当前位置:文档之家› (完整版)圆周运动典型例题及答案详解

(完整版)圆周运动典型例题及答案详解

(完整版)圆周运动典型例题及答案详解
(完整版)圆周运动典型例题及答案详解

“匀速圆周运动”的典型例题

【例1】如图所示的传动装置中,A、B两轮同轴转动.A、B、C三轮的半径大小的关系是R A=R C=2R B.当皮带不打滑时,三轮的角速度之比、三轮边缘的线速度大小之比、三轮边缘的向心加速度大小之比分别为多少?

【例2】一圆盘可绕一通过圆盘中心O且垂直于盘面的竖直轴转动.在圆盘上放置一木块,当圆盘匀速转动时,木块随圆盘一起运动(见图),那么

[ ]

A.木块受到圆盘对它的摩擦力,方向背离圆盘中心

B.木块受到圆盘对它的摩擦力,方向指向圆盘中心

C.因为木块随圆盘一起运动,所以木块受到圆盘对它的摩擦力,方向与木块的运动方向相同

D.因为摩擦力总是阻碍物体运动,所以木块所受圆盘对它的摩擦力的方向与木块的运动方向相反

E.因为二者是相对静止的,圆盘与木块之间无摩擦力

【例3】在一个水平转台上放有A、B、C三个物体,它们跟台面间的摩擦因数相同.A的质量为2m,B、C各为m.A、B离转轴均为r,C为2r.则

[ ]

A.若A、B、C三物体随转台一起转动未发生滑动,A、C的向心加速度比B大

B.若A、B、C三物体随转台一起转动未发生滑动,B所受的静摩擦力最小

C.当转台转速增加时,C最先发生滑动

D.当转台转速继续增加时,A比B先滑动

【例4】如图,光滑的水平桌面上钉有两枚铁钉A、B,相距L0=0.1m.长L=1m 的柔软细线一端拴在A上,另一端拴住一个质量为500g的小球.小球的初始位置在AB连线上A的一侧.把细线拉直,给小球以2m/s的垂直细线方向的水平速度,使它做圆周运动.由于钉子B的存在,使细线逐步缠在A、B上.

若细线能承受的最大张力T m=7N,则从开始运动到细线断裂历时多长?

【说明】圆周运动的显著特点是它的周期性.通过对运动规律的研究,用递推法则写出解答结果的通式(一般表达式)有很重要的意义.对本题,还应该熟练掌握数列求和方法.

如果题中的细线始终不会断裂,有兴趣的同学还可计算一下,从小球开始运动到细线完全绕在A、B两钉子上,共需多少时间?

【例5】如图(a)所示,在光滑的圆锥顶用长为L的细线悬挂一质量为m的小球,圆锥顶角为2θ,当圆锥和球一起以角速度ω匀速转动时,球压紧锥面.此时绳的张力是多少?若要小球离开锥面,则小球的角速度至少为多少?

【说明】本题是属于二维的牛顿第二定律问题,解题时,一般可以物体为坐标原点,建立xoy直角坐标,然后沿x轴和y轴两个方向,列出牛顿第二定律的方程,其中一个方程是向心力和向心加速度的关系,最后解联立方程即可。

【例6】杂技节目中的“水流星”表演,用一根绳子两端各拴一个盛水的杯子,演员抡起杯子在竖直面上做圆周运动,在最高点杯口朝下,但水不会流下,如下图所示,这是为什么?

【例7】如下图所示,自行车和人的总质量为M,在一水平地面运动.若自行车以速度v转过半径为R的弯道.(1)求自行车的倾角应多大?(2)自行车所受的地面的摩擦力多大?

【例8】用长L1=4m和长为L2=3m的两根细线,拴一质量m=2kg的小球A,L1和L2的另两端点分别系在一竖直杆的O1,O2处,已知O1O2=5m如下图(g=10m·s-2)

(1)当竖直杆以的角速度ω匀速转动时,O2A线刚好伸直且不受拉力.求此时角速度ω1.

(2)当O1A线所受力为100N时,求此时的角速度ω2.

【说明】向心力是一种效果力,在本题中O2A受力与否决定于物体A做圆周运动时角速度的临界值.在这种题目中找好临界值是关键.

[例9]一辆实验小车可沿水平地面(图中纸面)上的长直轨道匀速向右运动,有一台发出细光束的激光器装在小转台M上,到轨道的距离MN为d=10m,如图所示。转台匀速转动,使激光束在水平面内扫描,扫描一周的时间为T=60s,光束转动方向如图箭头所示。当光束与MN的夹角为45°时,光束正好射到小车上,如果再经过△t=2.5s光束又射到小车上,则小车的速度为多少?(结果保留二位数字)

[例10]图所示为测量子弹速度的装置,一根水平转轴的端部焊接一个半径为R的薄壁圆筒(图为其横截面),转轴的转速是每分钟n转,一颗子弹沿圆筒的水平直径由A点射入圆筒,在圆筒转过不到半圆时从B点穿出,假设子弹穿壁时速度大小不变,并在飞行中保持水平方向,测量出A、B两点间的孤长为L,写出子弹速度的表达式。

[说明]

解题过程中,物理过程示意图,是常用的方法,它可以使抽象的物理过程具体形象化,便于从图中找出各物理量之间关系,以帮助建立物理方程,最后求出答案。

典型例题答案

【例1】【分析】皮带不打滑,表示轮子边缘在某段时间内转过的弧长总是跟皮带移动的距离相等,也就是说,用皮带直接相连的两轮边缘各处的线速度大小相等.根据这个特点,结合线速度、角速度、向心加速度的公式即可得解.

【解】由于皮带不打滑,因此,B、C两轮边缘线速度大小相等,设v B=v C=v.由v=ωR得两轮角速度大小的关系

ωB∶ωC=R C∶R B=2∶1.

因A、B两轮同轴转动,角速度相等,即ωA=ωB,所以A、B、C三轮角速度之比

ωA∶ωB∶ωC=2∶2∶1.

因A轮边缘的线速度

v A=ωA R A=2ωB R B=2v B,

所以A、B、C三轮边缘线速度之比

v A∶v B∶v C=2∶1∶1.

根据向心加速度公式a=ω2R,所以A、B、C三轮边缘向心加速度之比

=8∶4∶2=4∶2∶1.

【例2】【分析】由于木块随圆盘一起作匀速圆周运动,时刻存在着一个沿半径指向圆心的向心加速度,因此,它必然会受到一个沿半径指向中心、产生向心加速度的力——向心力.

以木块为研究对象进行受力分析:在竖直方向受到重力和盘面的支持力,它处于力平衡状态.在盘面方向,可能受到的力只有来自盘面的摩擦力(静摩擦力),木块正是依靠盘面的摩擦力作为向心力使它随圆盘一起匀速转动.所以,这个摩擦力的方向必沿半径指向中心

【答】B.

【说明】常有些同学认为,静摩擦力的方向与物体间相对滑动的趋势方向相反,木块随圆盘一起匀速转动时,时时有沿切线方向飞出的趋势,因此静摩擦力的方向应与木块的这种运动趋势方向相反,似乎应该选D.这是一种极普遍的错误认识,其原因是忘记了研究运动时所相对的参照系.通常说做圆运动的物体有沿线速度方向飞出的趋势,是指以地球为参照系而言的.而静摩擦力的方向总是跟相对运动趋势的方向相反,应该是指相互接触的两个相关物体来说的,即是对盘面参照系.也就是说,对站在盘上跟盘一起转动的观察者,木块时刻有沿半径向外滑出的趋势,所以,木块受到盘面的摩擦力方向应该沿半径指向中心

【例3】【分析】A、B、C三物体随转台一起转动时,它们的角速度都等于转台的角速度,设为ω.根据向心加速度的公式a n=ω2r,已知r A=r B<r C,所以三物体向心加速度的大小关系为a A=a B<a C.

A错.

三物体随转台一起转动时,由转台的静摩擦力提供向心力,即f =F n=mω2r,所以三物体受到的静摩擦力的大小分别为

f A=m Aω2r A=2mω2r,

f B=m Bω2r B=mω2r,

f C=m cω2rc =mω2·2r=2mω2r.

即物体B所受静摩擦力最小.B正确.

由于转台对物体的静摩擦力有一个最大值,设相互间摩擦因数为μ,静摩擦力的最大值可认为是f m=μmg.由f m=F n,即

得不发生滑动的最大角速度为

即离转台中心越远的物体,使它不发生滑动时转台的最大角速度越小.

由于r C>r A=r B,所以当转台的转速逐渐增加时,物体C最先发生滑动.转速继续增加时,物体A、B将同时发生滑动.C正确,D错.

【答】B、C.

【例4】【分析】小球转动时,由于细线逐步绕在A、B两钉上,小球的转动半径会逐渐变小,但小球转动的线速度大小保持不变.

【解】小球交替地绕A、B作匀速圆周运动,因线速度不变,随着转动半径的减小,线中张力T不断增大,每转半圈的时间t不断减小.

令T n=T m=7N,得n=8,所以经历的时间为

【例5】【分析】小球在水平面内做匀速圆周运动,由绳子的张力和锥面的支持力两者的合力提供向心力,在竖直方向则合外力为零。由此根据牛顿第二定律列方程,即可求得解答。

阿斯

【解】对小球进行受力分析如图(b)所示,根据牛顿第二定律,向心方向上有

T·sinθ-N·cosθ=mω2r ①

y方向上应有

N·sinθ+T·cosθ-G=0 ②

∵r = L·sinθ③

由①、②、③式可得

T = mgcosθ+mω2Lsinθ

当小球刚好离开锥面时N=0(临界条件)

则有Tsinθ=mω2r ④

T·cosθ-G=0 ⑤

【例6】【分析】水和杯子一起在竖直面内做圆周运动,需要提供一个向心力。当水杯在最低点时,水做圆周运动的向心力由杯底的支持力提供,当水杯在最高点时,水做圆周运动的向心力由重力和杯底的压力共同提供。只要做圆周运动的速度足够快,所需向心力足够大,水杯在最高点时,水就不会流下来。

【解】以杯中之水为研究对象,进行受力分析,根据牛顿第二定律

【例7】【分析】骑车拐弯时不摔倒必须将身体向内侧倾斜.从图中可知,当骑车人拐弯而使身体偏离竖直方向α角时,从而使静摩擦力f与地面支持力N的合力Q通过共同的质心O,合力Q与重力的合力F是维持自行车作匀速圆周运动所需要的向心力.

【解】(1)由图可知,向心力F=Mgtgα,由牛顿第二定律有:

(2)由图可知,向心力F可看做合力Q在水平方向的分力,而Q又是水平方向的静摩擦力f和支持力N的合力,所以静摩擦力f在数值上就等于向心力F,即

f = Mgtgα

【例8】【分析】小球做圆周运动所需的向心力由两条细线的拉力提供,当小球的运动速度不同时,所受拉力就不同。

【解】(1)当O2A线刚伸直而不受力时,受力如图所示。

则F1cosθ=mg ①

F1sinθ=mRω12②

由几何知识知

∴R=2.4m θ=37°

代入式③ω1=1.77(rad/s)

(2)当O1A受力为100N时,由(1)式

F1cosθ=100×0.8=80(N)>mg

由此知O2A受拉力F2。则对A受力分析得

F1cosθ-F2sinθ-mg=0 ④

F1sinθ+F2cosθ= mRω22 ⑤

由式(4)(5)得

【例9】[分析]激光器扫描一周的时间T=60s,那么光束在△t=2.5s时间内转过的角度

激光束在竖直平面内的匀速转动,但在水平方向上光点的扫描速度是变化的,这个速度是沿经向方向速度与沿切向方向速度的合速度。

当小车正向N点接近时,在△t内光束与MN的夹角由45°变为30°

随着θ减小,v扫在减小若45°时,光照在小车上,此时v扫>v车时,此后光点将照到车前但v扫↓v车不变,当v车>v扫时,它们的距离在缩小。

[解]在△t内,光束转过角度

如图,有两种可能

(1)光束照射小车时,小车正在接近N点,△t内光束与MN的夹角从45°变为30°,小车走过L1,速度应为

由图可知

L1=d(tg45°- tg30°)③

由②、③两式并代入数值,得

v1=1.7m/s ④

(2)光束照到小车时,小车正在远离N点,△t内光束与MN的夹角从45°为60°,小车走过L2速度为

由图可知

L2=d(tg60°- tg45°) ⑥

由⑤、⑥两代并代入数值,得

v2=2.9m/s

[说明]光点在水平方向的扫描速度是变化的,它是沿经向速度和切向速度的合速度。很多人把它理解为切向速度的分速度,即

则扫描速度不变化,就谈不上与小车的“追赶”了,将不可能发生经过一段时间,再照射小车的问题。这一点速度的合成与分解应理解正确。

另外光束与MN的夹角为45°时,光束正好射到小车上有两种情况(见分析)要考虑周全,不要丢解。

【例10】[分析]子弹穿过筒壁,子弹与筒壁发生相互作用,既影响筒的转速,又影响子弹飞行速度,因为这种影响忽略不讲,所以测出的子弹速度是近似值,子弹穿过圆筒的时间,可从圆筒的转速和转过的角度求了,为了求出子弹从A点穿入到从B点穿出时圆筒转过的角度,必须作出子弹穿筒过程中圆筒转动情景的图示,与孤长L对应的圆心角为θ,θ=L/R(rad)

解:圆筒转过的角为(π-θ),圆筒的角速为ω,子弹速度为v,穿筒的时间为t,则:π-θ=ωt,ω=2πn/60rad/s

高中物理必修二匀速圆周运动经典试题

1.一辆32.010m =?kg 的汽车在水平公路上行驶,经过半径50r =m 的弯路时,如果车速72v =km/h ,这辆汽车会不会发生测滑?已知轮胎与路面间的最大静摩擦力4max 1.410F =?N . 2.如图所示,在匀速转动的圆盘上沿半径放着用细绳连接着的质量都为1kg 的两物体,A 离转轴20cm ,B 离转轴30cm ,物体与圆盘间的最大静摩擦力都等于重力的0.4倍,求: (1)A .B 两物体同时滑动时,圆盘应有的最小转速是多少? (2)此时,如用火烧断细绳,A .B 物体如何运动? 3.一根长0.625m l =的细绳,一端拴一质量0.4kg m =的小球,使其在竖直平面内绕绳的另一端做圆周运动,求: (1)小球通过最高点时的最小速度? (2)若小球以速度 3.0m/s v =通过周围最高点时,绳对小球的拉力多大?若此时绳突然断了,小球将如何运动. 4.在光滑水平转台上开有一小孔O ,一根轻绳穿过小孔,一端拴一质量为0.1kg 的物体A ,另一端连接质量为1kg 的物体B ,如图所示,已知O 与A 物间的距离为25cm ,开始时B 物与水平地面接触,设转台旋转过程中小物体A 始终随它一起运动.问: (1)当转台以角速度4rad/s ω=旋转时,物B 对地面的压力多大? (2)要使物B 开始脱离地面,则转台旋的角速度至少为多大?

h 5.(14分)质量m=1kg 的小球在长为L=1m 的细绳作用下在竖直平面内做圆周运动,细绳能承受的最大拉力T max =46N,转轴离地h=6m ,g=10m/s 2。 试求:(1)在若要想恰好通过最高点,则此时的速度为多大? (2)在某次运动中在最低点细绳恰好被拉断则此时的速度v=? (3)绳断后小球做平抛运动,如图所示,求落地水平距离x ? 6.汽车与路面的动摩擦因数为μ,公路某转弯处半径为R (设最大静摩擦力等于滑动摩擦力),求: (1)若路面水平,要使汽车转弯不发生侧滑,汽车速度不能超过多少? (2)若汽车在外侧高、内侧低的倾斜弯道上拐弯,弯道倾角为θ,则汽车完全不靠摩擦力转弯 的速率是多少? 7.质量0.5kg 的杯子里盛有1kg 的水,用绳子系住水杯在竖直平面内做“水流星”表演,转动 半径为1m ,水杯通过最高点的速度为4m/s ,g 取10 m/s 2,求: (1) 在最高点时,绳的拉力?(2) 在最高点时水对杯底的压力?(3) 为使小杯经过最高点时水不流出, 在最高点时最小速率是多少? 8.质量为m 的火车在轨道上行驶,火车内外轨连线与水平面的夹角为α=37°,如图,弯道半径R =30 m ,g=10m/s 2.求:(1)当火车的速度为V 1=10 m /s 时,火车轮缘挤压外轨还是内轨? (2)当火车的速度为V 2 =20 m /s 时,火车轮缘挤压外轨还是内轨?

机械简谐运动的两种典型模型

● 基础知识落实 ● 1、弹簧振子: 2.单摆 (1).在一条不可伸长、不计质量的细线下端系一质点所形成的装置.单摆是实际摆的理想化物理模型. (2).单摆做简谐运动的回复力 单摆做简谐运动的回复力是由重力mg 沿圆弧切线的分力F =mgsin θ提供(不是摆球所受的合外力),θ为细线与竖直方向的夹角,叫偏角.当θ很小时,圆弧可以近似地看成直线,分力F 可以近似地看做沿这条直线作用,这时可以证明F =- t mg x =-kx .可见θ很小时,单摆的振动是 简谐运动 . (3).单摆的周期公式 专题二 简谐运动的两种典型模型

①单摆的等时性:在振幅很小时,单摆的周期与单摆的 振幅 无关,单摆的这种性质叫单摆的等时性,是 伽利略 首先发现的. ②单摆的周期公式 π2 g l T =,由此式可知T ∝g 1,T 与 振幅 及 摆球质量 无关. (4).单摆的应用 ①计时器:利用单摆的等时性制成计时仪器,如摆钟等,由单摆的周期公式知道调节单摆摆长即可调节钟表快慢. ②测定重力加速度:由g l T π 2=变形得g =2 2 π4T l ,只要测出单摆的摆长和振动周期,就可以求 出当地的重力加速度. ③秒摆的周期秒 摆长大约M (5).单摆的能量 摆长为l ,摆球质量为m ,最大偏角为θ,选最低点为重力势能零点,则摆动过程中的总机械能为: E =mgl (1-cos θ) ,在最低点的速度为v = ) cos 1(2 θ-gl . 知识点一、弹簧振子: 1、定义:一根轻质弹簧一端固定,另一端系一质量为m 的小球就构成一弹簧振子。 2、回复力:水平方向振动的弹簧振子,其回复力由弹簧弹力提供;竖直方向振动的弹簧振子,其回复力由重力和弹簧弹力的合力提供。 3、弹簧振子的周期:k m T π 2= ① 除受迫振动外,振动周期由振动系统本身的性质决定。

物理圆周运动经典习题(含详细答案).

圆周运动练习题 1. 在观看双人花样滑冰表演时,观众有时会看到女运动员被男运动员拉着离开冰面在空中做水平方向 的匀速圆周运动.已知通过目测估计拉住女运动员的男运动员的手臂和水平冰面的夹角约为45°,重力 加速度为g =10 m/s 2,若已知女运动员的体重为35 k g ,据此可估算该女运动员( ) A .受到的拉力约为350 2 N B .受到的拉力约为350 N C .向心加速度约为10 m/s 2 D .向心加速度约为10 2 m/s 2 图4-2-11 2.中央电视台《今日说法》栏目最近报道了一起发生在湖南长沙某区湘府路上的离奇交通事故. 家住公路拐弯处的张先生和李先生家在三个月内连续遭遇了七次大卡车侧翻在自家门口的场面,第八 次有辆卡车冲进李先生家,造成三死一伤和房屋严重损毁的血腥惨案.经公安部门和交通部门协力调 查,画出的现场示意图如图4-2-12所示.交警根据图示作出以下判断,你认为正确的是( ) A .由图可知汽车在拐弯时发生侧翻是因为车做离心运动 B .由图可知汽车在拐弯时发生侧翻是因为车做向心运动 C .公路在设计上可能内(东)高外(西)低 D .公路在设计上可能外(西)高内(东)低 图4-2-12 3. (2010·湖北部分重点中学联考)如图4-2-13所示,质量为m 的小球置于正方体的光滑盒子中,盒子的 边长略大于球的直径.某同学拿着该盒子在竖直平面内做半径为R 的匀速圆周运动,已知重力加速度 为g ,空气阻力不计,要使在最高点时盒子与小球之间恰好无作用力,则( ) A .该盒子做匀速圆周运动的周期一定小于2πR g B .该盒子做匀速圆周运动的周期一定等于2πR g C .盒子在最低点时盒子与小球之间的作用力大小可能小于2mg D .盒子在最低点时盒子与小球之间的作用力大小可能大于2mg 图4-2-13 4.图示所示, 为某一皮带传动装置.主动轮的半径为r 1,从动轮的半径为r 2.已知主动轮做顺时针转动,转 速为n ,转动过程中皮带不打滑.下列说法正确的是( ) A .从动轮做顺时针转动 B .从动轮做逆时针转动 C .从动轮的转速为r 1r 2n D .从动轮的转速为r 2r 1 n

圆周运动典型例题学生版(含答案)

圆周运动专题总结 知识点一、匀速圆周运动 1、定义:质点沿圆周运动,如果在相等的时间里通过的 相等,这种运动就叫做匀速周圆运 动。 2、运动性质:匀速圆周运动是 运动,而不是匀加速运动。因为线速度方向时刻在变化,向 心加速度方向,时刻沿半径指向圆心,时刻变化 3、特征:匀速圆周运动中,角速度ω、周期T 、转速n 、速率、动能都是恒定不变的;而线速度 v 、加速度a 、合外力、动量是不断变化的。 4、受力提特点: 。 随堂练习题 1.关于匀速圆周运动,下列说法正确的是( ) A .匀速圆周运动是匀速运动 B .匀速圆周运动是匀变速曲线运动 C .物体做匀速圆周运动是变加速曲线运动 D .做匀速圆周运动的物体必处于平衡状态 2.关于向心力的说法正确的是( ) A .物体由于作圆周运动而产生一个向心力 B .向心力不改变做匀速圆周运动物体的速度大小 C .做匀速圆周运动的物体的向心力即为其所受合外力 D .做匀速圆周运动的物体的向心力是个恒力 3.在光滑的水平桌面上一根细绳拉着一个小球在作匀速圆周运动,关于该运动下列物理量中 不变的是(A )速度 (B )动能 (C )加速度 (D )向心力 知识点二、描述圆周运动的物理量 ⒈线速度 ⑴物理意义:线速度用来描述物体在圆弧上运动的快慢程度。 ⑵定义:圆周运动的物体通过的弧长l ?与所用时间t ?的比值,描述圆周运动的“线速度”, 其本质就是“瞬时速度”。 ⑶方向:沿圆周上该点的 方向 ⑷大小:=v = ⒉角速度 ⑴物理意义:角速度反映了物体绕圆心转动的快慢。 ⑵定义:做圆周运动的物体,围绕圆心转过的角度θ?与所用时间t ?的比值 ⑶大小:=ω = ,单位: (s rad ) ⒊线速度与角速度关系: ⒋周期和转速: ⑴物理意义:都是用来描述圆周运动转动快慢的。 ⑵周期T :表示的是物体沿圆周运动一周所需要的时间,单位是秒;转速n (也叫频率f ): 表示的是物体在单位时间内转过的圈数。n 的单位是 (s r )或 (m in r )f 的单位:

高中物理《机械波》典型题(精品含答案)

《机械波》典型题 1.(多选)某同学漂浮在海面上,虽然水面波正平稳地以1.8 m/s 的速率向着海滩传播,但他并不向海滩靠近.该同学发现从第1个波峰到第10个波峰通过身下的时间间隔为15 s .下列说法正确的是( ) A .水面波是一种机械波 B .该水面波的频率为6 Hz C .该水面波的波长为3 m D .水面波没有将该同学推向岸边,是因为波传播时能量不会传递出去 E .水面波没有将该同学推向岸边,是因为波传播时振动的质点并不随波迁移 2.(多选)一振动周期为T 、振幅为A 、位于x =0点的波源从平衡位置沿y 轴正向开始做简谐运动.该波源产生的一维简谐横波沿x 轴正向传播,波速为v ,传播过程中无能量损失.一段时间后,该振动传播至某质点P ,关于质点P 振动的说法正确的是( ) A .振幅一定为A B .周期一定为T C .速度的最大值一定为v D .开始振动的方向沿y 轴向上或向下取决于它离波源的距离 E .若P 点与波源距离s =v T ,则质点P 的位移与波源的相同 3.(多选)一列简谐横波从左向右以v =2 m/s 的速度传播,某时刻的波形图如图所示,下列说法正确的是( ) A .A 质点再经过一个周期将传播到D 点 B .B 点正在向上运动 C .B 点再经过18T 回到平衡位置

D.该波的周期T=0.05 s E.C点再经过3 4T将到达波峰的位置 4.(多选)图甲为一列简谐横波在t=2 s时的波形图,图乙为媒质中平衡位置在x=1.5 m处的质点的振动图象,P是平衡位置为x=2 m的质点,下列说法中正确的是( ) A.波速为0.5 m/s B.波的传播方向向右 C.0~2 s时间内,P运动的路程为8 cm D.0~2 s时间内,P向y轴正方向运动 E.当t=7 s时,P恰好回到平衡位置 5.(多选)一列简谐横波沿x轴正方向传播,在x=12 m处的质点的振动图线如图甲所示,在x=18 m处的质点的振动图线如图乙所示,下列说法正确的是( ) A.该波的周期为12 s B.x=12 m处的质点在平衡位置向上振动时,x=18 m处的质点在波峰 C.在0~4 s内x=12 m处和x=18 m处的质点通过的路程均为6 cm D.该波的波长可能为8 m E.该波的传播速度可能为2 m/s 6.(多选)从O点发出的甲、乙两列简谐横波沿x轴正方向传播,某时刻两列波分别形成的波形如图所示,P点在甲波最大位移处,Q点在乙波最大位移处,

简谐运动典型例题

简谐运动典型例题 一、振动图像 1.一质点做简谐运动时,其振动图象如图。由图可知,在t 1和t 2 时刻,质点运动的( ) A .位移相同 B .回复力相同 C .速度相同 D .加速度相同 2.质点在水平方向上做简谐运动。如图,是质点在s 40-内的振动图象,下列正 确的是( ) A .再过1s ,该质点的位移为正的最大值 B .再过2s ,该质点的瞬时速度为零 C .再过3s ,该质点的加速度方向竖直向上 D .再过4s ,该质点加速度最大 3.某振子做简谐运动的表达式为x =2sin(2πt +π 6)cm 则该振子振动的振幅和周期为( ) A .2cm 1s B .2cm 2πs C .1cm π 6 s D .以上全错 4、如图示简谐振动图像,从t=1.5s 开始再经过四分之一周期振动质点通过路程为( ) A 、等于2 cm B 、小于2 cm C 、大于2 cm D 、条件不足,无法确定 4题 5题 6题 5、沿竖直方向上下振动的简谐运动的质点P 在0—4s 时间内的振动图像,正确的是(向上为正)( ) A 、质点在t=1s 时刻速度方向向上 B 、质点在t=2s 时刻速度为零 C 、质点在t=3s 时刻加速度方向向下 D 、质点在t=4s 时刻回复力为零 6、如图示简谐振动图像,可知在时刻t 1和时刻t 2物体运动的( ) A 、位移相同 B 、回复力相同 C 、速度相同 D 、加速度相同 二、简谐运动的回复力和和周期 1.物体做机械振动的回复力( ) A .是区别于重力、弹力、摩擦力的另一种力 B .必定是物体所受的合力 C .可以是物体受力中的一个力 D .可以是物体所受力中的一个力的分力 2.如图所示,对做简谐运动的弹簧振子m 的受力分析,正确的是( ) A .重力、支持力、弹簧的弹力 B .重力、支持力、弹簧的弹力、回复力 C .重力、支持力、回复力、摩擦力 D .重力、支持力、摩擦力 3.一根劲度系数为k 的轻弹簧,上端固定,下端接一质量为m 的物体,让其上下振动,物体偏离平衡位置的最大位移为A ,当物体运动到最高点时,其回复力大小为( ) -

高中物理圆周运动典型例题解析1

圆周运动的实例分析典型例题解析 【例1】用细绳拴着质量为m 的小球,使小球在竖直平面内作圆周运动,则下列说法中,正确的是[ ] A .小球过最高点时,绳子中张力可以为零 B .小球过最高点时的最小速度为零 C .小球刚好能过最高点时的速度是Rg D .小球过最高点时,绳子对小球的作用力可以与球所受的重力方向相 反 解析:像该题中的小球、沿竖直圆环内侧作圆周运动的物体等没有支承物的物体作圆周运动,通过最高点时有下列几种情况: (1)m g m v /R v 2当=,即=时,物体的重力恰好提供向心力,向心Rg 加速度恰好等于重力加速度,物体恰能过最高点继续沿圆周运动.这是能通过最高点的临界条件; (2)m g m v /R v 2当>,即<时,物体不能通过最高点而偏离圆周Rg 轨道,作抛体运动; (3)m g m v /R v m g 2当<,即>时,物体能通过最高点,这时有Rg +F =mv 2/R ,其中F 为绳子的拉力或环对物体的压力.而值得一提的是:细绳对由它拴住的、作匀速圆周运动的物体只可能产生拉力,而不可能产生支撑力,因而小球过最高点时,细绳对小球的作用力不会与重力方向相反. 所以,正确选项为A 、C . 点拨:这是一道竖直平面内的变速率圆周运动问题.当小球经越圆周最高点或最低点时,其重力和绳子拉力的合力提供向心力;当小球经越圆周的其它位置时,其重力和绳子拉力的沿半径方向的分力(法向分力)提供向心力. 【问题讨论】该题中,把拴小球的绳子换成细杆,则问题讨论的结果就大相径庭了.有支承物的小球在竖直平面内作圆周运动,过最高点时:

(1)v (2)v (3)v 当=时,支承物对小球既没有拉力,也没有支撑力; 当>时,支承物对小球有指向圆心的拉力作用; 当<时,支撑物对小球有背离圆心的支撑力作用; Rg Rg Rg (4)当v =0时,支承物对小球的支撑力等于小球的重力mg ,这是有支承物的物体在竖直平面内作圆周运动,能经越最高点的临界条件. 【例2】如图38-1所示的水平转盘可绕竖直轴OO ′旋转,盘上的水平杆上穿着两个质量相等的小球A 和B .现将A 和B 分别置于距轴r 和2r 处,并用不可伸长的轻绳相连.已知两球与杆之间的最大静摩擦力都是f m .试分析角速度ω从零逐渐增大,两球对轴保持相对静止过程中,A 、B 两球的受力情况如何变化? 解析:由于ω从零开始逐渐增大,当ω较小时,A 和B 均只靠自身静摩擦力提供向心力. A 球:m ω2r =f A ; B 球:m ω22r =f B . 随ω增大,静摩擦力不断增大,直至ω=ω1时将有f B =f m ,即m ω=,ω=.即从ω开始ω继续增加,绳上张力将出现.12m 112r f T f m r m /2 A 球:m ω2r =f A +T ;B 球:m ω22r =f m +T . 由B 球可知:当角速度ω增至ω′时,绳上张力将增加△T ,△T =m ·2r(ω′2-ω2).对于A 球应有m ·r(ω′2-ω2)=△f A +△T =△f A +m ·2r(ω′2-ω2). 可见△f A <0,即随ω的增大,A 球所受摩擦力将不断减小,直至f A =0

简谐运动典型例题精析

简谐运动?典型例题精析 [ 例题1] 一弹簧振子在一条直线上做简谐运动,第一次先后经过M、N 两点时速度v(v工0)相同,那么,下列说法正确的是 A.振子在M N两点受回复力相同 B.振子在M N两点对平衡位置的位移相同 C.振子在M N两点加速度大小相等 D.从M点到N点,振子先做匀加速运动,后做匀减速运动 [ 思路点拨] 建立弹簧振子模型如图9-1 所示.由题意知,振子第一 次先后经过M N两点时速度v相同,那么,可以在振子运动路径上确定M N两点,M N 两点应关于平衡位置O对称,且由M运动到N,振子是从左侧释放开始运动的(若M点定在O点右侧,则振子是从右侧释放的).建立起这样的物理模型,这时问题就明朗化了. [ 解题过程] 因位移速度加速度和回复力都是矢量,它们要相同必须大小相等、方向相同.M N两点关于O点对称,振子回复力应大小相等、方向相反,振子位移也是大小相等,方向相反.由此可知,A B选项错误.振

子在M N 两点的加速度虽然方向相反,但大小相等,故 C 选项正确?振子由 M RO 速度越来越大,但加速度越来越小,振子做加速运动,但不是匀加速运 动.振子由O HN 速度越来越小,但加速度越来越大,振子做减速运动,但不 是匀减速运动,故D 选项错误.由以上分析可知,该题的正确答案为 C. [小结](1)认真审题,抓住关键词语.本题的关键是抓住“第一次先 后经过M N 两点时速度v 相同”. (2) 要注意简谐运动的周期性和对称性,由此判定振子可能的路径,从而 确定各物理量及其变化情况. (3) 要重视将物理问题模型化,画出物理过程的草图,这有利于问题的解 决. [例题2] 一质点在平衡位置0附近做简谐运动,从它经过平衡位置起 开始计时,经0.13 s 质点第一次通过M 点,再经0.1s 第二次通过M 点,则 质点振动周期的可能值为多大? [思路点拨] 将物理过程模型化,画出具体的图景如图 9-2所示.设 质点从平衡位置O 向右运动到M 点,那么质点从O 到M 运动时间为0.13 s , 再由M 经最右端A 返回M 经历时间为0.1 s ;如图9-3所示. 另有一种可能就是M 点在0点左方,如图9-4所示,质点由0点经最右 方A 点后團^-3

高中物理总复习简谐运动

简谐运动 一、本周内容: 1、简谐运动 2、振幅、周期和频率 二、本周重点: 1、简谐运动过程中的位移、回复力、加速度和速度的变化规律 2、简谐运动中回复力的特点 3、简谐运动的振幅、周期和频率的概念 4、关于振幅、周期和频率的实际应用 二、知识点要点: 1、机械振动 (1)定义:物体在平衡位置附近所做的往复运动,叫做机械振动,简称振动。 (2)产生振动的条件: ①物体受到的阻力足够小 ②物体受到的回复力的作用 手施力使水平弹簧振子偏离平衡位置,感到振子受到一指向平衡位置的力,它总要使振子返回平衡位置,所以叫做回复力。回复力是根据力的作用效果命名的。回复力可以是弹力,也可以是其他的力,或几个力的合力,或某个力的分力。 (3)机械振动是一种普遍的运动形式,大至地壳振动,小至分子、原子的振动。 2、简谐运动 (1)定义:物体在跟位移的大小成正比,并且总指向平衡位置的回复力作用下的运动,叫简谐运动 (2)条件:物体做简谐运动的条件是F=-kx,即物体受到的回复力F跟位移大小成正比,方向跟位移方向相反。 (3)对F=-kx的理解:对一般的简谐运动,k是一个比例常数,不同的简谐运动,K值不同,k是由振动系统本身结构决定的物理量,在弹簧振子中,k是弹簧的劲度系数。 3、简谐运动的特点 (1)回复力:物体在往复运动期间,回复力的大小和方向均做周期性的变化,物体处在最大位移处时的回复力最大,物体处于平衡位置时的回复力最小(为零),物体经过平衡位置时,回复力的方向发生改变。 (2)加速度:由力与加速度的瞬时对应关系可知,回复力产生的加速度也是周期性变化的,且与回复力的变化步调相同。 (3)位移:物体做简谐运动时,它的位移(大小和方向)也是周期性变化的,为研究问题方便,选取平衡位置位移的起点,物体经平衡位置时位移的方向改变。 (4)速度:简谐运动是变加速运动,速度的变化也具有周期性(包括大小和方向),物体经平衡位置时的速度最大,物体在最大位移处的速度为零,且物体的速度方向改变。 4、振幅(A) (1)定义:振动物体离开平衡位置的最大距离,单位:m (2)作用:描述振动的强弱。 (3)振幅和位移的区别:对于一个给定的振动,振子的位移是时刻变化的,但振幅是不变的,位移是矢量,振幅是标量,它等于最大位移的大小。

圆周运动经典习题带详细答案

1. 在观看双人花样滑冰表演时,观众有时会看到女运动员被男运动员拉着离开冰面在空中做水平方向的匀速圆周运动.已知通过目测估计拉住女运动员的男运动员的手臂和水平冰面的夹角约为45°,重 力加速度为g =10 m/s 2 ,若已知女运动员的体重为35 k g ,据此可估算该女运动员( ) A .受到的拉力约为350 2 N B .受到的拉力约为350 N C .向心加速度约为10 m/s 2 D .向心加速度约为10 2 m/s 2 图4-2-11 2.中央电视台《今日说法》栏目最近报道了一起发生在某区湘府路上的离奇交通事故. 家住公路拐弯处的先生和先生家在三个月连续遭遇了七次大卡车侧翻在自家门口的场面,第八次有辆卡车冲进先生家,造成三死一伤和房屋严重损毁的血腥惨案.经公安部门和交通部门协力调查,画出的现场示意图如图4-2-12所示.交警根据图示作出以下判断,你认为正确的是( ) A .由图可知汽车在拐弯时发生侧翻是因为车做离心运动 B .由图可知汽车在拐弯时发生侧翻是因为车做向心运动 C .公路在设计上可能(东)高外(西)低 D .公路在设计上可能外(西)高(东)低 图4-2-12 3. (2010·部分重点中学联考)如图4-2-13所示,质量为m 的小球置于正方体的光滑盒子中,盒子的边长 略大于球的直径.某同学拿着该盒子在竖直平面做半径为R 的匀速圆周运动,已知重力加速度为g ,空气阻力不计,要使在最高点时盒子与小球之间恰好无作用力,则( ) A .该盒子做匀速圆周运动的周期一定小于2πR g B .该盒子做匀速圆周运动的周期一定等于2πR g C .盒子在最低点时盒子与小球之间的作用力大小可能小于2mg D .盒子在最低点时盒子与小球之间的作用力大小可能大于2mg 图4-2-13 4.图示所示, 为某一皮带传动装置.主动轮的半径为r 1,从动轮的半径为r 2.已知主动轮做顺时针转动,转 速为n ,转动过程中皮带不打滑.下列说确的是( ) A .从动轮做顺时针转动 B .从动轮做逆时针转动 C .从动轮的转速为r 1r 2n D .从动轮的转速为r 2 r 1 n

知识讲解 简谐运动及其图象

简谐运动及其图象 编稿:张金虎审稿:吴嘉峰 【学习目标】 1.知道什么是弹簧振子以及弹簧振子是理想化模型。 2.知道什么样的振动是简谐运动。 3.明确简谐运动图像的意义及表示方法。 4.知道什么是振动的振幅、周期和频率。 5.理解周期和频率的关系及固有周期、固有频率的意义。 6.知道简谐运动的图像是一条正弦或余弦曲线,明确图像的物理意义及图像信息。 7.能用公式描述简谐运动的特征。 【要点梳理】 要点一、机械振动 1.弹簧振子 弹簧振子是小球和弹簧所组成的系统,这是一种理想化模型.如图所示装置,如果球与杆之间的摩擦可以忽略,且弹簧的质量与小球的质量相比也可以忽略,则该装置为弹簧振子. 2.平衡位置 平衡位置是指物体所受回复力为零的位置. 3.振动 物体(或物体的一部分)在平衡位置附近所做的往复运动,叫做机械振动. 振动的特征是运动具有重复性. 要点诠释:振动的轨迹可以是直线也可以是曲线. 4.振动图像 (1)图像的建立:用横坐标表示振动物体运动的时间t,纵坐标表示振动物体运动过程中对平衡位置的位移x,建立坐标系,如图所示.

(2)图像意义:反映了振动物体相对于平衡位置的位移x 随时间t 变化的规律. (3)振动位移:通常以平衡位置为位移起点,所以振动位移的方向总是背离平衡位置的.如图所示,在x t -图像中,某时刻质点位置在t 轴上方,表示位移为正(如图中12t t 、时刻),某时刻质点位置在t 轴下方,表示位移为负(如图中34t t 、时刻). (4)速度:跟运动学中的含义相同,在所建立的坐标轴(也称为“一维坐标系”)上,速度的正负表示振子运动方向与坐标轴的正方向相同或相反. 如图所示,在x 坐标轴上,设O 点为平衡位置。A B 、为位移最大处,则在O 点速度最大,在A B 、两点速度为零. 在前面的x t -图像中,14t t 、时刻速度为正,23t t 、时刻速度为负. 要点二、简谐运动 1.简谐运动 如果质点的位移与时间的关系遵从正弦函数规律,即它的振动图像是一条正弦曲线,这样的振动叫做简谐运动. 简谐运动是物体偏离平衡位置的位移随时间做正弦或余弦规律而变化的运动,它是一种非匀变速运动. 物体在跟位移的大小成正比,方向总是指向平衡位置的力的作用下的振动,叫做简谐运动. 简谐运动是最简单、最基本的振动. 2.实际物体看做理想振子的条件 (1)弹簧的质量比小球的质量小得多,可以认为质量集中于振子(小球);(2)当与弹簧相接的小球体积足够小时,可以认为小球是一个质点;(3)当水平杆足够光滑时,可以忽略弹簧以及小球与水平杆之间的摩擦力;(4)小球从平衡位置拉开的位移在弹簧的弹性限度内. 3.理解简谐运动的对称性 如图所示,物体在A 与B 间运动,O 点为平衡位置,C 和D 两点关于O 点对称,则有: (1)时间的对称: 4 OB BO OA AO T t t t t ==== , OD DO OC CD t t t t ===,

(完整版)高一物理必修2圆周运动复习知识点总结及经典例题详细剖析

匀速圆周运动专题 从现行高中知识体系来看,匀速圆周运动上承牛顿运动定律,下接万有引力,因此在高一物理中占据极其重要的地位,同时学好这一章还将为高二的带电粒子在磁场中的运动及高三复习中解决圆周运动的综合问题打下良好的基础。 (一)基础知识 1. 匀速圆周运动的基本概念和公式 (1)线速度大小,方向沿圆周的切线方向,时刻变化; (2)角速度,恒定不变量; (3)周期与频率; (4)向心力,总指向圆心,时刻变化,向心加速度,方向与向心力相同; (5)线速度与角速度的关系为,、、、的关系为 。所以在、、中若一个量确定,其余两个量也就确定了,而还和有关。 2. 质点做匀速圆周运动的条件 (1)具有一定的速度; (2)受到的合力(向心力)大小不变且方向始终与速度方向垂直。合力(向心力)与速度始终在一个确定不变的平面内且一定指向圆心。 3. 向心力有关说明 向心力是一种效果力。任何一个力或者几个力的合力,或者某一个力的某个分力,只要其效果是使物体做圆周运动的,都可以认为是向心力。做匀速圆周运动的物体,向心力就是

物体所受的合力,总是指向圆心;做变速圆周运动的物体,向心力只是物体所受合外力在沿着半径方向上的一个分力,合外力的另一个分力沿着圆周的切线,使速度大小改变,所以向心力不一定是物体所受的合外力。 (二)解决圆周运动问题的步骤 1. 确定研究对象; 2. 确定圆心、半径、向心加速度方向; 3. 进行受力分析,将各力分解到沿半径方向和垂直于半径方向; 4. 根据向心力公式,列牛顿第二定律方程求解。 基本规律:径向合外力提供向心力 (三)常见问题及处理要点 1. 皮带传动问题 例1:如图1所示,为一皮带传动装置,右轮的半径为r,a是它边缘上的一点,左侧是一轮轴,大轮的半径为4r,小轮的半径为2r,b点在小轮上,到小轮中心的距离为r,c点和d点分别位于小轮和大轮的边缘上,若在传动过程中,皮带不打滑,则() A. a点与b点的线速度大小相等 B. a点与b点的角速度大小相等 C. a点与c点的线速度大小相等 D. a点与d点的向心加速度大小相等 图1 解析:皮带不打滑,故a、c两点线速度相等,选C;c点、b点在同一轮轴上角速度相等,半径不同,由,b点与c点线速度不相等,故a与b线速度不等,A错;同样可判定a与c角速度不同,即a与b角速度不同,B错;设a点的线速度为,则a点向

圆周运动经典题型归纳

一、圆周运动基本物理量与传动装置 1共轴传动 例1.如图所示,一个圆环以竖直直径AB为轴匀速转动,则环上M、N两 点的角速度之比为_____________,周期之比为___________,线速度之比 为___________. 2皮带传动 例二.图示为某一皮带传动装置。主动轮的半径为r1,从动轮的半径为r2。已知主动轮做顺时针转动,转速为n,转动过程中皮带不打滑。下列说法正确的是 A.从动轮做顺时针转动 B.从动轮做逆时针转动 C.从动轮的转速为n D.从动轮的转速为n 3齿轮传动 例3如图所示,A、B两个齿轮的齿数分别是z1、z2,各自固定在 过O1、O2的轴上,其中过O1的轴与电动机相连接,此轴每分钟转 速为n1.求: (1)B齿轮的转速n2; (2)A、B两齿轮的半径之比; (3)在时间t内,A、B两齿轮转过的角度之比 4、混合题型 图所示的传动装置中,B、C两轮固定在一起绕同一轴转动,A、B两 轮用皮带传动,三轮半径关系是rA=rC=2rB;若皮带不打滑,则A、B、 C轮边缘的a、b、c三点的角速度之比ωa:ωb:ωc= ; 线速度之比va:vb:vc= 二、向心力来源 1、由重力、弹力或摩擦力中某一个力提供 例1:洗衣机的甩干桶竖直放置.桶的内径为20厘米,工作被甩的衣物 贴在桶壁上,衣物与桶壁的动摩擦因数为.若不使衣物滑落下去,甩干 桶的转速至少多大 2、在匀速转动的水平盘上,沿半径方向放着三个物体A,B,C,Ma=Mc=2Mb,他们与盘间的摩擦因数相等。他们到转轴的距离的关系为Ra<Rb<Rc,当转盘的转速逐渐增大时,哪个物体先开始滑动,相对盘向哪个方向滑 A. B先滑动,沿半径向外 B B先滑动,沿半径向内 C C先滑动,沿半径向外 D C先滑动,沿半径想内 3、一质量为的小球,用长的细线拴住在竖直面内作圆周运动,(1)当小球恰好能通过最高点时的速度为多少(2)当小球在最高点速度为4m/s时,细线的拉力是多少(取g=10m/s 2 ) 2、向心力由几个力的合力提供 (1)由重力和弹力的合力提供

简谐运动典型例题

一、振动图像 1.一质点做简谐运动时,其振动图象如图。由图可知,在t 1和t 2 时刻,质点运动的( ) A .位移相同 B .回复力相同 C .速度相同 D .加速度相同 2.质点在水平方向上做简谐运动。如图,是质点在内的振动图象,下列正确的是( ) A .再过1s ,该质点的位移为正的最大值 B .再过2s ,该质点的瞬时速度为零 C .再过3s ,该质点的加速度方向竖直向上 D .再过4s ,该质点加速度最大 3.某振子做简谐运动的表达式为x =2sin(2πt +π 6 )cm 则该振子振动的振幅和周期为 ( ) A .2cm 1s B .2cm 2πs C .1cm π 6 s D .以上全错 4、如图示简谐振动图像,从t=开始再经过四分之一周期振动质点通过路程为( ) A 、等于2 cm B 、小于2 cm C 、大于2 cm D 、条件不足,无法确定 4题 5题 6题 5、沿竖直方向上下振动的简谐运动的质点P 在0—4s 时间内的振动图像,正确的是(向上为正)( ) A 、质点在t=1s 时刻速度方向向上 B 、质点在t=2s 时刻速度为零 C 、质点在t=3s 时刻加速度方向向下 D 、质点在t=4s 时刻回复力为零 1 2 3 4 5 x/cm t/s 1 2 4 -2

6、如图示简谐振动图像,可知在时刻t 1和时刻t 2物体运动的( ) A 、位移相同 B 、回复力相同 C 、速度相同 D 、加速度相同 二、简谐运动的回复力和和周期 1.物体做机械振动的回复力( ) A .是区别于重力、弹力、摩擦力的另一种力 B .必定是物体所受的合力 C .可以是物体受力中的一个力 D .可以是物体所受力中的一个力的分力 2.如图所示,对做简谐运动的弹簧振子m 的受力分析,正确的是( ) A .重力、支持力、弹簧的弹力 B .重力、支持力、弹簧的弹力、回复力 C .重力、支持力、回复力、摩擦力 D .重力、支持力、摩擦力 3.一根劲度系数为k 的轻弹簧,上端固定,下端接一质量为m 的物体,让其上下振动,物体偏离平衡位置的最大位移为A ,当物体运动到最高点时,其回复力大小为( ) A .mg +k A B .mg -Ka C .kA D .kA -mg 4.公路上匀速行驶的货车受一扰动,车上货物随车厢底板上下振动但不脱离底板.一段时间内货物在竖直方向的振动可视为简谐运动,周期为T .取竖直向上为正方向,以某时刻作为计时起点,即t =0,其振动图象如图所示,则( ) A .t =14T 时,货物对车厢底板的压力最大 B .t =1 2T 时,货物对车厢底板的压力最小 C .t =34T 时,货物对车厢底板的压力最大 D .t =3 4T 时,货物对车厢底板的压力最小 5.弹簧振子的质量为,弹簧劲度系数为,在振子上放一质量为m 的木块,使两者一起振动,如图。木块的回复力是振子对木块的摩擦力,也满足,是弹簧的伸长(或压缩)量,那么为( ) A . B . C . D . 6、一个弹簧振子,第一次被压缩x 后释放做自由振动,周期为T 1,第二次被压缩2x 后释放做自由振动,周期为T 2,则两次振动周期之比T 1∶T 2为 ( ) A .1∶1 B .1∶2 C .2∶1 D .1∶4

(完整版)圆周运动经典习题

1.物体做匀速圆周运动的条件是[] A.物体有一定的初速度,且受到一个始终和初速度垂直的恒力作用 B.物体有一定的初速度,且受到一个大小不变,方向变化的力的作用 C.物体有一定的初速度,且受到一个方向始终指向圆心的力的作用 D.物体有一定的初速度,且受到一个大小不变方向始终跟速度垂直的力的作用 2.小球m用细线通过光滑水平板上的光滑小孔与砝码M相连,且正在做匀速圆周运动。如果适当减少砝码个数,让小球再做匀速圆周运动,则小球有关物理量的变化情况是 A.向心力变小 B.圆周半径变小 C.角速度变小 D.线速度变小 3.物体质量m,在水平面内做匀速圆周运动,半径R,线速度V,向心力F,在增大垂直于线速度的力F量值后,物体的轨道 A.将向圆周内偏移 B.将向圆周外偏移 C.线速度增大,保持原来的运动轨道 D.线速度减小,保持原来的运动轨道 4.关于洗衣机脱水桶的有关问题,下列说法中正确的是 ( ) A.如果衣服上的水太多脱水桶就不能进行脱水 B.脱水桶工作时衣服上的水做离心运动,衣服并不做离心运动 C.脱水桶工作时桶内的衣服也会做离心运动。所以脱水桶停止工作时衣服紧贴在桶壁上 D.白色衣服染上红墨水时,也可以通过脱水桶将红墨水去掉使衣服恢复白色 5,下列关于骑自行车的有关说法中,正确的是 ( ) A.骑自行车运动时,不会发生离心运动 B.自行车轮胎的破裂是离心运动产生的结果 C.骑自行车拐弯时摔倒一定都是离心运动产生的 D.骑自行车拐弯时速率不能太快,否则会产生离心运动向圆心的外侧跌倒 6.火车转弯做圆周运动,如果外轨和内轨一样高,火车能匀速通过弯道做圆周运动,下列说法中正确的是[] A.火车通过弯道向心力的来源是外轨的水平弹力,所以外轨容易磨损 B.火车通过弯道向心力的来源是内轨的水平弹力,所以内轨容易磨损 C.火车通过弯道向心力的来源是火车的重力,所以内外轨道均不磨损 D.以上三种说法都是错误的 7.一圆盘可以绕其竖直轴在水平面内转动,圆盘半径为R,甲、乙两物体的质量分别为M与m(M>m),它们与圆盘之间的最大静摩擦力均为正压力的μ倍,两物体用一根长为l(l<R)的轻绳连在一起,如图3所示,若将甲物体放在转轴的位置上,甲、乙之间接线刚好沿半径方向拉直,要使两物体与转盘之间不发生相对滑动,则转盘旋转的角速度最大值不得超过[] 8.甲、乙两球做匀速圆周运动,向心加速度a随半径r变化的关系图像如图6所示,由图像可知: A. 甲球运动时,角速度大小为2 rad/s B. 乙球运动时,线速度大小为6m/s C. 甲球运动时,线速度大小不变 D. 乙球运动时,角速度大小不变 9.如图11,轻杆的一端与小球相连接,轻杆另一端过O 平面内做圆周运动。当小球达到最高点A、最低点B时,杆对 小球的作用力可能是: A. 在A处为推力,B处为推力 B. 在A处为拉力,B处为拉力 a r 图6 8 2 甲 乙 /m·s-2 /m B O O A 11 A

简谐运动教学难点的分析与突破

简谐运动教学难点的分析与突破 江苏省溧阳中学彭建武 简谐运动是一种变加速运动,对高一学生来说比前面学过的各种运动要复杂,是高中物理教学的难点之一。本文就这一教学难点形成的原因进行分析,并运用建构主义理论的某些观点,结合自己的教学实践,提出一些突破教学难点的思路和方法,供同行参考斧正。 1、难点形成原因分析 1.1从教学内容本身看,简谐运动是一种较复杂的变加速运动,而且要综合分析各种物理量之间的变化关系,学生难以形成比较深刻的理解,客观上有一定的难度。 1.2从教材结构看,教材处理的流程为:例举实例指出什么是机械振动,然后由弹簧振子引出简谐运动。其中对一次全振动的表述方法是由实例来说明,而不是用精辟的物理语言来下定义。这样学生的理解只能是肤浅的,对学生的继续学习带来困难。 1.3从学生的认识结构和能力水平来看,学生在此之前对位移的定义有很深的印象,他们对振子的位移是指偏离平衡位置的位移很难接受,这种思维定势绝不是通过几次讲解就能逆转的;学生对复杂运动的分析能力也是一个薄弱环节,给新授内容的理解和掌握造成了不可忽视的困难。 1.4从教学方法上看,有些教师在教学时省去了实验或很草率的做一下,缺少启发性,学生对规律缺乏正确的、深刻的理解,结果一旦遇到新的问题、新的情境,就无从下手,学生的能力得不到培养和发展,在主观上增加了教学难度。 2、突破难点的理论依据和教学思路 建构主义理论认为,学习过程不是学习者被动的接受知识,而是积极的建构知识的过程;在学校里,学习不是教师向学生传递知识的过程,而是学生建构自己的知识和能力的过程。只有充分发挥学生的主体作用,让学生积极参与教与学的整个活动,才能以其已有的知识和经验去过滤和解释新知识、新信息,并对新知识构建起自己的正确理解。因此教师在教学设计时,首先要考虑的不是将课本上的知识灌输给学生,而是为学生建构知识创造良好的环境。基于这种指导思想,我在进行教学设计时,首先通过实验,由此提出一些问题让学生去观察、思考,激发学生探索新知识的兴趣和动机,为突破难点提供良好的情境。其次,充分考虑学生的认知特点,激励学生积极思维,尽可能让学生去思考,教师只在适当的时候再做点拨、启发、整理归纳。这样,既有利于学生主动构建新知识,又利于学生创新精神的培养。第三,针对教学内容和物理学科之特点,借助多媒体,形象直观的展示物理过程及各物理量之间的变化关系,让学生对所学内有深层次的理解。第四加强对学生的学法指导,在学生对简谐运动有较深刻理解之后,通过典型问题的解释分析,达到巩固提搞的目的,这也是分解教学难点的具体方法。 3、突破难点的教学设计 3.1创造学生主动建构的情景 让学生观察下列实验:单摆的摆动、竖直弹簧振子的振动、水平弹簧振子的振动,且用标志物指示它们的中心位置。敏锐的学生会发现它们有共同的特征:以某位置为中心位置作往复运动,这样不但激起学生学习的动机,又把本节课的第一个学习任务——什么是机械振动,置于一个有利于

高考复习——《机械振动》典型例题复习

九、机械振动 一、知识网络 二、画龙点睛 概念 1、机械振动 (1)平衡位置:物体振动时的中心位置,振动物体未开始振动时相对于参考系静止的位置,或沿振动方向所受合力等于零时所处的位置叫平衡位置。 (2)机械振动:物体在平衡位置附近所做的往复运动,叫做机械振动,通常简称为振动。 (3)振动特点:振动是一种往复运动,具有周期性和重复性 2、简谐运动 (1)弹簧振子:一个轻质弹簧联接一个质点,弹簧的另一端固定,就构成了一个弹簧振子。 (2)振动形成的原因 ①回复力:振动物体受到的总能使振动物体回到平衡位置,且始终指向平衡位置的力,叫回复力。 振动物体的平衡位置也可说成是振动物体振动时受到的回复力为零的位置。

②形成原因:振子离开平衡位置后,回复力的作用使振了回到平衡位置,振子的惯性使振子离开平衡位置;系统的阻力足够小。 (4)简谐运动的力学特征 ①简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫做简谐运动。 ②动力学特征:回复力F与位移x之间的关系为 F=-kx 式中F为回复力,x为偏离平衡位置的位移,k是常数。简谐运动的动力学特征是判断物体是否为简谐运动的依据。 ③简谐运动的运动学特征 a=-k m x 加速度的大小与振动物体相对平衡位置的位移成正比,方向始终与位移方向相反,总指向平衡位置。 简谐运动加速度的大小和方向都在变化,是一种变加速运动。简谐运动的运动学特征也可用来判断物体是否为简谐运动。 例题:试证明在竖直方向的弹簧振子做的也是简谐振运动。 证明:设O为振子的平衡位置,向下方向为正方向,此时弹簧形变量为x0,根据胡克定律得 x0=mg/k 当振子向下偏离平衡位置x时,回复力为 F=mg-k(x+x0) 则F=-kx 所以此振动为简谐运动。 3、振幅、周期和频率 ⑴振幅 ①物理意义:振幅是描述振动强弱的物理量。 ②定义:振动物体离开平衡位置的最大距离,叫做振动的振幅。 ③单位:在国际单位制中,振幅的单位是米(m)。

圆周运动典型基础练习题大全

1.甲、乙两物体都做匀速圆周运动,其质量之比为1∶2 ,转动半径之比为1∶2 ,在相等时间里甲转过60°,乙转过45°,则它们所受外力的合力之比为() A.1∶4 B.2∶3 C.4∶9 D.9∶16 2.如图所示,有一质量为M的大圆环,半径为R,被一轻杆固定后悬挂在O点,有两 个质量为m的小环(可视为质点),同时从大环两侧的对称位置由静止滑下。两小环同 时滑到大环底部时,速度都为v,则此时大环对轻杆的拉力大小为() A.(2m+2M)g B.Mg-2mv2/R C.2m(g+v2/R)+Mg D.2m(v2/R-g)+Mg 3.下列各种运动中,属于匀变速运动的有() A.匀速直线运动B.匀速圆周运动C.平抛运动 D.竖直上抛运动 4.关于匀速圆周运动的向心力,下列说法正确的是( ) A.向心力是指向圆心方向的合力,是根据力的作用效果命名的 B.向心力可以是多个力的合力,也可以是其中一个力或一个力的分力 C.对稳定的圆周运动,向心力是一个恒力 D.向心力的效果是改变质点的线速度大小 5.一物体在水平面内沿半径R = 20cm的圆形轨道做匀速圆周运动,线速度v=0.2m/s , 那么,它的向心加速度为______m/s2,它的周期为______s。 6.在一段半径为R=15m的圆孤形水平弯道上,已知弯道路面对汽车轮胎的最大静摩擦力等于车重的μ =0.70倍,则汽车拐弯时的最大速度是m/ s 7.在如图所示的圆锥摆中,已知绳子长度为L ,绳子转动过程中与竖直方向 的夹角为θ ,试求小球做圆周运动的周期。 8如图所示,质量m=1kg的小球用细线拴住,线长l=0.5m,细线所 受拉力达到F=18N时就会被拉断。当小球从图示位置释放后摆到悬 点的正下方时,细线恰好被拉断。若此时小球距水平地面的高度h=5m, 重力加速度g=10m/s2,求小球落地处到地面上P点的距离?求落地速 度?(P点在悬点的正下方) 9如图所示,半径R= 0.4m的光滑半圆轨道与粗糙的水平面相切于A点,质量为m= 1kg的小物体(可视为质点)在水平拉力F的作用下,从C点运动到A点, 物体从A点进入半圆轨道的同时撤去外力F,物体沿半圆轨道通 过最高点B后作平抛运动,正好落在C点,已知AC = 2m,F = 15N,g取10m/s2,试求:物体在B点时的速度以及此时半圆 轨道对物体的弹力? 20.如图所示,半径为R,内径很小的光滑半圆管竖直放置,两个质 量均为m的小球A、B以不同速率进入管内,A通过最高点C

相关主题
文本预览
相关文档 最新文档