当前位置:文档之家› 卫星通信系统

卫星通信系统

卫星通信系统
卫星通信系统

卫星通信系统

现代社会处处离不开通信,通信系统与我们的生活紧密相关,随处可见。例如:我们每天离不开的手机,当我们用它和亲人朋友打电话时,在使用移动通信系统;我们在使用百度地图时对用GPS定位时,使用卫星通信系统;当我们链接WiFi 在浏览器搜索时,我们使用着网络系统,这时如果发挥一下你的想象力,想象着从你所在的某个方位在你看不见的地下和空气中有着光纤和微波编织着相互交错的大网,而就是这张大网将你和世界联系在一起了,是一件多么神奇而又美妙的事情。

一、卫星通信系统的历史、现状、未来趋势

1.1卫星通信系统的历史

卫星通信自二十世纪五、六十年代以来的发展过程大致经历了以下五个阶段:

1.第一阶段1945年-1964年,1945年英国人Arthur C. Clarke最早对利用

卫星建立全球通信提出了科学设想以来,美国和前苏联先后研制出低轨道无源、有源及准同步实验卫星。

2.第二阶段1965年-1972年,国际卫星通信组织开始通过静止卫星向全球

提供商业服务。

3.第三阶段1973年-1982年,卫星系统为陆地、空中、海上用户提供固定

和移动卫星通信业务。

4.第四阶段1983年-1990年,卫星通信被逐步应用于专用数据网、数话兼

容网和卫星直播业务。在这个时期,用户端的VSAT网络得到迅猛的发展,被广泛应用于公众服务、医疗、商业、军事和教育等领域。

5.第五阶段1990年-现在,卫星通信领域进入发展的重要时期,LED、MEO

和混合式轨道卫星通信系统开始广泛应用于全球电信网,以满足宽带和移动用户的各种需求。

1.2卫星通信系统的现状

近年来,世界上的许多国家相继建立了国内卫星通信系统,最早建立国内卫星通信系统的是加拿大。目前美国拥有的国内卫星通信系统数量最多,日本正在发展30/ZOGHz的国内卫星通信系统,澳大利亚、巴西、墨西哥也都准备建立国内卫星通信系统。而我国卫星通信的一个严重问题是依赖国外卫星,巨大的市场被国外卫星占领。

1.3卫星通信系统的未来趋势

未来卫星通信将沿着数字化、网络化、以及信息化方向前进,针对卫星通信的未来发展趋势而言,由于C、K波段的使用趋于饱和我们应该在现有的基础上提高频段频谱的利用率,同时将IP与ATM技术相结合去建立卫星宽带综合业务数字通信网——国家信息高速公路;要进一步去实现建立小型化、智能化、经济化未来的卫星通信网,实现移动用户间可以利用卫星进行通信,而不再需要基站;如果将卫星与 Internet 网络相连,实现卫星互联网技术,这样就可以利用宽带卫星进行双向传输,并且下载和地面网络反馈的速度也得到了大幅提升,同时也大大减轻了频谱拥挤现象以及抗干扰能力。

二、卫星通信系统模型

卫星通信系统由空间设备通信卫星、地面设备地球站、跟踪遥测及指令分系统和监控管理分系统等四大功能部分组成。

图1 卫星通信系统基本组成

1.空间设备也就是通信卫星是由若干个转发器、数副天线与位置和姿态控制、

遥测和指令、电源分系统组成,其主要作用是转发各地球站信号。

2.地球站由天线、发射、接收、终端分系统及电源、监控和地面设备组成,主

要作用是发射和接收用户信号。

3.地面的跟踪遥测及指令分系统、监控管理分系统并不直接用于通信,而是用

来保障通信的正常进行。

4.监控管理分系统对在轨卫星的通信性能及参数进行业务开道前的监测和业

务开通后的例行监测与控制。

三、卫星通信系统中关键技术的应用给其带来的变化

3.1数据压缩技术

随着科学技术的发展,数据压缩技术已经发展得很成熟,尤其是在数据处理相关领域。数据压缩可以给通信带来很大的方便,例如节约了时间、提高了频带利用率、节约了存储空间等。其中MPEG62设计中采用了面向对象的方法,特别注重交互性和多媒体同步、实时表现、实时交换、最终形式等方面。目前已被多媒体卫星通信系统所采用。

3.2智能天线系统

由于传送多媒体信息的需要,通常要求通信系统的带宽在2 500MHz以上,多媒体通信系统因此选择了Ku甚至Q和V波段,但K以上波段雨衰相当严重,而且卫星本身也存在各种限制和随机错误,这就需要通过智能天线的多波束来覆盖到更广的区域,例如,可以采用多波束快速跳变系统;同时在低轨道系统中采用蜂窝式天线来实现跟踪和同频复用功能;星上和同步轨道系统要想构成蜂窝式覆盖

图就必须要采用相控阵列天线。

3.3多址接入技术

针对接入方式,ATM/TDMA 多址接入方式比 FDMA 和CDMA 更适合星上处理卫星对多址接入的要求,因为此种方式有较好的信息传输角度、网络应用灵活性好等特点。但是,TDMA 方式对速率和发射功率要求很高,这在无形中就增加了解调器的实现难度,同时也增加了载波功率与噪声功率密度的比值的要求。为了克服上述问题,该领域专家提出了一种新的方式,采用多频质的 TDMA,即 MF-TDMA (MultipleFrequency-TDMA)多址接入技术,它是将 FDMA 于 TDMA 相结合,这样可以降低每个 TDMA 链路的接入速率和调制解调器的工作速率,同时对上行链路的值C/N0(C/N0=E/N0*Rb)的要求也减弱了。

3.4卫星激光通信技术

目前,卫星通信的载波是微波,虽然在Ku波段,数据传输率可达到100Mbit/s 以上,但体积较大的微波天线无法安装在通信卫星上。而未来的卫星通信数据率却要求工作在数百或数千Mbit/s,因此,只能由激光通信来实现。卫星通信采用激光可以提升卫星的通信量和保密性,减轻了卫星的重量和大小;在大气层外,没有大气的干扰,通信更加准确,同时也降低了误码率;运用激光可以提升数据的传输速率以及系统的可靠性;同时卫星通信也互不干扰。它们的发光技术简便,不受接收器信号相位影响,且工作寿命长、可靠性高,其综合性能优于其他激光器。据专家预测,激光技术运用到卫星通信中将对通信行业的发展起到不可替代的作用。

四、MIMO传输技术在卫星通信系统中的应用

4.1MIMO传输技术的研究现状

MIMO技术最早是由Marconi于1908年提出的主要思想是在带宽和发射功率一定的前提下,依靠开发空间资源,使用若干天线多发多收的目的,达到成倍提高信道容量的目的。也可以提高信道传输可靠性,大幅降低误码率等。美国贝尔实验室在随后对MIMO技术进行了长期的研究,主要成果是证明了在白高斯信道下,多天线可以有效提高信道容量,并由此发展处分层空时编码技术,将信号源数据划分为一系列的子数据,子数据独立编码和调制,可以达到40bps/Hz的频谱效率,但是该技术不适合移动通信环境在透明转发器的应用场景下,星上只是将接收信号放大并通过多天线发送出去, MIMO技术的实现难点和复杂的信号接收可以全部转移到地面上处理,大大降低了MIMO技术在卫星通信领域中实现的难度和风险。

4.2 卫星MIMO传输技术分类

根据卫星采用的载荷方式的不同,卫星MIMO技术可具体分为:针对星上处理再生载荷MIMO技术的研究和针对星上透明载荷MIMO技术的研究。

1.星上处理再生载荷的MIMO技术

如果卫星是处理再生载荷,那么卫星的上下行都可以视为独立的端到端链路,针对上下行分别运用MI-MO技术可以获得两个不同的信道容量,相对较小的容量则限制了整个系统的容量。因此必须将上下行链路结合起来进行系统容量的优化。

2.星上透明载荷的MIMO技术

这种情况下,卫星是一个信号中继器,对信号只起了一个相位偏移和功率放大

的作用,卫星的上下行视为一个链路。这时的MIMO技术研究主要针对地面N副发射天线、星上M副接收天线和M副发射天线、地面Z副接收天线这样的情况下进行研究。

4.3对MIMO传输技术在卫星通信系统中的应用的概括

目前卫星MIMO传输可分为:多极化方式、多个地面站和多颗卫星三种构建方式。其中由多极化方式构建的MIMO传输最为简单,但是获得的传输有效性和可靠性也最为有限;由单颗卫星多个地面站构建的MIMO传输相对于第一种构建方式要复杂一些,但是可以获得较高的传输有效性和可靠性,拥有比较广阔的应用前景;由多颗卫星构建的MIMO传输可以获得的传输有效性和可靠性最高,但是其实现代价也最高。

中国第一个卫星移动通信系统

中国第一个卫星移动通信系统:天通一号详细透析 导读:多年以来,卫星通信以其覆盖范围广、组网灵活、不受地理环境限制等优势,在野外勘探、边境巡逻、抗争救灾等活动中发挥了巨大作用。但是,由于小型终端数量不足、设备种类多、无法互连互通等原因,依然未能满足救援队伍快速机动的通讯需求。因此,天通一号卫星移动系统开始应运而生。那么,天通一号卫星移动系统从诞生到发射,是如何一步一步走来的? 一、什么是卫星移动系统 移动通信卫星就是可以为移动和便携式终端提供通信的卫星。优势是可以为车辆、飞机、船舶和个人等移动用户提供语音、数据等通信服务,并可以实现用户终端的小型化、手机化。相对于地面移动通信系统,地面移动通信系统由于受到地面基站覆盖区域的限制,一般在边远山区、沙漠戈戈壁、森林、边境等地区不能实现通信的全覆盖。而移动通信卫星系统就不存在这样的限制,可以自上而下实现区域的全覆盖,不受地形等因素的影响。 有人统计全国地面移动通信覆盖率不足国土陆地面积的10%,即使是像北京这样的大型城市,地面移动通信覆盖率也不足20%,像中国南海这样广阔的区域地面移动通信就更难以实现全覆盖。而我工作在的频段信号传输损耗小,雨衰小,可以实现地面终端设备的小型化,便于携带,同时保证通信质量。 二、天通一号开通运行背景 2008年汶川大地震发生后,震区地面通信网络全面瘫痪,当时中国没有自己的移动通信卫星系统,只能租用国外的卫星电话抗震救灾。 而国际上的移动卫星系统已经形成了多个覆盖全球或区域性的移动通信系统,包括铱星系统(Iridium)、欧星系统(Thuraya)和国际移动通信卫星系统(Inmarsat,international

应急指挥车卫星通信系统方案

一、项目概述 当前,突发安全生产事件发生地点不确定,部分地区通信不便,特别是发生安全生产事件时,交通通信极易中断,因此执行应急监测时,为及时发送调查、监测信息,必须配备卫星通讯设备,保证应急信息传输通畅。本项目卫星通信系统建设主要包括卫星地面中心站通信系统、静中通应急指挥车卫星通信系统两大部分。 二、项目建设目标与原则 2.1 建设目标 1、建设安监局卫星地面中心站通信系统、一台静中通应急指挥车,实现两者之间的卫星通信。并依托卫星网络,借助音视频编码设备,实现双向视频、音频、数据的实时通信。 2.2 建设原则 系统总体设计遵循“安全保密、技术先进、功能完善、实用可靠、投资合理、运行方便、扩展容易”的原则,具体如下: 1、规范性: 各类设备、通信和控制软件及协议必须符合国内外相关标准。 2、先进性: 系统设计和设备规格完全符合行业技术规范和技术发展潮流,适应主流技术发展的要求。采用当今成熟、先进的技术及设备,在功能和性能方面体现出技术发展的先进性。 3、可靠性: 系统应具有在各种情况下的高可靠运行能力。 4、安全性: 系统对于信息、设备和人身的安全上具有较高的保障。 5、电磁兼容性: 系统整体设计方案严格按照电磁兼容分析结论实施,保证整个系统的各个部分无相互干扰的协同工作。 7、可扩展性: 在技术发展和业务增加时系统具有较大的扩展能力。

8、经济性: 按照需求合理配置系统,确保系统中每一个环节的投入比例达到最高的性能价格比,最大限度地有效利用资金。 三、项目总体技术要求 ?卫星通信:采用卫星Ku波段转发器,实现中心站到任意现场的实时的视频、图像、话音及数据的传输和显示,保障省中心站对现场信息的实时掌控,为领导的指挥决策提供有效及时的现场资料和依据。 ?3G公网通信:利用中国电信或联通3G公网通信系统,实现图像、话音、数据的双向通信。 1、卫星地面中心站通信系统要求 卫星地面中心站通信系统应具有卫星音视频传输及数据通信功能,实现与应急指挥车的互联互通,实现将中心站的各种信息传输到应急指挥车。 ▲中心地面站采用三轴控制(方位、俯仰、极化)天线系统具有一键通信标自动跟踪功能。 2、静中通应急指挥车要求 1)指挥调度功能 利用专用卫星通信系统,及时接收中心站的实时信息,监视现场情况,实现语音、图像、文字数据的双向通信,确保对安全生产现场实施指挥调度。 2)现场信息采集和处理功能 适用于各种复杂环境,能够采集安全生产现场图像、声音等信息。系统具有声音(包括通信话音)、图像、数据等各种信息处理存储能力,具有编辑、发送指挥信息能力。 3)通信保障功能 系统具有电话、音视频、计算机网络等有线接口,无线宽带图像传输等多种通信设备,具有安全生产现场指挥调度和远程通信的能力。 4)辅助决策功能 为领导及时了解灾情,提供生产现场情报,为抗灾指挥决策提供依据。辅助领导分析判断情况;辅助拟制各种保障方案和预案。 5)公网通信 利用中国电信或联通3G公网通信系统,实现图像、话音、数据的双向通信。

卫星移动通信系统发展及应用

第50卷 第6期2017年6月 通信技术 Communications Technology Vol.50 No.6 Jun.2017 ·1093· doi:10.3969/j.issn.1002-0802.2017.06.001 卫星移动通信系统发展及应用* 肖龙龙1,梁晓娟2,李 信1 (1.中国人民解放军装备学院 航天指挥系,北京 怀柔 101406;2.中国移动通信集团青海有限公司,青海 西宁 810008) 摘 要:卫星移动通信系统兼具卫星通信和移动通信的特点,使其优于其他通信手段,保证了实时、灵活、高效的通信质量,被广泛应用于各种通信领域。分析卫星移动通信的特点,根据移动通信卫星的轨道类型,分别介绍静止轨道卫星移动通信系统、中轨道卫星移动通信系统、低轨道卫星移动通信系统的发展现状,并详细阐述卫星移动通信在民用领域和军事领域的应用情况,最后总结归纳卫星移动通信的未来发展趋势。 关键词:卫星通信;通信领域;移动通信;轨道 中图分类号:TN927+.23 文献标志码:A 文章编号:1002-0802(2017)-06-1093-08 Development and Application of Satellite Mobile Communication System XIAO Long-long1, LIANG Xiao-juan2, LI Xin1 (1.Department of Space Command, PLA Academy of Equipment, Beijing 101416, China; 2.Qinghai Co. Ltd., China Mobile Communications Corporation, Xining Qinghai 810008, China) Abstract: Satellite mobile communication system has the characteristics of both satellite communication and mobile communication, and this makes it superior to other means of communication and be widely used in various fields of communication. The characteristics of satellite mobile communication are analyzed firstly, then according to the type of mobile communication satellite orbit, the development status of GEO satellite mobile communication systems, MEO satellite mobile communication systems and LEO satellite mobile communication systems is described. Secondly, the applications of satellite mobile communication in civil and military fields are discussed, and finally the future development trend of satellite mobile communication is summarized. Key words: satellite communication; communication field; mobile communication; orbit 0 引 言 卫星移动通信在通信业务领域占据了重要地位。相对于地面移动通信系统,它具有覆盖范围广、通信费用与距离无关、不受地理条件限制等优点,能够实现对海洋、山区和高原等地区近乎无缝的覆盖,可满足各类用户对移动通信覆盖性的需求。卫星移动通信依靠卫星通信的特点,在移动载体上集成了卫星通信系统或者卫星通信终端,从而实现载体在移动中的不间断通信。移动载体既可以是飞行器和地面移动装备,也可以是海上移动载体和移动单兵,大大扩展了移动卫星通信的使用范围和环境适应性,使其在民用和军事领域都得到了广泛应用[1]。本文从卫星移动通信的特点出发,介绍国内外主要卫星移动通信系统的发展现状,分析卫星移动通信在军民领域的应用情况,并展望其未来的发展趋势。 * 收稿日期:2017-02-22;修回日期:2017-05-20 Received date:2017-02-22;Revised date:2017-05-20

移动卫星通信站系统设计方案

卫星通信系统建设招标文件 技 术 规 范 书 2013年4月

目录 1概述 (1) 1.1总体需求 (1) 1.2技术要求 (1) 1.3设计原则 (2) 2系统组成 (4) 3卫星通信设计 (5) 3.1卫星通信体制选择 (5) 3.2卫星链路计算 (5) 4X移动卫星通信站系统设计方案 (6) 4.1X移动卫星通信站功能 (7) 4.2卫星通信子系统 (7) 4.2.1x天线伺服控制系统 (7) 4.2.1.1x天线组成 (8) 4.2.1.2x天线系统设计要求 (8) 4.2.1.3x天线系统功能要求 (9) 4.2.1.4x天线系统技术指标 (9) 4.2.2卫星功放 (11) 4.2.3卫星调制解调器 (12) 4.2.3.1卫星调制解调器(网管) (12) 4.2.3.2卫星调制解调器(业务) (13) 4.2.4频谱仪 (14) 4.2.4.1便携式频谱仪 (14) 4.2.4.2机架式频谱仪 (15) 4.3视音频处理子系统 (17) 4.3.1图像采集 (18) 4.3.1.1单兵无线图像传输设备 (18) 4.3.1.2便携式摄像机 (20) 4.3.1.3装载平台室外云台摄像机 (21) 4.3.1.4装载平台室内云台摄像机 (23) 4.3.1.5装载平台两侧及后部摄像机 (24) 4.3.2图像处理与显示 (25) 4.3.2.1视频编解码器 (25) 4.3.2.2高清视频矩阵 (26) 4.3.2.3高标清转换器 (27) 4.3.2.4四联监视器技术要求: (28) 4.3.2.59寸头枕监视器技术要求: (29) 4.3.3音频系统 (30) 4.3.3.1数字调音台 (30) 4.3.3.2无线话筒 (30) 4.3.4VOIP语音网关 (33)

卫星应急通信项目解决方案

卫星应急通信解决方案 2007-3-16 13:56:54 阅读531次 为了预防和减少自然灾害、事故灾难、公共卫生和社会安全事件及其造成的损失,保障国家安全、保障人民群众生命财产安全、维护社会稳定,提高应急处置的指挥效率,公安、军队、市政、电力、地震、气象、电信、疾病控制、防火等诸多领域急需建设应急通信系统,将突发现场的视频、音频和其他数据送至指挥中心,为其获取灾情信息,进行现场指挥提供“通信畅通、现场及时、数据完备、指挥到位”的技术保障。由于通信线路的限制,通常采用卫星通信作为应急通信的主用线路,卫星通信灵活多样,机动性好,但系统建设和运营成本较高,因此系统平时应可用于一般的民用通信租赁,为商业用户提供高速率的话音、图像和数据传输,以降低运营成本;在遇突发事件时,可根据实际情况配置成满足实际需要的应急通信网,迅速转变为应急战备状态,保证各种通信指挥系统的畅通无阻。 应急通信网络应具备以下特点: 1、平战结合,注重实用性 网络建设要考虑平时应用,尽量简化中心站和远端站的配置,提高利用率,在日常的工作中,整个系统资源可以用来处理民用通信:如电视会议、数据输出、视频传输等工作;当进入应急工作状态,指挥中心和整个系统资源将全部用来应付紧急公共安全事件,能做到在最短的时间内,实现最佳的资源调配和指挥,达到“一点感知,处处可知;闻警而动,处处协同;有备而战,临危不乱”的状态。 2、以实际需求为导向的应用系统建设 着眼于应急联动实际使用现状,以满足各业务部门的应用需求为前提,尽量利用和整合现有系统资源,避免重复投资,不搞“高、大、全”式的形象工程。注重网管建设,合理调配转发器资源。通过引进规范、先进的项目管理方法来保证系统的成功实施,建立科学的运行保障体系保证系统的正常运行,把硬件建设放在以需求驱动的基础上。 3、支持高速率数据通信 在以往的卫星通信应用中,单链路用户数据速率达3M-20Mbps的高速率通信需求不是十分普遍,随着视频应用的日益普及,通信和互联网的各类应用速率不断提高,基于卫星通信的单链路宽带数据通信需求正越来越多。因此系统应能够支持多种类和大流量业务,可提供不低于5Mbps速率的数据通信,并具备支持大型网络的能力,适应网络覆盖全国、辐射省市、地区的日益扩大的规模要求。 4、系统安全可靠,易操作,简化接口类型和协议,避免繁复的设备组合在多媒体数据交互的过程中,尽可能选择统一、标准的接口和协议,力求

构建基于第四代海事卫星关口站的航空安全通信系统.doc

构建基于第四代海事卫星关口站的航空安 全通信系统- 2014 年3 月8 日,马航MH370 客机失联,包括中国在内的十多个国家投入巨大资源搜寻其下落。由于飞机上安装了第三代海事航空站,虽然国际海事卫星组织为确定搜索方向提供了很多数据进行分析研判,但是第三代航空站已经是20 年前的技术, 只能作为飞机通信寻址与报告系统(ACARS)数据链通道,无法提供准确位置信息。马航MH370 事件暴露出的漏洞和不足,给予中国很多警示,如果中国民航飞机发生类似事件,那么我们如何应对?有没有先进的航空卫星通信系统能够实现飞机的全球实时跟踪?基于第四代海事卫星关口站的航空安全通信系统,将为飞机实现全球实时位置监控提供新方式。 一、中国海事卫星主管部门在马航事件中的相关工作 1. 信息掌握 事件发生之后,交通运输部立即启动应急机制,全面启动搜救的相关工作,并责成中国海事卫星管理部门中国交通通信信息中心和民航局等有关单位联合成立专家组,同国际海事卫星组织(Inmarsat)进行了密切的沟通、协调,并获取大量相关信息,对失联客机海事卫星通信记录数据进行了解码、分析、评估和深入研判。 2. 对信息的研判 1)通过第三代海事卫星航空站每隔一个小时的脉冲信号,判断飞机在脱离马来西亚空管区后继续飞行至少5个小时; 2)应用卫星信号仰角和多普勒效应原理,确定飞机南北两

条可能飞行轨迹; 3)通过数据比对,进一步判断飞机南线飞行的可能性,并确定了卫星最后一次接收到自动信号时飞机的时点; 4)根据多普勒效应理论和相关数据,确定客机最后一阶段的速度变化。 根据多普勒效应理论,由MH370 七个时间点的多普勒频移数据,可计算出当时卫星与飞机的相对速度。由于卫星的位置(64.5E)是已知的,可以通过相对速度推断出飞机的航向与航速之间的关系,建立了多普勒频移与航速、航向的数学模型。依据马航提供的MH370 飞行速度,基本排除了飞机向北线飞行的可能性。通过上述数学模型对其他几次航班( 南向吉隆坡至悉尼,北向吉隆坡至伦敦、吉隆坡至北京等)的多普勒频移数据进行了计算,计算结果与相关的多普勒频移历史数据吻合。 二、可提供航空安全通信的卫星通信系统现状 目前,经过国际民航组织(ICAO)认证,能够为民航飞机提供前舱安全通信的卫星通信系统只有海事卫星、铱星和日本的MTSAT 卫星系统。由于MTSAT 系统只能提供区域卫星服务,所以本文主要介绍海事卫星和铱星系统。 1. 海事卫星通信系统介绍 国际海事卫星组织(Inmarsat)是一个提供全球范围内卫星移动通信的政府间合作机构,成立于1979 年,初期旨在为海上用户提供卫星通信服务,现已发展为世界上唯一为海陆空用户提供全球卫星移动公众通信和遇险安全通信的业务提供者。Inmarsat 支持的用户服务在海事应用上包括直拨电话、传真、电子邮件和数据连接;航空应用包括驾驶舱安全话音、数据、自动位置与状态报告和直拨旅客电话;陆地应用包括微型卫星电话、

推荐-便携式卫星通信系统方案 精品

便携式卫星通信系统

目录

1需求分析 根据应急通信及现场新闻采访的需求,建设1套卫星机动通信系统以满足应急通信及现场新闻采访的需求,包括1套通信固定站和1套卫星通信便携站及现场图像采集传输系统,固定站和卫星通信便携站之间的通信采用现有卫星通信ku资源实现。卫星通信便携站将通过现场图像采集传输系统采集到的话音、数据及视频传送到卫星通信便携站,再经卫星通信便携站通过卫星传输到固定站和指挥中心的大屏幕上。 根据通信系统实际情况,卫星通信系统建设规模如下: (1)指挥中心建固定卫星通信地球站; (2)建设1套机动通信机动平台。 本建议书对用户需求分析要点如下: 1.1技术需求 根据通信系统需求,工程系统配置包括固定和机动两大系统: 1、位于指挥中心的固定站通信系统:包括 ●天线系统:Ku频段天线系统一套; ●主站室外单元设备:包括低噪声放大器系统一套,SSPA系统(内置 BUC)一套,安装在天线基座架上; ●室内单元设备:包括调制解调器系统一套;视频编码器和解码器一套;语音 网关一套;网管、监控设备一套; 2、应急通信机动平台:包括 ●卫星通信便携站一套; 自动卫星便携天伺馈系统、一体化卫星信道设备、BUC ●单兵图传设备一套; 1.2设计思路 我们的设计原则是建立在满足用户当前需求和今后的扩展要求之上,采用以下设计思路: ●系统设计采用成熟技术,尽量减少技术风险,采用模块化、通用化设计原

则。设备故障部件或单元的替换、检查和修理应该很容易进行。硬件和软件 预留扩容能力,可方便的实现系统扩容。 ●设备布局充分考虑电磁干扰、散热及便于维护。 ●天线分系统技术指标满足IESS-207所规定的E标准地球站的性能要求,安 装设备满足IESS-308/310中有关的性能要求。 ●地球站系统所选用的设备均为技术先进、质量可靠的在用设备。设计寿命应 大于15年。在设计寿命内,地球站系统总的可用度应优于99.9%,满足每 天24小时有人/无人值守下连续运行的要求。 1.3设计依据 (1)遵循IESS-207 E-3标准地球站的性能要求和IESS-308和IESS-310最新版本中规定的中速、高速数据速率的电视业务、话音业务、数据业务设备技术参数要求。 (2)中华人民共和国通信行业相关标准: ●YD 5050-20XX 《国内卫星通信地球站工程设计规范》 ●YD/T 5017-20XX《国内卫星通信地球站设备安装工程验收规范》 ●YD 5059-20XX《电信设备安装抗震设计规范》 ●YD 5098-20XX《通信局(站)防雷与接地工程设计规范》

船载卫星通信系统解决方案

船载卫星通信系统解决方案 2010年5月12日 摘要:本文阐述了船载卫星通信系统在海事搜救中的解决方案和实际应用。 关键词:船载动中通天线;卫星通信技术 我国是国际航运大国,拥有辽阔的海域。1985年我国加入《1979年国际海上搜寻救助公约》。交通运输部在构筑和谐社会的新形势下,提出了将海事搜救建成“全方位覆盖、全天候运行、快速反应的水上安全保障体系,对发生在我国搜救责任区内的海上险情实施快速有效救助”的总体目标。 实现海上搜救的信息化、可视化、自动化已经是大势所趋,现代卫星移动通信技术的发展和应用,为实现这一目标提供了可靠技术保障。船载卫星通信系统的应用有效地保障了海上搜救中信息的传输。 文中详细阐述了海事搜救中对船载卫星通信系统的需求、解决方案和实际应用。通过最新的移动卫星通信技术,从根本上解决海事搜救通信中实时图像、语音、数据的传输问题。 根据海事搜救的特点,将海事搜救实时通信指挥系统的需求归纳如下:实时图像传输,即将搜救船上摄像机采集的现场图像实时传回指挥中心;建立搜救船与指挥中心的视频会议系统;建立搜救船与指挥中心的语音通话系统,实现电话、传真等功能;建立搜救船上局域网与指挥中心局域网互联,实现移动办公和现场指挥;建立搜救船上Internet接入,便于搜救时收发邮件和查找资料。 根据以上需求,提出采用基于全网IP的LinkStar高速卫星通信网络的船载卫星通信系统解决方案。 一、船载卫星通信系统链路解决方案 船载卫星通信系统链路包含以下几个部分:船载卫星动中通天线、卫星通信系统、卫星

地面站、指挥中心的通信专线或指挥中心远端卫星接收站等,其卫星通信系统链路原理如图1所示。 船载卫星动中通天线与通信卫星进行通信,通信卫星与卫星地面站进行通信,卫星地面站与指挥中心的专线,或通过与指挥中心远端卫星端站进行通信,从而实现搜救船与指挥中心的卫星通信。 船载卫星动中通天线是实现船岸通信的最重要组成部件,需要保证船在航行过程中克服船的横摇、纵摇以及上下起伏,保持与通信卫星的稳定通信。 因此,船载卫星动中通天线的选择首先要保证的是在复杂的航行条件下天线能稳定地跟踪通信卫星。其次是它的通信能力,天线的通信设备要能支持较高通信带宽。第三,安装方便。对于海事局60米巡逻船而言,船上能提供的船载天线安装空间有限,因此安装方便非常重要。 在本文所述的解决方案中,选择的是以色列Orbit Orsat(AL-7103MKⅡ)船载动中通卫星天线,如图2所示:

卫星通信系统基础知识

卫星通信系统基础知识 卫星通信简单地说就是地球上(包括地面和低层大气中)的无线电通信站间利用卫星作为中继而进行的通信。卫星通信系统由卫星和地球站两部分组成。卫星通信的特点是:通信围大;只要在卫星发射的电波所覆盖的围,从任何两点之间都可进行通信;不易受陆地灾害的影响(可靠性高);只要设置地球站电路即可开通(开通电路迅速);同时可在多处接收,能经济地实现广播、多址通信(多址特点);电路设置非常灵活,可随时分散过于集中的话务量;同一信道可用于不同方向或不同区间(多址联接)。 1、卫星通信系统基本概念 1.1系统组成 卫星通信系统由卫星端、地面端、用户端三部分组成。卫星端在空中起中继站的作用,即把地面站发上来的电磁波放大后再返送回另一地面站,卫星星体又包括两大子系统:星载设备和卫星母体。地面站则是卫星系统与地面公众网的接口,地面用户也可以通过地面站出入卫星系统形成链路,地面站还包括地面卫星控制中心,及其跟踪、遥测和指令站。用户段即是各种用户终端。

1.2卫星通信网络的结构 ●点对点:两个卫星站之间互通;小站间信息的传输无需中央站转接;组网方式简单。 ●星状网:外围各边远站仅与中心站直接发生联系,各边远站之间不能通过卫星直接 相互通信(必要时,经中心站转接才能建立联系)。 ●网状网:网络中的各站,彼此可经卫星直接沟通。 ●混合网:星状网和网状网的混合形式 1.3卫星通信的应用围 ●长途、传真 ●电视广播、娱乐 ●计算机联网 ●电视会议、会议 ●交互型远程教育 ●医疗数据 ●应急业务、新闻广播 ●交通信息、船舶、飞机的航行数据及军事通信等

1.4卫星通信使用频率 ●电波应能穿过电离层,传输损耗和外部附加噪声应尽可能小 ●有较宽的可用频带,尽可能增大通信容量 ●较合理的使用无线电频谱,防止各宇宙通信业务之间及与其它地面通信业务之间产 生相互干扰 ●通信采用微波频段(300MHz-300GHz) 注:由于空间通信是超越国界的,频谱分配是在ITU主管下进行的,1979年世界无线电行政大会(WRAC)分配给卫星通信的频带包含17个业务分类,并将全球分为三个地理区域:Ⅰ区、Ⅱ区、Ⅲ区,我国位于第Ⅲ区。详细的频率分配可查阅到。 常用工作频段 C波段与Ku波段的比较 1.5多址方式 在微波频带,整个通信卫星的工作频带约有500MHz宽度,为了便于放大和发射及减少变调干扰,一般在星上设置若干个转发器。每个转发器被分配一定的工作频带。目前的卫星通信多采用频分多址技术,不同的地球站占用不同的频率,即采用不同的载波。比较适用于点对点大容量的通信。近年来,时分多址技术也在卫星通信中得到了较多的应用,即多个地球站占用同一频带,但占用不同的时隙。与频分多址方式相比,时分多址技术不会产生互调干扰、不需用上下变频把各地球站信号

卫星移动通信系统体系设计及应用模型

卫星移动通信系统体系设计及应用模型 伴随通信系统“天地一体化”技术体系的推广,移动通信正朝着无缝覆盖的趋势发展,卫星移动通信覆盖面广的特点使其成为地面移动通信的必要补充。目前国外的卫星移动通信系统有北美移动卫星(MSAT)系统,亚洲蜂窝卫星(ACeS)系统,瑟拉亚卫星(Thuraya)系统以及提供全球覆盖的国际海事卫星(Inmasrsat)系统等。Inmasrsat由国际海事组织经营,使用该系统的国家已超过160个,用户达29万多个,其第4代系统BGA N是第1个通过手持终端向全球同时提供话音和宽带数据的移动通信系统,也是第1个提供数据速率证的移动卫星通信系统。因此这里提出卫星移动通信系统设计及其应用模型。 1 卫星移动通信系统传输模型 在卫星通信中,电波在空间传输时要受到很多因素的影响,如大气吸收、对流层闪烁、雨、雪等都会导致不同程度的衰减,其中降雨对信号的衰减最为严重,因此卫星链路的雨衰特性是影响卫星通信系统传输质量与可靠性的主要因素。在进行卫星通信系统设计时要采取必要措施来应对各种信号衰减,针对信道特点来设计传输模型。 卫星信号在卫星与地面网间的传输模型如图1所示。 图中,S-Um接口为移动终端与地面信关站使用卫星信道通过卫星中继进行信号的传输:Abis接口为地面信关站与信关站收发信机的接口;A接口为地面移动网交换中心与信关站的接口。 2 卫星移动通信系统通信体制 2.1 帧结构 移动卫星通信系统采用TDMA多址方式,在物理层信号以TDMA帧的形式进行传输,考虑到与地面GSM 网手持终端的兼容性,帧格式分为巨帧(hyper frame),超帧(superfr AME),复帧(mul TI frame),帧(frame),时隙(timeslot)。

卫星通信的SATCOM系统设计解决方案

卫星通信的SATCOM系统设计解决方案 过去二十年来,商用航空领域一直依赖卫星通信协调民用航空乘客出行。随着数据流量和物联网(loT)应用的增长,对卫星通信系统的需求已达到顶峰。 对于商用喷气机和大型客机而言,商用飞机的高带宽数据访问需求也增长显著。我们发射了支持更高频率的新卫星,以实现这种带宽增长。本文将考察这些技术趋势,以及可通过市场上提供的可定制架构实现所需性能并缩短上市时间的解决方案。 SATCOM介绍和历史 不断提高数据速率的需求正在推动SATCOM领域中的许多新发展。SATCOM链路的数据速率将从kbps提高至Mbps,这将实现更高效的数据和视频传输。无人机的大幅增加为SATCOM链路创造了一个新的舞台。而且,商业航空航天市场中对数据和互联网接入不断增长的需求正在推动Ku频段和Ka频段不断发展,以支持最高达1000 Mbps的数据速率。同时,支持传统数据链路、最大限度减小尺寸、重量和功耗(SWaP)和减少系统开发投入也正在推动对开发灵活架构和最大限度提高系统重用率的需求。 SATCOM系统通常利用对地静止轨道(GEO)卫星—相对于地球表面静止的卫星。要实现对地静止轨道,卫星必须具有非常高的海拔高度—与地球表面的距离超过30 km。这样的高轨道的好处在于,覆盖大面积的地面只需要很少的卫星,而且由于知道其固定坐标,因此将数据传输至卫星较为简单。由于这些系统的发射成本较高,因此它们专为长使用寿命而设计,非常稳定,但有时也会有点过时。 由于海拔高度较高且存在辐射,因此往往需要采用额外的设备屏蔽或卫星屏蔽措施。而且,由于卫星离得太远,地面上的用户可能会有重大信号损失,同时还会影响信号链设计和元件选择。地面到卫星的距离较长还会造成用户和卫星之间的高延迟,这会影响部分数据和通信链路。 最近,人们提出了许多GEO卫星的替代方案或补充系统,无人飞行器和低地轨道(LEO)卫星也正在考虑当中。借助低轨道,这些系统可减小基于GEO的系统方面的挑战,但会影响覆盖范围,需要更多的卫星或无人飞行器才能实现类似的全球覆盖。

国际海事卫星通信系统介绍资料

国际海事卫星通信系统介绍 北京米波通信技术有限公司 二零零九年十一月

目录 1 系统概述 (1) 1.1 INMARSA T发展背景 (1) 1.2 INMARSA T在卫星通信领域的重要性 (1) 1.3 INMARSA T的应用 (2) 1.4 INMARSA T通信体制和技术参数 (2) 1.4.1 通信体制 (2) 1.4.2 频率范围 (2) 1.4.3 调制方式 (3) 1.4.4 编码方式 (3) 2 INMA RSAT系统的构成 (3) 2.1 空间段 (3) 2.2 地面段 (5) 2.2.1 卫星控制中心(SCC) (6) 2.2.2 网络控制中心(NCC) (6) 2.2.3跟踪遥测指控站(TT&C) (6) 2.2.4 网络协调站(NCS) (6) 2.2.5 地面关口站(LES) (6) 3 INMARSAT系统的移动终端 (7) 3.1 INMARSAT-B (8) 3.2 INMARSAT-C (8) 3.3 INMARSAT-M (9) 3.4 INMARSAT Mini-M系统 (10) 3.5 INMARSAT-Aero (10) 3.6 INMARSAT-F (11) 3.7 BGAN终端 (12) 3.8 ISATPHONE终端 (13)

1 系统概述 1.1 INMARSAT发展背景 国际海事卫星通信系统简称INMARSAT,于1979年7月16日正式成立,成员国由当时的28个已发展到目前的近百个,INMARSAT总部设在伦敦,主要负责操作、管理、经营INMARSAT系统的政府间合作机构。现已成为世界上唯一为海、陆、空用户提供全球移动卫星公众通信和遇险安全通信业务的国际组织。 INMARSAT卫星通信最初只提供海上通信业务,它向广大的海上用户提供遇险呼叫、紧急安全通信、电话、用户电报、传真、各种数据传输、无线电导航等二十余种通信业务。1982年开始提供全球海事卫星通信服务。随着新技术的开发,1985年10月,INMARSAT大会通过了INMARSAT公约和业务协定的修正案,决定把航空通信纳入业务之内。1989年又决定把业务从海事通信发展到航空、陆地移动通信领域,并于1990年开始提供全球性卫星航空移动通信业务。 为了适应海事通信事业和通信网络发展的需要,国际海事卫星组织于1993年正式改名为国际移动卫星通信组织,1999年改制为股份制公司,2005年初成功上市,至今运转良好,是全球移动卫星通信业务的主要提供者,在世界移动卫星通信领域占有极其重要的地位。 1.2 INMARSAT在卫星通信领域的重要性 ●INMARSAT系统是全球唯一同时承担卫星移动通信和遇险安全通信的卫 星通信系统; ●INMARSAT系统成立时间早、占有市场份额大、运营良好、终端类型多、 业务种类全面; ●INMARSAT系统最初由各国政府投资组建,影响广泛; ●INMARSAT系统通信体制成熟,卫星先进,地面站遍布全球; ●各国军方都将INMARSAT卫星通信系统作为军用通信系统的重要组成 部分。

卫星基站方案

卫星地面站通信系统 技 术 方 案 北京大恒创新技术有限公司

第1章、 设计依据 本系统依据以下标准进行设计: z《城市人民防空通信技术机制》; z《人民防空卫星通信系统通用要求》(RFHB01-2008); z《人民防空工程战术技术要求》; z《人民防空卫星通信系统固定地面站建设规范》(RFHB02-2008); z《北京市应急移动指挥通信系统建设使用管理规定》(京应急办【2007】2)z《人民防空指挥工程设计标准》; z《人民防空指挥所通信工程设计要求》; z《人防指挥所指挥自动化系统建设规范》; z《指挥自动化一体化技术体系结构》全军指挥自动化建委办; z《310工程网络分系统》总参第61研究所; z《安全防范工程程序与要求》(GA/T75); z《中华人民共和国安全防范行业标准》(GB/T74-94); z《国内卫星通信系统进网技术要求》(GB/T 12364-1990); z《国际移动卫星B船舶地球站技术要求》(GB 19491-2004); z《通信卫星有效载荷性能的在轨测试方法》GB/T 12639-1990; z《国内卫星通信地球站总技术要求》; z《国内卫星通信地球站发射、接收和地面通信设备技术要求》(GB/T 11444.4-1996); z《国内卫星通信网技术体制(试行)(上册)》(TZ 005-95(上)); z《国内卫星通信时分多址(60Mbit/s)方式进网技术要求》(YD 509-1991);z《卫星通信VSAT地球站电磁干扰的测量方法》(YD/T 1003-1999); z《可搬移式卫星通信地球站设备通用技术条件》GB/T 15296-1994; z《国内卫星通信TDM/QPSK/FDMA(2Mbit/s)系统进网技术要求》YD/T 613-1993; z《无线、微波及卫星通信设备型号命名方法》YD/T 638.10-1993; z《卫星通信船载地球站码分多址通信设备通用技术条件》GB/T 15869-1995;

卫星通信天线简介

常用卫星通信天线简介 天线是卫星通信系统的重要组成部分,是地球站射频信号的输入和输出通道,天线系统性能的优劣影响整个通信系统的性能。地球站与卫星之间的距离遥远,为保证信号的有效传输,大多数地球站采用反射面型天线。反射面型天线的特点是方向性好,增益高,便于电波的远距离传输。 反射面的分类方法很多,按反射面的数量可分为双反射面天线和单反射面天线;按馈电方式分为正馈天线和偏馈天线;按频段可分为单频段天线和多频段天线;按反射面的形状分为平板天线和抛物面天线等。下文对一些常用的天线作简 单介绍。 1.抛物面天线 抛物面天线是一种单反射面型天线,利用轴对称的旋转抛物面作为主反射面,将馈源置于抛物面的焦点F上,馈源通常采用喇叭天线或喇叭天线阵列,如图1所示。发射时信号从馈源向抛物面辐射,经抛物面反射后向空中辐射。由于馈源位于抛物面的焦点上,电波经抛物面反射后,沿抛物面法向平行辐射。接收时,经反射面反射后,电波汇聚到馈源,馈源可接收到最大信号能量。

图1 抛物面天线 抛物面天线的优点是结构简单,较双反射面天线便于装配。缺点是天线噪声温度较高;由于采用前馈,会对信号造成一定的遮挡;使用大功率功放时,功放 重量带来的结构不稳定性必须被考虑。 2.卡塞格伦天线 卡塞格伦天线是一种双反射面天线,它由两个发射面和一个馈源组成,如图2所示。主反射面是一个旋转抛物面,副反射面为旋转双曲面,馈源置于旋转双曲面的实焦点F1上,抛物面的焦点与旋转双曲面的焦点重合,即都位于F2点。从从馈源辐射出来的电磁波被副反射面反射向主反射面,在主反射面上再次被反射。由于主反射面的焦点与副反射面的焦点重合,经主副反射面的两次反射后,电波平行于抛物面法向方向定向辐射。对经典的卡塞格伦天线来说,副反射面的

车载卫星通信设备及操作简介分解

车载卫星通信设备及操作简介 3.1 卫星通信系统开通前应该注意的事项: 3.1.1 环境勘察 1)选择停放场所 ★选择较为平坦、坚实的空地作为停车场地。确保对卫星信号收发、微波信号收发不形成遮挡。 ★车辆上方应无遮挡物,以免阻碍天线桅杆正常升起。 ★应尽量避开高大的障碍物(陡坡、高大建筑、高大树木等),确保对卫星通信、微波通信、无线网桥通信的信号收发不形成遮挡。 ★如果采用市电则车辆停放地距最近的有效市电电源应在60M以内,且能打地桩以接地或能接入其他的接地系统。 ★车辆停放地还要考虑整车噪声对居民或环境的影响。 2)选择市电电源 ★车载系统原则上应尽量考虑采用目的现场的有效市电电源。 ★在车载系统到达现场前,应与提供电源的单位或供电部门做好协商。 3)确定传输方式 ★同相关单位协商拟采用的传输方式,传输方式应遵循方便接入的原则结合停放场所条件综合考虑。若距机房较近,可采用光纤直接连接的方式;否则可采用微波或者无线网桥传输方式;特殊情况可采用卫星传输方式。 ★采用微波或者无线网桥传输方式时,要预先选定好对端微波架设的位置,以最近的机房和视距传输来综合考虑。原则上在车载系统达到目的现场 前,应架设好对端微波天线,以尽量缩短系统开通的时间。 ★采用卫星传输方式时,应根据使用的卫星经度考虑对应方位无遮挡,且 避免使车头朝向卫星方位停放,以方便卫星天线接收。 ★车载卫星系统通过自动对星需要获取的信息:(1)GPS、(2)电子罗盘、(3)AGC(信标机电压)。

3.1.2 数据准备 确定BTS的相关数据 ★根据网络规划,确定车载BTS相关数据,如频点、邻区切换等,必要时,到目的现场测试移动网络的数据,了解频率干扰情况、话务量分配、切换等情况。同时与传输室确认应急车传输的接入基站,并在基站端对通传输电路,同BSC 核对每套应急传输电路所对应小区的关系、核对小区定义的设备数量、设备类型和软件版本等信息,确保BSC的数据定义与应急车安装的硬件完全对应; ★根据现场的网络状况,确定基站天线的覆盖范围和方向。 ★根据网络规划,确定车载BTS系统接入PLMN网的BTS的相关数据。 3.1.3 带卫星的小C车规范开通流程 1、停车、拉手刹 2、打地桩、接工作地、保护地 3、放支撑脚、启动联合供电 4、挂CDMA天线、升天线桅杆、接馈线 5、对星、核对工作频率、极化、标定功率、载波上星 6、开基站、数据下载 7、开通测试、网络优化 3.2 卫星系统概述 3.2.1卫星系统业务需求简介 卫星传输作为小型应急通信车三种传输方式(微波传输、光纤传输、卫星传输)之一的传输手段解决从车载BTS到各省BSC的Abis接口的传输,实现1x 语音数据及EVDO数据业务的传输。 3.2.2卫星系统组成 根据系统设备配置和改装要求,小型应急通信车包括移动通信系统(不同厂商BTS和BSC设备)、传输系统(SDH、PDH、50M无线以太网桥、车载卫星)及天馈线系统(卫星天线、微波天线基站天线、桅杆等),其中卫星子系统主要由以下几种设备组成: 车载卫星天线、GPS天线、天线控制系统、信标接收机、MODEM、LNB、固态高功放。

国际海事卫星通信系统介绍

国际海事卫星通信系统介绍 米波通信技术 二零零九年十一月

目录 1 系统概述 (1) 1.1 INMARSA T发展背景 (1) 1.2 INMARSA T在卫星通信领域的重要性 (1) 1.3 INMARSA T的应用 (2) 1.4 INMARSA T通信体制和技术参数 (2) 1.4.1 通信体制 (2) 1.4.2 频率围 (2) 1.4.3 调制方式 (3) 1.4.4 编码方式 (3) 2 INMARSAT系统的构成 (3) 2.1 空间段 (3) 2.2 地面段 (6) 2.2.1 卫星控制中心(SCC) (6) 2.2.2 网络控制中心(NCC) (6) 2.2.3跟踪遥测指控站(TT&C) (6) 2.2.4 网络协调站(NCS) (6) 2.2.5 地面关口站(LES) (6) 3 INMARSAT系统的移动终端 (7) 3.1 INMARSAT-B (8) 3.2 INMARSAT-C (8) 3.3 INMARSAT-M (9) 3.4 INMARSAT Mini-M系统 (10) 3.5 INMARSAT-Aero (10) 3.6 INMARSAT-F (11) 3.7 BGAN终端 (12) 3.8 ISATPHONE终端 (13)

1 系统概述 1.1 INMARSAT发展背景 国际海事卫星通信系统简称INMARSAT,于1979年7月16日正式成立,成员国由当时的28个已发展到目前的近百个,INMARSAT总部设在伦敦,主要负责操作、管理、经营INMARSAT系统的政府间合作机构。现已成为世界上唯一为海、陆、空用户提供全球移动卫星公众通信和遇险安全通信业务的国际组织。 INMARSAT卫星通信最初只提供海上通信业务,它向广大的海上用户提供遇险呼叫、紧急安全通信、、用户电报、传真、各种数据传输、无线电导航等二十余种通信业务。1982年开始提供全球海事卫星通信服务。随着新技术的开发,1985年10月,INMARSAT大会通过了INMARSAT公约和业务协定的修正案,决定把航空通信纳入业务之。1989年又决定把业务从海事通信发展到航空、陆地移动通信领域,并于1990年开始提供全球性卫星航空移动通信业务。 为了适应海事通信事业和通信网络发展的需要,国际海事卫星组织于1993年正式改名为国际移动卫星通信组织,1999年改制为股份制公司,2005年初成功上市,至今运转良好,是全球移动卫星通信业务的主要提供者,在世界移动卫星通信领域占有极其重要的地位。 1.2 INMARSAT在卫星通信领域的重要性 ●INMARSAT系统是全球唯一同时承担卫星移动通信和遇险安全通信的卫 星通信系统; ●INMARSAT系统成立时间早、占有市场份额大、运营良好、终端类型多、 业务种类全面; ●INMARSAT系统最初由各国政府投资组建,影响广泛; ●INMARSAT系统通信体制成熟,卫星先进,地面站遍布全球; ●各国军方都将INMARSAT卫星通信系统作为军用通信系统的重要组成部 分。

卫星移动通信在军事方面的应用

卫星移动通信在军事方面的应用 [定义] 卫星移动通信是指车辆、舰船、飞机及单兵在运动中利用卫星作为中继器进行的通信。 卫星移动通信系统由通信卫星、测控站、网管和众多的移动站组成。通信卫星可利用具有大型天线的大型同步轨道卫星,也可利用众多中、低轨道运行的小型卫星。测控站用于对卫星的定点位置或运行轨道测量跟踪和进行控制管理。网管站是本系统和其它电信网络连接的枢纽。网络管理中心协调各站的正常工作,以保证本卫星通信网正常运转。系统中可以有不同类型的移动站。 卫星移动通信的工作频段选择是一个十分重要的问题,必须考虑其电波应能穿过电离层,传播损耗和其它附加损耗应尽可能小,同时具有较宽的可用频段以及技术可行性。在卫星移动通信系统中,移动站一般使用低增益宽波束,它接收到的来波有直射波、地面反射波和散射波。这三种来波合成,会使移动站接受信号电平发生相当大的随机起伏,产生所谓的"多经衰落",多经衰落严重时可使通信中断。 卫星移动通信系统有不同的分类方法。按卫星波束覆盖区域,可分为区域性卫星移动通信系统和全球卫星移动通信系统;按服务对象,可分为陆地卫星移动通信系统、航海卫星移动通信系统和航空卫星移动通信系统;按所用通信卫星的类型来分,可分为静止轨道(GEO)卫星移动通信系统和中/低高度轨道(MEO、LEO)卫星移动通信系统,而目前中/低高度轨道在卫星移动通信系统中发展最为显著。 无论GEO、MEO或LEO卫星移动通信的发展体现了本世纪末卫星通信的两个特点:一是面向移动电话服务,亦即窄带话音/数据服务的低轨(LEO)卫星应用;二是面向高速率信息高速公路的宽带数据服务,亦即Ka和Ku频段的低轨(LEO)卫星应用。但应注意到,在发展区域性移动电话和数据业务时,仍然不能忽视静止卫星(GEO)的成熟技术和有利条件,GEO卫星系统仍将平行地发展。 [相关技术]卫星通信;卫星移动通信;卫星通信技术 [技术难点] 无论是静止轨道卫星移动通信系统,还是中/低轨道卫星移动通信系统总的技术难点是:设备小型化、卫星智能化、网络综合化、信道带化、频率高频化轨道多样化等;就空间段而言,解决好处理转发器、自适应天线、星际链路、GEO轨道发展卫星群、非GEO轨道小卫星、轨道综合;就地面段而言应解决好自适应天

相关主题
文本预览
相关文档 最新文档