度快、反应完全、吸收剂利用率高,可以做到很高的脱硫效率,相对于钙基脱硫工艺来说系统简单、设备体积小、能耗低。另外,其脱硫副产品硫酸铵是一种常用的化肥,副产品的销售收入能大幅度降低运行成本。 1.2 氨法脱硫的发展 70年代初,日本与意大利等国开始研制氨法脱硫工艺并相继获得成功。氨法脱硫工艺主体部分属化肥工业范筹,这对电力企业而言较陌生,是氨法脱硫技术未得到广泛应用的最大因素,随着合成氨工业的不断发展以及厂家对氨法脱硫工艺自身的不断完善和改进,进入90年代后,氨法脱硫工艺渐渐得到了应用。 国外研究氨法脱硫技术的企业主要有:美国:GE、Marsulex、Pircon、Babcock & Wilcox;德国:Lentjes Bischoff、Krupp Koppers;日本:NKK、IHI、千代田、住友、三菱、荏原;等等。 国内目前成功的湿式氨法脱硫装置大多从硫酸尾气治理技术中发展而来,主要的技术商有江南环保工程建设有限公司、华东理工大学等,现国内湿式氨法脱硫最大的业绩是天津永利电力公司的60MW机组的烟气脱硫装置。 近来出现的磷铵法、电子束法、脉冲电晕放电等离子体法等烟气脱硫脱硝技术皆是氨法的演变与发展,改进之处在于降低水耗、改进氧化及后处理、降低装置压降、提高脱硝能力等方面,以求使氨法烟气脱硫技术更加经济更加适应锅炉的运行。 2. 氨法脱硫的技术原理 氨法脱硫工艺皆是根据氨与SO2、水反应成脱硫产物的基本机理而进行的,主要有湿式氨法、电子束氨法、脉冲电晕氨法、简易氨法等。 2.1 电子束氨法(EBA法)与脉冲电晕氨法(PPCP法) 电子束氨法与脉冲电晕氨法分别是用电子束和脉冲电晕照射喷入水和氨的、已降温至70℃左右的烟气,在强电场作用下,部分烟气分子电离,成为高能电子,高能电子激活、裂解、电离其他烟气分子,产生OH、O、HO2等多种活性粒子和自由基。在反应器里,烟气中的SO2、NO被活性粒子和自由基氧化为高阶氧

天然气脱硫工艺介绍

天然气脱硫工艺介绍 (1)工程中常用的天然气脱硫方法 天然气脱硫的方法有很多种,习惯上把采用溶液或溶剂做脱硫剂的脱硫方法称为湿法脱硫,采用固体做脱硫剂的脱硫方法称为干法脱硫。 一般的湿法脱硫有化学溶剂法(如醇胺法)、物理溶剂法(如Selexol法、Flour法)、化学-物理溶剂法(如砜胺法)和直接转化法(如矶法、铁法)。常见的干法脱硫有膜分离法、分子筛法、不可再生固定床吸附法和低温分离法等。 (2)天然气脱硫方法选用原则 天然气组分、处理量、硫含量、厂站所处自然条件、产品质量要求、运行操作要求等都是天然气脱硫工艺的选择依据。目前,根据国内外工业实践的经验,天然气脱硫脱碳工艺的选择原则可参考以下内容。 ①原料气中含硫量高,处理量大,硫碳比高需要选择性吸收H2S同时脱除相当量的CO2,原料气压力低,净化气H2S要求严格等条件下,可选择醇胺法作为脱酸工艺。 ②原料气中含有超量的有机硫化物需要脱除,宜选用砜胺法。此外,H2S分压高的原料气选用砜胺法时能耗远低于醇胺法。 ③H2S含量较低的原料气中,潜硫量在d?5t/d时可考虑直接转化法,潜硫量低于d的可选用非再生固体脱硫法如固体氧化铁法等。 实践中,往往在选择基本工艺方案之后,根据具体情况进行技术经济比较,最终确定天然气的脱硫脱碳方法。图1和图2分别表示了原料气中酸气分压和出口气质量指标对脱硫方案选择的影响。 图1脱硫方案选择与酸气分压的关系 图2脱硫方案选择与进、出口气质量指标的关系 (3)低含硫量天然气脱硫方案 某项目天然气组分和参数如下: 表1原料气组分表

表2原料气工艺参数表 几种脱硫工艺方案如下: ①干法脱硫固定床吸附法 氧化铁固体脱硫是典型的干法脱硫工艺,处理原料气中的H2S含量一般在lOppm 到1%之间。工艺流程图如图3。 原料气首先进行过滤分离,除去固体杂质和游离水后,进入脱硫装置固体脱硫塔进行吸附脱除气体中含有的H2S,其余塔进行更换脱硫剂工作。脱硫后的净化气经过滤分离,除去化学反应产生的水和气流带出的脱硫剂杂质后输出。 氧化铁固体脱硫工艺所需要的主要设备见表3,常见脱硫装置见图4。 图3氧化铁固体脱硫工艺流程

脱硫脱硝提标改造方案及安全措施

脱硫脱硝提标改造方案及施工安全措施 一、施工时间: 二、施工地点:炼焦车间脱硫脱硝区域 三、施工负责人: 四、安全负责人: 五、施工方案: 总体施工程序如下: 稀释风机改备用 布袋更换 催化剂安装 管道、水封改造 取烟口扩大 风机拆除、安装 焦炉停炉烟道清理 风机试运 调试起动 脱硝电器、仪表改造 取烟口检查 电器控制设备改造 CEMS系统改造 PLC系统数据保存改造 称重给料机计重改造 (一)、烟道扩孔及烟道清理方案 首先,将烟道插板提起,停脱硫脱硝系统,停液氨站系统。脱硫脱硝系统停止运行后,除烟道扩孔及烟道清理外的其他改造内容可同时进行。 1、停脱硫脱硝系统后,焦炉地下室开启废气循环系统,用以降低氮氧化物排放。停止加热时可关闭废气循环系统。 2、由于扩孔和清理地下烟道同时进行,所以1#、2#炉不可同时

施工,3#、4#炉不可同时施工,避免进冷空气太多,烟囱热备温度不够。 3、扩孔施工时,焦炉停止加热,施工单位拆除取气口天圆地方,施工单位用提前预制好的挡板将地下烟道取气口全部覆盖,焦炉再恢复加热,哪部分需要扩孔,拿掉哪一部分挡板,扩完再覆盖,确保焦炉吸力满足生产,炼焦车间要观察焦炉吸力,随时与施工单位保持联系。 4、进入地下烟道清理时,需焦炉停止加热,炼焦车间做好焦炉保温工作,将进风口盖住,烟道翻板关闭,焦炉停产。施工单位清理地下烟道混凝土及开孔时掉下的砖块,保证插板阀能插到底,焦炉停止加热的时间尽量控制在4h以内。4座焦炉的取气口都应进行扩孔,满足设计要求,满足焦炉吸力要求。 (二)、除尘器布袋更换, 采用在线单仓更换的方式:用吊车将布袋吊到除尘器顶部,关闭1#仓室进出口烟气挡板,打开检修门,拆除喷吹支管,将原布袋逐个抽出,拆除旧布袋,将袋笼装上新布袋,由人工安装到仓室内,整个仓室更换完成后,检查无误后,方可封闭检修门。单仓更换结束,其余仓室更换过程同上。 (三)、脱硝模块更换 脱硝模块更换同样采取在线更换,将单仓进出口烟气挡板关闭,打开检修门,清理内部积灰,用吊车将模块吊至安装位置,然后从内向外逐块安装,单仓安装完成后,检查密封,确认无误,封闭检修门,安装结束。 (四)、风机检修 拆除风机壳体保温,拆风机上壳体,拆除风机转子,根据风机新转流程,安装新转子,调整、固定后安装上壳体,恢复保温,安装结束。

醇胺法脱硫脱碳工艺技术及应用.doc

醇胺法脱硫脱碳工艺技术及应用 醇胺法和砜胺法的典型工艺流程和设备是相同的。 (一) 工艺流程醇胺法脱硫脱碳的典型工艺流程见图2-2。由图可知,该流程由吸收、闪蒸、换热和再生(汽提)四部分组成。其中,吸收部分是将原料气中的酸性组分脱除至规定指标或要求;闪蒸部分是将富液(即吸收了酸性组分后的溶液)在吸收酸性组分时所吸收的一部分烃类通过闪蒸除去;换热是回收离开再生塔的贫液热量;再生是将富液中吸收的酸性组分解吸出来成为贫液循环使用。图2-2中,原料气经进口分离器除去游离液体和携带的固体杂质后进入吸收塔底部,与由塔顶自上而下流动的醇胺溶液逆流接触,吸收其中的酸性组分。离开吸收塔顶部的是含饱和水的湿净化气,经出口分离器除去携带的溶液液滴后出装置。通常,都要将此湿净化气脱水后再作为商品气或管输,或去下游的NGL回收装置或LNG生产装置。由吸收塔底部流出的富液降压后进入闪蒸罐,以脱除被醇胺溶液吸收的烃类。然后,富液再经过滤器进贫富液换热器,利用热贫液将其加热后进入在低压下操作的再生塔上部,使一部分酸性组分在再生塔顶部塔板上从富液中闪蒸出来。随着溶液自上而下流至底部,溶液中剩余的酸性组分就会被在重沸器中加热汽化的气体(主要是水蒸气)进一步汽提出来。因此,离开再生塔的是贫液,只含少量未汽提出来的残余酸性气体。此热贫液经贫富液换热器、溶液冷却器冷却和贫液泵增压,温度降至比塔内气体烃露点高5~6℃以上,然

后进入吸收塔循环使用。有时,贫液在换热与增压后也经过一个过滤器。从富液中汽提出来的酸性组分和水蒸气离开再生塔顶,经冷凝器冷却与冷凝后,冷凝水作为回流返回再生塔顶部。由回流罐分出的酸气根据其组成和流量,或去硫磺回收装置,或压缩后回注地层以提高原油采收率,或经处理后去火炬等。在图2-2所示的典型流程基础上,还可根据需要衍生出一些其他流程,例如分流流程(见图2-3)。在图2-3中,由再生塔中部引出一部分半贫液(已在塔内汽提出绝大部分酸性组分但尚未在重沸器内进一步汽提的溶液)送至吸收塔的中部,而经过重沸器汽提后的贫液仍送至吸收塔的顶部。此流程虽然增加了一些设备与投资,但对酸性组分含量高的天然气脱硫脱碳装置却可显著降低能耗。图2-4是BASF公司采用活化MDEA(aMDEA)溶液的分流法脱碳工艺流程。该流程中活化MDEA溶液分为两股在不同位置进入吸收塔,即半贫液进入塔的中部,而贫液则进入塔的顶部。从低压闪蒸罐底部流出的是未完全汽提好的半贫液,将其送到酸性组分浓度较高的吸收塔中部;而从再生塔底部流出的贫液则进入吸收塔的顶部,与酸性组分浓度很低的气流接触,使湿净化气中的酸性组分含量降低至所要求之值。离开吸收塔的富液先适当降压闪蒸,再在更低压力下闪蒸,然后去再生塔内进行汽提,离开低压闪蒸罐顶部的气体即为所脱除的酸气。此流程的特点是装置处理量可提高,再生能耗较少,主要用于天然气及合成气脱碳。 (二) 主要设备 1. 高压吸收系统高压吸收系统由原料

脱硫脱硝氨法方案

3×75t/h锅炉烟气炉外氨法脱硫、硝装 置 技术方案 山东科环保工程有限公司 2013年7月10日 氨法脱硫 1、氨法工艺介绍 氨法烟气脱硫技术是采用氨水作为脱硫吸收剂,与进入吸收塔的烟气接触混合,烟气中的SO2与氨水反应,生成亚硫酸氨,经与鼓入的压缩空气强制氧化反应,生成硫酸铵溶液,经结晶、离心机脱水、干燥器干燥后即得化学肥料硫酸铵。 氨法脱硫工艺具有很多别的工艺所没有的特点。氨是一种良好的碱

性吸收剂,从化学反应机理上分析,烟气中二氧化硫的吸收是通过酸碱中和反应来实现的。吸收剂碱性越强,越利于吸收,氨的碱性强于钙基吸收剂。而且使用氨水作为脱硫吸收剂,还可以有效的降低NOx的排放。 石灰石浆液吸收二氧化硫需要先有一个固-液反应过程,即固相的石灰石(CaCO3)先酸溶于亚硫酸,生成亚硫酸氢钙Ca(HSO3)2;而氨吸收烟气中的二氧化硫是反应速率极快的气-液或气-汽反应过程,可以比较容易地达到很高的脱硫效率。由于氨的化学活性远大于石灰石浆,吸收塔循环喷淋量可以降至石灰石-石膏法的1/5~1/4,脱硫塔循环喷淋的动力消耗远低于石灰石-石膏法。 石灰石-石膏浆液系统一旦pH值发生比较大的波动,很容易结垢并难以清除。而氨法副产品—硫酸铵的水溶性极好,其吸收液循环系统简单、工艺操作稳定性优于石灰石-石膏法的浆液系统。系统启停快速,维护简单,占地面积小。 氨-硫铵法工艺中的氯离子可以和氨结合生成氯化铵(化肥)随副产品一并排出,补充加入的新鲜水仅用于烟气的增湿降温,因此氨法脱硫是一个完全闭路循环的吸收系统,其间不需要排放废水。 燃用高硫煤(硫含量≥2%)时,氨法脱硫装置在不需要改造,不增加投资和运行费用的情况下可取得更好的效益,而石灰石-石膏法由于适应性有限,需要增加相应投资和运行费用,煤种的选择必须控制在设计范围内。 采用氨法脱硫装置可为电厂提供广泛的燃料选择余地。目前市场上低硫煤价格普遍高于高硫煤,高价值脱硫副产品的销售,使得这些高硫煤不仅对环境无害而且具有经济吸引力。 脱硫副产品硫酸铵可以制作成高效的复合化肥,变废为宝,化害为利,防止二次污染。硫酸铵的销售收入基本上可冲抵脱硫剂的消耗费用,燃用高硫煤时可为电厂带来盈利。如果脱硫装置配套的是合成氨企业的热电厂,则氨法的优越性将得到充分发挥。

天然气脱硫工艺介绍

天然气脱硫工艺介绍公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

天然气脱硫工艺介绍 (1)工程中常用的天然气脱硫方法 天然气脱硫的方法有很多种,习惯上把采用溶液或溶剂做脱硫剂的脱硫方法称为湿法脱硫,采用固体做脱硫剂的脱硫方法称为干法脱硫。 一般的湿法脱硫有化学溶剂法(如醇胺法)、物理溶剂法(如Selexol法、Flour法)、化学-物理溶剂法(如砜胺法)和直接转化法(如矾法、铁法)。常见的干法脱硫有膜分离法、分子筛法、不可再生固定床吸附法和低温分离法等。(2)天然气脱硫方法选用原则 天然气组分、处理量、硫含量、厂站所处自然条件、产品质量要求、运行操作要求等都是天然气脱硫工艺的选择依据。目前,根据国内外工业实践的经验,天然气脱硫脱碳工艺的选择原则可参考以下内容。 ①原料气中含硫量高,处理量大,硫碳比高需要选择性吸收H 2 S同时脱除相 当量的CO 2,原料气压力低,净化气H 2 S要求严格等条件下,可选择醇胺法作为脱 酸工艺。 ②原料气中含有超量的有机硫化物需要脱除,宜选用砜胺法。此外,H 2 S分压高的原料气选用砜胺法时能耗远低于醇胺法。 ③ H 2 S含量较低的原料气中,潜硫量在d~5t/d时可考虑直接转化法,潜硫量低于d的可选用非再生固体脱硫法如固体氧化铁法等。 实践中,往往在选择基本工艺方案之后,根据具体情况进行技术经济比较,最终确定天然气的脱硫脱碳方法。图1 和图2 分别表示了原料气中酸气分压和出口气质量指标对脱硫方案选择的影响。

图1 脱硫方案选择与酸气分压的关系 图2 脱硫方案选择与进、出口气质量指标的关系(3)低含硫量天然气脱硫方案 某项目天然气组分和参数如下: 表1 原料气组分表 表2 原料气工艺参数表

相关主题
文本预览
相关文档 最新文档