当前位置:文档之家› 超临界二氧化碳循环分析2

超临界二氧化碳循环分析2

超临界二氧化碳循环分析2
超临界二氧化碳循环分析2

超临界二氧化碳循环特性

作为第四代核能系统的候选堆型,超高温气冷堆和气冷快堆具有高安全性、高效率、用途广等特点,且均拟采用氦气作为反应堆直接循环工质。由于氦气具有稳定、无毒、无感生放射性、热容大等特点,因此,目前世界上的气冷堆广泛使用氦气作为直接闭式Brayton循环的工质及反应堆的冷却剂。但氦气循环需较高的循环最高温度(堆芯出口温度)才能达到满意的效率,因此,对反应堆的结构材料、燃料元件材料等提出了较高的要求,同时由于氦气密度低、可压缩系数小等缺点,氦气循环叶轮机械的制造也产生了一定困难。

与氦气相比,CO2因其密度大,且易于压缩,CO2的临界温度为304.19K,比环境温度略高,临界压力为7.3773MPa,在运行工况下,可利用其实际气体的性质减少压缩功等,采用CO2作为工质的循环所需的温度不需太高即可与氦气循环具有相当的效率,因此,使用CO2作为气冷堆循环的工质具有广阔的潜力。同时,CO2循环也被推荐使用于第4代核能系统中的钠冷快堆(SFR)和铅冷快堆(LFR)。

1. 二氧化碳动力循环

(1)简单超临界Brayton循环

与理想气体的Brayton循环类似,CO2的简单超临界Brayton循环如图1-1所示,分为以下几个部分:1至2为CO2在压缩机中被压缩至循环最高压力的过程;2至3为CO2在回热器中的吸热过程;3至4为CO2在中间换热器从反应堆堆芯或热源的吸热过程;4至5为CO2在透平中的膨胀做功过程;5至6为CO2回热器中的回热过程;6至1为CO2的预冷过程。其中,2至3及5至6的回热器的回热过程是Brayton循环的关键。回热器的存在使得Brayton循环的热量得以最大限度地利用,从而提高了循环的效率。

图1-1简单超临界Brayton循环

受堆芯出口温度限制以及CO2工况下比热容变化较大的影响,CO2简单超临界Brayton循环的效率与氦气循环相比并不高。由于CO2相对氦气较为活泼,高温下可与燃料元件和金属构件发生化学腐蚀,因此,在使用CO2作为冷却剂的气冷堆中存在工程约束条件,即CO2的工作温度不能超过670℃。同时,CO2工作在临界点附近,是实际气体的Brayton循环,在回热器高压侧和低压侧流体的比热容变化均较大。由于回热器高压侧流体的比热容大于低压侧流体比热容,因此,在传递相同热量的情况下,回热器低压侧需较大的温差才能使高压侧产生较小的温升,从而使得换热器可能出现夹点,令传热恶化,这也使得高压侧流体在反应堆堆芯或热源处需吸取更多的热量才能达到设计的循环最高温度,因而降低了CO2简单超临界Brayton循环的效率。

(2)改进的CO2Brayton循环

为克服CO2作为实际气体进行Brayton循环的上述缺点,充分利用其在临界点附近密度较大、所需压缩功较小的优势,采用分流压缩循环。如图1-2所示,采用两个回热器和两台压缩机。透平出口气体流经高温回热器及低温回热器后分流,一部分流体进行预冷,经压缩机压缩后,进入低温回热器回热,如图中,6

→1→2→2′;另一部分流体不经预冷,直接压缩,如图中6→2′,这部分流体压缩后与低温回热器出口流体混合进入高温回热器中回热,这两股流体具有相同的压力和温度。

图1-2 改进后的超临界CO2的Brayton循环

2. 计算模型

根据热力学定律进行循环计算。

CO2工作在临界点附近,其物性由压力P、温度T 共同决定。定义循环压比ε、温比τ为:

ε=P max/P min(2-1)

τ=T max/T min(2-2) 其中:下标max、min分别表示循环中最高和最低。

压气机的压缩过程可表示为:

S c,out=S c,in(2-3)

h c,out=(h c,out,is-h c,in)/ηc+h c,in(2-4)

类似地,透平的做功过程可表示为:

S t,out=S t,in(2-5)

h t,out =(h t,out,is -h t,in )/ηt +h t,in (2-6) 式中:s 为比熵;h 为比焓;下标c 、t 分别表示压气机和透平,in 、out 分别表示进口和出口,is 表示等熵过程;η为部件等熵效率。

设循环总压损率为ξ,其计算公式为:

ξ=ξlrec,cold +ξhrec,cold +ξcore +ξhrec,hot +ξlrec,hot +ξprecooler (2-7) 其中,部件压损率为各部件压力损失与循环最高压力之比,下标lrec 、hrec 、core 、precooler 分别表示低温回热器、高温回热器、堆芯及预冷器,cold 、hot 表示回热器冷端和热端。

假设经过预冷器的流量份额为x (0≤x ≤1),低温回热器的回热度则为: m a x m i n 65m a x m i n 22l r e c )()()(''t mc h h t mc h h x p p ?-=?-=α (2-8)

高温回热器的回热度为:

),(),(''''''2555525523t p h h h h t p h h h h h r e c --=--=α (2-9)

αhrec 与αlrec 的计算方法差异由分流而引起的。其中,两个回热器高压侧的出口温度须分别满足条件T 2+δt ≤ T 6 ≤T 5' 及T 2'+δt ' ≤T 5' ≤T 5,δt 、δt ′是为避免回热器内出现夹点而使回热器两侧温差过小导致传热恶化而设置的工程上所允许的最小温差,通常取为8℃。

回热器中热量交换为:

h 5 - h 6 =(1-x)(h 3-h 2')+x(h 3-h 2) (2-10) 计算完成各部件进出口工况,循环效率可表示为:

34621254)

)(1()(h 'h h h h x h h x h -------=η (2-11)

式(2-11)从做功的角度来计算循环效率,即系统对外界做功(透平做功减去压气机耗功)与系统从外界吸收热量之比。

效率还可表示为:

)/()(13416h h h h x ---=η (2-12) 式(2-12)从能量损失的角度来计算循环效率。可看出,对于采用分流的设计,Brayton 循环释放到环境中未得到利用的热量减少,同时在热源吸收的热量

减少,因此,循环效率大幅提高。

分流措施可在CO 2超临界Brayton 循环中使用是由于CO 2物性受工作环境下的压力、温度影响较大。在无分流回热时,11,,m m t c t c p h h p ?=?-

-,有下标h 表示回热器高压侧,l 表示低压侧。其中,-h p C ,>-1,p C ,因此,Δt h <Δt h 。这样,在冷端流体温差不大的情况下使得回热器热端流体间温差较大,而采用分流可减小CO 2超临界Brayton 循环中回热器热端流体间温差,从而提高进入堆芯换热的温度,单位工质只需吸收相对较少的热量,即可达到与无分流情况下相同的堆芯出口温度。同时,分流时,压缩机工作在临界点附近,此时的流体密度较大,压缩机耗功相对较少。因此,综上使得循环的效率得以提高。但这样的分流设计在理想气体Brayton 循环中是不适用的。因氦气等理想气体在不同压力、温度下的比热容变化不大,因此,回热器内部温差变化不大,特别是回热器热端进出口温差与冷端进出口温差几乎相同,在合理的工程设计下,这个温差不会很大。若同样采用分流,回热器冷流体的温升提高空间有限,同时由于增加了1台压气机,从而增加了投资成本。理想气体在远离临界点处压缩,压缩机耗功较多。所以,分流式设计并不适用于理想气体Brayton 循环。综上分析,分流式设计较适用于回热器高压侧定压比热容较大的非理想气体Brayton 循环。

由上述分析可知,CO 2超临界Brayton 循环的效率可简化成η=η(φ,ε,τ,η,ξ,k i ),其中,φ 为初始点的工况,ε为循环压比,τ为循环温比,η为压气机和透平的等熵效率,η=[ηt ,ηc1,ηc2],ξ为各部件压力损失,k i (k i 共有4个参数)为经过预冷器的流量份额x ,低温回热器低压侧出口温度与高压侧入口(即回热器冷端)温度之差Δt ,低温回热器回热度αlrec ,高温回热器回热度αhrec ,可从中任选其二。只要确定了以上参数,并保证回热器不出现传热恶化的现象,即满足回热器任意点温差不低于工程所要求的最低温差,即可唯一确定CO 2超临界Brayton 循环的效率。 3. 二氧化碳超临界Brayton 循环特性

下面分析循环计算的各参数对循环效率的影响。同时,由于x 、Δt 、αlrec 、αhrec 4个参数只有其中两个是独立的,因此,只需确定压比、温比及上述任意2个参

数即可确定循环效率。本文为简化起见,始终选择k i中Δt为其中1个确定效率的变量,这样具有实际意义,同时简化了讨论。因实际气体在Brayton循环中的物性受压力、温度的影响很大,因此,初始计算点参数的选取对循环的计算也有影响。下文选取循环最低压力、温度点作为初始点,对循环进行特性分析。初始点的工况选取为7.7MPa、32℃。

(1) x、Δt为变量对效率的影响

图3-1表示出在不同循环最高温度情况下,选取x=0.7时的效率随压比的变化。与理想气体Brayton循环相似,效率随压比的提高不断增加,但增加到一定值时开始下降(见t max=450℃);随循环温度的提高,最大循环效率对图3-1循环最高应的压比也在增大。随压比的增大,透平做功和压缩机耗功均增加,压比较小时,透平做功增长率大于压气机耗功增长率,但透平做功增长率随压比增大逐渐减小而压缩机耗功增长率却逐渐增加,因此,循环存在最佳效率。但随压比增大,低温回热器会出现夹点,换热温差变小使得传热恶化,此时即达到指定x 下循环的最大压比。受此限制,在t max=550℃及650℃下还未达到理论的最佳压比-效率点。循环最高温度对循环效率的影响极其显著,升高100℃使最大效率提高4%~5%,其中,当循环最高温度为650℃、x=0.7而其余参数如图3所示时的效率可高达50%。

图3-1 循环最高温度对循环效率的影响(x、Δt为变量)其余参数不变,在相同的循环最高温度下,循环最大压比随x的减小而减小(图3-2)。这是由于xm p,hΔt h=mc p,lΔt l。x的减小使回热到相同温差下所需热端流体的温差减小,在较低压比下即出现了回热器传热恶化。但在相同条件下,x 的减小有利于效率的提高,见式(2-12)。

图3-2 x 对循环效率的影响(固定Δt)

显然,随回热器低温端温差的减小,循环效率得到提高(图3-3)。同时,温差也影响了循环在满足循环条件情况下所能达到的最大压比。但产生最大压比的原因各有不同,Δt=10℃时归因于低温回热器传热恶化,而Δt=30℃、40℃时则归因于低温回热器回热所需的热侧流体进口温度已达到透平出口温度而不必采用高温回热器。

图3-3 回热器低温端温差变化Δt

图3-4表示出,在给定x,不同压损、压气机效率、透平效率下,循环效率随压比的变化。在相同的压比下,压损越小,循环效率越高;压气机和透平效率越高,循环效率越高。

(a)

(b)

(c)

图3-4 其余参数对循环效率的影响(固定x、Δt)

(2)αlrec、Δt为变量对效率的影响

给定式k i中的低温回热器回热度及Δt,对循环进行研究(图3-5,循环工作的压比范围十分有限。给定Δt、αlrec的同时,T2' 与T5 '也被决定,即回热器两侧流体进出口温差给定。在满足热力学第二定律的条件下,压比较小时,回热器热侧流体进出口温差远大于冷侧流体进出口温差,按给定的循环模式,需要的冷流体份额x >1,这是不符合实际的;反之,给定Δt、αlrec,压比较大时,在满足热力学第二定律的条件下,回热度必定大于给定的值。因此,在给定低温回热器

回热度及Δt的情况下,压比处在一有限的范围内。同时,给定低温回热器回热度及Δt,循环效率随压比的增加而增加。在相同压比下,循环最高温度越高,效率随之显著提高。

图3-5 循环最高温度对循环效率的影响(αlrec、Δt为变量)改变低温回热器的回热度,其余参数不变,循环效率随压比变化如图3-6所示。随着回热度的提高,适用的循环压比越高,且范围越来越宽。这意味着,在不同的压比下,低温回热器只能选择其所对应的回热度。这是CO2超临界Brayton 循环的一显著特点。在不同回热度下,循环效率均随压比的增加而增加,但效率增加的梯度随回热度的增加而变小,即效率曲线逐渐平缓,效率的极值同时随回热度增加而增加。

图3-6αlrec对循环效率的影响(固定Δt)

给定低温回热器回热度,改变低温回热器冷端流体温差,其余参数不变,得到循环压比效率关系示于图3-7。从图3-7可看出,在不同Δt的情况下,循环效率均随压比的增加而增加。而在不同Δt的情况下又有各自的特点。在不同Δt下,相同回热度对应的循环效率、压比范围不同,Δt增加,压比范围也增加,压比的极值也增加,但效率随压比增加的梯度变小,能达到的最大效率变小。

图3-7Δt对循环效率的影响(固定αlrec)

图3-8示出了给定低温回热器回热度,不同压损、压气机效率、透平效率下,

循环效率随压比的变化。在相同的压比下,压损越小,循环效率越高,压气机和透平效率越高,循环效率也越高。但压缩机效率的提高对循环效率的影响不是十分显著。

(a)

(b)

(c)

图3-8 其余参数对循环效率的影响(固定αlrec、Δt)

(3)αhrec、Δt为变量对效率的影响

给定高温回热器回热度及Δt,在其余参数确定的情况下可计算出循环效率与压比之间的关系。如图3-9所示,给定高温回热器回热度为0.9,循环效率随压比先增加至一最大值,然后缓慢减小。在不同循环最高温度下,确定的高温回热器回热度在使回热器不出现传热恶化情况下所能达到的最大压比不同,这个最大压比随循环温度的提高而提高。同时,循环最高温度的提高也使相同压比下的效率得到显著提高。

图3-9 循环最高温度对循环效率的影响(αhrec、Δt为变量)改变高温回热器回热度,其它参数如图3-10所示,在相同条件下,回热度越高,效率增加得越快,最高效率也越高。这与理想气体的Brayton循环相似。但回热度的增加使循环回热器在较低的压比之下出现了传热恶化,因此,只能达到较低的压比,但整个循环的最高效率仍比回热度较低情况下的最高循环效率高。

图3-10αhrec对循环效率的影响(固定Δt)

给定高温回热器回热度,改变Δt,其余参数如图3-11所示,循环效率在不

同回热度下均随压比的先增大到最高值,再逐渐减小。循环能达到的最大压比随Δt的增加而减小,相同压比下的循环效率随Δt的增大而减小。

图3-11Δt对循环效率的影响(固定αhrec)

图3-12为给定高温回热器回热度,不同压损、压气机效率、透平效率下,循环效率随压比的变化。在相同的压比下,压损越小,循环效率越高,压气机和透平效率越高,循环效率也越高。

(a)

(b)

(c)

图3-12 其余参数对循环效率的影响(固定αhrec、Δt)

4. 效率

不同循环最高温度下计算的出高温回热器回热度为0.95、循环压比2.6时的效率如下表4-1所示。

表4-1不同循环最高温度下的各参数及效率

t max x αlrec η/ % 备注

450 0.588 0.936 40.75 αlrec=0.95,ε=2.6,ζ=2%,550 0.613 0.885 45.25

η c =ηt=90%,P min=7.7MPa 650 0.639 0.89 48.50

表4-1所列并非各温度下循环曲线中的最高效率,而是在现有技术条件下CO2 Brayton循环可能达到的效率。在20MPa最高循环压力、650℃的最高循环温度下,效率可高达48.5%,这与氦气Brayton闭式循环最高循环压力7MPa、最高温度800 ℃下的效率相近。表4-2所列为以相同热功率310MW为例对上述CO2及氦气循环的参数比较。

表4-2 CO2与氦气参数的比较

参数气体

在与氦气循环达到相近效率的情况下,CO2透平功率和压缩机耗功均小于氦气循环,虽然工质质量流量较大,但体积流量小。表4-2所列并非CO2循环最佳压比之下的效率,而氦气参数则是最佳压比下的计算结果。若选取其最佳压比计算,如果材料等限制因素同时得以解决,CO2循环则有望达到更高的效率。

二氧化碳的实验室制法----教案

《二氧化碳的实验室制法》教学设计、教材分析: 教材在学习了氧气的实验室制法的基础上安排了二氧化碳的 实验室制法。这样安排可以使学生对氧气的认识得到巩固、补充和深化,通过小结氧气的实验室制法来总结出实验室制取气体的思路和方法。可以使学生分析问题、解决问题的能力、认识事物过程的能力得到发展和提高。从而为学生以后研究、探讨其它气体的实验室制法,指明了正确的学习顺序。 、设计思想: 因为本节课的重要性和典型性,在教学中力求做到以学为主, 学生是学习的主人,在教学过程中,教师是学习的组织者和引导者,建设一个以学生动脑、动口、动手的和谐的学习氛围,给学生在时间和空间上提供广阔的教学天地来培养学生的成功感,从而培养学生终身学习的能力。 、教学目标: 1.知识目标: 1)、通过分析氧气的实验室制法,使学生了解在实验室内制 取气体的方法和设计思路。 2)、探讨二氧化碳的实验室制法,使学生掌握实验室制取 氧化碳的原理和实验装置。 2.能力目标: (1) 、通过对氧气、氢气实验室制法的分析,培养学生对知识

的归纳总结能力。 2)、通过研讨二氧化碳的实验室制法来提高学生分析和解决 实际问题的能力。 3.情感目标: 1)、通过对气体实验室制法的设计思路和方法的归纳总结, 培养学生开阔的思维和思想。 2)、通过对二氧化碳实验室制法的研究和探讨,来激发学生 的学习欲望,创建一个和谐民主的学习氛围。 四、教学重点: 实验室制取二氧化碳的化学反应原理、实验装置和制取方法。 五、教学难点: 从实验室制取气体的设计思路出发,学习二氧化碳的实验室 制取方法。 六、教学关键:实验室制取气体的设计思路 七、教学方法:实验探索、分析、对比、讨论、归纳等启发式教 学方法。 八、学生学法:学生比较、分析、归纳、总结的方法 九、教学手段:多媒体教学、教师演示实验(第二课时学生在实 验室分组演示) 、教学过程:学习目标:学习目标的展示让学生明确本节课的具体的学习目标和任务。 回忆:

超临界二氧化碳循环分析2

超临界二氧化碳循环特性 作为第四代核能系统的候选堆型,超高温气冷堆和气冷快堆具有高安全性、高效率、用途广等特点,且均拟采用氦气作为反应堆直接循环工质。由于氦气具有稳定、无毒、无感生放射性、热容大等特点,因此,目前世界上的气冷堆广泛使用氦气作为直接闭式Brayton循环的工质及反应堆的冷却剂。但氦气循环需较高的循环最高温度(堆芯出口温度)才能达到满意的效率,因此,对反应堆的结构材料、燃料元件材料等提出了较高的要求,同时由于氦气密度低、可压缩系数小等缺点,氦气循环叶轮机械的制造也产生了一定困难。 与氦气相比,CO2因其密度大,且易于压缩,CO2的临界温度为304.19K,比环境温度略高,临界压力为7.3773MPa,在运行工况下,可利用其实际气体的性质减少压缩功等,采用CO2作为工质的循环所需的温度不需太高即可与氦气循环具有相当的效率,因此,使用CO2作为气冷堆循环的工质具有广阔的潜力。同时,CO2循环也被推荐使用于第4代核能系统中的钠冷快堆(SFR)和铅冷快堆(LFR)。 1. 二氧化碳动力循环 (1)简单超临界Brayton循环 与理想气体的Brayton循环类似,CO2的简单超临界Brayton循环如图1-1所示,分为以下几个部分:1至2为CO2在压缩机中被压缩至循环最高压力的过程;2至3为CO2在回热器中的吸热过程;3至4为CO2在中间换热器从反应堆堆芯或热源的吸热过程;4至5为CO2在透平中的膨胀做功过程;5至6为CO2回热器中的回热过程;6至1为CO2的预冷过程。其中,2至3及5至6的回热器的回热过程是Brayton循环的关键。回热器的存在使得Brayton循环的热量得以最大限度地利用,从而提高了循环的效率。

基于超临界CO2布雷顿循环的燃煤发电系统优化分析

中国工程热物理学会燃烧学学术会议论文编号:15xxxx 基于超临界CO2布雷顿循环的燃煤发电系 统优化分析 周敬1,凌鹏1,2,张晨浩1,崔晓宁1,徐俊1,许凯1,苏胜1,胡松1,汪一1,向军1,* (1华中科技大学煤燃烧国家重点实验室,武汉430074 2长沙理工大学能源与动力工程学院,长沙,410114) (Tel:87542417-8206,Email:xiangjun@https://www.doczj.com/doc/3b3754279.html,) 摘要:本文建立超临界CO2燃煤发电系统全流程优化模型,在32.5MPa/605℃/610℃/610℃/高参数条件下,分析不同冷却方式、再热级数以及省煤器布置方式对系统性能的影响。结果显示:中间冷却与二次再热在高压缩比下能有效提高S-CO2布雷顿循环热力性能;锅炉受热面压降能降低循环系统热力学性能且对二次再热影响高于一次再热;从高温回热器入口引出部分流到省煤器能有效提升S-CO2发电系统全厂效率;;相同条件下,超临界CO2发电系统全厂效率高于传统蒸汽锅炉。 关键词超临界CO2布雷顿循环;燃煤发电系统;热力系统优化;全流程模型Thermodynamics optimization analysis of supercritical CO2 coal-fired power generation system based on Supercritical CO2 Brayton Cycle Zhou Jing1,Ling Peng 1,2, Zhang Chenhao 1, Cui Xiaoning1, Xu Jun 1, Xu Kai 1, Su Sheng 1, Hu Song 1, Wang Yi 1, Xiang Jun 1, * (1 State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China 2 School of Power and Energy Engineering, Changsha University of Science and Technology, Changsha Hunan 410114, China) Abstract:This paper establishes a Thermodynamics optimization model of supercritical CO2 coal-fired power generation system. Under the high-parameter conditions of 32.5MPa/605°C/610°C/610°C/, different cooling modes, reheat stages, and economizer layouts are analyzed for system performance. The results show that the intercooling and double reheat can improve the thermal performance of the S-CO2 Brayton cycle at high compression ratios effectively; double reheat is more affected by the pressure drop at the heated surface of the boiler than the single reheat.; the case that the part flow is introduced from the inlet side of high-temperature recuperator into the economizer can utilize effectively waste heat and improve the whole plant efficiency; Under the same conditions, the whole plant efficiency of supercritical CO2 power generation system is higher than the traditional steam boiler. Key words:Supercritical CO2Brayton cycle; Coal-fired power generation system; Thermodynamics optimization analysis; Process analysis

《二氧化碳的实验室制法》教学设计

《二氧化碳的实验室制法》教学设计 【设计思路】:本课学习实验室中如何制取二氧化碳,从而总结出实验室制取气体的思路。是研究二氧化碳的性质和用途的基础并给以后制取其它气体提供了思路,在本节课的教学中,我充分利用了STS 教育的思想和理论,使科学、技术与社会融为一体,从而更好的培养学生的环保意识,创新精神和实践能力。 【教法处理】:以学生分析、探究、实践为主,以教师提示、启发、辅导为辅。 【教学目标】: 1.知识与技能: (1 了解实验室中制取CO2的反应原理。 (2探究实验室中制备C02的装置。 (3了解实验室中制取气体的思路与方法。 ( 4 提高学生的动手能力和分析资料、推理判断的能力。 2.过程与方法:能合理使用课堂资料,并会利用这些资料设计实验方案。 3.情感态度与价值观:从寻找药品、设计装置和制取气体的过程中获取成就感,进一步增强学习化学的自信心。从化学原理与实际生活的联系中,增强学生的环保意识、创新精神和实践能力。 【教学重点、难点】: 探究实验室制取C02的方法,并制取C02. 【教学流程】: 课题导入---- 提出问题 --- 搜集资料---- 分析判断---- 实验探究---- 交流总结 【教具准备】:教师用具:多媒体、石灰水、酚酞、无色透明的塑料瓶(碳酸钠、石灰石、稀盐酸、稀硫酸、浓盐酸)。 学生用具:(1)仪器:锥形瓶、烧杯、大试管、集气瓶、长颈漏斗、(带导管的)双孔塞及单孔塞、带塞子的弯导管、盛水的烧杯(代替水槽)、酒精灯。 (2)药品:石灰石、稀盐酸、稀硫酸、澄清的石灰水、木条。 【教学过程】: 课题导入:教师表演魔术(向澄清的石灰水中滴入几滴酚酞,将变红的溶液倒入盛有二氧化碳的无色透明的瓶中,振荡,观察现象。) 【STS理念的运用】运用趣味演示实验,激发学生的兴趣和探究的欲望。引言:我们要表演好这个魔术,重要的是制取一瓶二氧化碳,怎样制取二氧化碳呢?这节课我们就来学习二氧化碳的实验室制法。 板书:二氧化碳的实验室制法 请同学们分组讨论一下:我们要研究清哪些问题,就能顺利的制取二氧化碳了?(学生讨论回答,教师板书记录) 我们首先需要研究的问题是:什么反应可以生成二氧化碳? 【STS理念的运用】这一环节运用问题讨论法,进行设疑,培养学生分析问题、解决问题的能力,加深学生对问题的理解。 板书:1、反应原理 点燃 [提问]:我们知道的能生成二氧化碳的反应有哪些?高温 [回答]:C+O2 === CO2 C+2CuO===2Cu+CO2 点燃 [提问]:这些反应能用于实验室制取CO2 吗?高温 C+O2 ==== CO2 材料好,反应快但不易收集 C+2CuO====2Cu+CO2 反应慢,需条件高

超临界萃取的技术原理

一、超临界萃取的技术原理 利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。当然,对应各压力范围所得到的萃取物不可能是单一的,但可以控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,被萃取物质则完全或基本析出,从而达到分离提纯的目的,所以超临界CO2流体萃取过程是由萃取和分离过程组合而成的。 超临界CO2是指处于临界温度与临界压力(称为临界点)以上状态的一种可压缩的高密度流体,是通常所说的气、液、固三态以外的第四态,其分子间力很小,类似于气体,而密度却很大,接近于液体,因此具有介于气体和液体之间的气液两重性质,同时具有液体较高的溶解性和气体较高的流动性,比普通液体溶剂传质速率高,并且扩散系数介于液体和气体之间,具有较好的渗透性,而且没有相际效应,因此有助于提高萃取效率,并可大幅度节能。 超临界CO2的物理化学性质与在非临界状态的液体和气体有很大的不同。由于密度是溶解能力、粘度是流体阻力、扩散系数是传质速率高低的主要参数,因此超临界CO2的特殊性质决定了超临界CO2萃取技术具有一系列的重要特点。超临界CO2的粘度是液体的百分之一,自扩散系数是液体的100倍,因而具有良好的传质特性,可大大缩短相平衡所需时间,是高效传质的理想介质;具有比液体快得多的溶解溶质的速率,有比气体大得多的对固体物质的溶解和携带能力;具有不同寻常的巨大压缩性,在临界点附件,压力和温度的微小变化会引起CO2的密度发生很大的变化,所以可通过简单的变化体系的温度或压力来调节CO2 的溶解能力,提高萃取的选择性;通过降低体系的压力来分离CO2和所溶解的产品,省去消除溶剂的工序。 在传统的分离方法中,溶剂萃取是利用溶剂和各溶质间的亲和性(表现在溶解度)的差异来实现分离的;蒸馏是利用溶液中各组分的挥发度(蒸汽压)的不同来实现分离的。而超临界CO2萃取则是通过调节CO2的压力和温度来控制溶解度和蒸汽压这2个参数进行分离的,故超临界CO2萃取综合了溶剂萃取和蒸馏的2种功能和特点,进而决定了超临界CO2萃取具有传统普通流体萃取方法所不具有的优势:通过调节压力和温度而方便地改变溶剂的性质,控制其选择性;适当地选择提取条件和溶剂,能在接近常温下操作,对热敏性物质可适用;因粘度小、扩散系数大,提取速度较快;溶质和溶剂的分离彻底而且容易。从它的特性和完整性来看,相当于一个新的单元操作,因此引起了国内外的广泛关注。二、超临界萃取的特点

超临界二氧化碳循环分析

超临界二氧化碳动力循环与氦动力循环的比较 目前,世界上正在建设和研究的高温气冷堆都是使用He作为工质,这是因为He具有很好的稳定性、化学相容性及热传导性。但是,He作为工质存在一些不足,例如动力循环需要较高的温度、难于压缩等,给反应堆和换热部件的结构材料、叶轮机械的设计带来很多困难。出于降低反应堆结构材料要求、减少技术难度、提高反应堆的安全性与经济性等各方面的考虑,有学者进行了选取CO2作为循环工质的研究。CO2虽然在稳定性、热传导性方面比He稍差,但CO2具有合适的临界参数,不需要很高的循环温度就可以达到满意的效率,且具有压缩性好、储量丰富等优点。采用CO2作为循环工质可以降低循环温度和压缩功,从而提高反应堆的安全性,同时降低反应堆造价。超临界CO2的闭式布雷顿循环被推荐在铅冷快堆及钠冷快堆中使用。 1. 二氧化碳布雷顿循环分析 (1)二氧化碳布雷顿循环 CO2与He在动力循环中最大的不同点就是气体性质随压力、温度的变化差别很大(表1-1)。高压(7.5 MPa)环境中,CO2的导热系数λ、定压比热容c p 和压缩因子z均与低压(0.1 MPa)下的参数有很大差异;在循环工况下,He循环可以视为理想气体循环,除密度外,其余参数变化不大。动力循环的工况,CO2的工作参数在其临界点(7.377 MPa,31℃)附近;因此,CO2动力循环除与He 循环有相同的决定因素外,还取决于动力循环的不同实际工况,即超临界压力、跨临界压力及亚临界压力3种循环工况(图1-1)。超临界循环:循环压力及温度均在临界参数以上;跨临界循环:循环高压侧压力高于临界压力,低压侧压力低于临界压力;亚临界压力循环:循环压力均低于临界压力,工作于气相区。 表1-1 CO2和He热物性比较(35℃) 工质P/MPa ρ/kg·m-3 λ/W·(m·K)-1 C P/kJ·(kg·K)-1z CO2 7.5 277.6 0.03532 5.9306 0.463 0.1 1.95 0.01497 0.828 0.879

CO2跨临界制冷技术

单一C02跨临界压缩机运行制冷技术简况 技术优势: 该循环系统的最大特点就是工质的吸、放热过程分别在亚临界区和超临界区进行。压缩机的吸气压力低于临界压力,蒸发温度也低于临界温度,循环的吸热过程仍在亚临界条件下进行,换热过程主要是依靠潜热来完成。但是压缩机的排气压力高于临界压力,工质的冷凝过程与在亚临界状态下完全不同,换热过程依靠显热来完成,此时高压换热器不再称为冷凝器,而称为气体冷却器。 在以空气为热源、热汇的制冷和热泵系统(主要是汽车空调以及家用空调)中,CO2循环在跨临界条件下运行,其工作压力虽然较高,但压比却很低,压缩机的效率相对较高;流体在超临界条件下的特殊热物理性质使它在流动和换热方面都具有无与伦比的优势,超临界流体优良的传热和热力学特性使得换热器的效率也很高,这就使得整个系统的能效较高,完全可与传统的制冷剂(如R12、R22等)及其现有的替代物(如R134a、R410A等)竞争。加上CO2在气体冷却器中大的温度变化,使得气体冷却器进口空气温度与出口制冷剂温度可能非常接近,这自然可减少高压侧不可逆传热引起的损失。由于CO2的临界温度低,为31, ℃因此, 制冷循环采用跨临界制冷循环时,其排热过程不是一个冷凝过程,压缩机的排气压力与冷却温度是两个独立的参数,改变高压侧压力将影响制冷量、压缩机耗工量及系统的COP。研究分析表明,高压侧压力变化时,循环的COP 存在着一个最大值,因此,CO2跨临界制冷循环在对不同工况下,存在对应于最大COP 值的最佳排气压力。 CO2 在气体冷却器中较大的温度变化,正好适合于水的加热,从而使热泵的效率较高。 传统空调系统大多把冷凝热当作废热而直接排向大气,既造成能量的浪费又产生环境的局部热污染。而对跨临界循环,由于超临界区工质密度在不断增加,循环的放热过程必将有较大的温度滑移,这种温度滑移正好与所需的变温热源相匹配,是一种特殊的劳伦兹循环,其用于热回收时,必将有较高的放热效率,因而用于较高温度和较大温差需要的热回收时具有独特的优势。 优点: (1)安全、环保、无污染; CO2 作为制冷剂其优点在于,无毒,没有可燃性,价格便宜、来源丰富、无须回收,与普通润滑油相溶,容积制冷量约是R22 的5 倍,CO2 是唯一同时具有优良的热力特性、安全特性和环境特性的自然工质。 制冷系统蒸发器采用顶排管,冷凝方式采用植入式地源冷凝技术。 (2)节能(以每立方米容积年耗电量计算):我国年平均耗电量为130度左右,先进发达国家年耗电量为60多度,而该冷库年耗电量仅6度左右。 (3)库温稳定:该冷库温差波动在±0.5度波动,将大大提升冻品的储藏品质,延长食品的实质质保期。 (4)机房占地面积小。 应用: 经过调查,北京市京科伦工程技术有限公司、北京市京科伦冷冻设备有限公司近年来多次承办智能立体库、速冻隧道等项目,工程项目遍布全国的22个省份的40个多城市,项目合作企业包括双汇、金锣、雨润、思念、三全、惠发等中国知名企业,所承担的项目均达到或超过了设计要求。

超临界二氧化碳萃取的过程及设备教学教材

超临界二氧化碳萃取的过程及设备

3.2 超临界流体萃取过程的设计与开发 除了在一些食品提取工业中实现超临界流体萃取的工业化外,其在高附加值产品分离中也展现出新的活力,特别是在制药工业中,其重要性也日显增加。尤其是随着有关毒性物质排放越来越受到严格限制,SCFE的使用范围也会日渐扩大。但是SCFE的使用可行性是与过程的规模、产品的价值、是否需用无毒溶剂的一些因素有关。因此,只有进行周密的设计后,才能定量权衡上面提出的种种因素。一旦得出具有可行性的设计,便会吸引到企业界和研究者的重视和关注。 当前,不仅仅是国外的一些学者和专家作了扼要而实用的综述[1],而且在国内召开的“超临界流体技术学术及应用研讨会”上有多篇论文专门讨论了SCFE 的工艺与设备设计。早八十年代就出现了SCFE过程设计和开发的报告,近30年间,有关SCFE的设计研究还在不断进展,逐渐完善。有些产品,如真菌脂质的提取,不仅要作SCFE的过程设计,而且还要作其他单元操作,如对液液萃取的设计进行比较,从经济上确定何种过程有优势,从而便于在进一步的投资中作出判断。可以说,目前SCFE已如其他比较成熟的单元操作一样,设计、仿真和优化(design,simulation and optimization)的工作已全面开展,这也从-个侧面表明SCFE的实用性正在受到越来越多的科技工作者的关注。 3.2.1 超临界流体萃取工业装置的开发步骤 图3-16示出了任一扩散分离过程科学开发的流程示意图。在步骤2中确定所涉及物料的特征后,一般情况下,若选用传统的分离单元操作,如蒸馏、液液萃取等,往往是凭设计者的经验来选定,较少采用预设计的方法。在开发过程中直接进行实验研究。但SCFE是新技术,对其了解不多。为了能和其他分

教案示例:二氧化碳的实验室制法

教案示例:二氧化碳的实验室制法之一 教学目标 1.使学生掌握实验室制取二氧化碳的反应原理、实验装置和操作方法,提升学生分析和解决实际问题的水平。 2.简要介绍泡沫灭火器的原理,使学生对灭火和灭火器有大致印象。 实验准备 1.学生每组2人,事先备好相关的实验仪器。药品有大理石(碳酸钙)、碳 酸钠溶液、稀盐酸溶液、稀硫酸溶液。 2.教师应备好磁性小黑板一块、气体发生装置和收集装置图六幅,投影片一张(列表比较氧气、氢气和二氧化碳的实验室制法)。 教学过程 【引言】上节课学过二氧化碳的实验室制法,本节课再作进一步的研讨。先请同学们回答以下问题。 1.实验室里用什么药品制取二氧化碳?写出相关反应的化学方程式。 【回答】实验室里用稀盐酸跟大理石(或石灰石)反应来制取二氧化碳。 CaCO3+2HCl=CaCl2+CO2↑+H2O 2.请一位同学向大家介绍你所做过的两个家庭小实验:①纯碱跟醋酸反应。 ②鸡蛋壳跟盐酸反应。你在实验中看到哪些现象,得出什么结论? 【回答】①纯碱跟醋酸反应,产生二氧化碳气体。它使点燃的蜡烛火焰熄灭。 ②鸡蛋壳跟盐酸反应,产生的气体使澄清石灰水浑浊,说明生成的气体是二氧化碳。鸡蛋壳的主要成分是碳酸盐。 【讲解】纯碱(碳酸钠)、大理石、鸡蛋壳(主要成分是石灰石)都是碳酸盐。盐酸、醋酸都是酸。碳酸盐跟酸反应会生成碳酸,碳酸不稳定,容易分解,生成二氧化碳。这就是实验室制取二氧化碳的反应原理。 【板书】 一、实验室制取二氧化碳的反应原理 反应原理:碳酸盐跟酸反应,生成二氧化碳。

【讨论】是不是任何碳酸盐和任何酸都能作实验室制取二氧化碳的药品? 【设问】实验室制取二氧化碳时,能不能把碳酸钙换成碳酸钠,能不能用硫酸代替盐酸?这是上一节课布置给同学们思考的问题。现在请大家动手做实验,通过观察实验现象、来分析解决这个问题。 【实验】(1)将石灰石分别加入盛有稀盐酸、稀硫酸试管中,观察发生的现象 (两支试管同时做对比实验)。 (2)将石灰石和碳酸钠分别加入盛有稀盐酸的两支试管中,观察发生的现象。【提问】请两位同学分别描述实验中看到的现象。 【回答】(1)石灰石跟稀盐酸反应,产生大量气泡。石灰石跟稀硫酸反应,开 始有气体产生,过一会儿气泡逐渐减少,以至反应停止。 (2)碳酸钠跟稀盐酸反应十分剧烈,迅速产生大量气体。石灰石跟稀盐酸反应比碳酸钠缓和,也能生成大量气体。 【讲解】从上述两个实验可知,用硫酸代替盐酸跟石灰石反应,虽能产生二氧化碳,但是生成的硫酸钙微溶于水。它会覆盖在块状石灰石表面,阻止碳酸钙跟硫酸接触。而碳酸钠跟盐酸反应太快,生成的二氧化碳不容易收集。所以,实验室里通常是用石灰石跟稀盐酸反应来制取二氧化碳的。 从上述分析能够看出,研究制取气体的反应原理时,不但要看该反应能不能发生,还要考虑到所选择的药品能不能顺利地制取气体。在家庭小实验中,同学们已经了解醋酸也能跟碳酸钙反应,产生二氧化碳。但是醋酸是弱酸,反应较慢,实验室也不采用。可见对具体问题要作具体分析,灵活掌握。 【板书】在实验室里常常用石灰石(或大理石)跟稀盐酸反应来制取二氧化碳:CaCO3+2HCl CaCl2+CO2↑十H2O 【练习】选择合适的药品和仪器装置,分别制取氧气、氢气和二氧化碳。将准确的答案填在下表空格中。 提供选择的药品有石灰石、碳酸钠溶液、氯酸钾、高锰酸钾、锌粒、铜片、稀硫酸、稀盐酸。 提供选择的仪器装置如下:

超临界二氧化碳换热器应用

超临界二氧化碳换热器应用 当温度和压力达到临界点时,二氧化碳就进入了临界状态,超临界状态下的二氧化碳出现为一种即非气体又非液体的状态。超临界二氧化碳具有特殊性质:粘度低、密度高,对高聚物具有很强的溶胀和扩散能力,安全非易燃易爆,无毒无腐蚀性。超临界二氧化碳的特殊性质直接促成它在各个领域中广泛使用,其在能源领域获得很好的应用效果。 作为环境友好型工质,CO2有着诱人的物理和输运特性,将超临界CO2用于布雷顿循环发电系统,通过消耗较低的压缩功,能够实现较高的系统热效率,在新一代核能、太阳能、地热、工业余热回收等领域具有极为广阔的应用前景。超临界二氧化碳循环模式包括取热器、高温回热器、低温回热器、冷却器等换热器。换热器作为超临界二氧化碳发电系统中的关键设备,是数量最多、体积最大、成本最高的设备,其综合性能对系统效率提升与安全稳定运行至关重要。 2018年中国科学院工程热物理研究所承担的我国首座“双回路全温全压超临界二氧化碳换热器综合试验测试平台”在廊坊中试基地建成。其高效紧凑印刷电路板式换热器可在极端环境下运行(温度高于900℃,压力高于60MPa),且比表面积大于2500m2/m3。相同热负荷条件下,PCHE体积大约为壳管式换热器的1/5。而且,换热器热侧出口温度和冷侧入口温度的差值能够接近1K,而壳管式换热器一般在12K以上。

图1超临界二氧化碳换热器综合试验测试平台 在相同的输出功率的情况下,超临界二氧化碳涡轮尺寸大约是蒸汽涡轮的1/10,从而导致整个系统结构紧凑、投资成本低。但由于整个系统运行压力高,且占地面积小,因而传统换热器,如壳管式换热器,板翅式换热器等,均不再适用。 2020年中国船舶集团有限公司七二五所联合中核集团原子能院、合肥通用机械研究院有限公司研制的我国首台液态金属钠-超临界二氧化碳印刷板式换热器(PCHE)顺利通过专家组验收,产品技术达到国际先进水平。PCHE作为一种颠覆性的紧凑高效微通道换热器,具有换热效率高、耐低温高温、耐高压、可靠性高等优势。 近年来杭州沈氏节能科技股份有限公司研发出高效紧凑式微通道换热器,具有高完整性扩散结合结构的高效换热器。扩散结合成就了换热器耐高低温和出色的机械性能,使其成为唯一可用于超临界二氧化碳(SCO?)循环中的最佳换热器。 图2高效紧凑式微通道换热器 特点:超耐高温高压,适用于高温高压等苛刻条件;换热面积大,可达1000m2/m3;采用扩散焊接技术,焊接强度大,机械性能出色;且耐腐蚀,可靠性高,体积小。适用于高温高压下的发电循环;印刷电路板式换热器作为一种新型微通道紧凑式换热器,适用于高温高压等苛刻条件,在新一代核能发电、太阳能光热发电、氢能等领域应用潜力巨大。

超临界二氧化碳萃取技术

摘要:介绍了超临界二氧化碳萃取技术的基本原理和特点,简单说明了该技术在香料、医药、食品等工业上的应用。 关键词:超临界二氧化碳萃取分离技术基本原理 前言 超临界流体萃取,又称超临界萃取、压力流体萃取、超临界气体萃取。它是以高压、高密度的超临界状态流体为溶剂,从液体或固体中萃取所需要的组分,然后采用升温、降压或二者兼用和吸收(吸附)等手段将溶剂与所萃取的组分分离。 早在1897年,人们就已经认识到了超临界萃取这一概念。当时发现超临界状态的压缩气体对于固体具有特殊的溶解作用。例如再高于临界点的条件下,金属卤化物可以溶解再在乙醇或四氯化碳中,当压力降低后又可以析出。但直到20世纪60年代,才开始了其工业应用的研究。目前超临界二氧化碳萃取已成为一种新型萃取分离技术,被广泛应用于食品、医药、化工、能源、香精香料的工业的生产部门。 1 超临界萃取的原理 当液体的温度和压力处于它的临界状态。 如图1是纯流体的典型压力—温度图。图中, AT表示气—固平衡的升华曲线,BT表示液— 固平衡的熔融曲线,CT表示气-液平衡的饱 和液体的蒸汽压曲线,点T是气-液-固三相 共存的三相点。按照相率,当纯物的气-液- 固三相共存时,确定系统状态的自由度为零, 即每个纯物质都有自己确定的三相点。将纯物 质沿气-液饱和线升温,当达到图中的C时, 气-液的分界面消失,体系的性质变得均一, 不再分为气体和液体,称点C为临界点。与该点相对应的临界温度和压力分别称 为临界温度T 0和临界压力P 。图中高于临界温度和临界压力的有影阴的区域属 于超临界流体状态。 在这种状态下,它既不完全与一般气相相同,又不是液相,故称为超临界流体。超临界流体有气、液相的特点,它既有与气体相当的高渗透力和低粘度,又兼有液体相近的密度和对物质优良的溶解能力。这种溶解能力能随体系参数的变化而连续的改变,因而可以通过改变体系的温度和压力,方便的调节组分的溶解度和萃取的选择性。利用上述特点,超临界二氧化碳萃取技术主要分为两大类原理流程即恒温降压流程和恒压升温流程。前者萃取相经减压,后者萃取相经升温。

二氧化碳的实验室制法教学设计

二氧化碳的实验室制法教学设计Teaching design of carbon dioxide laboratory method

二氧化碳的实验室制法教学设计 前言:小泰温馨提醒,化学是自然科学的一种,主要在分子、原子层面,研究物质的组成、性质、结构与变化规律,创造新物质。是一门以实验为基础在原子层次上研究物质的组成、结构、性质、及变化规律的自然科学。本教案根据化学课程标准的要求和针对教学对象是 初中生群体的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划、并以启 迪发展学生智力为根本目的。便于学习和使用,本文下载后内容可随意修改调整及打印。 一.知识教学点。 二.重、难、疑点及解决办法 1.重点:实验室制取二氧化碳的反应原理、实验装置和制取 方法。 2.难点:从实验室制取气体的设计思路出发,学习二氧化碳 的实验室制取 方法。 3.疑点:实验室制取二氧化碳,为什么不能用稀硫酸? 4.解决方法 (1)采取讨论的形式,从学生学过的氧气和氢气的实验室 制法,归纳和总结出气体实验室制法的设计思路和方法。。 (2)通过演示和补充实验,组织学生分析讨论二氧化碳的 实验室制取方法,使学生掌握实验室制取二氧化碳的原理,提高 学生分析和解决实际问题的能力。 三.教学步骤 (一)明确目标

1.联系实验室制取氧气、氢气,学会实验室制取气体的一般方法。 2.掌握实验室制取二氧化碳的反应原理、实验装置、使用的药品、仪器名称和收集方法。 (二)整体感知 本节主要采用讨论的形式,使学生掌握。 (三)教学过程 [复习提问]:(1)CO2有哪些物理性质和化学性质? (2)实验室制取H2、O2的反应原理是什么? [小结]:实验室制取氧气的原理是利用高锰酸钾或氯酸钾(用二氧化锰作催化剂),在加热条件下得到氧气。实验室制取氢气的原理是用金属锌和稀硫酸(或稀盐酸)反应得到氢气。 [教师活动]:投影出制取H2、O2的几套装置图,通过讨论得出这些装置图的适用范围: (1)当用固体反应,需要加热产生气体时,可采用制取氧气的装置; (2)当用固体与液体反应,不需加热就能生成气体时,可采用制取H2的装置(注意该气体难溶于水或酸)。 [提问]: (1)在实验室如何收集H2和O2,根据它们什么性质? (2)如何检验H2和O2? [学生活动]:通过讨论得出以下结论:

超临界二氧化碳

一、国外研究现状 1、美国桑迪亚国家实验室率先开展了超临界二氧化碳闭式循环的研究,通过实验对超临界二氧化碳闭式循环存在的包括压缩、轴承、密封、摩擦等问题进行了大量研究,循环实验装置获得了接近50%的发电效率。2011年3月4日桑迪亚实验室在其网站上正式宣布已经掌握了超临界二氧化碳闭式循环的关键技术。 该试验台在早期超临界二氧化碳压缩特性实验装置的基础上添加涡轮、浸入式电加热器和回热器等装置而成,其中电加热器的功率为260kW,压气机压比为1.8。 来自中国科学院国家科学图书馆《科学研究动态监测快报》“先进能源科技专辑” 2、麻省理工(MIT)提出了3 种热力循环参数方案: ①基本设计方案:最高压力20 MPa、堆芯出口温度550℃、净效率达43%; ②先进设计方案:最高压力20 MPa、堆芯出口温度650℃、净效率达47%; ③高性能设计方案:最高压力20 MPa、堆芯出口温度700℃、净效率可达49%。 S-CO2冷却快堆(GFR)的总体方案。 反应堆热功率为2400 MW,电功率约1200 MW,采用2 环路或4环路设置,设计寿命60 a;系统热效率51%,净效率47%;堆芯进、出口温度分别为485.5、650℃,运行压力20 MPa。 3、东京工业大学(TIT)——气冷堆:反应堆热功率为600MW,堆芯出口温度为650℃,反应堆出口运行压力约为7 MPa,系统效率为45.8%。 以S-CO2作为二回路能量转换工质的核反应堆一般采用液态金属或气体冷却,以达到较高的堆芯出口温度。美国对这方面的研究主要是利用S-CO2动力系统高效率、设备简化紧凑等特点开发多功能模块化中小型核反应堆。

超临界二氧化碳循环分析

超临界二氧化碳动力循环 1.超临界二氧化碳布雷顿循环燃气轮机 (1)美国桑迪亚国家实验室研发超临界二氧化碳布雷顿循环燃气轮机 美国桑迪亚国家实验室研究人员研发出一种新的超临界二氧化碳布雷顿循环燃气轮机,目前正在进行发电系统的示范阶段。这种新轮机可将热电转换效率提高多达50%,为核电站配备的蒸汽轮机可改善50%,或者一个单独的燃气轮机效率可提高40%。该系统十分紧凑,意味着资金成本会相对较低。 研究主要集中在超临界二氧化碳(S-CO2)布雷顿循环轮机,这种轮机通常是用于大型热力和核能发电方面,包括下一代动力反应堆。目标是最终取代蒸汽驱动的兰金循环轮机(效率较低,高温条件存在腐蚀性,同时由于需要非常大的轮机和冷凝器来处理多余的蒸汽,占用空间是30倍)。布雷顿循环每个组合可以产出20 MW的电力,占用空间只有四个立方米。 桑迪亚国家实验室目前有两个超临界二氧化碳测试循环。第一个发电循环位于科罗拉多州Arvada,从2010年3月开始运行,发展阶段的发电量大约为240 kW,现在正在进行升级。第二个循环位于Albuquerque桑迪亚国家实验室,用于研究临界点附近存在的包括压缩、轴承、密封、摩擦等问题。 桑迪亚国家实验室近期计划继续开发和运行小的测试循环以确定关键功能和技术。测试结果将说明概念容量(尤其是它的紧凑性)、效率和更大系统的可扩展性。未来计划是进行技术的商业化,先在10 MW的工业示范电厂开展。 桑迪亚还有一种采用氦作为工作流体的布雷顿循环,设计运行温度约为925℃,预计发电效率达43%-46%。相比之下,超临界二氧化碳布雷顿循环作为

氦布雷顿系统提供了同样的效率,但温度相对较低(250-300℃)。S-CO2设备比氦气循环紧凑(它又比传统蒸汽循环紧凑小巧)。 (2)东芝开发超临界二氧化碳循环火力发电系统 东芝公司日前针对正在开发的超临界二氧化碳循环火力发电系统,在达到目标压力的状态下,成功完成了燃气轮机燃烧器的燃烧试验。由此,向实现发电效率高、可回收二氧化碳、环境负荷低的系统迈进了一大步。这种系统具备与组合利用燃气和蒸汽的燃气联合循环发电同等水平的效率,同时无需另外设置分离及捕集设备就可回收高压二氧化碳。 图1-1 超临界二氧化碳循环火力发电系统示意图 超临界指的是气体和液体的界限消失、性质介于气体和液体之间的状态。二氧化碳在温度和压力超过31℃、74个大气压时会达到超临界状态。燃烧试验利

二氧化碳超临界萃取技术

超临界CO2萃取装置 该装置主要由萃取釜、分离釜、精镏柱、CO2高压泵、副泵、制冷系统、CO2贮罐、换热系统、净化系统、流量计、温度、压力控制(保护)系统等组成。 超临界CO2萃取装置的主要技术指标 萃取釜:0.5L、1L、2L、5L/50Mpa;10L、24L/40Mpa;50-200L/32Mpa,固态两用。配水夹套循环加热,温度可调。 分离釜:0.3-10L/30Mpa;50-100L/16-22Mpa。配水夹套循环加热,温度可调。 精镏柱:内径ф25×2-3m/30Mpa;ф35×2-3m/30Mpa;ф48×4-6m/30Mpa;ф78×4-6m/30Mpa,根据工艺要求可分4节、6节、8节梯度控温;柱内根据工艺要求由用户选相关填料。 CO2高压泵:20L/40Mpa·h双柱塞,50L/50Mpa·h双柱塞调频,400L/40Mpa·h三柱塞调频,800L/40Mpa·h三柱塞调频,泵头带冷却系统。 携带剂泵:用于萃取过程中,夹带溶剂来改变CO2极性,扩大应用范围。 制冷系统:配半封式、全封式压缩机,制冷量满足工艺要求。 换热及温度的控制系统:根据工艺要求,萃取釜、分离釜、精镏柱分别配置换热和温控系统,温度控制-85℃水循环、室温-150℃油循环,温度控制数显双屏控制水浴温度,测试CO2流体温度,控温±1℃ 压力控制(保护):高压泵出口配电接点压力表,设定工作压力,超压自动保护停泵。高压泵、萃取釜、分离釜、精镏柱,根据最高工作压力,分别配安全阀,超压自动泄压保护。萃取釜出口配背压阀系统,压力稳定,易于调整,压控制精度(动态)±0.1Mpa 流量显示:金属转子流量计,数显远传,分别显示瞬时流量和累积流量 管路:接触流体的容器、阀门、管件、管线均采用不锈钢制作。 其他:电源三相四线制380V/50Hz,CO2食品级≥99.5,用户自备 超临界CO2萃取装置的基本流程 1、CO2→萃取釜→分离Ⅰ→分离Ⅱ→回路; 2、CO2→萃取釜→分离Ⅰ→分离Ⅱ→精镏柱→回路; 3、CO2→萃取釜→精镏柱→分离Ⅰ→分离Ⅱ→回路; 4、CO2→萃取釜→分离Ⅰ→精镏柱→分离Ⅱ→回路。 超临界CO2萃取装置的特点

二氧化碳的实验室制法

《二氧化碳制取的研究》 学案 西南交通大学附属中学化学组 任 洪编制 班级: 姓名 学习目标 (1)知道实验室制取二氧化碳的反应原理 (2)探究实验室制取二氧化碳的装置 (3)初步了解知道实验制取气体的思路和方法 旧知复习:实验室制备氧气的原理和装置 高锰酸钾制备氧气 双氧水与二氧化锰混合物制备氧气 药品 原理 装置 【探究活动】探究实验室制取气体的装置 实验室制取氧气( 回忆实验室制取氧气的相关知识填写下表) 【归 纳】 确定气体发生装置时,考虑因素是 和 ; 确定气体收集装置时,考虑因素是 和 。 比较内容 实验室制取氧气 用KMnO 4 用H 2O 2溶液和MnO 2 反应物状态 反应条件 密度与空气比较 是否溶于水

查阅资料知,实验室制备二氧化碳的原理是采用稀盐酸和块状大理石(或石灰石,主要成分都是碳 酸钙)发生反应如下: 【随堂练习】 反应物状态 反应条件 密度与空气比较 溶解性及是否与水反应 氧气 固体与液体 反应 催化剂 比空气略大 不易溶于水且不与水反应 固体与固体 反应 加热 二氧化碳 【讨 论】 实验室制取二氧化碳的装置是否与制取氧气的装置相同?为什么? 知识点:二、实验室制取二氧化碳的装置 或。 。。。。。。 【随堂练习】试标明提醒处注意事项 【讨 论】利用这套装置如何操作制备二氧化碳呢?

【回顾】实验室制备氧气的正确操作步骤是怎样的? 【实验】实验室利用块状大理石和稀盐酸制备二氧化碳气体操作: 1. 2. 3. 4. 5. 6. 7. 【归纳】 a.利用排空气集气发收集氧气时,检验方法: b.利用排空气集气发收集氧气时,验满方法: c.利用排空气集气发收集二氧化碳时,检验方法: d.利用排空气集气发收集二氧化碳时,验满方法: 归纳总结(引导学生作结)作业:完成学案习题。 1、实验室制取二氧化碳原理; 2、实验室制取二氧化碳气体的装置; 3、实验室制取二氧化碳气体的操作步骤; 4、二氧化碳气体的检验和验满

超临界二氧化碳布雷顿循环研究综述

2019年第2期2019年2月 0引言 超临界二氧化碳(以下简称“S-CO 2”)布雷顿循环是一种可实现高效热电转化的动力循环,它以CO 2为工质,利用布雷顿循环完成能量转化,在整个循环过程中始终保持CO 2为超临界状态。该循环可利用的热源温度范围广(400℃~700℃)、效率高(40%~50%),适用于太阳能、核能、分布式能源、船舶动力、燃料电池等多个领域[1],被认为是当前最具有发展前景的能量转换系统之一[2]。 1S-CO 2布雷顿循环介绍 S-CO 2布雷顿循环的工作原理如图1所示,该循环 为典型的布雷顿循环,包括压缩过程、回热过程、加热过程、膨胀过程、预冷过程五个热力过程,如图1a)所示,其主要由压缩机、回热器、涡轮机、预冷器和热源构成;如图1b)所示,其循环过程为:a)S-CO 2工质经压缩机升压后,利用换热器将S-CO 2工质等压加热到高温;b)高压高温的S-CO 2工质进入涡轮机,推动涡轮做功并带动发电机发电;c)工质进入冷却器恢复到初始状态,在此进入压气机形成闭式循环,S-CO 2的压力和体积变化情况如图1a)中的1-2-3-4-5-6-1循环[3]。 与其他动力循环(蒸汽朗肯循环、有机朗肯循环) 相比,S-CO 2循环具有如下特点:a)S-CO 2工质的特点。当CO 2的压力达到7.377MPa ,温度达到304.128K 时,变为超临界状态,其临界温度和压力远低于水的临界点(22.064MPa ,647.096K ),易于达到;S-CO 2具 收稿日期:2018-12-18 基金项目:中核集团自主研发项目(2017-568) 第一作者简介:冯岩,1988年生,男,河南民权人,2012年毕业于北京理工大学机械制造及其自动化专业,工程师。 超临界二氧化碳布雷顿循环研究综述 冯 岩,王绩德 (中国中原对外工程有限公司,北京100044) 摘要:超临界二氧化碳(S-CO 2)布雷顿循环是当前最具有发展前景的能量转换系统之一,适用于核能、太阳能、分 布式能源、船舶动力、燃料电池等多个领域。阐述了S-CO 2布雷顿循环原理及特点,综述可应用于核电领域的S-CO 2简单布雷顿循环典型结构布局、不同布局下循环性能参数以及优缺点,分析结果能够为相关发电领域S-CO 2布雷顿循环系统设计与应用提供参考。 关键词:超临界二氧化碳布雷顿循环;再压缩循环;部分冷却循环;循环效率中图分类号:TK14文献标识码:A 文章编号:2095-0802-(2019)02-0097-04 Review of Supercritical Carbon Dioxide Brayton Cycle Research FENG Yan,WANG Jide (China Zhongyuan Engineering Corp.,Beijing 100044,China) Abstract:Supercritical carbon dioxide(S-CO 2)Brayton cycle is one of the most promising energy conversion systems,suitable for nuclear energy,solar energy,distributed energy,marine power,fuel cells and other fields.This paper expounded the principle and characteristics of S-CO 2Brayton cycle and summarized the typical structure layout,cycle performance parameters under different layouts,advantages and disadvantages of S-CO 2Brayton cycle in nuclear power field.The analysis results can provide reference for the design and prototype experimental research of S-CO 2Brayton cycle system in related power generation fields.Key words:supercritical carbon dioxide Brayton cycle;recompression cycle;partial cooling cycle;cycle efficiency (总第161期)技术研究 涡轮机 压缩机 发电机回热器 预 冷器 热源2 1 45 6 3 b)循环简单结构图 1.压缩机入口; 2.压缩机出口; 3.回热器冷侧流体出口; 4.涡轮机入 口;5.涡轮机出口;6.回热器热侧流体出口。图1S-CO 2布雷顿循环的工作原理示意图 a)热力循环T-S 图 43 2 6 熵s /(J ·mol -1·K -1) 1 5 97··

相关主题
文本预览
相关文档 最新文档