当前位置:文档之家› 决策树分类模型算法实验报告

决策树分类模型算法实验报告

决策树分类模型算法实验报告
决策树分类模型算法实验报告

决策树算法介绍(DOC)

3.1 分类与决策树概述 3.1.1 分类与预测 分类是一种应用非常广泛的数据挖掘技术,应用的例子也很多。例如,根据信用卡支付历史记录,来判断具备哪些特征的用户往往具有良好的信用;根据某种病症的诊断记录,来分析哪些药物组合可以带来良好的治疗效果。这些过程的一个共同特点是:根据数据的某些属性,来估计一个特定属性的值。例如在信用分析案例中,根据用户的“年龄”、“性别”、“收入水平”、“职业”等属性的值,来估计该用户“信用度”属性的值应该取“好”还是“差”,在这个例子中,所研究的属性“信用度”是一个离散属性,它的取值是一个类别值,这种问题在数据挖掘中被称为分类。 还有一种问题,例如根据股市交易的历史数据估计下一个交易日的大盘指数,这里所研究的属性“大盘指数”是一个连续属性,它的取值是一个实数。那么这种问题在数据挖掘中被称为预测。 总之,当估计的属性值是离散值时,这就是分类;当估计的属性值是连续值时,这就是预测。 3.1.2 决策树的基本原理 1.构建决策树 通过一个实际的例子,来了解一些与决策树有关的基本概念。 表3-1是一个数据库表,记载着某银行的客户信用记录,属性包括“姓名”、“年龄”、“职业”、“月薪”、......、“信用等级”,每一行是一个客户样本,每一列是一个属性(字段)。这里把这个表记做数据集D。 银行需要解决的问题是,根据数据集D,建立一个信用等级分析模型,并根据这个模型,产生一系列规则。当银行在未来的某个时刻收到某个客户的贷款申请时,依据这些规则,可以根据该客户的年龄、职业、月薪等属性,来预测其信用等级,以确定是否提供贷款给该用户。这里的信用等级分析模型,就可以是一棵决策树。在这个案例中,研究的重点是“信用等级”这个属性。给定一个信用等级未知的客户,要根据他/她的其他属性来估计“信用等级”的值是“优”、“良”还是“差”,也就是说,要把这客户划分到信用等级为“优”、“良”、“差”这3个类别的某一类别中去。这里把“信用等级”这个属性称为“类标号属性”。数据集D中“信用等级”属性的全部取值就构成了类别集合:Class={“优”,

基于决策树的分类方法研究

南京师范大学 硕士学位论文 基于决策树的分类方法研究 姓名:戴南 申请学位级别:硕士 专业:计算数学(计算机应用方向) 指导教师:朱玉龙 2003.5.1

摘要 厂 {数掘挖掘,又称数据库中的知识发现,是指从大型数据库或数据仓库中提取 具有潜在应用价值的知识或模式。模式按其作用可分为两类:描述型模式和预测型模式。分类模式是一种重要的预测型模式。挖掘分娄模式的方法有多种,如决 策树方法、贝叶斯网络、遗传算法、基于关联的分类方法、羊H糙集和k一最临近方、/ 法等等。,/驴 I 本文研究如何用决策树方法进行分类模式挖掘。文中详细阐述了几种极具代表性的决策树算法:包括使用信息熵原理分割样本集的ID3算法;可以处理连续属性和属性值空缺样本的C4.5算法;依据GINI系数寻找最佳分割并生成二叉决策树的CART算法;将树剪枝融入到建树过程中的PUBLIC算法:在决策树生成过程中加入人工智能和人为干预的基于人机交互的决策树生成方法;以及突破主存容量限制,具有良好的伸缩性和并行性的SI,lQ和SPRINT算法。对这些算法的特点作了详细的分析和比较,指出了它们各自的优势和不足。文中对分布式环境下的决策树分类方法进行了描述,提出了分布式ID3算法。该算法在传统的ID3算法的基础上引进了新的数掘结构:属性按类别分稚表,使得算法具有可伸缩性和并行性。最后着重介绍了作者独立完成的一个决策树分类器。它使用的核心算法为可伸缩的ID3算法,分类器使用MicrosoftVisualc++6.0开发。实验结果表明作者开发的分类器可以有效地生成决策树,建树时间随样本集个数呈线性增长,具有可伸缩性。。 ,,荡囊 关键字:数据挖掘1分类规则,决策树,分布式数据挖掘

数据挖掘实验报告

《数据挖掘》Weka实验报告 姓名_学号_ 指导教师 开课学期2015 至2016 学年 2 学期完成日期2015年6月12日

1.实验目的 基于https://www.doczj.com/doc/3818251071.html,/ml/datasets/Breast+Cancer+WiscOnsin+%28Ori- ginal%29的数据,使用数据挖掘中的分类算法,运用Weka平台的基本功能对数据集进行分类,对算法结果进行性能比较,画出性能比较图,另外针对不同数量的训练集进行对比实验,并画出性能比较图训练并测试。 2.实验环境 实验采用Weka平台,数据使用来自https://www.doczj.com/doc/3818251071.html,/ml/Datasets/Br- east+Cancer+WiscOnsin+%28Original%29,主要使用其中的Breast Cancer Wisc- onsin (Original) Data Set数据。Weka是怀卡托智能分析系统的缩写,该系统由新西兰怀卡托大学开发。Weka使用Java写成的,并且限制在GNU通用公共证书的条件下发布。它可以运行于几乎所有操作平台,是一款免费的,非商业化的机器学习以及数据挖掘软件。Weka提供了一个统一界面,可结合预处理以及后处理方法,将许多不同的学习算法应用于任何所给的数据集,并评估由不同的学习方案所得出的结果。 3.实验步骤 3.1数据预处理 本实验是针对威斯康辛州(原始)的乳腺癌数据集进行分类,该表含有Sample code number(样本代码),Clump Thickness(丛厚度),Uniformity of Cell Size (均匀的细胞大小),Uniformity of Cell Shape (均匀的细胞形状),Marginal Adhesion(边际粘连),Single Epithelial Cell Size(单一的上皮细胞大小),Bare Nuclei(裸核),Bland Chromatin(平淡的染色质),Normal Nucleoli(正常的核仁),Mitoses(有丝分裂),Class(分类),其中第二项到第十项取值均为1-10,分类中2代表良性,4代表恶性。通过实验,希望能找出患乳腺癌客户各指标的分布情况。 该数据的数据属性如下: 1. Sample code number(numeric),样本代码; 2. Clump Thickness(numeric),丛厚度;

决策树算法研究及应用概要

决策树算法研究及应用? 王桂芹黄道 华东理工大学实验十五楼206室 摘要:信息论是数据挖掘技术的重要指导理论之一,是决策树算法实现的理论依据。决 策树算法是一种逼近离散值目标函数的方法,其实质是在学习的基础上,得到分类规则。本文简要介绍了信息论的基本原理,重点阐述基于信息论的决策树算法,分析了它们目前 主要的代表理论以及存在的问题,并用具体的事例来验证。 关键词:决策树算法分类应用 Study and Application in Decision Tree Algorithm WANG Guiqin HUANG Dao College of Information Science and Engineering, East China University of Science and Technology Abstract:The information theory is one of the basic theories of Data Mining,and also is the theoretical foundation of the Decision Tree Algorithm.Decision Tree Algorithm is a method to approach the discrete-valued objective function.The essential of the method is to obtain a clas-sification rule on the basis of example-based learning.An example is used to sustain the theory. Keywords:Decision Tree; Algorithm; Classification; Application 1 引言 决策树分类算法起源于概念学习系统CLS(Concept Learning System,然后发展 到ID3

实验报告:乳腺肿瘤数据集基于决策树算法的数据挖掘

基于决策树算法的医疗数据挖掘 一、实验目的 利用商业智能分析项目中的数据分析功能,对乳腺癌数据集breast-cancer基于决策树算法进行挖掘,产生相关规则,从而预测女性乳腺癌复发的高发人群。并通过本次实验掌握决策树算法关联规则挖掘的知识及软件操作,以及提高数据分析能力。 二、实验步骤 1、在SQL server 2005中建立breast-cancer数据库,导入breast-cancer数据集; 2、对该数据集进行数据预处理,包括列名的中文翻译、以及node-caps缺失值的填充,即将‘null’填充成‘?’; 3、新建数据分析服务项目,导入数据源、新建数据源视图、新建挖掘结构,其中,将breast-cancer表中的‘序号’作为标识,‘是否复发’作为分类; 4、部署; 5、查看决策树、依赖关系网络等,并根据结果进行分析、预测。 三、实验结果分析 1、如以下三张图片所示,通过调整依赖网络图的依赖强度,可得出,在众多因素中,‘受侵淋巴结数’、‘肿瘤大小’、‘恶心肿瘤程度’这三个因素对于是否复发的影响是较大的,并且影响强度依次递减。

2、从‘全部’节点的挖掘图例可以看到,在breast-cancer数据集中,复发占了29.91%,不复发占了68.32%,说明乳腺肿瘤的复发还是占了相当一部分比例的,因此此挖掘是具备前提意义的。 3、由下两张图可知,‘受侵淋巴数’这一因素对于是否复发是决定程度是最高的。在‘受侵淋巴结数不等于0-2’(即大于0-2)节点中,复发占了50.19%的比例,不复发占了44.44%的比例,而在‘受侵淋巴结数=0-2’的节点中,复发只占了21.71%的比例,不复发占了77.98%的比例。由此可见,当受侵淋巴节点数大于‘0-2’时,复发的几率比较高。

实验三决策树算法实验实验报告

实验三决策树算法实验 一、实验目的:熟悉和掌握决策树的分类原理、实质和过程;掌握典型的学习算法和实现技术。 二、实验原理: 决策树学习和分类. 三、实验条件: 四、实验内容: 1 根据现实生活中的原型自己创建一个简单的决策树。 2 要求用这个决策树能解决实际分类决策问题。 五、实验步骤: 1、验证性实验: (1)算法伪代码 算法Decision_Tree(data,AttributeName) 输入由离散值属性描述的训练样本集data; 候选属性集合AttributeName。 输出一棵决策树。(1)创建节点N; 资料.

(2)If samples 都在同一类C中then (3)返回N作为叶节点,以类C标记;(4)If attribute_list为空then (5)返回N作为叶节点,以samples 中最普遍的类标记;//多数表决(6)选择attribute_list 中具有最高信息增益的属性test_attribute; (7)以test_attribute 标记节点N; (8)For each test_attribute 的已知值v //划分samples ; (9)由节点N分出一个对应test_attribute=v的分支; (10令Sv为samples中test_attribute=v 的样本集合;//一个划分块(11)If Sv为空then (12)加上一个叶节点,以samples中最普遍的类标记; (13)Else 加入一个由Decision_Tree(Sv,attribute_list-test_attribute)返回节点值。 (2)实验数据预处理 Age:30岁以下标记为“1”;30岁以上50岁以下标记为“2”;50岁以上标记为“3”。 Sex:FEMAL----“1”;MALE----“2” Region:INNER CITY----“1”;TOWN----“2”; RURAL----“3”; SUBURBAN----“4” Income:5000~2万----“1”;2万~4万----“2”;4万以上----“3” Married Children Car Mortgage 资料.

决策树分类算法与应用

机器学习算法day04_决策树分类算法及应用课程大纲 决策树分类算法原理决策树算法概述 决策树算法思想 决策树构造 算法要点 决策树分类算法案例案例需求 Python实现 决策树的持久化保存 课程目标: 1、理解决策树算法的核心思想 2、理解决策树算法的代码实现 3、掌握决策树算法的应用步骤:数据处理、建模、运算和结果判定

1. 决策树分类算法原理 1.1 概述 决策树(decision tree)——是一种被广泛使用的分类算法。 相比贝叶斯算法,决策树的优势在于构造过程不需要任何领域知识或参数设置 在实际应用中,对于探测式的知识发现,决策树更加适用 1.2 算法思想 通俗来说,决策树分类的思想类似于找对象。现想象一个女孩的母亲要给这个女孩介绍男朋友,于是有了下面的对话: 女儿:多大年纪了? 母亲:26。 女儿:长的帅不帅? 母亲:挺帅的。 女儿:收入高不? 母亲:不算很高,中等情况。 女儿:是公务员不? 母亲:是,在税务局上班呢。 女儿:那好,我去见见。 这个女孩的决策过程就是典型的分类树决策。 实质:通过年龄、长相、收入和是否公务员对将男人分为两个类别:见和不见 假设这个女孩对男人的要求是:30岁以下、长相中等以上并且是高收入者或中等以上收入的公务员,那么这个可以用下图表示女孩的决策逻辑

上图完整表达了这个女孩决定是否见一个约会对象的策略,其中: ◆绿色节点表示判断条件 ◆橙色节点表示决策结果 ◆箭头表示在一个判断条件在不同情况下的决策路径 图中红色箭头表示了上面例子中女孩的决策过程。 这幅图基本可以算是一颗决策树,说它“基本可以算”是因为图中的判定条件没有量化,如收入高中低等等,还不能算是严格意义上的决策树,如果将所有条件量化,则就变成真正的决策树了。 决策树分类算法的关键就是根据“先验数据”构造一棵最佳的决策树,用以预测未知数据的类别 决策树:是一个树结构(可以是二叉树或非二叉树)。其每个非叶节点表示一个特征属性上的测试,每个分支代表这个特征属性在某个值域上的输出,而每个叶节点存放一个类别。使用决策树进行决策的过程就是从根节点开始,测试待分类项中相应的特征属性,并按照其值选择输出分支,直到到达叶子节点,将叶子节点存放的类别作为决策结果。

基于决策树的分类算法

1 分类的概念及分类器的评判 分类是数据挖掘中的一个重要课题。分类的目的是学会一个分类函数或分类模型(也常常称作分类器),该模型能把数据库中的数据项映射到给定类别中的某一个。分类可用于提取描述重要数据类的模型或预测未来的数据趋势。 分类可描述如下:输入数据,或称训练集(training set)是一条条记录组成的。每一条记录包含若干条属性(attribute),组成一个特征向量。训练集的每条记录还有一个特定的类标签(类标签)与之对应。该类标签是系统的输入,通常是以往的一些经验数据。一个具体样本的形式可为样本向量:(v1,v2,…,…vn:c)。在这里vi表示字段值,c表示类别。 分类的目的是:分析输入数据,通过在训练集中的数据表现出来的特性,为每一个类找到一种准确的描述或者模型。这种描述常常用谓词表示。由此生成的类描述用来对未来的测试数据进行分类。尽管这些未来的测试数据的类标签是未知的,我们仍可以由此预测这些新数据所属的类。注意是预测,而不能肯定。我们也可以由此对数据中的每一个类有更好的理解。也就是说:我们获得了对这个类的知识。 对分类器的好坏有三种评价或比较尺度: 预测准确度:预测准确度是用得最多的一种比较尺度,特别是对于预测型分类任务,目前公认的方法是10番分层交叉验证法。 计算复杂度:计算复杂度依赖于具体的实现细节和硬件环境,在数据挖掘中,由于操作对象是巨量的数据库,因此空间和时间的复杂度问题将是非常重要的一个环节。 模型描述的简洁度:对于描述型的分类任务,模型描述越简洁越受欢迎;例如,采用规则表示的分类器构造法就更有用。 分类技术有很多,如决策树、贝叶斯网络、神经网络、遗传算法、关联规则等。本文重点是详细讨论决策树中相关算法。

(完整版)生物数据挖掘-决策树实验报告

实验四决策树 一、实验目的 1.了解典型决策树算法 2.熟悉决策树算法的思路与步骤 3.掌握运用Matlab对数据集做决策树分析的方法 二、实验内容 1.运用Matlab对数据集做决策树分析 三、实验步骤 1.写出对决策树算法的理解 决策树方法是数据挖掘的重要方法之一,它是利用树形结构的特性来对数据进行分类的一种方法。决策树学习从一组无规则、无次序的事例中推理出有用的分类规则,是一种实例为基础的归纳学习算法。决策树首先利用训练数据集合生成一个测试函数,根据不同的权值建立树的分支,即叶子结点,在每个叶子节点下又建立层次结点和分支,如此重利生成决策树,然后对决策树进行剪树处理,最后把决策树转换成规则。决策树的最大优点是直观,以树状图的形式表现预测结果,而且这个结果可以进行解释。决策树主要用于聚类和分类方面的应用。 决策树是一树状结构,它的每一个叶子节点对应着一个分类,非叶子节点对应着在某个属性上的划分,根据样本在该属性上的不同取值将其划分成若干个子集。构造决策树的核心问题是在每一步如何选择适当的属性对样本进行拆分。对一个分类问题,从已知类标记的训练样本中学习并构造出决策树是一个自上而下分而治之的过程。 2.启动Matlab,运用Matlab对数据集进行决策树分析,写出算法名称、数据集名称、关键代码,记录实验过程,实验结果,并分析实验结果 (1)算法名称: ID3算法 ID3算法是最经典的决策树分类算法。ID3算法基于信息熵来选择最佳的测试属性,它选择当前样本集中具有最大信息增益值的属性作为测试属性;样本集的划分则依据测试属性的取值进行,测试属性有多少个不同的取值就将样本集划分为多少个子样本集,同时决策树上相应于该样本集的节点长出新的叶子节点。ID3算法根据信息论的理论,采用划分后样本集的不确定性作为衡量划分好坏的标准,用信息增益值度量不确定性:信息增益值越大,不确定性越小。因此,ID3算法在每个非叶节点选择信息增益最大的属性作为测试属性,这样可以得到当前情况下最纯的划分,从而得到较小的决策树。 ID3算法的具体流程如下: 1)对当前样本集合,计算所有属性的信息增益; 2)选择信息增益最大的属性作为测试属性,把测试属性取值相同的样本划为同一个子样本集; 3)若子样本集的类别属性只含有单个属性,则分支为叶子节点,判断其属性值并标上相应的符号,然后返回调用处;否则对子样本集递归调用本算法。 (2)数据集名称:鸢尾花卉Iris数据集 选择了部分数据集来区分Iris Setosa(山鸢尾)及Iris Versicolour(杂色鸢尾)两个种类。

决策树算法介绍

3.1分类与决策树概述 3.1.1分类与预测 分类是一种应用非常广泛的数据挖掘技术,应用的例子也很多。例如,根据信用卡支付历史记录,来判断具备哪些特征的用户往往具有良好的信用;根据某种病 症的诊断记录,来分析哪些药物组合可以带来良好的治疗效果。这些过程的一个共同特点是:根据数据的某些属性,来估计一个特定属性的值。例如在信用分析案例中,根据用户的“年龄”、“性别”、“收入水平”、“职业”等属性的值,来估计该用户“信用度”属性的值应该取“好”还是“差”,在这个例子中,所研究的属性“信用度”是E—个离散属性,它的取值是一个类别值,这种问题在数 据挖掘中被称为分类。 还有一种问题,例如根据股市交易的历史数据估计下一个交易日的大盘指数,这 里所研究的属性“大盘指数”是一个连续属性,它的取值是一个实数。那么这种 问题在数据挖掘中被称为预测。 总之,当估计的属性值是离散值时,这就是分类;当估计的属性值是连续值时,这就是预测。 3.1.2决策树的基本原理 1. 构建决策树 通过一个实际的例子,来了解一些与决策树有关的基本概念。 表3-1是一个数据库表,记载着某银行的客户信用记录,属性包括“姓名”、“年龄”、“职业”、“月薪”、......、“信用等级”,每一行是一个客户样本,每一列是一个属性(字段)。这里把这个表记做数据集D。 银行需要解决的问题是,根据数据集D,建立一个信用等级分析模型,并根据这个模型,产生一系列规则。当银行在未来的某个时刻收到某个客户的贷款申请时,依据这些规则,可以根据该客户的年龄、职业、月薪等属性,来预测其信用等级,以确定是否提供贷款给该用户。这里的信用等级分析模型,就可以是一棵决策树。在这个案例中,研究的重点是“信用等级”这个属性。给定一个信用等级未知的客户,要根据他/她的其他属性来估计“信用等级”的值是“优”、“良”还是 “差”,也就是说,要把这客户划分到信用等级为“优”、“良”、“差”这3 个类别的某一类别中去。这里把“信用等级”这个属性称为“类标号属性”。数据集D中“信用等级”属性的全部取值就构成了类别集合:Class={ “优”,

机器学习实验报告

决策树算法 一、决策树算法简介: 决策树算法是一种逼近离散函数值的方法。它是一种典型的分类方法,首先对数据进行处理,利用归纳算法生成可读的规则和决策树,然后使用决策对新数据进行分析。本质上决策树是通过一系列规则对数据进行分类的过程。决策树方法的基本思想是:利用训练集数据自动地构造决策树,然后根据这个决策树对任意实例进行判定。其中决策树(Decision Tree)是一种简单但是广泛使用的分类器。通过训练数据构建决策树,可以高效的对未知的数据进行分类。决策数有两大优点:1)决策树模型可以读性好,具有描述性,有助于人工分析;2)效率高,决策树只需要一次构建,反复使用,每一次预测的最大计算次数不超过决策树的深度。 决策树算法构造决策树来发现数据中蕴涵的分类规则.如何构造精度高、规模小的决策树是决策树算法的核心内容。决策树构造可以分两步进行。第一步,决策树的生成:由训练样本集生成决策树的过程。一般情况下,训练样本数据集是根据实际需要有历史的、有一定综合程度的,用于数据分析处理的数据集。第二步,决策树的剪技:决策树的剪枝是对上一阶段生成的决策树进行检验、校正和修下的过程,主要是用新的样本数扼集(称为测试数据集)中的数据校验决策树生成过程中产生的初步规则,将那些影响预衡准确性的分枝剪除、决策树方法最早产生于上世纪60年代,到70年代末。由J Ross Quinlan 提出了ID3算法,此算法的目的在于减少树的深度。但是忽略了叶子数目的研究。C4.5算法在ID3算法的基础上进行了改进,对于预测变量的缺值处理、剪枝技术、派生规则等方面作了较大改进,既适合于分类问题,又适合于回归问题。 本节将就ID3算法展开分析和实现。 ID3算法: ID3算法最早是由罗斯昆(J. Ross Quinlan)于1975年在悉尼大学提出的一种分类预测算法,算法的核心是“信息熵”。ID3算法通过计算每个属性的信息增益,认为信息增益高的是好属性,每次划分选取信息增益最高的属性为划分标准,重复这个过程,直至生成一个能完美分类训练样例的决策树。 在ID3算法中,决策节点属性的选择运用了信息论中的熵概念作为启发式函数。

决策树算法研究

摘要 随着信息科技的高速发展,人们对于积累的海量数据量的处理工作也日益增重,需求是发明之母,数据挖掘技术就是为了顺应这种需求而发展起来的一种数据处理技术。 数据挖掘技术又称数据库中的知识发现,是从一个大规模的数据库的数据中有效地、隐含的、以前未知的、有潜在使用价值的信息的过程。决策树算法是数据挖掘中重要的分类方法,基于决策树的各种算法在执行速度、可扩展性、输出结果的可理解性、分类预测的准确性等方面各有千秋,在各个领域广泛应用且已经有了许多成熟的系统,如语音识别、模式识别和专家系统等。本文着重研究和比较了几种典型的决策树算法,并对决策树算法的应用进行举例。 关键词:数据挖掘;决策树;比较

Abstract With the rapid development of Information Technology, people are facing much more work l oad in dealing with the accumulated mass data. Data mining technology is also called the knowledge discovery in database, data from a large database of effectively, implicit, previously unknown and potentially use value of information proc ess. Algorithm of decision tree in data mining is an important method of classification based on decision tree algorithms, in execution speed, scalability, output result comprehensibility, classification accuracy, each has its own merits., extensive application in various fields and have many mature system, such as speech recognition, pattern recognition and expert system and so on. This paper studies and compares several kinds of typical decision tree algorithm, and the algorithm of decision tree application examples. Keywords: Data mining; decision tree;Compare

实验三-决策树算法实验实验报告

实验三-决策树算法实验实验报告

实验三决策树算法实验 一、实验目的:熟悉和掌握决策树的分类原理、实质和过程;掌握典型的学习算法和实现技术。 二、实验原理: 决策树学习和分类. 三、实验条件: 四、实验内容: 1 根据现实生活中的原型自己创建一个简单的决策树。 2 要求用这个决策树能解决实际分类决策问题。 五、实验步骤: 1、验证性实验: (1)算法伪代码 算法Decision_Tree(data,AttributeName) 输入由离散值属性描述的训练样本集

data; 候选属性集合AttributeName。 输出一棵决策树。(1)创建节点N; (2)If samples 都在同一类C中then (3)返回N作为叶节点,以类C标记;(4)If attribute_list为空then (5)返回N作为叶节点,以samples 中最普遍的类标记;//多数表决(6)选择attribute_list 中具有最高信息增益的属性test_attribute; (7)以test_attribute 标记节点N; (8)For each test_attribute 的已知值v //划分samples ; (9)由节点N分出一个对应test_attribute=v的分支; (10令Sv为samples中test_attribute=v 的样本集合;//一个划分块(11)If Sv 为空then (12)加上一个叶节点,以samples中最普遍的类标记; (13)Else 加入一个由Decision_Tree(Sv,attribute_list-test_attribute)返回节点

利用决策树方法对数据进行分类挖掘毕业设计论文

目录 摘要 (3) Abstract (iii) 第一章绪论 (1) 1.1 数据挖掘技术 (1) 1.1.1 数据挖掘技术的应用背景 (1) 1.1.2数据挖掘的定义及系统结构 (2) 1.1.3 数据挖掘的方法 (4) 1.1.4 数据挖掘系统的发展 (5) 1.1.5 数据挖掘的应用与面临的挑战 (6) 1.2 决策树分类算法及其研究现状 (8) 1.3数据挖掘分类算法的研究意义 (10) 1.4本文的主要内容 (11) 第二章决策树分类算法相关知识 (12) 2.1决策树方法介绍 (12) 2.1.1决策树的结构 (12) 2.1.2决策树的基本原理 (13) 2.1.3决策树的剪枝 (15) 2.1.4决策树的特性 (16) 2.1.5决策树的适用问题 (18) 2.2 ID3分类算法基本原理 (18) 2.3其它常见决策树算法 (20) 2.4决策树算法总结比较 (24) 2.5实现平台简介 (25) 2.6本章小结 (29) 第三章 ID3算法的具体分析 (30) 3.1 ID3算法分析 (30) 3.1.1 ID3算法流程 (30) 3.1.2 ID3算法评价 (33) 3.2决策树模型的建立 (34) 3.2.1 决策树的生成 (34) 3.2.2 分类规则的提取 (377) 3.2.3模型准确性评估 (388) 3.3 本章小结 (39)

第四章实验结果分析 (40) 4.1 实验结果分析 (40) 4.1.1生成的决策树 (40) 4.1.2 分类规则的提取 (40) 4.2 本章小结 (41) 第五章总结与展望 (42) 参考文献 (44) 致谢 (45) 附录 (46)

数据挖掘——决策树分类算法 (1)

决策树分类算法 学号:20120311139 学生所在学院:软件工程学院学生姓名:葛强强 任课教师:汤亮 教师所在学院:软件工程学院2015年11月

12软件1班 决策树分类算法 葛强强 12软件1班 摘要:决策树方法是数据挖掘中一种重要的分类方法,决策树是一个类似流程图的树型结构,其中树的每个内部结点代表对一个属性的测试,其分支代表测试的结果,而树的每个 叶结点代表一个类别。通过决策树模型对一条记录进行分类,就是通过按照模型中属 性测试结果从根到叶找到一条路径,最后叶节点的属性值就是该记录的分类结果。 关键词:数据挖掘,分类,决策树 近年来,随着数据库和数据仓库技术的广泛应用以及计算机技术的快速发展,人们利用信息技术搜集数据的能力大幅度提高,大量数据库被用于商业管理、政府办公、科学研究和工程开发等。面对海量的存储数据,如何从中有效地发现有价值的信息或知识,是一项非常艰巨的任务。数据挖掘就是为了应对这种要求而产生并迅速发展起来的。数据挖掘就是从大型数据库的数据中提取人们感兴趣的知识,这些知识是隐含的、事先未知的潜在有用的信息,提取的知识表示为概念、规则、规律、模式等形式。 分类在数据挖掘中是一项非常重要的任务。 分类的目的是学会一个分类函数或分类模型,把数据库中的数据项映射到给定类别中的某个类别。分类可用于预测,预测的目的是从历史数据记录中自动推导出对给定数据的趋势描述,从而能对未来数据进行预测。分类算法最知名的是决策树方法,决策树是用于分类的一种树结构。 1决策树介绍 决策树(decisiontree)技术是用于分类和预测 的主要技术,决策树学习是一种典型的以实例为基础的归纳学习算法,它着眼于从一组无次序、无规则的事例中推理出决策树表示形式的分类规则。它采用自顶向下的递归方式,在决策树的内部节点进行属性的比较,并根据不同属性判断从该节点向下的分支,在决策树的叶节点得到结论。所以从根到叶节点就对应着一条合取规则,整棵树就对应着一组析取表达式规则。 把决策树当成一个布尔函数。函数的输入为物体或情况的一切属性(property),输出为”是”或“否”的决策值。在决策树中,每个树枝节点对应着一个有关某项属性的测试,每个树叶节点对应着一个布尔函数值,树中的每个分支,代表测试属性其中一个可能的值。 最为典型的决策树学习系统是ID3,它起源于概念学习系统CLS,最后又演化为能处理连续属性的C4.5(C5.0)等。它是一种指导的学习方法,该方法先根据训练子集形成决策树。如果该树不能对所有给出的训练子集正确分类,那么选择一些其它的训练子集加入到原来的子集中,重复该过程一直到时形成正确的决策集。当经过一批训练实例集的训练产生一棵决策树,决策树可以根据属性的取值对一个未知实例集进行分类。使用决策树对实例进行分类的时候,由树根开始对该对象的属性逐渐测试其值,并且顺着分支向下走,直至到达某个叶结点,此叶结点代表的类即为该对象所处的类。 决策树是应用非常广泛的分类方法,目前有多种决策树方法,如ID3,C4.5,PUBLIC,

如何运用决策树进行分类分析

如何运用决策树进行分类分析 前面我们讲到了聚类分析的基本方法,这次我们来讲讲分类分析的方法。 所谓分类分析,就是基于响应,找出更好区分响应的识别模式。分类分析的方法很多,一般而言,当你的响应为分类变量时,我们就可以使用各种机器学习的方法来进行分类的模式识别工作,而决策树就是一类最为常见的机器学习的分类算法。 决策树,顾名思义,是基于树结构来进行决策的,它采用自顶向下的贪婪算法,在每个结点选择分类的效果最好的属性对样本进行分类,然后继续这一过程,直到这棵树能准确地分类训练样本或所有的属性都已被使用过。 建造好决策树以后,我们就可以使用决策树对新的事例进行分类。我们以一个生活小案例来说什么是决策树。例如,当一位女士来决定是否同男士进行约会的时候,她面临的问题是“什么样的男士是适合我的,是我值得花时间去见面再进行深入了解的?” 这个时候,我们找到了一些女生约会对象的相关属性信息,例如,年龄、长相、收入等等,然后通过构建决策树,层层分析,最终得到女士愿意去近一步约会的男士的标准。 图:利用决策树确定约会对象的条件

接下来,我们来看看这个决策的过程什么样的。 那么,问题来了,怎样才能产生一棵关于确定约会对象的决策树呢?在构造决策树的过程中,我们希望决策树的每一个分支结点所包含的样本尽可能属于同一类别,即结点的”纯度”(Purity )越来越高。 信息熵(Information Entropy )是我们度量样本集合纯度的最常见指标,假定当前样本集合中第K 类样本所占的比例为P k ,则该样本集合的信息熵为: Ent (D )=?∑p k |y| k=1 log 2p k 有了这个结点的信息熵,我们接下来就要在这个结点上对决策树进行裁剪。当我们选择了某一个属性对该结点,使用该属性将这个结点分成了2类,此时裁剪出来的样本集为D 1和D 2, 然后我们根据样本数量的大小,对这两个裁剪点赋予权重|D 1||D|?,|D 2||D|?,最后我们就 可以得出在这个结点裁剪这个属性所获得的信息增益(Information Gain ) Gain(D ,a)=Ent (D )?∑|D V ||D |2 v=1Ent(D V ) 在一个结点的裁剪过程中,出现信息增益最大的属性就是最佳的裁剪点,因为在这个属性上,我们获得了最大的信息增益,即信息纯度提升的最大。 其实,决策树不仅可以帮助我们提高生活的质量,更可以提高产品的质量。 例如,我们下表是一组产品最终是否被质检接受的数据,这组数据共有90个样本量,数据的响应量为接受或拒绝,则|y|=2。在我们还没有对数据进行裁剪时,结点包含全部的样本量,其中接受占比为p 1= 7690,拒绝占比为p 2=1490,此时,该结点的信息熵为: Ent (D )=?∑p k |y|k=1log 2p k =-(7690log 27690+1490log 21490)=0.6235

ID3算法实验报告

ID3算法实验 08级第一小组介绍: ID3算法可分为主算法和建树算法两种。 (1)ID3主算法。主算法流程如图所示。其中PE、NE分别表示正例和反例集,它们共同组成训练集。PE'、PE''和NE'、NE''分别表示正例集和反例集的子集。 ID3主算法流程 (2)建树算法。采用建树算法建立决策树。首先,对当前子例进行同类归集。其次,计算各集合属性的互信息,选择互信息最大的属性Ak。再次,将在Ak处取值相同的子例归于同一子集,Ak取几个值就几个子集。最后,对既含正例又含反例的子集递归调用建树算法。若子集仅含正例或反例,对应分支标上P或N,返回调用处。 ID3算法采用自顶向下不回溯的策略搜索全部属性空间并建立决策树,算法简单、深度小、分类速度快。但是,ID3算法对于大的属性集执行效率下降快、准确性降低,并且学习能力低下。考虑到本文所涉及到的数据量并很小,下文分类分析采用了该算法。 决策树学习是把实例从根结点排列到某个叶子结点来分类实例,叶子结点即为实例所属的分类。学习到的决策树能再被表示成多个if-then的规则。ID3算法是一种决策树算法。 对下载的ID3算法程序进行阅读和调试后,做了相关实验,以下是相关记录。 1、试验数据 该算法的试验数据有两个:data.dat和data.tag,分别存放训练样例和各个属性列表:

data.dat: data.tag: 其中,训练样例集合的试验数据由课本第3.4。2节给出,分别将其属性使用离散值数据表示,在data.tag文件中可以看到离散值其表示的属性分别对应。 2、运行结果 试验结果,是以if-then形式输出决策树,其运行界面如图:

决策树分类算法的时间和性能测试(DOC)

决策树分类算法的时间和性能测试 姓名:ls 学号:

目录 一、项目要求 (3) 二、基本思想 (3) 三、样本处理 (4) 四、实验及其分析 (9) 1.总时间 (9) 2.分类准确性. (12) 五、结论及不足 (13) 附录 (14)

一、项目要求 (1)设计并实现决策树分类算法(可参考网上很多版本的决策树算法及代码, 但算法的基本思想应为以上所给内容)。 (2)使用UCI 的基准测试数据集,测试所实现的决策树分类算法。评价指标 包括:总时间、分类准确性等。 (3) 使用UCI Iris Data Set 进行测试。 二、基本思想 决策树是一个类似于流程图的树结构,其中每个内部节点表示在一个属性变量上的测试,每个分支代表一个测试输出,而每个叶子节点代表类或分布,树的最顶层节点是根节点。 当需要预测一个未知样本的分类值时,基于决策树,沿着该树模型向下追溯,在树的每个节点将该样本的变量值和该节点变量的阈值进行比较,然后选取合适的分支,从而完成分类。决策树能够很容易地转换成分类规则,成为业务规则归纳系统的基础。 决策树算法是非常常用的分类算法,是逼近离散目标函数的方法,学习得到的函数以决策树的形式表示。其基本思路是不断选取产生信息增益最大的属性来划分样例集和,构造决策树。信息增益定义为结点与其子结点的信息熵之差。信息熵是香农提出的,用于描述信息不纯度(不稳定性),其计算公式是 Pi为子集合中不同性(而二元分类即正样例和负样例)的样例的比例。这样信息收益可以定义为样本按照某属性划分时造成熵减少的期望,可以区分训练样本中正负样本的能力,其计算公式是

基于决策树的鸢尾花分类

科技论坛 0 引言 图像识别技术,要运用目前流行的机器学习算法,而目前流行的机器学习算法就有十几种,比如支持向量机、神经网络、决策树。机器学习是人工智能发展的重要一部分,它涉及的学科很多,应用也相当广泛,它通过分析、研究、设计让计算机学习知识,从而提高完善自身的性能。但是神经网络学习的速度较慢,传统的支持向量机则不能解决分类多的问题。 本文针对鸢尾花的特征类别少以及种类少的特点,采用决策树算法对课题进行展开,对比与其他人利用支持向量机、神经元网络模型来进行研究,该系统具有模型简单、便于理解、计算方便、消耗资源少的优点。 1 决策树模型和学习 本文采用决策树算法对鸢尾花进行分类,先建立决策树的模型并进行学习训练,在决策树的训练过程中采用是信息论的知识进行特征选择,对选定的特征采用分支的处理,然后再对分支过后的数据集如此反复的递归生成决策树,在一颗决策树生成完后对决策树进行剪枝,以减小决策树的拟合度,来达到一个对鸢尾花较高的分类准确率。 要对鸢尾花进行分类首先需要大量的鸢尾花数据集作为本文的实验数据,本文采用的数据集是来自加州大学欧文分校UCI数据库中的鸢尾花数据集。该数据集中鸢尾花的属性有四个,分别是花萼长度、花萼宽度、花瓣长度和花瓣宽度,鸢尾花的类别则有三种,分别是Iris Setosa,Iris Versicolour,Iris Virginica,用简写Se、Ve和Vi表示这三种花,具体数据如图1所示。 ■1.1 信息论 美贝尔电话研究所的数学家香农是信息论的创始人,1948年香农发表了《通讯的数学理论》,成为信息论诞生的标志。信息论的诞生对信息技术革命以及科学技术的发展起到重要作用。信息论中有两个概念信息增益及信息增益率,都是用于衡量原始数据集在按照某一属性特征分裂之后整体信息量的变化值。这样,本文就可以通过这种指标寻找出最优的划分属性,数据集在经过划分之后,节点的“纯度”越来越高,这里的纯度值得是花朵的类别,当某一节点中花朵全为一类时,该节点已经达到最纯状态,无需再进行划分, 反之继续划分。 图1 鸢尾花数据集 1.1.1 信息熵 信息熵用于描述信源的不确定性。即发生每个事件都有不确定性,为了使不确定性降低,我们需要引入一些相关的信息进行学习,引入信息越多,那么得到的准确率越高,信息熵越高,信源越不稳定。例如一束鸢尾花,它可能是Se,可能是Vi,也有可能是Ve,我们利用数据库中的各种鸢尾花的花瓣长度、花瓣宽度、花萼长度和花萼宽度来预测鸢尾花的类别,引入的鸢尾花种类越多,信息熵就越高。 样本集合D的信息熵Ent(D)以下面的公式进行计算,其中集合里第k类样本所占的比例是k p,k的取值范围是从1到y,y值得是总共有y类样本,通过式(1)可以计算得到原始样本集的信息熵。 ()21 Ent D y k k k p log p = =?∑(1) 1.1.2 信息增益 信息增益即在一个条件下,信源不确定性减少的程度。信息增益用于度量节点的纯度。信息增益对可取值数目较多的属性有所偏好。在鸢尾花数据集的D集合中,属性a取到某一取值情况的概率乘该取值情况的信息熵得到的值记为v D,其中V指的是该属性a可以取值的个数,则属性a 的信息增益为: ()()() 1 Gain D,a Ent D V v v v D Ent D D = =?∑(2) 基于决策树的鸢尾花分类 徐彧铧 (浙江省衢州第二中学,浙江衢州,324000) 摘要:针对传统手工分类的不足,满足不了人们对图片分类的需求,本文利用机器学习算法中的决策树算法进行研究。通过模型简单、便于理解、计算方便、消耗资源少的决策树算法模型,并利用现成的数据库,运用图像识别技术对鸢尾花进行分类,以求方便简单快速地识别出不同类别的鸢尾花。在此过程中,学习到图像识别的一些基本分类操作,为我们实现更复杂的模型提供了帮助。 关键词:决策树信息论特征选择;C4.5算法;CART算法 www ele169 com | 99

相关主题
文本预览
相关文档 最新文档