当前位置:文档之家› 几种常用磁性器件中磁芯的选用及设计

几种常用磁性器件中磁芯的选用及设计

几种常用磁性器件中磁芯的选用及设计
几种常用磁性器件中磁芯的选用及设计

几种常用磁性器件中磁芯的选用及设计

开关电源中使用的磁性器件较多,其中常用的软磁器件有:作为开关电源核心器件的主变压器(高频功率变压器)、共模扼流圈、高频磁放大器、滤波阻流圈、尖峰信号抑制器等。不同的器件对材料的性能要求各不相同,如表所示为各种不同器件对磁性材料的性能要求。

(一)、高频功率变压器

变压器铁芯的大小取决于输出功率和温升等。变压器的设计公式如下:

P=KfNBSI×10-6T=hcPc+h W P W

其中,P为电功率;K为与波形有关的系数;f为频率;N为匝数;S为铁芯面积;B为工作磁感;I为电流;T为温升;P c为铁损;P W为铜损;h c和h W为由实验确定的系数。

由以上公式可以看出:高的工作磁感B可以得到大的输出功率或减少体积重量。但B值的增加受到材料的Bs值的限制。而频率f可以提高几个数量级,从而有可能使体积重量显著减小。而低的铁芯损耗可以降低温升,温升反过来又影响使用频率和工作磁感的选取。一般来说,开关电源对材料的主要要求是:尽量低的高频损耗、足够高的饱和磁感、高的磁导率、足够高的居里温度和好的温度稳定性,有些用途要求较高的矩形比,对应力等不敏感、稳定性好,价格低。单端式变压器因为铁芯工作在磁滞回线的第一象限,对材料磁性的要求有别于前述主变压器。它实际上是一只单端脉冲变压器,因而要求具有大的B=Bm-Br,即磁感

Bm和剩磁Br之差要大;同时要求高的脉冲磁导率。特别是对于单端反激式开关主变压器,或称储能变压器,要考虑储能要求。

线圈储能的多少取决于两个因素:一个是材料的工作磁感Bm值或电感量L,另一个是工作磁场Hm或工作电流I,储能W=1/2LI2。这就要求材料有足够高的Bs值和合适的磁导率,常为宽恒导磁材料。对于工作在±Bm之间的变压器来说,要求其磁滞回线的面积,特别是在高频下的回线面积要小,同时为降低空载损耗、减小励磁电流,应有高磁导率,最合适的为封闭式环形铁芯,其磁滞回线见图所示,这种铁芯用于双端或全桥式工作状态的器件中。

通常,金属晶态材料要降低高频下的铁损是不容易的,而对于非晶合金来说,它们由于不存在磁晶各向异性、金属夹杂物和晶界等,此外它不存在长程有序的原子排列,其电阻率比一般的晶态合金高2-3倍,加之快冷方法一次形成厚度15-30微米的非晶薄带,特别适用于高频功率输出变压器。已广泛应用于逆变弧焊电源、单端脉冲变压器、高频加热电源、不停电电源、功率变压器、通讯电源、开关电源变压器和高能加速器等铁芯,在频率20-50kHz、功率50kW以下,是变压器最佳磁芯材料。

近年来发展起来的新型逆变弧焊电源单端脉冲变压器,具有高频大功率的特点,因此要

求变压器铁芯材料具有低的高频损耗、高的饱和磁感Bs和低的Br以获得大的工作磁感B,使焊机体积和重量减小。常用的用于高频弧焊电源的铁芯材料为铁氧体,虽然由于其电阻率高而具有低的高频损耗,但其温度稳定性较差,工作磁感较低,变压器体积和重量较大,已不能满足新型弧焊机的要求。采用纳米晶环形铁芯后,由于其具有高的Bs 值(Bs>1.2T),高的ΔB 值(ΔB>0.7T),很高的脉冲磁导率和低的损耗,频率可达100kHz. 可使铁芯的体积和重量大为减小。近年来逆变焊机已应用纳米晶铁芯达几万只,用户反映用纳米晶变压器铁芯再配以非晶高频电感制成的焊机,不仅体积小、重量轻、便于携带,而且电弧稳定、飞溅小、动态特性好、效率高及可靠性高。这种环形纳米晶铁芯还可用于中高频加热电源、脉冲变压器、不停电电源、功率变压器、开关电源变压器和高能加速器等装置中。可根据开关电源的频率选用磁芯材料。

环形纳米晶铁芯具有很多优点,但它也有绕线困难的不利因素。为了在匝数较多时绕线方便,可选用高频大功率C 型非晶纳米晶铁芯。采用低应力粘结剂固化及新的切割工艺制成的非晶纳米晶合金C 型铁芯的性能明显优于硅钢C 型铁芯。目前这种铁芯已批量用于逆变焊机和切割机等。逆变焊机主变压器铁芯和电抗器铁芯系列有: 120A、160A、200A、250A、315A、400A、500A、630A 系列。

(二)、脉冲变压器铁芯

脉冲变压器是用来传输脉冲的变压器。当一系列脉冲持续时间为td (μs)、脉冲幅值电压

为Um (V)的单极性脉冲电压加到匝数为N 的脉冲变压器绕组上时,在每一个脉冲结束时,铁芯中的磁感应强度增量ΔB (T)为:ΔB = Um td / NSc × 10-2 其中Sc为铁芯的有效截面积(cm2)。即磁感应强度增量ΔB 与脉冲电压的面积(伏秒乘积)成正比。对输出单向脉冲时,ΔB=Bm-Br , 如果在脉冲变压器铁芯上加去磁绕组时,ΔB = Bm + Br 。在脉冲状态下,由动态脉冲磁滞回线的ΔB 与相应的ΔHp 之比为脉冲磁导率μp。理想的脉冲波形是指矩形

脉冲波,由于电路的参数影响,实际的脉冲波形与矩形脉冲有所差异,经常会发生畸变。比如脉冲前沿的上升时间tr 与脉冲变压器的漏电感Ls、绕组和结构零件导致的分布电容Cs 成比例,脉冲顶降λ 与励磁电感Lm成反比,另外涡流损耗因素也会影响输出的脉冲波形。

脉冲变压器的漏电感Ls = 4βπN21 lm / h

脉冲变压器的初级励磁电感Lm = 4μπp Sc N2 / l ×10-9

涡流损耗Pe = Um d2td lF / 12 N21 Scρ

β为与绕组结构型式有关的系数,lm为绕组线圈的平均匝长,h 为绕组线圈的宽度,N1为初级绕组匝数,l为铁芯的平均磁路长度,Sc为铁芯的截面积,μp为铁芯的脉冲磁导率,ρ 为铁芯材料的电阻率,d为铁芯材料的厚度,F为脉冲重复频率。

从以上公式可以看出,在给定的匝数和铁芯截面积时,脉冲宽度愈大,要求铁芯材料的磁感应强度的变化量ΔB 也越大;在脉冲宽度给定时,提高铁芯材料的磁感应强度变化量ΔB,可以大大减少脉冲变压器铁芯的截面积和磁化绕组的匝数,即可缩小脉冲变压器的体积。要减小脉冲波形前沿的失真,应尽量减小脉冲变压器的漏电感和分布电容,为此需使脉冲变压器的绕组匝数尽可能的少,这就要求使用具有较高脉冲磁导率的材料。为减小顶降,要尽可能的提高初级励磁电感量Lm,这就要求铁芯材料具有较高的脉冲磁导率μp。为减小涡流损耗,应选用电阻率高、厚度尽量薄的软磁带材作为铁芯材料,尤其是对重复频率高、脉冲宽度大的脉冲变压器更是如此。

脉冲变压器对铁芯材料的要求为:

①高饱和磁感应强度Bs 值;

②高的脉冲磁导率,能用较小的铁芯尺寸获得足够大的励磁电感;

③大功率单极性脉冲变压器要求铁芯具有大的磁感应强度增量ΔB,使用低剩磁感应材

料;当采用附加直流偏磁时,要求铁芯具有高矩形比,小矫顽力Hc。

④小功率脉冲变压器要求铁芯的起始脉冲磁导率高;

⑤损耗小。

铁氧体磁芯的电阻率高、频率范围宽、成本低,在小功率脉冲变压器中应用较多,但其ΔB 和μp 均较低,温度稳定性差,一般用于对顶降和后沿要求不高的场合。

(三). 电感器磁芯

铁芯电感器是一种基本元件,在电路中电感器对于电流的变化具有阻抗的作用, 在电子设备中应用极为广泛。对电感器的主要要求有以下几点:

①在一定温度下长期工作时,电感器的电感量随时间的变化率应保持最小;

②在给定工作温度变化范围内,电感量的温度系数应保持在容许限度之内;

③电感器的电损耗和磁损耗低;

④非线性歧变小;

⑤价格低,体积小。

电感元件与电感量L、品质因素Q、铁芯重量W、绕线的直流电阻R 有着密切的关系。

电感L 抗拒交流电流的能力用感抗值ZL来表示: ZL =2πfL , 频率f 越高,感抗值ZL 越大。

电感L 与铁芯的关系为: L =4N2μ SK /D × 10-9 , K 为铁芯的填充系数,S 为铁芯的截面积,D 为铁芯的平均直径,μ为铁芯的磁导率,N为绕组匝数。

电感中的磁能密度为: dw=μHm2 / 8π

电感铁芯的品质因素为: Q=ωL /R = 8πN2fμS /RD × 10-9

在铁芯体积一定的情况下,要获得储能大的铁芯,应选恒导磁范围大的材料,即Hm 大的材料;要获得高品质因素的铁芯,应选导磁率μ大的材料;要缩小铁芯体积和重量,应选Hm大、μ大的材料。

电感器最常用的有电源滤波扼流圈和交流扼流圈(包括电感线圈)。电源滤波扼流圈用于平滑整流后的直流成分,减小其波纹电压,以得到平稳的直流电。滤波器一般都是在交直流叠加的状态下工作。利用电感元件对交流电的抵抗作用使交流电压大部分降落在电感上。要求电感器在很大的直流磁场范围内具有较大的恒电感量,以及较小的直流电压降。

交流扼流圈用于交流回路中,作为平衡、镇流、限流和滤波等感性元件来使用。交流扼流圈工作于交流状态,无直流磁化,铁芯中磁感应强度的确定取决于负载电流。

电感线圈多数用于高频电路中,如滤波器用电感线圈、振荡回路电感线圈、陷波器线圈、高频扼流圈、匹配线圈、噪音滤波线圈等。多数工作于交流状态,铁芯以铁氧体磁芯使用最多。

适用于电感铁芯的材料有多种:铁氧体、铁粉芯、坡莫合金粉芯、FeSiAl 粉芯、硅钢、非晶合金等。非晶扼流圈是用非晶带材制成的现代化的器件。用铁基非晶制成的铁芯与铁粉芯、MPP 或硅钢片铁芯相比,可以具有较小的器件尺寸和低的温升。铁基非晶合金制成的输出扼流圈铁芯的直流偏磁特性与Mn-Zn铁氧体铁芯特性的比较示于图。设定电感值为同一值,而且横坐标以铁氧体为基准,电感值减少一半时的偏磁电流规定为1。非晶扼流圈铁芯直至很高的电流值仍显示出恒定的电感值,清楚的表示出饱和磁通密度之差。同样也可反映出铁芯的尺寸。对于相同电气规格的扼流圈来说,可以做到非晶合金的体积为铁氧体的一半。

扼流圈用铁芯须具有高饱和磁通密度,而且如果考虑到实际环境,高温时仍必须保持高饱和磁通密度。非晶扼流圈铁芯的饱和磁通密度的温度特性与铁氧体铁芯的比较示于图所示。可以看出,非晶扼流圈铁芯因其居里温度高,直到150℃的温度范围内,饱和磁通密度的减小级小,温度特性良好。

硅钢片(厚0.05mm)也用于作为输出扼流圈的高饱和磁通密度材料。表示出了用非晶扼流圈组装的开关频率为20kHz、100kHz、250kHz的开关电源,在加上10A 的直流输出负载的条件下的电源效率和铁芯的温升,并与硅钢片扼流圈作了比较。非晶扼流圈与硅钢片扼流圈相比,电源效率提高1.5-6.5%;铁芯的温升降低20-30℃。在高频条件下,这一差异尤其明显。由此可见,非晶扼流圈可以解决铁氧体和硅钢的技术难点,适用于开关电源的高频化要求的输出扼流圈的位置

综上所述,非晶合金作为输出扼流圈铁芯具有如下特点:

A.减小器件尺寸:铁基非晶合金的饱和磁感为 1.5T 左右,对于在给定电流下所要求的电

感,

能大幅度减小尺寸。

B.容许采用高密度的线路:非晶扼流圈铁芯的单一气隙结构将限制漏磁通,可以供较好密度的电路板使用。

C.降低温升:非晶扼流圈铁芯所产生的热低于类似工作条件下的粉芯所产生的热。

D. 优异的直流偏压特性:非晶扼流圈铁芯的饱和直流偏压水平比铁粉芯或铁氧体铁芯高。

(四). 共模噪声用非晶扼流圈

共模电感要求对磁芯材料具有高初始磁导率μ0、低损耗的特点,常用共模电感磁芯材料

有铁氧体、坡莫合金、纳米晶合金。

纳米晶合金共模电感的特点:

A.用较少匝数可产生高的电感

B.低的分流(端间)电容

C.高的自共振频率(高于此频率,器件变成电容性的)

D.较小的尺寸

E.低的温升

F.高饱和磁感,可以处理高振幅噪声尖峰信号。

G. 高的工作温度(150°C)。

(五)、磁放大器铁芯

磁放大器的工作特点:铁芯上绕有交流绕组和直流绕组,同时受到交直流磁化,直流磁场起控制作用。利用铁芯的未饱和和饱和磁导率间的巨大差异来延迟电流得到一段预置时间。对磁放大器铁芯的性能要求具有矩形比高, Hc小, 损耗小的特点.一般来说,选择高矩形比坡莫合金铁芯时,其损耗大,只能在低于50kHz时使用;使用非晶可饱和铁芯可扩大到200kHz-300kHz。非晶可饱和铁芯具有铁芯损耗小、高频开关电源效率更高的特点。

非晶可饱和铁芯可应用于自激变换器型电源, 交叉调节式多输出电源, 高频铁磁共振型电源等。非晶铁芯高温老化实验表明铁芯温度保持在高温的开关电源的磁放大器中工作时,

在经历了2×104小时后几乎看不到电源参数的变化。一般来说,在铁芯温度为120℃条件下可以正常工作105小时以上,实用上具有很高的可靠性。

(六)、尖峰抑制器

开关电源最大的缺点就是容易产生躁声和干扰,这是开关电源的一个重要技术问题。开关电源的噪声主要是由开关功率管和开关整流二级管快速变化的高压切换和脉冲短路电流所引起。采用有效元件把它们限制到最小程度是抑制噪声的主要方法之一。可采用非线性饱和电感来抑制反向恢复电流尖峰。此时铁芯的工作状态是从-Bs到+Bs。如图所示,通过在续流二极管VD2 回路中串联非线性饱和电感L2,L2 能有效地抑制VD2 的电流下降速度,在电流反转之前消除二极管的存储电荷,从而减小反向恢复电流。L2 采用非线性饱和电感,能使电流下降时间显著减小。当二极管电流接近零时L2 才起作用,其下降速度被限制使反向恢复电流几乎减小到零。L2 的大小应根据二极管的反向恢复时间来选取。这种联接在开关电源续流二极管上的高磁导率与可饱和性的超小型电感元件,用来抑制开关电源开关时产生的峰值电流,被称为尖峰抑制器,其典型尺寸为R5×4×3、R10×6×5 等。

尖峰抑制器的性能特点:

A.初始和最大电感值很高,饱和后残余电感值非线性级不明显。串联接入回路后,当电流升高的一瞬间显示出高阻抗。作为所谓的瞬间阻抗元件使用。

B.适合于防止半导体回路中瞬态电流峰值信号、冲击激励电路和由此而伴生的噪声、以及防止半导体损坏。

C. 剩余电感极小,电路稳定时损耗很小。

D.与铁氧体制品的性能绝然不同。

E.只要避免磁饱和,可作为超小型、高电感的电感元件使用。

F.可作为低损耗的高性能可饱和铁芯用于控制和振荡。

尖峰抑制器要求铁芯材料具有较高的磁导率,以得到较大的电感量;高矩形比可使铁芯

饱和时,电感量应迅速下降到零;矫顽力小、高频损耗低, 否则铁芯放热不能正常工作。

大。采用廉价的铁基超微晶合金来制作尖峰抑制器铁芯。可抑制原始尖峰的70%,有效地改

善了开关电源线路的质量,相当于钴基非晶合金制作的尖峰抑制器铁芯性能,价格比钴基非晶低得多。

尖峰抑制器用途:

A. 减小电流尖峰信号。

B. 降低由于电流峰值信号引起的噪声。

C. 防止开关晶体管的损坏。

D. 减低开关晶体管的开关损耗。

E. 补偿二极管的恢复特性。

F. 防止高频脉冲电流冲击激励。

G.作为超小型的线路滤波器使用。H. 作为低输出功率的磁放大器使用。

结束语

非晶合金材料的出现给了各种磁控电源的设计者很大的冲击,使得开发新技术放到了首位。对于成本-性能要有优越性的市场来说,单有技术的先进性,还难以迅速普及。在这种情况下,尽管非晶合金铁芯的价格较高,但是由于可以实现电源的高频化,所以按照高频化-小型化-减少原材料的使用量-降低成本,可以产生良好的市场价值。另外随着非晶材料的迅速发展,非晶合金材料的价格不断降低,非晶合金铁芯的应用将越来越迅速和广泛。

磁芯材料知识

磁芯材料知識 摘要: 1.磁芯材料基本概念 ui值磁芯的初始透磁率,表征材料對于磁力線的容納與傳導能力。(ui=B/ H) AL值:電感系數. 表征CORE成品所具備的幫助線圈產生電感的能力.其數值等于單 1.磁芯材料 基本概念 ui值 磁芯的初始透磁率,表征材料對于磁力線的容納與傳導能力。(ui=B/H) AL值:電感系數. 表征CORE成品所具備的幫助線圈產生電感的能力.其數值等于單匝電感值,單位是nH/N2 . 磁滯回線:1﹕B-H CURVES (磁滯曲線) Bms:飽和磁束密度﹐表征材料在磁化過程中﹐磁束密度趨于飽和狀態的物理量﹐磁感應強度單位﹕特斯拉=104高斯﹒ 我們對磁芯材料慢慢外加電流,磁通密度(磁感應強度)也會跟著增加,當電流加至某一程度時我們會發現磁通密度會增加很慢,而且會趨近一漸進線,當趨近這一漸進線時這個時候的磁通密度我們就稱為的飽和磁通密度(Bms) Bms高:表明相同的磁通需要較小的橫截面積,磁性元件體積小

Brms:殘留磁束密度﹐也叫剩余磁束密度﹐表征材料在磁化過程結束以后﹐外磁場消失﹐而材料內部依然尚存少量磁力線的特性﹒ Hms:能夠使材料達到磁飽和狀態的最小外磁場強度﹐單位﹕A/m=104/2π奧斯特﹒ Hc:矯頑力﹐也叫保持力﹐是磁化過程結束以后﹐外磁場消失,因殘留 磁束密度而引起的剩余磁場強度﹒因為剩余磁場的方向与磁化方向一 致﹐所以﹐必須施加反向的外部磁場﹐才可以使殘留磁束密度減小到 零﹒ 從磁滯回線我們可以看出:剩磁大,表示磁芯ui值高。磁滯回線越傾斜,表示Hms越大磁芯的耐電流大。矯頑力越大,磁芯的功率損耗大。 鐵粉芯: 鐵粉芯是磁芯材料四氧化三鐵的通俗說法,主要成分是氧化鐵,價格比較低,飽和磁感應強度在1.4T左右:磁導率范圍從22-100,初始磁導率ui值隨頻率的變化穩定性好,直流電流疊加性能好,但高頻下消耗高。 該材料可以從涂裝顏色來辨認材質,例如:26材:黃色本體/白色底面,52材:綠色本體/藍色底面。該類材料價格便宜,如果感量不很高,該材料是首選。可以根據感量大小和IDC要求,選擇所需材料,8材耐電

设计模式优缺点及应用场景整理

看完发现有不太对的地方告诉我下 各设计模式优缺点总结 1桥接模式 优点:1 将实现予以解耦,让它和界面之间不再永久绑定 2 抽象和实现可以独立扩展,不会影响到对方 3 对于“具体的抽象类”所做的改变,不会影响到客户。 缺点:1. 增加了复杂度 用途:1. 适合使用在需要跨越多个平台的图形和窗口上 2. 当需要用不同的方式改变接口和实现时,你会发现桥接模式很好用。 具体实例:跨平台的软件,不同电视机和不同的遥控器。 2生成器模式(建造者模式) 优点: 1.将一个复杂对象的创建过程封装起来 2.允许对象通过多个步骤来创建,并且可以改变创建过程 3.向客户隐藏内部的表现 4.产品的实现可以被替换,因为客户只看到一个抽象的接口 缺点: 1.与工厂模式相比,采用生成器模式创建对象更复杂,其客户,需要更多的知识领域。用处: 用来创建组合结构。 典型例子: 想不起典型例子 还是扯那个画小人,构建小人分画头,画身体,画双手,黄双脚等不同构建部分,全部放在一起构建。 3职责链模式 优点: 1.将请求的发送者和接收者解耦 2.可以简化你的对象,因为它不需要知道链的结构 3.通过改变链内的成员或调动他们的次序,允许你动态地新增或删除责任 缺点: 1.并不保证请求一定会被执行,如果没有任何对象处理它的话,它可能会落到链尾端 之外 2.可能不容观察运行时的特征,有碍于除错。 用途:

经常被使用在窗口系统中,处理鼠标和键盘之类的事件。 当算法牵涉到一种链型运算,而且不希望处理过程中有过多的循环和条件选择语句,并且希望比较容易的扩充文法,可以采用职责链模式。 1)有多个对象处理请求,到底怎么处理在运行时确定。 2)希望在不明确指定接收者的情况下,向多个对象中的一个提交请求。 3)可处理一个请求的对象集合应该被动态指定。 典型例子: 一个请求发送给前台,前台表示我无权管理,将请求传递给财务部门,财务部门再……4蝇量模式(享元) 优点: 1.减少运行时对象实例的个数,节省内存 2.将许多“虚拟”对象的状态集中管理 缺点: 一旦你实现了它,单个的逻辑实现将无法拥有独立而不同的行为 用途: 当一个类有许多的实例,而这些实例能被同一方法控制的时候,我们就可以使用蝇量模式。(这话什么意思啊,HF书上原话,是这话有问题还是我理解能力有问题?!) 具体场景: 五子棋中的黑白子,改变坐标状态(x,y),但用同一个实体。 5解释器模式(这个模式我真没仔细看) 优点: 1.将每一个语法规则表示成一个类,方便事先语言。 2.因为语法由许多类表示,所以你可以轻易地改变或扩展此语言 3.通过在类结构中加入新的方法,可以在解释的同时增加新的行为,例如打印格式的梅花或者进行复制的程序验证。 缺点: 当语法规则数目太大时,这个模式可能会变得非常繁琐。 用途: 1.当你需要实现一个简答的语言时,使用解释器 2.当你有一个简单的语法,切简单比效率更重要时,使用解释器 3.可以处理脚本语言和编程语言 典型例子:正则表达式 6中介者模式 优点: 1.通过将对象彼此解耦,可以增加对象的复用性。 2.通过将控制逻辑集中,可以简化系统维护

电源磁芯尺寸功率参数.doc

电源磁芯尺寸功率参数

常用电源磁芯参数 MnZn 功率铁氧体 EPC 功率磁芯 特点:具有热阻小、衰耗小、功率大、工作频率宽、重量 轻、结构合理、易表面贴装、屏蔽效果好等优点,但散热 性能稍差。 用途:广泛应用于体积小而功率大且有屏蔽和电磁兼容要 求的变压器,如精密仪器、程控交换机模块电源、导航设 备等。 EPC型功率磁芯尺寸规格 磁芯型号Type 尺寸Dimensions(mm) A B C D Emin F G Hmin EPC10/8 10.20±0.20 4.05±0.30 3.40±0.20 5.00±0.20 7.60 2.65±0.20 1.90±0.20 5.30 EPC13/13 13.30±0.30 6.60±0.30 4.60±0.20 5.60±0.20 10.50 4.50±0.30 2.05±0.20 8.30 EPC17/17 17.60±0.50 8.55±0.30 6.00±0.30 7.70±0.30 14.30 6.05±0.30 2.80±0.20 11.50 EPC19/20 19.60±0.50 9.75±0.30 6.00±0.30 8.50±0.30 15.80 7.25±0.30 2.50±0.20 13.10 EPC25/25 25.10±0.50 12.50±0.30 8.00±0.30 11.50±0.30 20.65 9.00±0.30 4.00±0.20 17.00 EPC27/32 27.10±0.50 16.00±0.30 8.00±0.30 13.00±0.30 21.60 12.00±0.30 4.00±0.20 18.50 EPC30/35 30.10±0.50 17.50±0.30 8.00±0.30 15.00±0.30 23.60 13.00±0.30 4.00±0.20 19.50 EPC39/39 39.00±0.50 19.60±0.30 15.60±0.30 18.00±0.30 30.70 14.00±0.30 10.00±0.30 24.50 EPC42/44 42.40±1.00 22.00±0.30 15.00±0.40 17.00±0.30 33.50 16.00±0.30 7.40±0.30 26.50

磁芯材料知识

磁芯材料知識 摘要:1.磁芯材料基本概念ui值磁芯的初始透磁率,表征材料對于磁力線的容納與傳導能力。(ui=B/ H)AL值:電感系數. 表征CORE成品所具備的幫助線圈產生電感的能力.其數值等于單 1.磁芯材料 基本概念 ui值 磁芯的初始透磁率,表征材料對于磁力線的容納與傳導能力。(ui=B/ H) AL值:電感系數. 表征CORE成品所具備的幫助線圈產生電感的能力.其數值等于單匝電感值,單位是nH/N2 . 磁滯回線:1﹕B-H CURVES (磁滯曲線) Bms:飽和磁束密度﹐表征材料在磁化過程中﹐磁束密度趨于飽和狀態的物理量﹐磁感應強度單位﹕特斯拉=104高斯﹒ 我們對磁芯材料慢慢外加電流,磁通密度(磁感應強度)也會跟著增加,當電流加至某一程度時我們會發現磁通密度會增加很慢,而且會趨近一漸進線,當趨近這一漸進線時這個時候的磁通密度我們就稱為的飽和磁通密度(Bms)

Bms高:表明相同的磁通需要較小的橫截面積,磁性元件體積小 Brms:殘留磁束密度﹐也叫剩余磁束密度﹐表征材料在磁化過程結束以后﹐外磁場消失﹐而材料內部依然尚存少量磁力線的特性﹒ Hms:能夠使材料達到磁飽和狀態的最小外磁場強度﹐單位﹕A/m=104/ 2π奧斯特﹒ Hc:矯頑力﹐也叫保持力﹐是磁化過程結束以后﹐外磁場消失,因殘留磁束密度而引起的剩余磁場強度﹒因為剩余磁場的方向与磁化方向一致﹐所以﹐必須施加反向的外部磁場﹐才可以使殘留磁束密度減小到零﹒ 從磁滯回線我們可以看出:剩磁大,表示磁芯ui值高。磁滯回線越傾斜,表示Hms越大磁芯的耐電流大。矯頑力越大,磁芯的功率損耗大。 鐵粉芯: 鐵粉芯是磁芯材料四氧化三鐵的通俗說法,主要成分是氧化鐵,價格比較低,飽和磁感應強度在1.4T左右:磁導率范圍從22-100,初始磁導率ui值隨頻率的變化穩定性好,直流電流疊加性能好,但高頻下消耗高。

磁芯参数参看

z变压器基础知识 1、变压器组成: 原边(初级primary side ) 绕组 副边绕组(次级secondary side ) 原边电感(励磁电感)‐‐magnetizing inductance 漏感‐‐‐leakage inductance 副边开路或者短路测量原边 电感分别得励磁电感和漏感 匝数比:K=Np/Ns=V1/V2 2、变压器的构成以及作用: 1)电气隔离 2)储能 3)变压 4)变流 ●高频变压器设计程序: 1.磁芯材料 2.磁芯结构 3.磁芯参数 4.线圈参数 5.组装结构 6.温升校核 1.磁芯材料 软磁铁氧体由于自身的特点在开关电源中应用很广泛。 其优点是电阻率高、交流涡流损耗小,价格便宜,易加 工成各种形状的磁芯。缺点是工作磁通密度低,磁导率 不高,磁致伸缩大,对温度变化比较敏感。选择哪一类 软磁铁氧体材料更能全面满足高频变压器的设计要求, 进行认真考虑,才可以使设计出来的变压器达到比较理 想的性能价格比。 2.磁芯结构 选择磁芯结构时考虑的因数有:降低漏磁和漏感, 增加线圈散热面积,有利于屏蔽,线圈绕线容易,装配 接线方便等。 漏磁和漏感与磁芯结构有直接关系。如果磁芯不需 要气隙,则尽可能采用封闭的环形和方框型结构磁芯。 3.磁芯参数: 磁芯参数设计中,要特别注意工作磁通密度不只是受磁化曲线限制,还要受损耗的限制,同时还与功率传送的工作方式有关。 磁通单方向变化时:ΔB=Bs‐Br,既受饱和磁通密度限制,又更主要是受损耗限制,(损耗引起温升,温升又会影响磁通密度)。工作磁通密度Bm=0.6~0.7ΔB 开气隙可以降低Br,以增大磁通密度变化值ΔB,开气隙后,励磁电流有所增加,但是可以减小磁芯体积。对于磁通双向工作而言: 最大的工作磁通密度Bm,ΔB=2Bm。在双方向变化工作模式时,还要注意由于各种原因造成励磁的正负变化的伏秒面积不相等,而出现直流偏磁问题。可以在磁芯中加一个小气隙,或者在电路设计时加隔直流电容。 4.线圈参数: 线圈参数包括:匝数,导线截面(直径),导线形式,绕组排列和绝缘安排。 导线截面(直径)决定于绕组的电流密度。通常取J为2.5~4A/mm2。导线直径的选择还要考虑趋肤效应。如必要,还要经过变压器温升校核后进行必要的调整。 4.线圈参数: 一般用的绕组排列方式:原绕组靠近磁芯,副绕组反馈绕组逐渐向外排列。下面推荐两种绕组排列形式: 1)如果原绕组电压高(例如220V),副绕组电压低,可以采用副绕组靠近磁芯,接着绕反馈绕组,原绕组在最外层的绕组排列形式,这样有利于原绕组对磁芯的绝缘安排; 2)如果要增加原副绕组之间的耦合,可以采用一半原绕组靠近磁芯,接着绕反馈绕组和副绕组,最外层再绕一半原绕组的排列形式,这样有利于减小漏感。 5.组装结构:

磁性元件设计概述(中)

开关电源中高频磁性元件设计常见 错误概念辨析 开关电源中高频磁性元件设计常见错误概念辨析 作者:吴云飞海南大学96届本科生现任赛尔康技术(深圳)有限公司电源开发工程师 很多电源工程师对开关电源中高频磁性元件的设计存在错误的概念,其设计出来的高频磁性元件不能满足应用场合的要求,影响了研发的进度和项目的按期完成。基于开关电源及高频磁性元件设计经验,对一些概念性错误进行了辨析,希望能给大家提供借鉴,顺利完成高频磁性元件的设计以及整个项目的研制。 关键词:开关电源;高频磁性元件;错误概念 1 引言 开关电源中高频磁性元件的设计对于电路的正常工作和各项性能指标的实现非常关键。加之高频磁性元件设计包括很多细节知识点,而这些细节内容很难被一本或几本所谓的“设计大全”一一罗列清楚[1-3]。为了优化设计高频磁性元件,必须根据应用场合,综合考虑多个设计变量,反复计算调整。正由于此,高频磁性元件设计一直是令初涉电源领域的设计人员头疼的难题,乃至是困扰有多年工作经验的电源工程师的问题。很多文献及相关技术资料给出的磁性元件设计方法或公式往往直接忽略了某些设计变量的影响,作了假设简化后得出一套公式;或者并未交代清楚公式的应用条件,甚至有些文献所传达的信息本身就不正确。很多电源设计者并没有意识到这一点,直接套用设计手册中的公式,或把设计手册中某些话断章取义,尊为“设计纲领”,而没有进行透彻的分析和思考,以及实验的验证。其结果往往是设计出来的高频磁性元件不能满足应用场合的要求,影响了研发的进度和项目的按期完成。为了使电源设计者在设计过程中,避免犯同样的错误,为此,我们针对在学习和研发中遇到的一些概念性的问题进行了总结,希望能给大家提供一个借鉴。 2 一些错误概念的辨析这里以小标题形式给出开关电源高频磁性元件设计中8种常见的错误概念,并加以详细的辨析。 1)填满磁芯窗口——优化的设计很多电源设计人员认为在高频磁性元件设计中,填满磁芯窗口可以获得最优设计,其实不然。在多例高频变压器和电感的设计中,我们可以发现多增加一层或几层绕组,或采用更大线径的漆包线,不但不能获得优化的效果,反而会因为绕线中的邻近效应而增大绕组总损耗。因此在高频磁性元件设计中,即使绕线没把铁芯窗口绕满,只绕满了窗口面积的25%,也没有关系。不必非得想法设法填满整个窗口面积。这种错误概念主要是受工频磁性元件设计的影响。在工频变压器设计中,强调铁芯和绕组的整体性,因而不希望铁芯与绕组中间有间隙,一般都设计成绕组填满整个窗口,从而保证其机械稳定性。但高频磁性元件设计并没有这个要求。 2)“铁损=铜损”——优化的变压器设计很多电源设计者,甚至在很多磁性元件设计参考书中都把“铁损=铜损”列为高频变压器优化设计的标准之一,其实不然。在高频变压器的设计中,铁损和铜损可以相差较大,有时两者差别甚至可以达到一个数量级之大,但这并不代表该高频变压器设计不好[4]。这种错误概念也是受工频变压器设计的影响。工频变压器往往因为绕组匝数较多,所占面积较大,因而从热稳定、热均匀角度出发,得出“铁损=铜损”这一经验设计规则。但对于高频变压器,采用非常细的漆包线作为绕组,这一经验法则并不成立。在开关电源高频变压器设计中,确定优化设计有很多因素,而“铁损=铜损”其实是最少受关注的一个方面。 3)漏感=1%的磁化电感很多电源设计者在设计好磁性元件后,把相关的技术要求提交给变压器制作厂家时,往往要对漏感大小要求进行说明。在很多技术单上,标注着“漏感=1%的磁化电感”或“漏感<2%的磁化电感”等类似的技术要求。其实这种写法或设计标准很不专业。电源设计者应当根据电路正常工作要求,对所能接受的漏感值作一个数值限制。在制作变压器的过程中,应在不使变压器的其它参数(如匝间

Java中常见设计模式面试题

Java中常见设计模式面试题 一、设计模式的分类 总体来说设计模式分为三大类: 创建型模式,共五种:工厂方法模式、抽象工厂模式、单例模式、建造者模式、原型模式。 结构型模式,共七种:适配器模式、装饰器模式、代理模式、外观模式、桥接模式、组合模式、享元模式。 行为型模式,共十一种:策略模式、模板方法模式、观察者模式、迭代子模式、责任链模式、命令模式、备忘录模式、状态模式、访问者模式、中介者模式、解释器模式。 1.请列举出在JDK中几个常用的设计模式? 单例模式(Singleton pattern)用于Runtime,Calendar和其他的一些类中。工厂模式(Factory pattern)被用于各种不可变的类如Boolean,像Boolean.valueOf,观察者模式(Observer pattern)被用于 Swing 和很多的事件监听中。装饰器设计模式(Decorator design pattern)被用于多个 Java IO 类中。 2.什么是设计模式?你是否在你的代码里面使用过任何设计模式? 设计模式是世界上各种各样程序员用来解决特定设计问题的尝试和测试的方法。设计模式是代码可用性的延伸 3.Java 中什么叫单例设计模式?请用Java 写出线程安全的单例模式 单例模式重点在于在整个系统上共享一些创建时较耗资源的对象。整个应用中只维护一个特定类实例,它被所有组件共同使用。https://www.doczj.com/doc/3a466700.html,ng.Runtime是单例模式的经典例子。从 Java 5 开始你可以使用枚举(enum)来实现线程安全的单例。 4.在 Java 中,什么叫观察者设计模式(observer design pattern)?

变压器中磁性元件的损耗详解

电源中的磁性元件一般就是指电感与变压器,这里我们这种讨论初次级隔离的变压器,因为这种变压器在开关电源中应用最为广泛。 变压器的作用大致是提供初次级的电气隔离,使输出电压或升或降,传送能量;变压器设计的好坏直接关系到整个电源系统的安规,EMC,效率,温升,输出的电气性能参数,寿命,可靠性,甚至会导致系统的崩溃。 升压的做过,但经验不多,说说个人的理解,不一定对,权作参考与讨论之用。 升压变压器的难点,楼上已经指出来了,因为绕组的圈数太多,漏感与分布电容很难两全其美;这个时候我觉得应该从以下几个方面着手: 1、在选择变压器的时候,如果结构尺寸允许的话,我们尽量选择高长型(立式)或窄长(卧式)型的,因为这种变压器单层绕线圈数多,可以有效降低绕线的层数,增加初次级的耦合,减小层间电容。 2、优化绕线顺序,使初次级能增减耦合面积;曾经用过这种绕法:1/3次级--1/2初级--1/3次级--1/2初级--1/3次级,结果表明此种绕法漏感可以小很多。 当然这种变压器绕制工艺稍显复杂,成本稍高,但还是可以接受。 3、层间电容大家都知道,每层之间加黄胶带,便可减少层间电容。 当然这些措施都是在考虑安规与EMC的情况下,做出的改进;对于升压电源,漏感与层间电容如果处理不好很容易引起振荡,使电源的EMC不好过,效率不高,有时会莫名其妙的炸MOS管(我实际碰到过的情况)。 我们知道变压器的损耗分为铁损与铜损,先来说说铁损吧。 变压器的铁损包括三个方面: 一是磁滞损耗,当交流电流通过变压器时,通过变压器磁芯的磁力线其方向

和大小随之变化,使得磁芯内部分子相互摩擦,放出热能,从而损耗了一部分电能,这便是磁滞损耗。 二是涡流损耗,当变压器工作时。磁芯中有磁力线穿过,在与磁力线垂直的平面上就会产生感应电流,由于此电流自成闭合回路形成环流,且成旋涡状,故称为涡流。涡流的存在使磁芯发热,消耗能量,这种损耗称为涡流损耗。 三是剩余损耗,在磁芯磁化或反磁化的过程中,磁化状态并不是随磁化强度变化而立即变化,有个滞后时间,滞后效应便是引起剩余损耗的原因。 从铁损包含的三个个方面的定义上看,只要控制磁力线的大小便可降低磁滞损耗,减少磁芯与磁力线垂直的面积可以减少涡流损耗。 赵老师在《开关电源中磁性元器件》一书中指出: 由上面的话可以看出,在磁芯材质与形状,体积等都确定的情况下,变压器的铁损与变压器的工作频率以及磁感应强度摆幅deltB成正比。 磁滞在低场下可以不予考虑,涡流在低频下也可忽略,剩下的就是剩余损耗。在磁感应强度较高或工作频率较高时,各种损耗互相影响难于分开。故在涉及磁损耗大小时,应注明工作频率f以及对应的Bm值。但在低频弱场下,可用三者的代数和表示:tanδm= tanδh+tanδf+tanδr。式中tanδh tanδf tanδr 分别为:磁滞损耗角正切,涡流损耗角正切,剩余损耗角正切。各种损耗随频率的变化关系如图。

磁芯资料

1.磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2.软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br∕Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。 磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。 居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW)/表面积(cm2) 3.软磁材料的磁性参数与器件的电气参数之间的转换

磁性元件生产制作规范

磁性元件磁性元件生产生产生产规范规范 编号编号编号:: 版本版本版本: 1.0: 1.0: 1.0 变压器概述 5.1.1 变压器(transformer):指变换电能以及把电能从一个电路传递到另一 个电路的静止电磁装置称为变压器; 5.1.2 在电路中变压器表示符号为: 5.1.3 transformer 的作用: 在电子线路中起着升压,降压,隔离,变频,储能, 滤波等作用,特殊情况也可以当作电感用; 5.1.4 transformer 种类:高频,低频,线圈,滤波器,圆盘,PFC…… 5.1.5 transformer 一般由:Bobbin,Core,Wire(Triple wire),Tape, Margintape,Tube,Varnish,Epoxy……材料组成。 针对transformer 其主要材料:Bobbin,Core,Tape,Margintape ,Wire (Triple wire),Tube 作简单介绍。

TRANSFORMER材料简介 5.2.1 BOBBIN简介 5.2.1.1 BOBBIN作用: 模型的作用顾名思义,BOBBIN(线架也叫骨架)在变压器中起支撑COIL的作用。 5.2.1.2BOBBIN材质分类:依据变压器的性质要求不同,按材质分为:热塑性材料,热固性材料. 热塑性材料常用的有尼龙(NYLON),塑胶(PET),塑胶( PBT)等. 热固性材料常用到的有电木(PM9820/9830/9850/9630/8375,T375J等) 5.2.1.3 依据变压器的形状不同,BOBBIN又分为立式,卧式,子母式,抽屉式,单格,双格…… APD常用形状为立式和卧式. 5.2.1.4 PIN1的识别方式: 大部分的制造厂都会在PIN1上有所区别,如斜角、凹角、不同PITCH (PIN距)、BOBBIN顶端 有一圆凸点、直接在PIN旁标上数字、两边PIN数不相同(一边5PIN,另一边6PIN)PIN位数 法为从PIN1顺时针方向数.

常见UI设计模式

常见UI设计模式 交互设计师在设计线框图原型时,熟知常见的web设计模式很有帮助,做到“心中有数”才能创造出符合需求,用户易学易用的界面来。所谓“没有必要重复发明轮子”,模式往往容易解决常见问题,正确的模式能帮用户熟悉界面、提高效率。 常见的UI设计模式如下图: 下面分别进行具体分析,遇到不同需求的时候就可以选择合适UI设计模式。 01.主体/细节(Master/Detail)模式 主体/细节模式可以分为横向和纵向两种。如果想让用户在同一页面下,引导他们在类目下高效地切换,这无疑是一种理想的方式。如果主体信息对于用户来说更重要,最好选择

横向布局。或是主体部分不仅条目多而且包含信息也多,那也该选择这种横向布局。 举例来说: Windows窗口属于纵向排布 Mac mail的横向排布 0.2分栏浏览 分栏浏览也分为横向和纵向两种。用户可以通过它,选择不同的类别点进并逐步引导用户找到需要的信息。 举例:

Outlook采用逐级分栏的界面,用户可以选择进入“收件箱”——>“某封收件”——>“具体邮 件内容” 0.3搜索/结果 搜索屏幕模式对于想快速、直接看到具体结果的用户来说非常便捷。从很简单的到非常复杂的都有。 Gmail采用简单搜索

而对于google学术的用户,高级搜索限定更复杂的搜索条件会提炼出用户更期望得到的信 息。 0.4过滤数据组 分为横向和纵向。开始定义一些已知信息,之后通过限定条件对搜索后的结果进行再过滤。 51job用户在使用简单搜索输入所需职位后,纵向布局的左边面板提供诸如“发布时间、薪 金”等条件,进一步优化信息 以京东为例,多数电子商务网站在用户初步模糊搜索后,提供进一步优化的过滤条件。上图 中,京东采用的是横向排列方式 0.5表单

常用磁芯材料总结

常用磁芯材料 (一)粉芯类 1.磁粉芯 可以隔绝涡流,材料适用于较高频率;材料具有低导磁率及恒导磁特性,磁导率随频率的变化也就较为稳定。主要用于高频电感。 常用的磁粉芯有铁粉芯、坡莫合金粉芯及铁硅铝粉芯三种。 (1).铁粉芯 在粉芯中价格最低。磁导率范围从22~100; 初始磁导率me随频率的变化稳定性好;直流电流叠加性能好;但高频下损耗高。 (2).坡莫合金粉芯 坡莫合金粉芯主要有钼坡莫合金粉芯(MPP)及高磁通量粉芯 MPP主要特点是:磁导率范围大,14~550;在粉末磁芯中具有最低的损耗;温度稳定性极佳,在不同的频率下工作时无噪声产生。粉芯中价格最贵。 高磁通粉芯主要特点是:磁导率范围从14~160;在粉末磁芯中具有最高的磁感应强度,最高的直流偏压能力;磁芯体积小。 价格低于MPP。 (3).铁硅铝粉芯 铁硅铝粉芯主要是替代铁粉芯,损耗比铁粉芯低80%,可在8KHz以上频率下使用;导磁率从26~125;在不同的频率下工作时无噪声产生;具有最佳的性能价格比。主要应用于交流电感、输出电感、线路滤波器、功率因素校正电路等。 2. 软磁铁氧体 软磁铁氧体是以Fe2O3为主成分的亚铁磁性氧化物。有Mn-Zn、Cu-Zn、Ni-Zn等几类,其中Mn-Zn铁氧体的产量和用量最大,Mn-Zn铁氧体的电阻率低,一般在100KHZ以下的频率使用。Cu-Zn、Ni-Zn铁氧体在100kHz~10兆赫的无线电频段的损耗小。 由于软磁铁氧体不使用镍等稀缺材料也能得到高磁导率,粉末冶金方法又适宜于大批量生产,因此成本低,又因为是烧结物硬度大、对应力不敏感,在应用上很方便。而且磁导率随频率的变化特性稳定,在150kHz以下基本保持不变。随着软磁铁氧体的出现,磁粉芯的生产大大减少了,很多原来使用磁粉芯的地方均被软磁铁氧体所代替。 综上所述,可以选择Mn-Zn铁氧体作为磁芯的材料。 轴套材料选择

几种常见的教学设计模式及其比较

几种常见的教学设计模式及其比较 教学设计理论是在其他相关学科理论如学习理论、教学理论、传播理论、系统理论等研究的基础上建立并发展起来的。但是,更为重要的是进一步扩展到实践应用的领域,用正确的理论指导实践。许多教学设计专家把教学设计的理论应用到实践中,形成一系列过程设计模式。这些模式一方面综合了理论与技术等各方面的因素,另一方面简化了复杂的教学理论以及教学过程各要素之间的关系,因此,设计过程模式也成为教学设计理论的重要组成部分。 传统教学设计观念把教学设计过程看作纯粹是个人经验的产物,缺少一定的理论基础。现代教学设计模式则已经跳出这种传统框架,反映了现代教学设计理论与实践的状况,重点不再限于描述教学设计的具体步骤,而成为连接理论研究与实践操作之间的桥梁,其主要功能是便于教学理论在教学设计中的运用。 教学设计在实践上大致经历了四个不同阶段,体现了不同的教学理念。第一阶段把教学设计看成是应用科学。以行为主义心理学为基础,认为任何学习的结果都是由一系列预先设置的学习目标所导致,教学设计的主要任务就是把学习分解成各种类型的行为目标,根据这些行为目标选择适当的媒体和方法,为教学提供一种可行的教学序列。其倡导者大多是心理学家,如斯金纳、梅格、加涅等。第二阶段倾向于用美学的方法对教学进行设计,重视美学形式对学生的影响,强调用美学效果吸引学习者的兴趣。其倡导者是一些富有创造性的媒体制造者。这一阶段人们已经认识到教学中学习者情感尤其是兴趣的发展。第三阶段教学设计侧重于解决问题的方法和过程。主张教学设计不应该根据预先确定的目标制定机械的教学步骤,因为学习并不都是像行为主义学习理论描述的那样可以通过简单的刺激-反应过程进行。学习应通过学习者自行探究和解决问题而进行,因而强调设计的探究、协作和创造性。这种教学设计过程确立了更为复杂的学习目标,以使学习者成为可以解决问题的探究者。第四阶段,教学设计强调学习是一个动态的建构过程。尤其是进入九十年代以来,教学设计者和教师们逐渐意识到学习往往是个人的事情,学习是否成功与学习者先前已有的知识和经验有关,而且学生获取知识和经验的范围不断增加和扩展,更新和变化的速度也大大加快。教学设计目的不再是建立一系列学习步骤,更重要的是帮助学生建构自己的知识和世界。教学设计者和教师分别变成了学习背景的设计者和说明者。 以上可以看出教学设计过程模式的总的发展趋势是由原来的单一的应用科学形式转向了多样性的综合化形式。但不论怎样变化,教学设计过程都必须清楚地解决四个基本问题,一是学习者的特点是什么?二是教学的目标是什么?三是教学资源和教学策略是什么?四是怎样评价和修改?对这四个基本问题的处理和展开发生不同,就形成了众多的教学设计过程模式。 1.迪克—凯瑞的系统教学设计模式 迪克—凯瑞(W. Dick & L. Carey)的教学设计过程模式最为突出,是典型的基于行为主义的教学系统开发模式,该模式从确定教学目标开始,到终结性评价

几种常用磁性器件中磁芯的选用及设计

几种常用磁性器件中磁芯的选用及设计 开关电源中使用的磁性器件较多,其中常用的软磁器件有:作为开关电源核心器件的主变压器(高频功率变压器)、共模扼流圈、高频磁放大器、滤波阻流圈、尖峰信号抑制器等。不同的器件对材料的性能要求各不相同,如表所示为各种不同器件对磁性材料的性能要求。 (一)、高频功率变压器 变压器铁芯的大小取决于输出功率和温升等。变压器的设计公式如下: P=KfNBSI×10-6T=hcPc+h W P W 其中,P为电功率;K为与波形有关的系数;f为频率;N为匝数;S为铁芯面积;B为工作磁感;I为电流;T为温升;P c为铁损;P W为铜损;h c和h W为由实验确定的系数。 由以上公式可以看出:高的工作磁感B可以得到大的输出功率或减少体积重量。但B值的增加受到材料的Bs值的限制。而频率f可以提高几个数量级,从而有可能使体积重量显著减小。而低的铁芯损耗可以降低温升,温升反过来又影响使用频率和工作磁感的选取。一般来说,开关电源对材料的主要要求是:尽量低的高频损耗、足够高的饱和磁感、高的磁导率、足够高的居里温度和好的温度稳定性,有些用途要求较高的矩形比,对应力等不敏感、稳定性好,价格低。单端式变压器因为铁芯工作在磁滞回线的第一象限,对材料磁性的要求有别于前述主变压器。它实际上是一只单端脉冲变压器,因而要求具有大的B=Bm-Br,即磁感

Bm和剩磁Br之差要大;同时要求高的脉冲磁导率。特别是对于单端反激式开关主变压器,或称储能变压器,要考虑储能要求。 线圈储能的多少取决于两个因素:一个是材料的工作磁感Bm值或电感量L,另一个是工作磁场Hm或工作电流I,储能W=1/2LI2。这就要求材料有足够高的Bs值和合适的磁导率,常为宽恒导磁材料。对于工作在±Bm之间的变压器来说,要求其磁滞回线的面积,特别是在高频下的回线面积要小,同时为降低空载损耗、减小励磁电流,应有高磁导率,最合适的为封闭式环形铁芯,其磁滞回线见图所示,这种铁芯用于双端或全桥式工作状态的器件中。 通常,金属晶态材料要降低高频下的铁损是不容易的,而对于非晶合金来说,它们由于不存在磁晶各向异性、金属夹杂物和晶界等,此外它不存在长程有序的原子排列,其电阻率比一般的晶态合金高2-3倍,加之快冷方法一次形成厚度15-30微米的非晶薄带,特别适用于高频功率输出变压器。已广泛应用于逆变弧焊电源、单端脉冲变压器、高频加热电源、不停电电源、功率变压器、通讯电源、开关电源变压器和高能加速器等铁芯,在频率20-50kHz、功率50kW以下,是变压器最佳磁芯材料。 近年来发展起来的新型逆变弧焊电源单端脉冲变压器,具有高频大功率的特点,因此要

几种常用的设计模式介绍

几种常用的设计模式介绍 1. 设计模式的起源 最早提出“设计模式”概念的是建筑设计大师亚力山大Alexander。在1970年他的《建筑的永恒之道》里描述了投计模式的发现,因为它已经存在了千百年之久,而现代才被通过大量的研究而被发现。 在《建筑的永恒之道》里这样描述:模式是一条由三个部分组成的通用规则:它表示了一个特定环境、一类问题和一个解决方案之间的关系。每一个模式描述了一个不断重复发生的问题,以及该问题解决方案的核心设计。 在他的另一本书《建筑模式语言》中提到了现在已经定义了253种模式。比如: 说明城市主要的结构:亚文化区的镶嵌、分散的工作点、城市的魅力、地方交通区 住宅团组:户型混合、公共性的程度、住宅团组、联排式住宅、丘状住宅、老人天地室内环境和室外环境、阴和阳总是一气呵成 针对住宅:夫妻的领域、儿童的领域、朝东的卧室、农家的厨房、私家的沿街露台、个人居室、起居空间的序列、多床卧室、浴室、大储藏室 针对办公室、车间和公共建筑物:灵活办公空间、共同进餐、共同小组、宾至如归、等候场所、小会议室、半私密办公室 尽管亚力山大的著作是针对建筑领域的,但他的观点实际上适用于所有的工程设计领域,其中也包括软件设计领域。“软件设计模式”,这个术语是在1990年代由Erich Gamma等人从建筑设计领域引入到计算机科学中来的。目前主要有23种。 2. 软件设计模式的分类 2.1. 创建型 创建对象时,不再由我们直接实例化对象;而是根据特定场景,由程序来确定创建对象的方式,从而保证更大的性能、更好的架构优势。创建型模式主要有简单工厂模式(并不是23种设计模式之一)、工厂方法、抽象工厂模式、单例模式、生成器模式和原型模式。 2.2. 结构型 用于帮助将多个对象组织成更大的结构。结构型模式主要有适配器模式、桥接模式、组合器模式、装饰器模式、门面模式、亨元模式和代理模式。 2.3. 行为型 用于帮助系统间各对象的通信,以及如何控制复杂系统中流程。行为型模式主要有命令模式、解释器模式、迭代器模式、中介者模式、备忘录模式、观察者模式、状态模式、策略模式、模板模式和访问者模式。

磁芯材料(基础)

2.软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br∕Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。 磁导率m:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率mi、最大磁导率mm、微分磁导率md、振幅磁导率ma、有效磁导率me、脉冲磁导率mp。 居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW)/表面积(cm2) 3.软磁材料的磁性参数与器件的电气参数的转换 在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。设计软磁器件通常包括三个步骤:正确选用磁性材料;合理确定磁芯的几何形状及尺寸;根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。 二、软磁材料的发展及种类 1.软磁材料的发展 软磁材料在工业中的应用始于19世纪末。随着电力工及电讯技术的兴起,开始使用低碳钢制造电机和变压器,在电话线路中的电感线圈的磁芯中使用了细小的铁粉、氧化铁、细铁丝等。到20世纪初,研制出了硅钢片代替低碳钢,提高了变压器的效率,降低了损耗。直到现在硅钢片在电力工业用软磁材料中仍居首位。到20年代,无线电技术的兴起,促进了高导磁材料的发展,出现了坡莫合金及坡莫合金磁粉芯等。从40年代到60年代,是科学技术飞速发展的时期,雷达、电视广播、集成电路的发明等,对软磁材料的要求也更高,生产出了软磁合金薄带及软磁铁氧体材料。进入70年代,随着电讯、自动控制、计算机等行业的发展,研制出了磁头用软磁合金,除了传统的晶态软磁合金外,又兴起了另一类材料—非晶态软磁合金。 2.常用软磁磁芯的种类 铁、钴、镍三种铁磁性元素是构成磁性材料的基本组元。 按(主要成分、磁性特点、结构特点)制品形态分类: (1)粉芯类:磁粉芯,包括:铁粉芯、铁硅铝粉芯、高磁通量粉芯(HighFlux)、坡莫合金粉 芯(MPP)、铁氧体磁芯 (2)带绕铁芯:硅钢片、坡莫合金、非晶及纳米晶合金 三常用软磁磁芯的特点及应用 (一)粉芯类 1.磁粉芯 磁粉芯是由铁磁性粉粒与绝缘介质混合压制而成的一种软磁材料。由于铁磁性颗粒很小(高频下使用的为0.5~5微米),又被非磁性电绝缘膜物质隔开,因此,一方面可以隔绝涡流,材料适用于较高频率;另一方面由于颗粒之间的间隙效应,导致材料具有低导磁率及恒导磁特性;又由于颗粒尺寸小,基本上不发生集肤现象,磁导率随频率的变化也就较为稳定。主

最新开关电源中磁性元器件磁元件思考题

开关电源中磁性元器件磁元件思考题

磁性元器件思考题 1. 有一根导线直径d =1cm ,置于空气中,流过电流5安 培,请问在垂直于导线的平面上,距离导线中心5cm 圆周上,磁场强度H =?B =?(分别用MKS 和CGS 表示)?标出磁场强度方向。以导线中心为圆心的直径0.5cm 处磁场强度H=? 2. 环尺寸如题图2(b),左边线圈流入2A 电流,右边线圈 流入1A 电流(题图2(a)),磁导率μr =1000。请问磁芯中磁场强度H =?,磁感应强度B=? 3. 题图1与导线同心放置一个磁导率μr =1000的磁环。环 的内径d =4cm,外径D =6cm,高h =1cm 。请问磁芯中H =? B =? φ=?(分别用MKS 和CGS 单位表示) 4. 有一个磁环如题图2(b),不知道其磁导率是多少。磁环尺寸内径d =4cm,外径 D =6cm, 高h =1cm 。在环上绕了20匝线圈,测量得到电感量为10μH ,请求出磁环材料的相对磁导率和绝对磁导率。在CGS 中磁导率是多少?如果给20匝线圈流过0.5A 电流,线圈的总磁链是多少? 5. 一个磁环的相对磁导率为3000,外径、内径和高分别为38.1mm 、25.4mm 和 19.05mm 。求40匝线圈的电感量。 6. 证明一个气隙磁芯电感的气隙长度δ与磁路长度l c 之比为 ??? ? ??-= c c c H l Ni B l 0μδ 7. 一个变压器上有3个线圈,测得一个变压器上两个线圈的电感分别为L 1=0.2mH 、 L 2=50μH ,L 3=2μH 。L 3的匝数为3匝,请问L 1 、L 2 的匝数为多少?将L 1与L 2串联 题图2(a) h 题图2(b)

电感元件设计规范

1电磁学基本概念及公式 (3) 1.1 基本概念 (3) 1.2 基本公式 (4) 2磁元件的基本特性 (4) 2.1 磁滞效应(H YSTERESIS E FFECT): (4) 2.2 霍尔效应(H ALL E FFECT): (5) 2.3 临近效应(P ROXIMITY E FFECT) (5) 2.4 磁材料的饱和 (6) 2.5 磁芯损耗 (6) 3电感磁芯的分类及特点 (7) 3.1 磁芯材料的分类及其特点 (7) 3.1.1铁氧体(Ferrite) (7) 3.1.2硅钢片(Silicon Steel) (8) 3.1.3铁镍合金(又称坡莫合金或MPP) (8) 3.1.4铁粉芯(Iron Powder) (8) 3.1.5铁硅铝粉芯(又称Sendust或Kool Mu) (8) 3.2 磁芯的外形分类: (8) 3.3 电感的结构组成 (9) 3.3.1环型电感 (9) 3.3.2EE型电感/变压器 (10) 3.4 电感的主要类型: (10)

3.5 电感磁芯主要参数说明 (11) 4电感在UPS中的应用 (12) 5电感设计的原则 (14) 5.1 原则一:电感不饱和(感值下降不超出合理范围) (14) 5.2 原则二:电感损耗导致的温升在允许的范围内(考虑使用寿命) (17) 5.3 原则三:电感的工艺要求可以达成 (19) 6电感设计规范表 (21)

目的 磁性元件的设计是开关电源设计中的重点和难点,究其原因是磁性元件属非标准件,其设计时需考虑的设计参数众多,工艺问题也较为突出,分布参数复杂。为帮助硬件工程师尽快了解磁性元件,优化设计并减少设计中的错误,特制定此规范。 1电磁学基本概念及公式 1.1基本概念 1)磁通:穿过磁路的磁力线的总数,以Ф表示,单位韦伯(Wb)。 2)磁通密度(磁感应强度):垂直于磁力线的方向上单位面积的磁通量, 以B表示,单位高斯(Gauss)或特斯拉(T),1 T=104 Gauss。 3)磁场强度:单位磁极在磁场中的磁力,以H表示,单位安[培]每米(A/m)或奥斯特(Oe),1 Oe=103/4πA/m。 4)磁导率:磁通密度与磁场强度之比,以μ表示,实际使用中通常指相对 于真空的磁导率,真空中的磁导率μ0 =4π×10-7 H/m。 5)磁体:磁导率远大于μ0的物质,如铁,镍,钴及其合金或氧化物等。 6)居里温度点:磁体在温度升高时,其磁导率下降,当温度高到某一点时,磁性基本消失,此温度称为居里温度点。 7)磁势:建立磁通所需之外力,以F表示。 8)自感:磁通变化率与电流变化率之比称自感,以L表示。 9)互感:由于A线圈电流变化而引起B线圈磁通变化的现象,B线圈的磁通变化率与A线圈的电流变化率之比称为A线圈对B线圈的互感,以 M表示。

相关主题
文本预览
相关文档 最新文档