当前位置:文档之家› 联立方程(论文)

联立方程(论文)

联立方程(论文)
联立方程(论文)

经济管理学院

计量经济学

中国宏观经济政策效用研究:基于1990~2013年数据分析

学号:S314097001

专业:金融

学生姓名:张博泓

任课教师:孙德梅教授

2014年4月

中国宏观经济政策效用研究:基于1990~2013年数据分析

张博泓

(哈尔滨工程大学经济管理学院金融学)

摘要:经济金融化已经成为各国经济发展的一种必然趋势。金融发展被看作影响经济增长的至关重要的因素之一,在国民经济中的地位越来越重要。近年来,受国内和国外一些因素的影响,我国在国际市场上的贸易优势正在逐步减弱,而拉动经济增长的另外两支“主力军”——消费需求和投资需求也出现增长乏力和结构性错位的问题。因此,研究如何通过金融发展来进一步挖掘经济增长的潜力就成为目前我国面临的重要问题。

关键词:联立方程消费需求投资需求

一引言

改革开放以来,我国经济增长的主要衡量指标为GDP,但近些年来国内外一些专家学者以及事实证明,总体指标评价并不适合现今的经济环境。结构化、细分化的指标评价成为了评价方式的主体。自十二五规划以来,投资与内需见见替代了进出口成为了经济转型的主要方向,本文将对内需拉动效果、消费影响因素、投资占比等方面分析现今我国经济发展现状,检验联立方程的预测性能并分析原因。

二国外研究现状

在实证研究方面,有一些经济学家采用时间序列的分析方法,如Arestis(2001)采用Multivar 模型与时间序列的分析方法,对股市规模、银行信贷和经济增长之间的关系进行了协整分析,发现股票市场与银行信贷都可能对经济增长产生促进作用,但是股票市场的促进作用远远小于银行的促进作用。Thorsten Beckand Ross Levine(2002)利用广义矩估计法对模型进行参数估计,得到的经验结果表明,金融深化对经济增长具有明显的正向影响,并且银行与经济增长之间呈显著地正相关。该结论具有相当程度的稳健性。Norman andRomain(2002)利用广义矩估计方法研究了74个国家1960 年至1995 年的经济增长与金融发展之间的关系,得出:金融深化对经济增长的促进作用在没有遭受危机的国家要稍微显著,这意味着在金融发展正常的情形下,金融发展对经济增长具有正向影响作用。Christopoulosa.D.K and Tsionas.E.G. (2004)利用面板数据在进行了单位根、协整检验后建立了误差修正模型,发现金融发展与经济增长之间存在协整关系。Arestis and Luinte(2004)运用时间序列及动态异类板面方法估计多个发展中国家的金融结构与经济增长之间的长期关系,发现大多数的样本国家的金融结构能很好地解释经济增长。此外,一些学者从其他的视角研究了金融发展与经济增长之间的关系。Demirgc-Kunt and Maksimovic(1998)基于公司层次的数据,除了利用传统的经济增长与金融发展的变量外,还考虑了法律、证券市场活跃程度等因素,分析了公司不存在外部融资时的最大约束增长率。他们发现在金融较发达国家中,多数公司实际增长率都超出了最大约束增长率。在法律比较完备、证券市场活跃和银行部门规

模较大国家中,公司更容易获得外部投资。这也使人们微观金融即公司水平上获得了金融发展引起经济增长的证据。

三国内研究现状

国内关于金融发展与经济增长的关系的研究比较晚,这与我国市场经济发展时间比较短,市场机制不完善和金融发展体系不成熟有关。国际上对我国的金融发展与经济增长的关系的研究也比较少见。直到上世纪90 年代末,国内才开始对金融发展与经济增长的研究,并取得了诸多研究成果。

李广众(2002);沈坤荣和张成(2004);周立和王子明(2004)研究了我国各地区金融发展与经济增长关系,结果显示各地区金融发展与经济增长强相关,金融市场化与经济增长相关性十分显著,促进金融发展有利于长期快速有质量的经济增长;王晋斌(2007)使用不同阶段的面板数据,采用动态的广义矩估计方法,对金融控制程度强弱进行了区域划分,得出了不同金融控制强度下金融发展与经济增长之间存在不同的关系:在金融控制强的区域,金融发展对经济增长没有显著的促进作用,金融发展不能较好的解释经济增长,对经济增长有负面作用;在金融控制弱的区域,金融发展与经济增长之间可能表现出一种“中性”的作用,即金融发展对经济增长的作用是不确定的。这些结论在一定程度上说明降低金融控制程度能够降低金融发展对经济增长的负面影响。

考察银行、股票市场发展与经济增长的关系,并且控制了一些影响经济增长的变量,如:王志强和孙刚(2003)针对我国的实际情况对金融指标做了一些修改,在计量模型上上采用包含控制变量的向量误差修正模型对我国1981-2002 年的季度数据进行了检验,结果表明:上世纪90 年代以来,金融相关率、金融结构调整和储蓄贷款比率与经济增长之间分别存在双向Granger 因果关系,即我国金融发展促进了经济增长,反过来经济增长又推动了金融的发展;王晋斌(2007);白钦先和张志文(2008)借鉴Levine(2002)的模型,充分考虑了影响我国经济增长的重要变量(投资、出口、进口、人力资本、制度质量和通货膨胀),采用广义矩估计法,对金融发展(债券市场、股票市场和银行发展)与我国经济增长的关系及其作用机制进行了实证研究。文章发现:债券市场规模的扩大、银行对私人信贷扩张和股票市场流动性的提高都能够显著地促进经济增长,而股票市场规模的扩大和波动性对经济增长具有显著的负面影响。因此得出金融发展对我国经济增长的作用机制主要是通过促进投资规模扩张,进而驱动经济增长。

四模型假设与变量选取

本文采用支出法采集国内生产总值GDP及结构数据消费cons、投资i、进出口g。支出法GDP恒等式为GDP=cons+i+g。支出法与一般测算方法不同之处在于剔除了政府性支出,此法更直接的反映了GDP内部结构,更利于联立结构方程,并进行预测性检验。结构方程如下:

gdp=cons+i+g

cons=c(1)+c(2)*gdp+c(3)*cons(-1)

i=c(4)+c(5)*gdp

上式方程中的内生变量为消费cons、投资i、国内生产总值gdp;外生变量为进出口额g、消费的滞后一阶cons(-1)。本文对于消费采用滞后项研究的主要目的是以统计学方法反应长时期内消费习惯对于今年消费的影响。并观测投资的经济权重,优化投资导向,调整内需消费结构。

1.经济意义检验

模型估计结果说明,在假定其他变量不变的情况下,cons=2867+0.157gdp+0.76cons(-1),由此可见,gdp对消费的主导作用是有时序性地,当期gdp对消费的影响只有0.15,前期影响效果0.76更大;在其他变量不变的情况下,i= -9116+0.489gdp,gdp对当期投资影响显著。

2.统计检验

(1)拟合优度:R^2=0.999,修正的可决系数R^2=0.999,这说明模型拟合度非常高。

(2)T检验:由图可见,c(2)、c(3)、c(4)、c(5)的P值均小于0.05的临界值,常数项c(1)的P值大于0.05并不影响检验结果。

(3)预测性能检验:

cons=c(1)+c(2)*gdp+c(3)*cons(-1)

i=c(4)+c(5)*gdp

由于我们构建了以上联立方程,我们采取静态确定性预测方法。

我们分别得出了i与cons的预测序列:if和consf。

我们分别对consf与if进行了预测性分析,令对于consf的检验re1=消费残差占消费原值的绝对值,我们将re*100并取绝对值。最终得出的数据如下:

上图re1值>70%,表明预测性能效果明显(23年预测值中只有1991、1994两年的re 值小于5)

对于i的预测性能re2<70%,表示预测性能不明显,但值得注意的是从2008至2013年的预测性能值小于5,预测效果近些年趋于明显。

五结论

1、对于本文所建立的联立方程,消费部分预测性能良好但投资预测性能并不显著。究其原因,在建立模型时投资i与消费cons间存在一定的多重共线性,当对模型进行预测性检验时有可能会引起多重共线性更加严重。但是从if分析结果来看,这种预测性联立方程对于近几年的预测效果越来越好。

2、通过模型拟合结果来看,拟合效果很好,消费受前期影响明显。并且gdp对于当年投资的影响效果明显。统计结果表明,消费的影响因素是时序性的,在一定时间段内gdp 的影响对其有限,而其影响效果在未来几年逐渐显现。由此我们可以得出,拉动内需是需要长时间持续作用的。对于第三产业的扶持应该不断调高而不应该一次性注资。

3、由预测性能分析来看,仅仅使用联立方程方式对经济数据进行分析有着不小的局限性。首先,几个方程虽然作为一个整体来分析,但是并没有整体建立模型。对于已经确定的经济数据关系,为了研究因素间的影响关系建议用结构向量自回归(SV AR)进行估计,并预测固定限制条件下的经济运行情况。

参考文献

[1] 赵振全,薛丰慧.金融发展对经济增长影响的实证分析.金融研究[J],2004(8)

[2] 周立,王子明.中国各地区金融发展与经济增长实证分析:1978-2000.金融研究[J],2002(10)

[3] 王晋斌.金融政策控制下的金融发展与经济增长.经济研究[J],2007

[4] 王志强,孙刚.中国金融发展规模、结构、效率与经济增长关系的经验分析.管理世界[J],2003(7)

[5] 白钦先,张志文.金融发展与经济增长:中国的经验研究.南方经济[J],2008(9)

[6] 于伟.金融发展与经济增长关系的理论与实证研究[D].南京财经大学,2006

[7] 范学俊.金融发展与经济增长—1978-2005中国的实证检验[D].华东师范大学,2007

[8] 燕欣春.我国金融发展对经济增长影响的理论分析与实证研究[D].中国海洋大学,2006

[9]Arestis, P and Demetriades, P Financial Liberalization and the Globalisation of Financial Services: Two Lessons from the East Asian Experience. In: Lahiri, S, (ed.),Regionalism and Globalizations: Theory and Practice. London: Routledge[J],2001 pp.223-241

[10] Beck Thurston and Levine Ross. External Dependence and Industry Growth: Does Financial Structure Matter[R].World Bank Working Paper, 2000, Growth [J].Journal of Economic Theory, 1995, 234-267

[11] Norman loayza, Romain ranciere, financial development financial fragility and growth.CESIFO Working paper, 2002, 684(5)

[12] Christopoulos. D. K. and E. G. Tisanes, Financial Development and Economic Growth:Evidence from Panel Unit Root and Co integration Tests [J], Journal of Development Economics, 2004, 55-74

[13] Arestis P. O. Demetriades and B. Luintel, Financial Development and Economic Growth: The Role of Stock Markets [J], Journal of Money, Credit and Banking, 2004

1.伯努利方程的解法

目 录 中文摘要 .......................................... 错误!未定义书签。 ABSTRACT .......................................... 错误!未定义书签。 引言 ............................................................... 1 1.伯努利方程的解法 ................................................. 1 1.1变量代换法 .................................................... 1 1.1.1一般解法 .................................................. 1 1.1.2函数变换法 ................................................ 2 1.1.3 求导法 .................................................... 3 1.1.4恰当导数法 ................................................ 3 1.2常数变易法 .................................................... 4 1.3积分因子法 .................................................... 6 1.4解法举例 ...................................................... 7 2.伯努利方程的应用 ................................................ 10 2.1在一阶微分方程中的应用 ....................................... 10 2.1.1在形如()() ()()()y x y x n y y p x y dy q x y dy '?()=?()+?()? ? (() y x y dy ?()?存在 且不为零)方程中的应用 (10) 2.1.2在形如1[()()]()()y y y y f x h y g yx h x x x x αα-'+=+方程中的应用 (11) 2.1.3在黎卡提方程中的应用 (12) 3.总结 ........................................................... 13 参考文献 .......................................................... 14 致谢 .............................................. 错误!未定义书签。

化工原理 伯努利方程

伯努利方程 流体宏观运动机械能守恒原理的数学表达式。1738年瑞士数学家D.伯努利在《水动力学──关于流体中力和运动的说明》中提出了这一方程。它可由理想流体运动方程(即欧拉方程)在定态流动条件下沿流线积分得出;也可由热力学第一定律导出。它是一维流动问题中的一个主要关系式,在分析不可压缩流体的定态流动时十分重要,常用于确定流动过程中速度和压力之间的相互关系。 方程的形式 对于不可压缩的理想流体,密度不随压力而变化,可得: Zg+2 2 u P +ρ=常数 式中Z 为距离基准面的高度;P 为静压力;u 为流体速度;ρ为流体密度;g 为重力加速度。方程中的每一项均为单位质量流体所具有的机械能,其单位为N ·m/kg ,式中左侧三项,依次称为位能项、静压能项和动能项。方程表明三种能量可以相互转换,但总和不变。当流体在水平管道中流动时Z 不变,上式可简化为: ρ P u +22=常数 此式表述了流速与压力之间的关系:流速大处压力小,流速小处压力大。 对于单位重量流体,取管道的1、2两截面为基准,则方程的形式成为: g u g P Z g u g P Z 2222 2 22111++=++ρρ 式中每一项均为单位重量流体的能量,具有长度的因次,三项依次称为位头、静压头和动压头(速 度头)。 对于可压缩理想流体,密度随压力而变化。若这一变化是可逆等温过程,则方程可写成下式: 121 12 22211ln 22P P P u gZ u gZ ρ++=+ 若为可逆绝热过程,方程可写为: 121 1222211ln 22P P P u gZ u gZ ρ++=+ 式中γ为定压比热容Cp 和定容比热容Cv 之比,即比热容比,也称为绝热指数。 对于粘性流体,流动截面上存在着速度分布,如用平均流速u 表达动能项,应对其乘以动能校正系数d ο。此外,还需考虑因粘性引起的流动阻力,即造成单位质量流体的机械能损失h f , 若在流体流动过程中,单位质量流体又接受了流体输送机械所做的功W ,在这些条件下,若取处于均匀流段的两截面1和2为基准,则方程可扩充为: α值可由速度分布计算而得, 流体在圆管内作层流流动时α=2;作湍流流动时,α≈1.06。 方程的应用 伯努利方程阐明的位能、动能、静压能相互转换的原理,可用来分析计算一些实际问题,例如: ①计算流体从小孔流出的流速 设在容器中盛有液体,液面维持不变,距液面下h 处的容器壁面上开有一小孔,液体在重力作用下自小孔流出。据伯努利方程可以计算出液体由小孔流出时的平均流速为: gh Cd u 2= 式中C d 为孔流系数,其值由实验确定,约为0.61~0.62;g 为重力加速度。由上述速度及已知的小孔面积,可算出通过小孔的流量;或由这一关系,计算确定达到一定流量所必须维持的液面

二元一次方程及方程组解法

二元一次方程及方程组解 法 Last revision on 21 December 2020

二元一次方程和二元一次组的解法 一、知识结构图 二、具体知识点 1.二元一次方程:含有两个未知数,且未知项的次数为1,这样的方程叫二元一次方程,理解时应注意:①二元一次方程左右两边的代数式必须是整式,例如 513,11=+=+y x y x 等,都不是二元一次方程;②二元一次方程必须含有两个未知数;③二元一次方程中的“一次”是指含有未知数的项的次数,而不是某个未知数的次数,如xy=2不是二元一次方程。 2.二元一次方程的解:能使二元一次方程左右两边的值相等的一对未知数的值叫做二元一次方程的解,通常用 的形式表示,在任何一个二元一次方程中,如果把其中的一个未知数任取一个数,都可以通过方程求得与之对应的另一个未知数的值。因此,任何一个二元一次方程都有无数解。 3.二元一次方程组:①由两个或两个以上的整式方程(即方程两边的代数式都是整式)组成,常用“ ”把这些方程联合在一起; ②整个方程组中含有两个不同的未知数,且方程组中同一未知数代表同一数量;③方程组中每个方程经过整理后都是一次方程,如: 等都是二元一次方程组。 4.二元一次方程组的解:注意:方程组的解满足方程组中的每个方程,而每个方程的解不一定是方程组的解。 5.会检验一对数值是不是一个二元一次方程组的解 检验方法:把一对数值分别代入方程组的(1)、(2)两个方程,如果这对未知数既满足方程(1),又满足方程(2),则它就是此方程组的解。 x=a y=b 2x-y=1 x+y=2 3x-y=5 x=2 x+2y=3 3x-y=1 x=2

化工原理伯努利方程练习题

第一章 流体流动 【例1-1】 已知硫酸与水的密度分别为1830kg/m 3与998kg/m 3,试求含硫酸为60%(质量)的硫酸水溶液的密度为若干。 解:根据式1-4 9984.018306.01+= m ρ =(3.28+4.01)10-4=7.29×10-4 ρm =1372kg/m 3 【例1-2】 已知干空气的组成为:O 221%、N 278%和Ar1%(均为体积%),试求干空气在压力为9.81×104Pa 及温度为100℃时的密度。 解:首先将摄氏度换算成开尔文 100℃=273+100=373K 再求干空气的平均摩尔质量 M m =32×0.21+28×0.78+39.9×0.01 =28.96kg/m 3 根据式1-3a 气体的平均密度为: 3k g /m 916.0373314.896.281081.9=???=m ρ 【例1-3 】 本题附图所示的开口容器内盛有油和水。油层高度h 1=0.7m 、密度ρ1=800kg/m 3,水层高度h 2=0.6m 、密度ρ2=1000kg/m 3。 (1)判断下列两关系是否成立,即 p A =p'A p B =p'B (2)计算水在玻璃管内的高度h 。 解:(1)判断题给两关系式是否成立 p A =p'A 的关系成立。因A 与A '两点在静止的连通着的同一流体内,并在同一水平面上。所以截面A-A'称为等压面。 p B =p'B 的关系不能成立。因B 及B '两点虽在静止流体的同一水平面上,但不是连通着的同一种流体,即截面B-B '不是等压面。 (2)计算玻璃管内水的高度h 由上面讨论知,p A =p'A ,而p A =p'A 都可以用流体静力学基本方程式计算,即 p A =p a +ρ1gh 1+ρ2gh 2 p A '=p a +ρ2gh 于是 p a +ρ1gh 1+ρ2gh 2=p a +ρ2gh 简化上式并将已知值代入,得 800×0.7+1000×0.6=1000h 解得 h =1.16m 【例1-4】 如本题附图所示,在异径水平管段两截面(1-1'、2-2’)连一倒置U 管压差计,

方程组的解法详解

*基础知识 "2x - y = 5 1、方程组< y"'的解是() x + y =1 卩x-6y =1, \x = -3 y +5; !3x+5y =5, I 3x —4y =23; {3m = 5n, gm —3 n =1; 消元---- 二元一次方程组的解法 x=0 y=1 C. a :2 D. [y =1 "x = 2 — 2、下列二元一次方程组以 x = 0, y=7 为解的是( ) A. fx"7, X +2y =14. B. j x + y = -7, X - y = 7. C p x + 2y=14, .:x-3y = —21. 3、将方程5x-2y+12=0写成用含 D. [5x + y = 7, i 3x -2y =14. 的代数式表示y 的形式 「2x-7y =8, (1) 4、 用代入消元法解方程组I y ',可以由 得 [y -2x = 4.⑵ —— ,把(3)代入 ___________ 中,得一元一次方程 _____________________ ,解得 求得的值代入(3)中,求得 ___________ ,从而得到原方程组的解为 __________ 5、 用代入法解下列方程组: (3) ,再把 (1) |x=2y, I x + y =3; y = 1-x, i3x + 2y =5; |x-4y =-1, I 2x + y =16;

(3), *能力提升 二、加减消元法 *基础知识 l x - y =3(1) 2、方程组Q y 八丿 若用加减消元法解,可将方程(1)变形为 3 4 i x +y=2; 12 3 ; (8) 『X y +1 1 gw 1, [3x + 2y =0. 」-7、”m, 3m -2n 6、已知 7x y 和一 3x 2n_2 y 是同类项,求m,n 的值. 7、如果(2x *探索研究 8、已知方程组 [ax + by =2 jCx-7y =8 中 y - 2| = 0,求 10x — 5y + 1 的值. I x = 3 I x = —2 '的解为I "'而小明粗心地把C 看错了,解得I "'请 2. l y = 2. 你求出正确的 a,b,c 的值. 1、方程组戸+4厂5,中, 3x-7y =6 x 的系数的特点是 「2x + 5y = 1 ,方程组? y '中y 的系 i3x -5y = 4 数特点是 ,这两个方程组用 法解较简便。

伯努利方程教案定

山西医科大学晋祠学院 教案 (理论教学用) 单位:山西医科大学晋祠学院 教研室:基础医学部 任课教师姓名:王莉 课程名称:医用物理 授课时间:

(理论教学用)

第二章第二节伯努利方程 本节教材分析: 由于流体广泛存在于自然界,尤其是人体各种循环系统与呼吸等生理过程之中,故掌握流体力学基础知识非常必要。而对于一些生活现象的解释,伯努利方程是相当重要的.本节主要讲述了理想流体,理想流体的定常流动,然后结合功和能的关系推导出伯努利方程,最后运用伯努利方程来解释有关现象. 学习目标完成过程: 导入新课: 听到看到这个题目,那伯努利又是谁呢?(可多媒体展示)伯努利个人简介:(Daniel Bernouli,1700~1782)瑞士物理学家、数学家、医学家。他是伯努利这个数学家族(4代10人)中最杰出的代表,16岁时就在巴塞尔大学攻读哲学与逻辑,后获得哲学硕士学位,17~20岁又学习医学,并于1721年获医学硕士学位,成为外科名医并担任过解剖学教授。但在父兄熏陶下最后仍转到数理科学。伯努利成功的领域很广,除流体动力学这一主要领域外,还有天文测量、引力、行星的不规则轨道、磁学、海洋、潮汐等等。 伯努利方程是瑞士物理学家伯努利提出来的,是理想流体作稳定流动时的基本方程,对于确定流体内部各处的压力和流速有很大的实际意义、在水利、造船、航空,人体生理过程中等等都有着广泛的应用。 这就是我们为什么要学习伯努利方程? 展示生活中常见的实例(可以用多媒体展示) 1.在海洋中平行逆向航行的两艘大轮船,相互不能靠得太近,否则就会有相撞的危险,为什么? 2.逆流航行的船只行到水流很急的岸边时,会自动地向岸靠拢; 3.汽车驶过时,路旁的纸屑常被吸向汽车; 4.打开的门窗,有风吹过,门窗会自动的闭合,然后又张开; 5.简单的实验:用两张窄长的纸条,相互靠近,用嘴从两纸条中间吹气,会发现二纸条不是被吹开而是相互靠拢,就是“速大压小”的道理。 导入:为什么会出现与我们想象不同的现象,这种现象又如何解释呢?本节课我们就来学习这个问题. 在上本节课之前要对之前的知识进行回顾 一、1、定常流动 (1)用多媒体展示一段河床比较平缓的河水的流动. (2)学生观察,教师讲解. 通过画面,我们可以看到河水平静地流着,过一会儿再看,河水还是那样平静地流着,各处的流速没有什么变化,河水不断地流走,可是这段河水的流动状态没有改变,河水的这种流动就是定常流动. (3)学生叙述什么是定常流动 流体质点经过空间各点的流速虽然可以不同,但如果空间每一点的流速不随时间而改变,这样的流动就叫定常流动.

气体的流速计算伯努利方程 (2)

公式及意义 由于气流的密度同外部空气的密度是相同的数量级,在用相对压强进行计算时,需要考虑外部大气压在不同高度的差值。下面为气流伯努利方程: 气流的密度为ρ,外部空气的密度为ρa,p1、p2为1-1、2-1断面上的静压,ρυ1^2/2、ρυ2^2/2是动压, (ρa-ρ)g是单位体积气体所受的有效浮力,(z2-z1)是气体沿浮力方向升高的距离,(ρa-ρ)g(z2-z1)是1-1断面相对于2-2断面单位体积气体的位能(称为位压),pw是压强损失。 当气流的密度与外界空气的密度相同时或两计算点的高度相同时,上式可以简化为:其中静压和动压之和称为总压。 当气流的密度远大于外界空气的密度时,此时相当于液体总流前一式中的ρa可忽略不计,认为各点的当地大气压相同,可以简化为: 注意事项 (1)动能修正系数 动能修正系数α为实际动能与按平均速度计算的动能的比值,α值反映了断面速度分布的不均匀程度。由于气体的动力黏度值较小,过流断面速度梯度小,实际的气流运动的速度分布比较均匀,接近于断面平均流速。所以,气体运动中的动能修正系数常常取1.0。 (2)气流能量方程应采用压强量纲 能量方程用于液体时,因液体中水头概念很直观具体,采用长度量纲很方便。但是气体流动则不同,由于气体重度γ很小,压强一般比较大,水头概念不明确。所以一般采用压强量纲。 (3)气流能量方程应采用绝对压强 其原因是:方程中两个过流断面之间的高差比较大时,由于不同高度大气压强不同,而导致两断面相对压强的起算基准不同。因此,将总流能量方程的两端,直接代入该断面处得相对压强值进行计算,必定会产生误差。 有能量输入或输出的伯努利方程 总流伯努利方程是在两过流断面间除水头损失之外,再无能量输入或输出的条件下导出的。当两过流断面间有水泵、风机或水轮机等流体机械时,则存在机械能的输入或输出。在这种情况下,根据能量守恒原理,计入单位重量流体流经流体机械获得或失去的机械能Hm,总流能量方程便扩展为有能量输入或输出的伯努利方程: 两断面间有分流或汇流的伯努利方程 恒定总流的伯努利方程是在两过流断面间无分流或汇流的条件下导出的,而实际的输水、供气管道,沿程大多都有分流或汇流。在这种情况下应用上下游断面之间全部重量流体的能量守恒原理写出能量方程。 非恒定总流伯努利方程 以上的总流的伯努利方程都是恒定总流,下面补充非恒定总流的伯努利方程。

浅谈伯努利方程的几种解法及应用

本科毕业论文 题目:浅谈伯努利方程的几种解法与应用 学院:数学与计算机科学学院 班级:数学与应用数学2011级专升本班 姓名:张丽传 指导教师:王通职称:副教授 完成日期: 2013 年 5 月25 日

浅谈伯努利方程的几种解法与应用 摘要: 本文在研究已经公认的多种伯努利方程解法的前提下,把这些方法进行整合.首先,将各种解法进行分析归类,并总结出几种常见的求解伯努利方程的方法;其次,比较各种解法的优缺点;再次,利用一题多解来巩固文中所介绍的各种解法;最后,略谈伯努利方程在求解里卡蒂方程中的重要应用. 关键词: 伯努利方程;变量代换法;常数变易法;积分因子法

目 录 引言 ....................................................................................................................................... 1 1 伯努利方程的解法 ........................................................................................................... 1 1.1 代换法 ....................................................................................................................... 1 1.1.1 变量代换法、常数变易法的混合运用 ........................................................... 1 1.1.2 函数代换法 ....................................................................................................... 2 1.1.3 求导法 ............................................................................................................... 3 1.1.4 恰当导数法 ....................................................................................................... 3 1.2 直接常数变易法 . (4) 1.2.1 对0)(=+y x P dx dy 的通解中c 的常数进行常数变易 .................................... 4 1.2.2 对n y x Q dx dy )(=通解中的常数c 进行常数变易 ............................................ 4 1.3 积分因子法 ............................................................................................................... 5 1.4 各种方法的比较 ....................................................................................................... 6 1.5 解法举例 ................................................................................................................... 6 2 伯努利方程在里卡蒂方程中的应用 ............................................................................. 10 3 总结 ................................................................................................................................. 11 参考文献 .. (12)

伯努利方程的原理及其应用

伯努利方程的原理及其应用 摘要:伯努利方程是瑞士物理学家伯努利提出来的,是理想流体做稳定流动时的基本方程,是流体定常流动的动力学方程,意为流体在忽略粘性损失的流动中,流线上任意两点的压力势能、动能与位势能之和保持不变。伯努利方程对于确定流体内部各处的压力和流速有很大意义,在水利、造船、航空等部门有着广泛的应用。 关键词:伯努利方程发展和原理应用 1.伯努利方程的发展及其原理: 伯努利方程是瑞士物理学家伯努利提出来的,是理想流体做稳定流动时的基本方程,流体定常流动的动力学方程,意为流体在忽略粘性损失的流动中,流线上任意两点的压力势能、动能与位势能之和保持不变。对于确定流体内部各处的压力和流速有很大意义,在水利、造船、航空等部门有着广泛的应用。伯努利方程的原理,要用到无黏性流体的运动微分方程。 无黏性流体的运动微分方程: 无黏性元流的伯努利方程: 实际恒定总流的伯努利方程: z1++=z2+++h w

总流伯努利方程的物理意义和几何意义: Z----总流过流断面上某点(所取计算点)单位重量流体的位能,位置高度或高度水头; ----总流过流断面上某点(所取计算点)单位重量流体的压能,测压管高度或压强水头; ----总流过流断面上单位重量流体的平均动能,平均流速高度或速度水头; hw----总流两端面间单位重量流体平均的机械能损失。 总流伯努利方程的应用条件:(1)恒定流;(2)不可压缩流体;(3)质量力只有重力;(4)所选取的两过水断面必须是渐变流断面,但两过水断面间可以是急变流。(5)总流的流量沿程不变。(6)两过水断面间除了水头损失以外,总流没有能量的输入或输出。(7)式中各项均为单位重流体的平均能(比能),对流体总重的能量方程应各项乘以ρgQ。 2.伯努利方程的应用: 伯努利方程在工程中的应用极其广泛,下面介绍几个典型的例子:

伯努利方程

2. 一阶线性非齐次方程的通解 先考虑线性齐次方程(1.35),注意这里“齐次”的含意与1.3节中的不同,这里指的是在(1.34)中不含 ()0f x ≡ .显然,(1.35)是一个变量可分离方程,由1.2节易知它的通解是 ()p x dx y Ce -?= 下面使用常数变易法再求线性非齐次方程(1.34)的解.其想法是:当C 为常数时,函数(1.36)的导数,恰等 而(1.36)为齐次 方程(1.35)的解.现在要求非齐次方程(1.34)的解,则需要该函数的导数还 要有一 项等于(f 数的公式,可将(1.36)中的常数 C 变易为 函数C (x ),即令 ()()p x dx y C x e -?= 为方程(1.34)的解,其中C (x )待定.将(1.37)代入(1.34),有 ()()()()()()()()()p x dx p x dx p x dx C x e p x C x e p x C x e f x ---? ??'-+= 即 ()()()p x dx C x f x e ? '= 积分后得 ()()()p x dx C x f x e dx C ? =+? 把上式代入(1.37),得 ()()()()p x dx p x dx p x dx y Ce e f x e dx --?? ? =+? (1. 下证(1.38)为(1.34)的通解,且包含了(1.34)的所有解。 由通解定义知(1.38)为(1.34)的通解,设1y 为(1.34)的任一解,则易知 ()()2()p x dx p x dx y e f x e dx -??=? 也为(1.34)的解,则12y y -为 (1.35)的解,从而存在确定的常数C ,使得()12p x dx y y Ce ? -=,即 ()12.p x dx y y Ce ? =+ 在求解具体方程时,不必记忆通解公式,只要按常数变易法的步骤来求解即可. 注:1)(1)的通解有两部分组成。 2)第二部分中()p x dx e -?不能放到积分号里边去。 例1 求解方程 2dy y x dx x =+ 解 显然,这是一个一阶线性非齐次方程. 先求对应齐次方程

第六章联立方程计量经济学模型案例

第六章 联立方程计量经济学模型案例 1、下面建立一个包含3个方程的中国宏观经济模型,已经判断消费方程式恰好识别的,投资方程是过度识别的。对模型进行估计。样本观测值见表6.1 01211012t t t t t t t t t t t C Y C u I Y u Y I C G αααββ-=+++?? =++??=++? 表6.1 中国宏观经济数据 单位:亿元 (1) 用狭义的工具变量法估计消费方程 选取方程中未包含的先决变量G 作为内生解释变量Y 的工具变量,过程如下:

结果如下: 所以,得到结构参数的工具变量法估计量为: 012???582.27610.2748560.432124α αα===,, (2) 用间接最小二乘法估计消费方程 消费方程中包含的内生变量的简化式方程为: 1011112120211222t t t t t t t t C C G Y C G πππεπππε--=+++?? =+++? 参数关系体系为:

11121210012012122000 παπαπααππαπ--=?? --=??-=? 用普通最小二乘法估计,结果如下: 所以参数估计量为: 101112???1135.937,0.619782, 1.239898π ππ=== 202122???2014.368,0.682750, 4.511084π ππ=== 所以,得到间接最小二乘估计值为: 12122??0.274856?π α π ==

211121????0.432124α παπ=-= 010120????582.2758α παπ=-= (3)用两阶段最小二乘法估计消费方程 第一阶段使用普通最小二乘法估计内生解释变量的简化方程,得到 1?2014.3680.68275 4.511084t t t Y C G -=++ 用Y 的预测值替换消费方程中的Y ,直接用OLS 估计消费方程,过程如下:

气体的流速计算伯努利方程

气体的流速计算伯努利方 程 Revised by Hanlin on 10 January 2021

公式及意义 由于气流的密度同外部空气的密度是相同的数量级,在用相对压强进行计算时,需要考虑外部大气压在不同高度的差值。下面为气流伯努利方程: 气流的密度为ρ,外部空气的密度为ρa,p1、p2为1-1、2-1断面上的静压, ρυ1^2/2、ρυ2^2/2是动压, (ρa-ρ)g是单位体积气体所受的有效浮力,(z2-z1)是气体沿浮力方向升高的距离,(ρa-ρ)g(z2-z1)是1-1断面相对于2-2断面单位体积气体的位能(称为位压),pw是压强损失。 当气流的密度与外界空气的密度相同时或两计算点的高度相同时,上式可以简化为: 其中静压和动压之和称为总压。 当气流的密度远大于外界空气的密度时,此时相当于液体总流前一式中的ρa可忽略不计,认为各点的当地大气压相同,可以简化为: 注意事项 (1)动能修正系数 动能修正系数α为实际动能与按平均速度计算的动能的比值,α值反映了断面速度分布的不均匀程度。由于气体的动力黏度值较小,过流断面速度梯度小,实际的气流运动的速度分布比较均匀,接近于断面平均流速。所以,气体运动中的动能修正系数常常取1.0。 (2)气流能量方程应采用压强量纲

能量方程用于液体时,因液体中水头概念很直观具体,采用长度量纲很方便。但是气体流动则不同,由于气体重度γ很小,压强一般比较大,水头概念不明确。所以一般采用压强量纲。 (3)气流能量方程应采用绝对压强 其原因是:方程中两个过流断面之间的高差比较大时,由于不同高度大气压强不同,而导致两断面相对压强的起算基准不同。因此,将总流能量方程的两端,直接代入该断面处得相对压强值进行计算,必定会产生误差。 有能量输入或输出的伯努利方程 总流伯努利方程是在两过流断面间除水头损失之外,再无能量输入或输出的条件下导出的。当两过流断面间有水泵、风机或水轮机等流体机械时,则存在机械能的输入或输出。在这种情况下,根据能量守恒原理,计入单位重量流体流经流体机械获得或失去的机械能Hm,总流能量方程便扩展为有能量输入或输出的伯努利方程: 两断面间有分流或汇流的伯努利方程 恒定总流的伯努利方程是在两过流断面间无分流或汇流的条件下导出的,而实际的输水、供气管道,沿程大多都有分流或汇流。在这种情况下应用上下游断面之间全部重量流体的能量守恒原理写出能量方程。 非恒定总流伯努利方程 以上的总流的伯努利方程都是恒定总流,下面补充非恒定总流的伯努利方程。 hw为非恒定总流的水头损失,hi是单位重量流体的惯性水头。

方程组解法综合

方程组解法综合 教学目标 1.学会用带入消元和加减消元法解方程组 2.熟练掌握解方程组的方法并用到以后做题 知识精讲 知识点说明: 一、方程的历史 同学们,你们知道古代的方程到底是什么样子的吗?公元263 年,数学家刘徽所著《九章算术》一书里有一个例子:“今有上禾三秉,中禾二秉,下禾一秉,实三十九斗;上禾二秉,中禾三秉,下禾一秉,实三十四斗;上禾一秉,中禾二秉,下禾三秉,实二十六斗。问上、中、下禾实一秉各几何?”刘徽列出的“方程”如图所示。 方程的英语是equation,就是“等式”的意思。清朝初年,中国的数学家把equation 译成“相等式”,到清朝咸丰九年才译成“方程”。从这时候起,“方程”这个词就表示“含有未知数的等式”,而刘徽所说的“方程”就叫做“方程组”了。 二、学习方程的目的 使用方程有助于解决数学难题,作为代数学最基本内容,方程的学习和使用不但能为未来初中阶段数学学习打好基础,同时能够将抽象数学直观表达出来,能够帮助学生更好的理解抽象的数学知识。 三、解二元一次方程组的一般方法 解二元一次方程的关键的步骤:是消元,即将二元一次方程或多元一次方程化为一元一次方程。 消元方法:代入消元法和加减消元法 代入消元法: ⒈取一个方程,将它写成用一个未知数表示另一个未知数,记作方程①; ⒉将①代入另一个方程,得一元一次方程; ⒊解这个一元一次方程,求出一个未知数的值; ⒋将这个未知数的值代入①,求出另一个未知数的值,从而得到方程组的解. 加减消元法: ⒈变形、调整两条方程,使某个未知数的系数绝对值相等(类似于通分); ⒉将两条方程相加或相减消元; ⒊解一元一次方程; ⒋代入法求另一未知数. 加减消元实际上就是将带系数的方程整体代入.

伯努利原理讲解

伯努利原理讲解 对我们搞流体机械的很重要,此文好懂又有趣!
光德流控
伯努利(Daniel Bernouli,1700~1782) 伯努利,瑞士物理学家、数学家、医学家。 他是伯努利这个数学家族(4 代 10 人)中最杰出的代表, 16 岁时就在巴塞尔大学攻读哲学与逻辑,后获得哲学硕士学位, 17~20 岁又学习医学,于 1721 年获医学硕士学位,成为外科名 医并担任过解剖学教授。但在父兄熏陶下最后仍转到数理科学。
1 / 17

伯努利成功的领域很广,除流体动力学这一主要领域外,还 有天文测量、引力、行星的不规则轨道、磁学、海洋、潮汐等。
实例篇——伯努利原理 丹尼尔·伯努利在 1726 年首先提出:“在水流或气流里, 如 果 速 度 小 ,压 强 就 大 ;如 果 速 度 大 ,压 强 就 小 ” 。我 们 称 之 为 “伯努利原理”。 我们拿着两张纸,往两张纸中间吹气,会发现纸不但不会向 外飘去,反而会被一种力挤压在了一起。因为两张纸中间的空气 被我们吹得流动的速度快,压力就小,而两张纸外面的空气没有 流动,压力就大,所以外面力量大的空气就把两张纸“压”在了 一起。 这就是“伯努利原理”原理的简单示范。
1 列车(地铁)站台的安全线 在列车(地铁)站台上都划有黄色安全线。
2 / 17

这是因为列车高速驶来时,靠近列车车厢的空气被带动而快 速运动起来,压强就减小,站台上的旅客若离列车过近,旅客身 体前后会出现明显的压强差,身体后面较大的压力将把旅客推向 列车而受到伤害。
所以,在火车(或者是大货车、大巴士)飞速而来时,你绝 对不可以站在离路轨(道路)很近的地方,因为疾驶而过的火车 (汽车)对站在它旁边的人有一股很大的吸引力。
有人测定过,在火车以每小时 50 公里的速度前进时,竟有 8 公斤左右的力从身后把人推向火车。
看懂“伯努利”原理后,等地铁再也不敢跨过那条黄线了吧 (分享给身边的人哦~~)
2 船吸现象
3 / 17

关于伯努利方程的教学设计物理教案

一、教学目标 1、知道什么是理想流体,知道什么是流体的定常流动。 2、知道伯努利方程,知道它是怎样推导出来的,会用它解释一些现象。 3、通过在流体力学中应用功和能的关系推导伯努利方程,培养学生使用能量守恒思想的意识和思路。 4、通过对实例的定性分析,培养学生对实际问题的建立模型和分析推力能力,学以致用。并在使用中体会物理规律在实际生活中的意义。 二、教学建议 1、教材分析:本节内容从建立流体的理想模型——理想流体开始,简单介绍了流体的特点及流体的定常流动方式。重点依据功能关系推导了理想流体作定常流动时,流体中压强和流速的规律——伯努利方程。并使用伯努利方程对大量生活实例进行了定性分析。 2、教法建议:本节主要是初步介绍了流体动力学的点滴知识,且作为选学内容,主要是开阔视野,培养知识、方法迁移能力,为学有余力的同学自我加深准备的。所以在教学中要以基本概念建立、基本思路迁移、基本分析方法使用为重点,不要在知识深度上过于下功夫。建议在学生有引导的自学的基础之上,讨论归纳,以便突出上述重点,遗留问题,供有兴趣的学生进一步学习。 三、教学设计示例 教学重点:如何利用功能关系推导伯努利方程;如何利用该方程解释实际问题。 教学难点:如何利用功能关系推导伯努利方程;如何利用该方程解释实际问题。 示例: (一)课前预习提纲 1、流体主要有哪些特点?什么是理想流体? 2、什么是定常流动?什么是流线?如何用流线形象的表示流体的流动? 3、仔细阅读书p152伯努利方程的推导过程,并思考下列问题:(1)伯努利方程表述的是什么规律? (2)对于推导过程中所选取的研究对象,是谁对它作了功,为什么?研究对象的机械能如何变化了,为什么?能否口述之。(3)你认为推导过程中最重要的是什么?难点是什么? 4、自己做书p151的小实验,认真阅读书p154的应用举例,归纳思路,并试做书p155的练习七。 (二)课上 带领学生通过讨论预习提纲建立概念、思路,解决疑难。要让学生充分发言。 预习题简答:(仅供参考) 1、答:实际流体具有可压缩性和粘滞性。但因一般液体的可压缩量很小,可以不予考虑;而气体的压缩性虽然较强,但若流动的气体中各处的密度不随时间发生明显的变化时,也可以不考虑其压缩性。另外,在某些问题中,若流体的流动形式主要的,而粘滞性是次要的,则可认为该流体没有粘滞性。不可压缩的、没有粘滞性的流体就是理想流体。理想流体实际上是一个理想的物理模型。 2、答:流体质点经过空间各点的流速虽然可以不同,但如果空间每一点的流速不随时间而改变,这样的流动方式称为定常流动,也可称为稳定流动。这也是一种理想化的流动方式。 在定常流动的流体中,假象沿着各液体质点的运动轨迹画出许多曲线,这些线就叫做流线。流线在某一点的切线方向表示该点的流速方向,流线的疏密表示流速的大小,即流线越密,表示流速越大。 3、答:(1)伯努利方程表述的是理想流体作定常流动时,流体中压强和流速的规律。 其规律为:常量。

经典联立方程计量经济学模型:理论与方法

2.一个由两个方程组成的联立模型的结构形式如下(省略t-下标) t t t t t u A S N P ++++=3210αααα t t t t v M P N +++=210βββ (1)指出该联立模型中的内生变量与外生变量。 (2)分析每一个方程是否为不可识别的,过度识别的或恰好识别的? (3) 有与μ相关的解释变量吗?有与υ相关的解释变量吗? (4)如果使用OLS 方法估计α,β会发生什么情况? (5)可以使用ILS 方法估计α吗?如果可以,推导出估计值。对β回答同样的问题。 (6)逐步解释如何在第2个方程中使用2SLS 方法。 解答: (1)内生变量:P 、N ;外生变量:A 、S 、M (2)容易写出联立模型的结构参数矩阵 P N 常量 S A M ()??? ? ??-------=Γ20 1 32010 1 01βββααααβ 对第1个方程,()()200ββ-=Γ,因此,()100=Γβ秩,即等于内生变量个数减1,模型可以识别。进一步,联立模型的外生变量个数减去该方程外生变量的个数,恰等于该方程内生变量个数减1,即4-3=1=2-1,因此第一个方程恰好识别。 对第二个方程,()()32 00ααβ--=Γ,因此,()100=Γβ秩,即等于内生变量个数 减1,模型可以识别。进一步,联立模型的外生变量个数减去该方程外生变量的个数,大于该方程内生变量个数减1,即4-2=2>=2-1,因此第二个方程是过渡识别的。 该模型对应于13.3届中的模型4。我们注意到该模型为过渡识别的。综合两个方程的识别状况,该联立模型是过渡识别的。 (3)S,A,M 为外生变量,所以他们与μ,υ都不相关。而P,N 为内生的,所以他们与μ,υ都相关。具体说来,N 与P 同期相关,而P 与μ同期相关,所以N 与μ同期相关。另一方面,N 与v 同期相关,所以P 与v 同期相关。 (4)由(3)知,由于随机解释变量的存在,α与β的OLS 估计量有偏且是不一致的。 (5)对第一个方程,由于是恰也识别的,所以间可用接最小二乘法(ILS )进行估计。对第二个方程,由于是过渡识别的,因此ILS 法在这里并不适用。 (6)对第二个方程可采用二阶段最小二乘法进行估计,具体步骤如下: 第1阶段,让P 对常量,S,M,A 回归并保存预测值t P ?;同理,让N 对常量,S,A,M 回归并保存预测值t N ?。 第2阶段,让t N 对常量、t P ?、t M 作回归求第2个方程的2SLS 估计值 6-1 1) 联立问题:经济现象是极为复杂的,其中诸因素之间的关系,在很多情况下,不是单一 方程所能描述的那种简单的单向因果关系,而是相互依存,互为因果的,这时,就必须

伯努利方程实验(答案)

伯努利方程实验 一、实验目的 1、观察流体流经伯努利方程试验管的能量转化情况,对实验中出现的现象进行分析,加深对伯努利方程的理解; 2、掌握一种测量流体流速的原理; 3、验证静压原理。 二、实验仪器 装置如图1所示 图1 伯努利方程仪 1.水箱及潜水泵 2.上水管 3.溢流管 4.整流栅 5.溢流板 6.定压水箱 7.实验细管 8. 实验粗管 9.测压管10. 调节阀11.接水箱12.量杯13.回水管14.实验桌 三、实验步骤 1、关闭调节阀,打开进水阀门,启动水泵,待定压水箱接近放满时,适度打开调节阀,排净管路和测压管中的空气; 2、关闭调节阀,调节进水阀门,使定压水箱溢流板有一定溢流; 3、测出位置水头,并记录位置水头和试验管测试截面的内径; 4、打开调节阀至一定开度,待液流稳定,且检查定压水箱的水位恒定后,测读伯努利方程试验管四个截面上测压管的液柱高度; 5、改变调节阀的开度,在新工况下重复步骤4; 6、关闭调节阀,测读伯努利方程试验管上各个测压管的液柱高度,记下数据。可以观察到各测压管中的水面与定压水箱的水面相平,以此验证静压原理; 7、实验结束,关闭水泵。 四、数据处理 实验数据填入表1

1、计算出伯努利方程试验管各测试截面的相应能量损失水头和压强水头,填写在表中。 速度水头: 2 2g V =总水头-测压管水头 压强水头:P γ =测压管水头-位置水头 能量损失水头: w h=静水头-总水头 图2 伯努利方程试验管水头线图 五、思考题 1、为什么能量损失是沿着流动的方向增大的? 2、为什么在实验过程中要保持定压水箱中有溢流? 3、测压管工作前为什么要排尽管路中的空气?其测量的是绝对压力还是表压力? 1、沿着流动方向,阻力损失有沿程阻力损失和局部阻力损失,故沿着流动方向能量损失是增大的。 2、当流体高度差为溢流板高度时,水会流到水箱中,溢流板作用是保持水箱中水位恒定,从而保持压力恒定,压力恒定,则流体流进伯努利试验管时未稳定流动。 3如果不排尽气泡会臧成读取压力值不准确,测得压力为表压力。

联立方程组法(圆锥曲线)

解析几何综合题 联立方程组(设而不求六步走) ①设点1122()()A x y B x y ,,,; ②设直线方程m kx y +=(注意k 是否存在) ③联立方程组?????=++=122 22b y a x m kx y 012)1(2222222=-+++b m b kmx x b k a ④判别式0?≥或0?>(22 2 2222144()k m b ac a b a b ?=-=+-) ⑤韦达定理a c x x a b x x = -=+2121, ⑥逆向思维求解 例1、已知椭圆方程122 22=+b y a x )0(>>b a 与直线方程m kx y +=相交于1122()()A x y B x y ,,,,试求弦长AB 长度。 变式训练:设椭圆方程:C )0(12222>>=+b a b y a x ,已知右焦点坐标为)05(,,且离心率为3 5.且过点)05(,斜率为1的直线方程与椭圆交于B A 、两点,求弦长AB 的长度。 3、在平面直角坐标系xOy 中,经过点(02),且斜率为k 的直线l 与椭圆2 212 x y +=有两个不同的交点P 和

Q 。 (1)求k 的取值范围; (2)设椭圆与x 轴正半轴、y 轴正半轴的交点分别为B A 、,是否存在常数k ,使得向量OP OQ + 与AB 共线?如果存在,求k 值;如果不存在,请说明理由。 23、设椭圆中心在坐标原点,A (2,0)、B (0,1)是它的两个顶点,直线)0(>=k kx y 与直线AB 相交于点 D ,与椭圆相较于F E 、两点. (1)若 DF ED 6=,求k 的值; (2)求四边形AEBF 面积的最大值. 例2、已知椭圆方程122 22=+b y a x )0(>>b a 与动直线l 只有一个交点P ,且点P 在第一象限 (1)已知直线方程斜率为k ,用k b a ,,表示点P 的坐标; (2)若过原点O 的直线1l 与动直线l 垂直,证明点P 到直线1l 的距离为a b - 1、设椭圆C ()22 2210x y a b a b +=>>:,已知右顶点与右焦点的距离为31-,短轴长为22 (1)求椭圆方程; (2)过左焦点1F 的直线与椭圆分别交于A B 、两点,若AOB ?的面积为 324 ,求直线方程 已知,21,F F 分别是椭圆C :22a x +22 b y =1(0>>b a )的左、右焦点,A 是椭圆C 顶点,B 是直线2AF 与椭圆C 的另一个交点,1F ∠A 2F =60°. (1)求椭圆C 的离心率;

相关主题
文本预览
相关文档 最新文档