当前位置:文档之家› 高分子第一、二、四章习题复习进程

高分子第一、二、四章习题复习进程

高分子第一、二、四章习题复习进程
高分子第一、二、四章习题复习进程

第一章习题(绪论)

1—1、求下列混合物的数均分子量、质均分子量和分子量分布指数。

a、组分A:质量= 10g,分子量= 30 000;

b、组分B:质量= 5g,分子量= 70 000;

c、组分C:质量= 1g,分子量= 100 000

第二章习题(缩聚与逐步聚合)

2—1、通过碱滴定法和红外光谱法,同时测得21.3 g聚己二酰己二胺试样中含有2.5010-3mol羧基。根据这一数据,计算得数均分子量为8520。计算时需作什么假定?如何通过实验来确定的可靠性?如该假定不可靠,怎样由实验来测定正确的值?

上述计算时需假设:聚己二酰己二胺由二元胺和二元酸反应制得,每个大分子链平均只含一个羧基,且羧基数和胺基数相等。

可以通过测定大分子链端基的COOH和NH2摩尔数以及大分子的摩尔数来验证假设的可靠性,如果大分子的摩尔数等于COOH和NH2的一半时,就可假定此假设的可靠性。

用气相渗透压法可较准确地测定数均分子量,得到大分子的摩尔数。

碱滴定法测得羧基基团数、红外光谱法测得羟基基团数

2—2、羟基酸HO-(CH2)4-COOH进行线形缩聚,测得产物的质均分子量为18,400 g/mol-1,试计算:a. 羧基已经醌化的百分比 b. 数均聚合度 c. 结构单元数

2—5、由1mol丁二醇和1mol己二酸合成数均分子量为5000的聚酯,(1)两基团数完全相等,忽略端基对Mn的影响,求终止缩聚的反应程度P。

(2)在缩聚过程中,如果有0.5%(摩尔分数)的丁二醇脱水成乙烯而损失,求达到同样反应程度时的数均分子量。

(3)如何补偿丁二醇脱水损失,才能获得同一Mn的缩聚物?

(4)假定原始混合物中羧基的总浓度为2mol,其中1.0%为醋酸,无其它因素影响两基团数比,求获同一Mn时所需的反应程度。

2—6、166℃乙二醇与乙二酸缩聚,测得不同时间下的羧基反应程度如下:

a.求对羧基浓度的反应级数,判断自催化或酸催化

b.求速率常数,浓度以[COOH]mol/kg反应物计,

解答:当反应为外加酸催化反应时,有故有

由图可知1/(1-p)与t不成线性关系,故不为外加酸催化反应。

当该反应为自催化反应中的三级反应,则有

2—7、在酸催化和自催化聚酯化反应中,假定k`=10-1kg·mol-1·min-1,k=10-3kg2·eq-2·min-l,[Na]0=l0eq·kg-1(eq为当量),反应程度p=0.2、0.4、0.6、0.8、0.9、0.95、0.99、0.995,

试计算:(1)基团a未反应的概率[Na]/ [Na]0;(2)数均聚合度Xn;(3)所需的时间。

解从反应速率常数的单位可以得知酸催化为2级反应,自催化为3级反应。不同反应程度下基团的未反应概率、数均聚合度及所需的反应时间根据下列公式计算,结果如下表所示。

(1)基团a未反应的概率:[Na]/ [Na]0=1-p

2—8、等摩尔的乙二醇和对苯二甲酸在280℃下封管内进行缩聚,平衡常数K=4,求最终。另在排除副产物水的条件下缩聚,欲得=100,问体系中残留水分有多少?

2—9、等摩尔二元醇和二元酸缩聚,另加醋酸1.5%,p=0.995或0.999时聚酯的聚合度多少?

2—10、尼龙1010是根据1010盐中过量的癸二酸来控制分子量,如果要求分子量为20000,问1010盐的酸值应该是多少?(以mg KOH/g计)

2—13、邻苯二甲酸酐与甘油或季戊四醇缩聚,两种基团数相等,试求:

a. 平均官能度

b. 按Carothers法求凝胶点

c. 按统计法求凝胶点

(2)

高分子物理习题 答案

高分子物理部分复习题 构象;由于单键(σ键)的内旋转,而产生的分子在空间的不同形态。它是不稳定的,分子热运动即能使其构象发生改变 构型;分子中由化学键所固定的原子在空间的排列。稳定的,要改变构型必需经化学键的断裂、重组 柔顺性;高聚物卷曲成无规的线团成团的特性 等同周期、高聚物分子中与主链中心轴平行的方向为晶胞的主轴,其重复的周期 假塑性流体、无屈服应力,并具有粘度随剪切速率增加而减小的流动特性的流体 取向;高分子链在特定的情况下,沿特定方向的择优平行排列,聚合物呈各向异性特征。 熵弹性、聚合物(在Tg以上)处于高弹态时所表现出的独特的力学性质 粘弹性;外力作用,高分子变形行为有液体粘性和固体弹性的双重性质,力学质随时间变化的特性 玻尔兹曼叠加、认为聚合物在某一时刻的弛豫特性是其在该时刻之前已经历的所有弛豫过程所产生结果的线性加和的理论原理 球晶、球晶是由一个晶核开始,以相同的速度同时向空间各方向放射生长形成高温时,晶核少,球晶大 应力损坏(内耗)、聚合物在交变应力作用下产生滞后现象,而使机械能转变为热能的现象 应力松弛、恒温恒应变下,材料的内应变随时间的延长而衰减的现象。 蠕变、恒温、恒负荷下,高聚物材料的形变随时间的延长逐渐增加的现象 玻璃化转变温度Tg:玻璃态向高弹态转变的温度,链段开始运动或冻结的温度。挤出膨大现象、高分子熔体被强迫挤出口模时,挤出物尺寸大于口模尺寸,截面形状也发生变化的现象 时温等效原理、对于同一个松驰过程,既可以在低温下较长观察时间(外力作用时间)观察到,也可以在高温下较短观察时间(外力作用时间)观察出来。 杂链高分子、主链除碳原子以外,还有其他原子,如:氧、氮、硫等存在,同样以共价键相连接 元素有机高分子、主链含Si、P、Se、Al、Ti等,但不含碳原子的高分子 键接结构、结构单元在高分子链中的联结方式 旋光异构、具有四个不同取代基的C原子在空间有两种可能的互不重叠的排列方式,成为互为镜像的两种异构体,并表现出不同的旋光性 均相成核、处于无定型的高分子链由于热涨落而形成晶核的过程 异相成核、是指高分子链被吸附在固体杂质表面而形成晶核的过程。Weissenberg爬杆效应当插入其中的圆棒旋转时,没有因惯性作用而甩向容器壁附近,反而环绕在旋转棒附近,出现沿棒向上爬的“爬杆”现象。 强迫高弹形变对于非晶聚合物,当环境温度处于Tb<T <Tg时,虽然材料处于 玻璃态,链段冻结,但在恰当速率下拉伸,材料仍能发生百分之几百的大变形 冷拉伸;环境温度低于熔点时虽然晶区尚未熔融,材料也发生了很大拉伸变形 溶度参数;单位体积的内聚能称为内聚物密度平方根 介电损耗;电介质在交变电场中极化时,会因极化方向的变化而损耗部分能量和发热,称介电损耗。 聚合物的极化:聚合物在一定条件下发生两极分化,性质偏离的现象 二、填空题

高分子物理习题答案

高分子物理习题答案 第一章高分子链的结构 3.高分子科学发展中有二位科学家在高分子物理领域作出了重大贡献并获得诺贝尔奖,他们是谁?请列举他们的主要贡献。 答:(1)H. Staudinger(德国):“论聚合”首次提出高分子长链结构模型,论证高分子由小分子以共价键结合。1953年获诺贝尔化学奖。 贡献:(1)大分子概念:线性链结构 (2)初探[η]=KMα关系 (3)高分子多分散性 (4)创刊《die Makromol.Chemie》1943年 (2)P. J. Flory(美国),1974年获诺贝尔化学奖 贡献:(1)缩聚和加聚反应机理 (2)高分子溶液理论 (3)热力学和流体力学结合 (4)非晶态结构模型 6.何谓高聚物的近程(一级)结构、远程(二级)结构和聚集态结构?试分别举例说明用什么方法表征这些结构和性能,并预计可得到哪些结构参数和性能指标。 答:高聚物的一级结构即高聚物的近程结构,属于化学结构,它主要包括链节、键接方式、构型、支化和交联结构等,其表征方法主要有:NMR, GC, MS, IR, EA, HPLC, UV等。而高聚物的二级结构即高聚物的远程结构,主要包括高分子链的分子量、分子尺寸、分子形态、链的柔顺性及分子链在各种环境中所采取的构象,其表征方法主要有:静态、动态光散射、粘度法、膜渗透压、尺寸排除色谱、中子散射、端基分析、沸点升高、冰点降低法等。高聚物的聚集态结构主要指高分子链间相互作用使其堆积在一起形成晶态、非晶态、取向态等结构。其表征方法主要有:x-射线衍射、膨胀计法、光学解偏振法、偏光显微镜法、光学双折射法、声波传播法、扫描电镜、透射电镜、原子力显微镜、核磁共振,热分析、力学分析等。 8.什么叫做高分子的构型?试讨论线型聚异戊二烯可能有哪些不同的构型。 答:由化学键所固定的原子或基团在空间的几何排布。 1,2:头-头,全同、间同、无规;头-尾,全同、间同、无规 3,4:头-头,全同、间同、无规;头-尾,全同、间同、无规 1,4:头-头,顺、反;头-尾,顺、反 9.什么叫做高分子构象?假若聚丙烯的等规度不高,能不能用改变构象的办法提高其等规度?说明理由。答:由于单键内旋转而产生的分子在空间的不同形态(内旋转异构体)称为构象。不能用改变构象的办法提高其更规度。等规度是指高聚物中含有全同和间同异构体的总的百分数,涉及的是构型问题,要改变等规度,即要改变构型。而构型是由化学键所固定的原子或基团在空间的几何排布,改变构型必须通过化学键的断裂和重组。 11.假定聚丙烯主链上的键长为0.154纳米,键角为109.5°,根据下表所列数据,求其等效自由结合链的链段长度l e及极限特征比C∞。 聚合物溶剂温度(℃)A×104(nm)σ 聚丙烯(无规)环已烷、甲苯30 835 1.76

高分子物理第1、2章习题答案

高分子物理答案详解(第三版) 第1章高分子的链结构 1.写出聚氯丁二烯的各种可能构型。 所谓构型(configuration),包括:旋光异构(全同、间同、无规立构),由不对称中心(或手性C原子)的存在而引起的;几何异构(顺、反异构),由主链上存在双键引起的;键接异构(头尾、头头、尾尾相连)。聚氯丁二烯的各种可能构型有如下六种: 2.构象与构型有何区别?聚丙烯分子链中碳—碳单键是可以旋转的,通过单键的内旋转是否可以使全同立构聚丙烯变为间同立构聚丙烯?为什么? 答:(1)区别:构象是由于单键的内旋转而产生的分子中原子在空间位置上的变化,而构型则是分子中由化学键所固定的原子在空间的排列;构象的改变不需打破化学键,而构型的改变必须断裂化学键。 (2)不能,碳-碳单键的旋转只能改变构象,却没有断裂化学键,所以不能改变构型,而全同立构聚丙烯与间同立构聚丙烯是不同的构型。 3.为什么等规立构聚丙乙烯分子链在晶体中呈31螺旋构象,而间规立构聚氯乙烯分子链在晶体中呈平面锯齿构象?答:(1)由于等规立构聚苯乙烯的两个苯环距离比其范德华半径总和小,产生排斥作用,使平面锯齿形(…ttt…)构象极不稳定,必须通过C-C键的旋转,形成31螺旋构象,才能满足晶体分子链构象能最低原则。 (2)由于间规聚氯乙烯的氯取代基分得较开,相互间距离比范德华半径大,所以平面锯齿形构象是能量最低的构象。 4.哪些参数可以表征高分子链的柔顺性?如何表征? 答:(1)空间位阻参数(或称刚性因子),值愈大,柔顺性愈差; (2)特征比Cn,Cn值越小,链的柔顺性越好; (3)连段长度b,b值愈小,链愈柔顺。 5.聚乙烯分子链上没有侧基,内旋转位能不大,柔顺性好。该聚合物为什么室温下为塑料而不是橡胶? 答:这是由于聚乙烯分子对称性好,容易结晶,从而失去弹性,因而在室温下为塑料而不是橡胶。 6.从结构出发,简述下列各组聚合物的性能差异:

高分子物理习题答案作业

共混型TPE在共混技术上经历哪些阶段及其特点。 答:以热塑性乙丙橡胶为例, 第一阶段:在PP中掺入未硫化的乙丙橡胶进行简单的机械共混制备TPE(称为TPO),PP含量一般在50份以下(以橡胶100份计)。 特点:密度小,抗冲击性特别是低温脆性好。可用于制造汽车保险杠。 第二阶段:在PP与乙丙橡胶共混时,借助交联剂和机械剪切应力作用使橡胶组分部分动态硫化,产生少量交联结构。 特点:该种材料强度、压缩永久形变、耐热、耐溶剂等性能都比TPO有很大提高,橡胶含量也高,但这两种TPE中,橡胶组分继续增加,共混物流动性大大降低。 第三阶段:制备完全硫化了的EPDM和PP共混物,该种TPE称作热塑性硫化胶(TPV)。 特点:由于橡胶组分已被充分交联,所以,材料的强度、弹性、抗压缩永久形变性能及耐热性均有很大提高。同时,耐疲劳、耐化学药品性及加工稳定性也明显改善,橡胶共混比可在较大范围内变化,材料性能具有更大的调节余地。 第6章橡胶弹性 1.高弹性有哪些特征?为什么聚合物具有高弹性?在什么情况下要求聚合物充分体现高弹性?什么情况下应设法避免高弹性? 答:特征:①弹性形变大,可高达1000%; ②弹性模量小。高弹模量约为105N/m2; ③弹性模量随绝对温度的升高正比地增加; ④形变时有明显的热效应。 聚合物的柔性、长链结构使其卷曲分子在外力作用下通过链段运动改变构象而舒展开来,除去外力又恢复到卷曲状态。橡胶的适度交联可以阻止分子链间质心发生位移的粘性流动,使其充分显示高弹性。 2.试述交联橡胶平衡态高弹形变热力学分折的依据和所得结果的物理意义。答:依据:热力学第一定律和第二定律 物理意义:橡胶变形后的张力可以看成是有熵的变化和内能的变化两部分组成。只有熵才能贡献的弹性叫熵弹性,橡胶拉伸时内能变化很小,主要是熵的变化。内能的变化是橡胶拉伸时放热的原因。 3. 简述橡胶弹性统计理论的研究现状与展望,说明橡胶弹性唯象理论的优缺点。 4.什么叫热塑性弹性体?举例说明其结构与性能关系。 答:热塑性弹性体兼有塑料和橡胶的特性,在常温下显示橡胶高弹性,高温下又能塑化成型。 苯乙烯—丁二烯—苯乙烯三嵌段共聚物:B:弹性,S:塑性 5.—交联橡胶试片,长2.8cm、宽1.0cm、厚0.2cm、重0.518g,于25℃时将其

高分子物理习题及答案最新版

一、单项选择题 1.高分子的基本运动是( B )。 A.整链运动B.链段运动C.链节运动 2.下列一组高聚物分子中,柔性最大的是( A )。 A.聚氯丁二烯 B.聚氯乙烯 C.聚苯乙烯 3. 下列一组高聚物中,最容易结晶的是( A ). A.聚对苯二甲酸乙二酯 B. 聚邻苯二甲酸乙二酯 C. 聚间苯二甲酸乙二酯 4.模拟线性聚合物的蠕变全过程可采用( C )模型。 A.Maxwell B. Kelvin C. 四元件 5.在半晶态聚合物中,发生下列转变时,判别熵值变大的是( A )。(1)熔融(2)拉伸取向(3)结晶(4)高弹态转变为玻璃态 6.下列一组高聚物分子中,按分子刚性的大小从小到大的顺序是(ADBFC )。 A.聚甲醛; B.聚氯乙烯; C.聚苯乙烯; D. 聚乙烯;F. 聚苯醚 7..假塑性流体的特征是( B )。 A.剪切增稠B.剪切变稀C.粘度仅与分子结构和温度有关 8.热力学上最稳定的高分子晶体是( B )。 A.球晶B.伸直链晶体C.枝晶 9.下列高聚物中,只发生溶胀而不能溶解的是( B )。 A. 高交联酚醛树脂; B. 低交联酚醛树脂; C.聚甲基丙稀酸甲脂 10.高分子-溶剂相互作用参数χ1( A )聚合物能溶解在所给定的溶剂中

A. χ1<1/2 B. χ1>1/2 C. χ1=1/2 11.判断下列叙述中不正确的是( C )。 A.结晶温度越低,体系中晶核的密度越大,所得球晶越小; B.所有热固性塑料都是非晶态高聚物; C.在注射成型中,高聚物受到一定的应力场的作用,结果常常得到伸直链晶体。 12. 判断下列叙述中不正确的是( C )。 A.高聚物的取向状态是热力学上一种非平衡态; B.结晶高聚物中晶片的取向在热力学上是稳定的; C.取向使材料的力学、光学、热性能各向同性。 13.关于高聚物和小分子物质的区别,下列( D )说法正确 ⑴高聚物的力学性质是固体弹性和液体粘性的综合; ⑵高聚物在溶剂中能表现出溶胀特性,并形成居于固体和液体的一系列中间体系; ⑶高分子会出现高度的各向异性。 A. ⑴⑵对 B. ⑵⑶对 C. ⑴⑶对 D.全对 三、问答题:

高分子物理习题答案

高分子物理习题集-答案 第一章高聚物得结构 4、高分子得构型与构象有何区别?如果聚丙烯得规整度不高,就是否可以通过单键得内旋转提高它得规整度? 答:构型:分子中由化学键所固定得原子或基团在空间得几何排列。这种排列就是稳定得,要改变构型必须经过化学键得断裂与重组。 构象:由于单键内旋转而产生得分子在空间得不同形态。构象得改变速率很快,构象时刻在变,很不稳定,一般不能用化学方法来分离。 不能。提高聚丙烯得等规度须改变构型,而改变构型与改变构象得方法根本不同。构象就是围绕单键内旋转所引起得排列变化,改变构象只需克服单键内旋转位垒即可实现,而且分子中得单键内旋转就是随时发生得,构象瞬息万变,不会出现因构象改变而使间同PP(全同PP)变成全同PP(间同PP);而改变构型必须经过化学键得断裂才能实现。 5、试写出线型聚异戊二烯加聚产物可能有那些不同得构型。 答:按照IUPAC有机命名法中得最小原则,CH3在2位上,而不就是3位上,即异戊二烯应写成 CH2C 3CH CH2 1234 (一)键接异构:主要包括1,4-加成、1,2-加成、3,4-加成三种键接异构体。 CH2 n C 3 CH CH2 1,4-加成CH2 n C 3 CH CH2 1,2-加成 CH2 n C CH3 CH CH2 3,4-加成 (二)不同得键接异构体可能还存在下列6中有规立构体。 ①顺式1,4-加成 CH2CH2CH2CH2 C CH3 C H CH3 C C H

②反式1,4-加成 2 CH 2CH 2 CH 2C CH 3 C H CH 3 C C ③ 1,2-加成全同立构 CH 2 C C 3 C C H H H H CH CH 2CH CH 3 C C H H CH 2CH CH 3 ④1,2-加成间同立构 C C CH 3 C C H H H H CH 3C C H H CH 3 R R R R=CH CH 2 ⑤3 ,4-加成全同立构 CH 2C CH 3C C C C H H H H C C H H CH 2C CH 3CH 2 C CH 3 ⑥3,4-加成间同立构 C C C C H H H C C H H R R R R= CH 2 H H H C CH 3 6.分子间作用力得本质就是什么?影响分子间作用力得因素有哪些?试比较聚乙烯、聚氯乙烯、聚丙烯、聚酰胺(尼龙-66)、聚丙烯酸各有那些分子间作用力? 答:分子间作用力得本质就是:非键合力、次价力、物理力。 影响因素有:化学组成、分子结构、分子量、温度、分子间距离。

高分子物理作业答案

第五章聚合物的转变与松弛 1.以分子运动观点和分子间物理缠结概念说明非晶态聚合物随着温度升高粘弹行为的5个区域.并讨论分子量对应力松弛模量—温度曲线的影响规律。 (1)玻璃态区类似玻璃,脆性,如:室温下的PS、PMMA。 温度不足以克服内旋转位垒,链段以上运动“冻结”,分子运动主要限于振动和短程的旋转运动 (2)玻璃—橡胶转变区远程、协同分子运动的开始。链段(约10—50个主链原子)获得了足够的热能开始以协同方式运动,不断改变构象 (3)橡胶-弹性平台区分子间存在物理缠结,聚合物呈现远程橡胶弹性(蜷曲链受力扩张,产生大形变外力除去后,自发地回复到蜷曲形态) (4) 粘弹转变区分子链发生解缠作用,导致由链段运动向整个分子滑移运动过渡。 (5) 粘流区聚合物容易流动,类似糖浆;热运动能量足以使分子链解缠蠕动,导致整链运 动。 2. 讨论结晶、交联聚合物的模量-温度曲线和结晶度、交联度对曲线的影响规律。 答:在轻度结晶的高聚物中,微晶体起着类似交联点的作用,这种试样仍然存在明显的玻璃化转变,随着结晶度的增加,相当于交联度的增加,非晶部分处在高弹态的结晶高聚物的硬度将逐渐增加,到结晶度大于40%后,微晶体彼此衔接,形成贯穿整个材料的连续晶相,宏观上不易察觉明显的玻璃化转变,其曲线在熔点以前不出现明显的转折。 交联聚合物,不存在(4)(5)区,因为交联阻止了滑移运动,在达到聚合物的分解温度之前,一直保持在③区状态。 结晶聚合物 1.处于晶态

a.轻度结晶 微晶体起着类似交联点的作用,存在明显的玻璃化转变, 形变小于非晶 b.结晶度大于40%时,无玻璃化转变,在熔点以前不出现明显的转折。 ?分子量不太大,T f T m熔融后→高弹态→粘流态 2.处于非晶态 类似于非晶态高聚物但有可能出现冷结晶现象。即T>Tg 后,链段排入晶格→结晶,使形变变小。 (图见讲义) 3. 写出四种测定聚合物玻璃化温度的方法,不同实验方法所得结果是否相同?为什么? 答:①膨胀计法②量热法(DSC法)③温度-形变法(热机械法)④核磁共振法(NMR) 4.聚合物的玻璃化转变是否是热力学相变?为什么? 答:玻璃化温度与测定过程的冷却速度有关,不是热力学的平衡过程,而是属于力学松弛过程。因为在玻璃化转变前后聚合物都是无规的,热力学上都属于液态。 5. 试用玻璃化转变的自由体积理论解释: 按自由体积理论(熔体降温为固体) 冷却速度过快,则链段来不及调整构象就被冻结,使自由体积高于平衡态时的Vf,这样,Tg以下体积-温度曲线向上平移,使依据两条曲线交点确定的Tg偏高。 按松弛理论(固体升温变为熔体) 因Tg是链段运动的松弛时间与观察时间匹配时的温度,升温速率越快,观察时间越短,相应的更短松弛时间的温度就越高,故测得的Tg就越高。 7. 聚合物晶体结构和结晶过程与小分子晶体结构和结晶过程有何差别?造成这些差别的原因是什么? 相似:都发生突变,有明显的转折,都属于热力学一级相转变过程 差异:小分子熔点0.2度高聚物是一5~10℃温度范围,熔限 原因:结晶高聚物中有完善程度不同的晶体(结晶时造成的),结晶比较完善的晶体在较高温度下才能熔融,而结晶不完善的晶体在较低温度就能熔融,如果熔化过程中升温速度比较缓慢,不完整晶体可以再结晶形成比较完善的晶体,熔限也相应变窄; 8. 测定聚合物结晶速度有哪些方法? 答:(1)膨胀计法、光学解偏振法和差示扫描量热法(Dsc) (2)偏光显微镜法和小角激光光散射法 9. 比较下列各组聚合物的Tg高低并说明理由; (1) 聚二甲基硅氧烷,顺式聚1,4—丁二烯; (2) 聚已二酸乙二醇酯,聚对苯二甲酸乙二醇酯 (3) 聚丙烯,聚4-甲基1-戊烯; (4) 聚氯乙烯,聚偏二氯乙烯。 解:(1)Tg:聚二甲基硅氧烷< 顺式聚1,4—丁二烯,聚二甲基硅氧烷主链为饱和单

高分子物理习题集及答案资料讲解

高分子物理习题集及 答案

第一章高分子链的结构 一.解释名词、概念 1.高分子的构型:高分子中由化学键固定了的原子或原子团在空间的排列方式2.全同立构高分子:由一种旋光异构单元键接形成的高分子3.间同立构高分子:由两种旋光异构单元键接形成的高分子4.等规度:聚合物中全同异构和间同异构的高分子占高分子总数的百分数5.高分子的构象:由于单键内旋转而产生的分子在空间的不同形态 6.高分子的柔顺性:高分子能够呈现不同程度卷曲构象状态的性质7.链段:高分子中能做相对独立运动的段落8.静态柔顺性:由反式微构象和旁氏微构象构象能之差决定的柔顺性,是热力学平衡条件下的柔顺性 9.动态柔顺性:高分子由一种平衡构象状态转变成另一种平衡构象状态所需时间长短决定的柔顺性 10.等效自由连接链:在一般条件下,高分子链中只有部分单键可以内旋转,相邻的两个可以内旋转的单键间的一段链称为链段,这样可以把高分子链看作是由链段连接而成的,链段之间的链不受键角的限制,链段可以自由取向,这种高分子链的均方末段距以及末端距分布函数的表达式与自由连接链相同,只是把链数n转换成链段数n,把键长l换成链段长l,这种链称为等效自由链接链11.高斯链:末端距分布服从高斯分布的链 12.高分子末端距分布函数:表征高分子呈现某种末端距占所有可能呈现末端剧的比例 二.线型聚异戊二烯可能有哪些构型? 答:1.4-加成有三种几何异构,1.2加成有三种旋光异构,3.4加成有三种旋光异构 三.聚合物有哪些层次的结构?哪些属于化学结构?哪些属于物理结构?四.为什么说柔顺性是高分子材料独具的特性? 答:这是由高分子的结构决定的,高分子分子量大,具有可以内旋转的单键多,可呈现的构象也多,一般高分子长径比很大,呈链状结构,可以在很大程度内改变其卷曲构想状态。对于小分子,分子量小,可内旋转的单键少,可呈现的构象数也不多,且小分子一般呈球形对称,故不可能在很大的幅度范围内改变其构象状态 五.通常情况下PS是一种刚性很好的塑料,而丁二烯与苯乙烯的无规共聚物(B:S=75:25)和三嵌段共聚物SBS(B:S=75:25)是相当好的橡胶材料,从结构上分析其原因。 答:ps分子上带有刚性侧基苯环,且只通过一个单键与分子相连,再者沿分子链轴方向苯环的密度大,高分子的刚性很好,所以ps是一种刚性很好的塑料。丁二烯和苯乙烯的无规共聚物的分子链中引入了很多孤立双键,使与之相连的单键内旋转变得容易,分子链上虽仍有苯环侧基,但数目少,又是无规共聚,沿分子链轴方向苯环密度小,柔顺性好,三嵌段共聚物中间链段是分子链中含有很多孤立双键且又相当长的聚丁二烯,是一种典型的柔顺链。 六.若聚丙烯的等规度不高,能否用改变构象的方法提高其等规度?为什么?

高分子物理习题集及答案

第一章高分子链的结构 一.解释名词、概念 1.高分子的构型:高分子中由化学键固定了的原子或原子团在空间的排列方式2.全同立构高分子:由一种旋光异构单元键接形成的高分子3.间同立构高分子:由两种旋光异构单元键接形成的高分子4.等规度:聚合物中全同异构和间同异构的高分子占高分子总数的百分数5.高分子的构象:由于单键内旋转而产生的分子在空间的不同形态6.高分子的柔顺性:高分子能够呈现不同程度卷曲构象状态的性质7.链段:高分子中能做相对独立运动的段落8.静态柔顺性:由反式微构象和旁氏微构象构象能之差决定的柔顺性,是热力学平衡条件下的柔顺性9.动态柔顺性:高分子由一种平衡构象状态转变成另一种平衡构象状态所需时间长短决定的柔顺性10.等效自由连接链:在一般条件下,高分子链中只有部分单键可以内旋转,相邻的两个可以内旋转的单键间的一段链称为链段,这样可以把高分子链看作是由链段连接而成的,链段之间的链不受键角的限制,链段可以自由取向,这种高分子链的均方末段距以及末端距分布函数的表达式与自由连接链相同,只是把链数n转换成链段数n,把键长l换成链段长l,这种链称为等效自由链接链11.高斯链:末端距分布服从高斯分布的链12.高分子末端距分布函数:表征高分子呈现某种末端距占所有可能呈现末端剧的比例 二.线型聚异戊二烯可能有哪些构型? 答:1.4-加成有三种几何异构,1.2加成有三种旋光异构,3.4加成有三种旋光异构 三.聚合物有哪些层次的结构?哪些属于化学结构?哪些属于物理结构? 四.为什么说柔顺性是高分子材料独具的特性? 答:这是由高分子的结构决定的,高分子分子量大,具有可以内旋转的单键多,可呈现的构象也多,一般高分子长径比很大,呈链状结构,可以在很大程度内改变其卷曲构想状态。对于小分子,分子量小,可内旋转的单键少,可呈现的构象数也不多,且小分子一般呈球形对称,故不可能在很大的幅度范围内改变其构象状态 五.通常情况下PS是一种刚性很好的塑料,而丁二烯与苯乙烯的无规共聚物(B:S=75:25)和三嵌段共聚物SBS(B:S=75:25)是相当好的橡胶材料,从结构上分析其原因。 答:ps分子上带有刚性侧基苯环,且只通过一个单键与分子相连,再者沿分子链轴方向苯环的密度大,高分子的刚性很好,所以ps是一种刚性很好的塑料。丁二烯和苯乙烯的无规共聚物的分子链中引入了很多孤立双键,使与之相连的单键内旋转变得容易,分子链上虽仍有苯环侧基,但数目少,又是无规共聚,沿分子链轴方向苯环密度小,柔顺性好,三嵌段共聚物中间链段是分子链中含有很多孤立双键且又相当长的聚丁二烯,是一种典型的柔顺链。 六.若聚丙烯的等规度不高,能否用改变构象的方法提高其等规度?为什么?答:不能,碳碳单键的旋转只改变构象,没有化学键的断裂与生成,是物理变化。而要想改变等规度必须改变化学结构。所以,不能用改变构象的方法提高其等规度。

高分子物理作业解答

高分子物理作业-2-答案 聚合物的力学状态及转变 1. 解释名词: (1)聚合物的力学状态及转变 由于高分子链之间的作用力大于主链的价键力,所以聚合物只具有固态和液态力学状态。随着温度的升高,分子热运动能量逐渐增加,当达到某一温度时,即可发生两相间的转变。 (2)松弛过程与松弛时间 松弛过程:在一定温度和外场(力场、电场、磁场等)作用下,聚合物由一种平衡态通过分子运动过渡到另一种与外界条件相适应的、新的平衡态,这个过程是一个速度过程。 松弛时间τ是用来描述松弛快慢的物理理。在高聚物的松弛曲线上,?x t ()变到等于?x o 的1/e 倍时所需要的时间,即松弛时间。 (3)自由体积与等自由体积状态 分子中未被占据的体积为自由体积; 在玻璃态下,由于链段运动被冻结晶,自由体积也被冻结,并保持一恒定值,自由体积“孔穴”的大小及其分布也将基本上维持固定。因此,对任何高聚物,玻璃温度就是自由体积达到某一临界值的温度,在这临界值以下,已经没有足够的窨进行分子链的构象调整了。因而高聚物的玻璃态可视为等自由体积状态。 (4)玻璃态与皮革态 当非晶态高聚物在较低的温度下受到外力时,由于链段运动被冻结,只能使主链的键长和键角有微小的改变,因此从宏观上来说,高聚物受力变形是很小的,形变与受力和大小成正比,当外力除去后形变能立刻回复。这种力学性质称为普弹性,非晶态高聚物处于具有普弹性的状态,称为玻璃态; 部分结晶聚合物,存在玻璃化转变与高弹态,但由于晶区链段不能运动,此时玻璃化转变不再具有很大弹性的高弹态,而表现为具有一定高弹性、韧而硬的皮革态,即皮革态。 2. 试定性地绘出下列聚合物的形变—温度曲线(画在一张图上) 1) 低分子玻璃态物质 2) 线性非晶态聚合物(1M ) 3) 线性非晶态聚合物(212,M M M ?212,M M M ?>1 M ) 4) 晶态聚合物(1M )

高分子物理课后习题

第1章高分子的链结构 4.哪些参数可以表征高分子链的柔顺性?如何表征? 答:(1)空间位阻参数(或称刚性因子)σ,实测的无扰均方末端距与自由旋转链的均方末端距之比,σ值愈大,内旋转阻碍越大,柔顺性愈差; (2)特征比Cn,无扰链与自由连接链均方末端距的比值,Cn值越小,链的柔顺性越好; (3)连段长度b,b值愈小,链愈柔顺。 7.比较下列四组高分子链的柔顺性并简要加以解释。 解:(1)聚乙烯>聚氯乙烯>聚丙烯腈,取代基极性越大,高聚物柔顺性越差; (2)聚甲醛>聚苯醚>聚苯,主链刚性基团比例越大,柔顺性越差,苯环柔顺性比亚甲基差; (3)聚丁二烯>聚氯丁二烯>聚氯乙烯;孤立双键的柔顺性较单键主链好,极性取代基是的聚合物柔顺性变差; (4)聚偏二氟乙烯>聚氟乙烯>聚二氟乙烯,对称取代的柔顺性优于单取代,取代基比例越大,柔顺性越差;

第2章聚合物的凝聚态结构 3.聚合物在不同条件下结晶时,可能得到哪几种主要的结晶形态?各种结晶形态的特征是什么? 答:(1)可能得到的结晶形态:单晶、树枝晶、球晶、纤维状晶、串晶、柱晶、伸直链晶体; (2)形态特征:单晶:分子链垂直于片晶平面排列,晶片厚度一般只有10nm 左右;树枝晶:许多单晶片在特定方向上的择优生长与堆积形成树枝状;球晶:呈圆球状,在正交偏光显微镜下呈现特有的黑十字消光,有些出现同心环;纤维状晶:晶体呈纤维状,长度大大超过高分子链的长度;串晶:在电子显微镜下,串晶形如串珠;柱晶:中心贯穿有伸直链晶体的扁球晶,呈柱状;伸直链晶体:高分子链伸展排列晶片厚度与分子链长度相当。 4.测定聚合物的结晶度的方法有哪几种?简述其基本原理。不同方法测得的结晶度是否相同?为什么? 答:(1)密度法,X射线衍射法,量热法; (2)密度法的依据:分子链在晶区规整堆砌,故晶区密度大于非晶区密度;X射线衍射法的依据:总的相干散射强度等于晶区和非晶区相干散射强度之和;量热法的依据:根据聚合物熔融过程中的热效应来测定结晶度的方法。 (3)不同,因为结晶度的概念缺乏明确的物理意义,晶区和非晶区的界限很不明确,无法准确测定结晶部分的量,所以其数值随测定方法不同而不同。 11.某一聚合物完全结晶时的密度为0.936g/cm3,完全非晶态的密度为 0.854g/cm3,现知该聚合物的实际密度为0.900g/cm3,试问其体积结晶度应为多少? 答:根据体积结晶度计算公式 带入ρ=0.900g/cm3,ρa=0.854g/cm3,ρc=0.936g/cm3 得=0.561

高分子物理习题集--答案

高分子物理习题集-答案 第一章高聚物的结构 4、高分子的构型和构象有何区别?如果聚丙烯的规整度不高,是否可以通过单键的内旋转提高它的规整度? 答:构型:分子中由化学键所固定的原子或基团在空间的几何排列。这种排列是稳定的,要改变构型必须经过化学键的断裂和重组。 构象:由于单键内旋转而产生的分子在空间的不同形态。构象的改变速率很快,构象时刻在变,很不稳定,一般不能用化学方法来分离。 不能。提高聚丙烯的等规度须改变构型,而改变构型与改变构象的方法根本不同。构象是围绕单键内旋转所引起的排列变化,改变构象只需克服单键内旋转位垒即可实现,而且分子中的单键内旋转是随时发生的,构象瞬息万变,不会出现因构象改变而使间同PP(全同PP)变成全同PP(间同PP);而改变构型必须经过化学键的断裂才能实现。 5、试写出线型聚异戊二烯加聚产物可能有那些不同的构型。 答:按照IUPAC有机命名法中的最小原则,CH 3 在2位上,而不是3位上,即异戊二烯应写成 CH2C 3CH CH2 1234 (一)键接异构:主要包括1,4-加成、1,2-加成、3,4-加成三种键接异构体。 CH2 n C 3 CH CH2 1,4-加成CH2 n C 3 CH CH2 1,2-加成 CH2 n C CH3 CH CH2 3,4-加成 (二)不同的键接异构体可能还存在下列6中有规立构体。 ①顺式1,4-加成

CH 2 CH 2 CH 2 CH 2 C CH 3 C H CH 3 C C H ②反式1,4-加成 2 CH 2CH 2 CH 2C CH 3 C H CH 3 C C H ③ 1,2-加成全同立构 CH 2 C C 3 C C H H H H CH CH 2CH CH 3 C C H CH 2CH CH 3 ④1,2-加成间同立构 C C 3 C C H H H H CH 3C C H CH 3 R R R R=CH CH 2 ⑤3, 4-加成全同立构 CH 2C CH 3C C C C H H H H C C H H CH 2C CH 3CH 2 C CH 3 H H ⑥3,4- 加成间同立构 C C C C H H H H C C H H R R R R= CH 2 H H C CH 3

高分子物理习题集-2008-2009学期使用

高分子物理习题集

第一章 高聚物的结构 1.简述高聚物结构的主要特点。 2.决定高分子材料广泛应用的基本分子结构特征是什么? 3.高分子凝聚态结构包括哪些内容? 4.高分子的构型和构象有何区别?如果聚丙烯的规整度不高,是否可以通过单键的内旋转提高它的规整度? 5.试写出线型聚异戊二烯加聚产物可能有那些不同的构型。 6.分子间作用力的本质是什么?影响分子间作用力的因素有哪些?试比较聚乙烯、聚氯乙烯、聚丙烯、聚酰胺(尼龙-66)、聚丙烯酸各有那些分子间作用力? 7.下列那些聚合物没有旋光异构,并解释原因。 A .聚乙烯 B .聚丙烯 C .1,4-聚异戊二烯 D .3,4-聚丁二烯 E .聚甲基丙烯酸甲酯 F .硫化橡胶 8.何谓大分子链的柔顺性?试比较下列高聚物大分子链的柔顺性,并简要说明理由。 9.为什么真实的内旋高分子链比相应的高斯链的均方末端距要大些? 10.分子量不相同的聚合物之间用什么参数比较其大分子链的柔顺性? 11.试从统计热力学观点说明高分子链柔顺性的实质。 12.用键为单位统计大分子链的末端距与用链段为单位统计末端距有何异同?那种方法更复合实际情况? 13.假定聚丙烯中键长为0.154nm ,键角109.5o ,无扰尺寸A=483510nm -?,刚性因子(空间位阻参数) 1.76σ=,求其等效自由结合链的链段长度b 。 14.聚乙烯是塑料,全同立构聚丙烯也是塑料,为什么乙烯和少量丙烯的共聚物却是乙丙橡胶? 15.为什么取向态是高聚物独有的聚集态?试分析取向对高聚物性能的影 C H 2C H C l n C H C H 2 n N C H 2 n C C H 3 C H C H 2C H 2 n C H 2 C H 2 C O O O n C O 2

高分子物理习题

第二章 一.解释名词、概念 1.高分子的聚集态结构 2.结晶性聚合物 3.液晶性聚合物 4.球晶 5.高分子液晶 6.液晶原(介原) 7.内聚能密度 8.结晶度 9.结晶聚合物的熔点10.取向聚 合物11.晶面指数 二.高分子聚集态结构包括哪些内容?试述高分子聚集态结构有哪些特点及与成型加工条件、性能的关系。 四.如何从结构上分析某种聚合物属于结晶性聚合物? 五.以聚乙烯为例,说明在什么条件下可以形成单晶、球晶、串晶、伸直链片晶,这些形态的晶体特征是什么?为什么在聚合物不易形成100%结晶的宏观单晶体? 六.在正交偏光显微镜上观察球晶时,可以看到消光黒十字、明暗相间的同心圆环(消光环,对某些球晶),解释这些现象。 七.将下列三组聚合物的结晶难易程度排列成序,并说明原因 (1)PE,PP,PVC,PS,PAN; (2)聚对苯二甲酸乙二酯,聚间苯二甲酸乙二酯,聚己二酸乙二酯; (3)PA 66,PA 1010. 八.试述Avrami方程在本体聚合物结晶动力学研究中的意义。 九.已知聚乙烯、聚偏氯乙烯,全同聚甲基丙烯酸甲酯的玻璃化温度分别为-80℃,-18℃和45℃,其熔点分别为141℃、198℃和160℃,试用经验方法估算: (1)它们最大结晶速度时的温度Tc max; (2)找出Tc max/Tm比例的经验规律. 十.温度对本体聚合物结晶速度影响的规律是什么?解释其原因。

十一.均聚物A是一种结晶聚合物,若加入10%体积分数的增塑剂(x1=-0.1)或者用10%摩尔的单体B与单体A进行无规共聚(单体B的均聚物为非结晶性聚合物),增塑均聚物A的熔点与AB无规共聚物的熔点何者高? 能从中得到什么规律? 十二.两种聚丙烯丝,在纺丝过程中,牵伸比相同,而分别采用冰水冷却和90℃热水冷却。将这两种丝加热到90℃,何者收缩率大?为什么? 十三.有两种乙烯和丙稀的共聚物,其组成相同,其中一种在室温时是橡胶状的,一直到温度降低到-70℃时才变硬;另一种在室温时却是硬而韧又不透明的材料,试解释它们内在结构上的差别。 十四.在聚合物纺丝工艺中,都有牵伸和热定型两道工序,为什么?热定型温度如何选择? 十五.高分子液晶的结构有几种类型?特征如何?液晶性聚合物溶液的η-C、η-T、η-τ的关系如何?这些关系的意义如何? 十六.Flory的结晶聚合物、非结晶聚合物结构模型的要点是什么?有什么实验事实支持他的模型? 十七.(1)将熔融态的聚乙烯(PE)、聚对苯二甲酸乙二醇酯(PET)和聚苯乙烯(PS)淬冷到室温,PE是半透明的,而PET和PS是透明的。为什么? (2)将上述的PET透明试样,在接近玻璃化温度下进行拉伸,发现试样外观由透明变为混浊,试从热力学观点来解释这一现象。 十八. 由文献查得涤纶树脂的密度ρc=1.50×103kg·m-3,和ρa=1.335×103kg·m-3,内聚能ΔΕ=66.67kJ·mol-1(单元).今有一块1.42×2.96×0.51×10-6m3的涤纶试样,重量为2.92×10-3kg,试由以上数据计算: (1)涤纶树脂试样的密度和结晶度; (2)涤纶树脂的内聚能密度.

高分子物理 第二章习题答案

第一章 习题答案 一、 概念 1、构象:由于单键的内旋转而产生的分子中原子在空间位置上的变化叫构象。而构型指 2、构型:分子中由化学键所固定的原子在空间的几何排列。 3、均方末端距:高分子链的两个末端的直线距离的平方的平均值。 4、链段:链段是由若干个键组成的一段链作为一个独立动动的单元,是高分子链中能够独立运动的最小单位。 5、全同立构:取代基全部处于主链平面的一侧或者说高分子全部由一种旋光异构单元键接而成。 6、无规立构:当取代基在平面两侧作不规则分布或者说两种旋光异构体单元完全无规键接而成。 二、选择答案 1、高分子科学诺贝尔奖获得者中,( A )首先把“高分子”这个概念引进科学领域。 A 、H. Staudinger, B 、K.Ziegler, G .Natta, C 、P. J. Flory, D 、H. Shirakawa 2、下列聚合物中,( A )是聚异戊二烯(PI)。 A 、 C CH 2n CH CH 23 B 、 O C NH O C NH C 6H 4C 6H 4n C 、 CH Cl CH 2n D 、O C CH 2CH O O n O C 3、链段是高分子物理学中的一个重要概念,下列有关链段的描述,错误的是( C )。 A 、高分子链段可以自由旋转无规取向,是高分子链中能够独立运动的最小单位。 B 、玻璃化转变温度是高分子链段开始运动的温度。 C 、在θ条件时,高分子“链段”间的相互作用等于溶剂分子间的相互作用。 D 、聚合物熔体的流动不是高分子链之间的简单滑移,而是链段依次跃迁的结果。 4、下列四种聚合物中,不存在旋光异构和几何异构的为( B )。 A 、聚丙烯, B 、聚异丁烯, C 、聚丁二烯, D 、聚苯乙烯 5、下列说法,表述正确的是( A )。 A 、工程塑料ABS 树脂大多数是由丙烯腈、丁二烯、苯乙烯组成的三元接枝共聚物。 B 、ABS 树脂中丁二烯组分耐化学腐蚀,可提高制品拉伸强度和硬度。 C 、ABS 树脂中苯乙烯组分呈橡胶弹性,可改善冲击强度。

高分子物理习题

下列四种聚合物中,链柔顺性最好的是( D )。 A、聚氯乙烯, B、聚氯丁二烯, C、顺式聚丁二烯, D、反式聚丁二烯 反式聚丁二烯>顺式聚丁二烯>聚氯丁二烯>聚氯乙烯 下列四种聚合物中,链柔顺性最差的是( C )。取代基极性大CH2CH2n > CH2n CH 3> CH2CH n Cl> CH2n CH A、CH2CH2n, B、CH2CH n Cl, C、 CH2n CH CN, D、 CH2n CH CH3 下列四种聚合物中,链柔顺性最好的是( A )。取代基的空间位阻效应小、、CH2O n >Si O n CH3 3>n >O n A、CH2O n, B、O n, C、n, D、Si O n CH3 3 下列四种聚合物中,链柔顺性最差的是( D )。聚乙烯>聚丙烯>顺式聚1,4-丁二烯>聚苯乙烯 A 聚乙烯, B 聚丙烯, C 顺式聚1,4-丁二烯, D 聚苯乙烯 知识点: 定性讨论分子结构对链的柔性的影响: 1.主链结构在碳链高分子中,极性最小的是高分子碳氢化合物。它们分子内的相互 作用不大,内旋转位垒较小,高分子链具有较大的柔性。如聚乙烯,聚丙烯。 双烯类高聚物的主链中含有双键。虽然双键本身不可以旋转,但是它使邻接双键的单键的内旋转变得更为容易。如聚丁二烯。但是,具有共轭双键的高分子链,由于∏电子云没有轴对称性,且∏电子云在最大程度交叠时能量最低,而内旋转会使∏键电子云变形和破裂,这类高分子键就不能旋转。如聚乙炔。 所以聚乙炔<聚丁二烯<聚乙烯 在杂链高分子中,围绕C-O,C-N,Si-O等单键进行的内旋转,位垒均较C-C单键的为小,柔性较好。如聚酯,聚氨酯,聚酰胺,聚二甲基硅氧烷。 主链含有芳杂环结构时,由于芳杂环不能内旋转,所以这样的分子链柔性差。 2.取代基引进极性取代基将增加分子内的相互作用,从而影响高分子链的柔性。取 决于取代基的大小,沿分子链排布的距离以及对称情况。非极性取代基的影响则主要取决于取代基体积的大小。

高分子物理课后习题答案

高分子物理答案详解(第三版) 第1章高分子的链结构 1、写出聚氯丁二烯的各种可能构型。 等。 2.构象与构型有何区别?聚丙烯分子链中碳—碳单键就是可以旋转的,通过单键的内旋转就是否可以使全同立构聚丙烯变为间同立构聚丙烯?为什么? 答:(1)区别:构象就是由于单键的内旋转而产生的分子中原子在空间位置上的变化,而构型则就是分子中由化学键所固定的原子在空间的排列;构象的改变不需打破化学键,而构型的改变必须断裂化学键。 (2)不能,碳-碳单键的旋转只能改变构象,却没有断裂化学键,所以不能改变构型,而全同立构聚丙烯与间同立构聚丙烯就是不同的构型。 3、为什么等规立构聚丙乙烯分子链在晶体中呈31螺旋构象,而间规立构聚氯乙烯分子链在晶体中呈平面锯齿构象? 答(1)由于等归立构聚苯乙烯的两个苯环距离比其范德华半径总与小,产生排斥作用,使平面锯齿形(…ttt…)构象极不稳定,必须通过C-C键的旋转,形成31螺旋构象,才能满足晶体分子链构象能最低原则。 (2)由于间规聚氯乙烯的氯取代基分得较开,相互间距离比范德华半径大,所以平面锯齿形构象就是能量最低的构象。 4、哪些参数可以表征高分子链的柔顺性?如何表征? 答:(1)空间位阻参数(或称刚性因子),值愈大,柔顺性愈差; (2)特征比Cn,Cn值越小,链的柔顺性越好; (3)连段长度b,b值愈小,链愈柔顺。 5.聚乙烯分子链上没有侧基,内旋转位能不大,柔顺性好。该聚合物为什么室温下为塑料而不就是橡胶? 答:这就是由于聚乙烯分子对称性好,容易结晶,从而失去弹性,因而在室温下为塑料而不就是橡胶。

6、从结构出发,简述下列各组聚合物的性能差异: (1)聚丙烯睛与碳纤维; (2)无规立构聚丙烯与等规立构聚丙烯; (3)顺式聚1,4-异戊二烯(天然橡胶)与反式聚1,4-异戊二烯(杜仲橡胶)。 (4)高密度聚乙烯、低密度聚乙烯与交联聚乙烯。 (1)线性高分子梯形高分子 (2 非晶高分子结晶性高分子 (3)柔性 (4)高密度聚乙烯为平面锯齿状链,为线型分子,模量高,渗透性小,结晶度高,具有好的拉伸强度、劲度、耐久性、韧性;低密度聚乙烯支化度高于高密度聚乙烯(每1000 个主链C 原子中约含15~35 个短支链) ,结晶度较低, 具有一定的韧性,放水与隔热性能较好;交联聚乙烯形成了立体网状的结构,因此在韧性、强度、耐热性等方面都较高密度聚乙烯与低密度聚乙烯要好。 7、比较下列四组高分子链的柔顺性并简要加以解释。 解:

高分子物理课后答案

第一章:高分子链的结构一、根据化学组成不同,高分子可分为哪几类? (1、分子主链全部由碳原子以共价键相连接的碳链高分子2、分子主链除含碳外,还有氧、氮、硫等两种或两种以上的原子以共价键相连接的杂链高分子3、主链中含有硅、硼、磷、铝、钛、砷、锑等元素的高分子称为元素高分子 4、分子主链不含碳,且没有有机取代基) 二、什么是构型,不同构型分别影响分子的什么性能? (构型是指分子中由化学键所固定的原子在空间的几何构型;1、旋光异构影响旋光性 2、几何 异构影响弹性 3、键接异构对化学性能有很大影响) 三、什么是构造,分子构造对高分子的性能有什么影响? (分子构造是指聚合物分子的各种形状,线性聚合物分子间没有化学键结构,可以在适当溶剂 中溶解,加热时可以熔融,易于加工成型。支化聚合物的化学性质与线形聚合物相似,但其物 理机械性能、加工流动性能等受支化的影响显着。树枝链聚合物的物理化学性能独特,其溶液 黏度随分子量增加出现极大值。) 四、二元共聚物可分为哪几种类型? (嵌段共聚物、接枝共聚物、交替共聚物、统计共聚物) 五、什么是构象?什么是链段?分子结构对旋转位垒有什么影响? (构象表示原子基团围绕单元链内旋转而产生的空间排布。把若干个链组成的一段链作为一个 独立运动的单元,称为链段。位垒:1、取代基的基团越多,位垒越大 2、如果分子中存在着双 键或三键,则邻近双键或三键的单键的内旋转位垒有较大下降。) 六、什么是平衡态柔性?什么是动态柔性?影响高分子链柔性的因素有哪些? (平衡态柔性是指热力学平衡条件下的柔性,取决于反式与旁式构象之间的能量差。动态柔性 是指外界条件影响下从一种平衡态构象向另一种平衡态构象转变的难易程度,转变速度取决于 位能曲线上反式与旁式构象之间转变位垒与外场作用能之间的联系。影响因素:一、分子结构:1、主链结构 2、取代基 3、支化交联 4、分子链的长链二、外界因素:温度、外力、溶剂) 七、自由连接链?自由旋转链?等效自由连接链?等效自由旋转链?蠕虫状链? (自由连接链:即键长l 固定,键角⊙不固定,内旋转自由的理想化模型。自由旋转链:即键 长l 固定(l=),键角⊙(=°)内旋转自由的长链分子模型。等效自由连接链:实际高分子链不 是自由连接链,而且,内旋转也不是完全自由的,为此,将一个原来含有几个键长为l ,键角 ⊙固定,旋转不自由的键组成的链视为一个含有Z 个长度为b 的链组成的“等效自由连接链”。 蠕虫状链:由几个长度为b ,键角为π-a 并可进行自由旋转的想象键组成的链状分子,在保持

相关主题
文本预览
相关文档 最新文档