当前位置:文档之家› Mut Express同源重组法快速定点突变技术

Mut Express同源重组法快速定点突变技术

定点突变技术——从单点突变到多点突变

定点突变技术——从单点突变到多点突变 体外定点突变技术是研究蛋白质结构和功能之间的复杂关系的有力工具,也是我们在实验室中改造/优化基因常用的手段。蛋白质的结构决定其功能,二者之间的关系是蛋白质组研究的重点之一。对某个已知基因的特定碱基进行定点改变、缺失或者插入,可以改变对应的氨基酸序列和蛋白质结构,对突变基因的表达产物进行研究有助于我们了解蛋白质结构和功能的关系,探讨蛋白质的结构/结构域。而利用定点突变技术改造基因,相信大家也非常熟悉:比如野生型的绿色荧光蛋白(wtGFP)是在紫外光激发下能够发出微弱的绿色荧光,经过对其发光结构域的特定氨基酸定点改造,现在的GFP能在可见光的波长范围被激发(吸收区红移),而且发光强度比原来强上百倍,甚至还出现了黄色荧光蛋白,蓝色荧光蛋白等等。定点突变技术的潜在应用领域很广,比如研究蛋白质相互作用位点的结构、改造酶的不同活性或者动力学特性,改造启动子或者DNA作用元件,提高蛋白的抗原性或者是稳定性、活性、研究蛋白的晶体结构,以及药物研发、基因治疗等等方面。 对于单点突变,Stratagene公司的QuikChange Site-directed Mutagenesis kit是不错的选择,通过巧妙设计,将质粒定点突变技术变得简单有效。准备突变的质粒必须是从常规E.coli 中经纯化试剂盒(Miniprep)或者氯化铯纯化抽提的质粒。设计一对包含突变位点的引物(正、反向),和模版质粒退火后用PfuTurbo聚合酶“循环延伸”,(所谓的循环延伸是指聚合酶按照模版延伸引物,一圈后回到引物5’端终止,再经过反复加热褪火延伸的循环,这个反应区别于滚环扩增,不会形成多个串联拷贝。)正反向引物的延伸产物退火后配对成为带缺刻的开环质粒。DpnI酶切延伸产物,由于原来的模版质粒来源于常规大肠杆菌,是经dam甲基化修饰的,对DpnI敏感而被切碎(DpnI识别序列为甲基化的GATC,GATC在几乎各种质粒中都会出现,而且不止一次),而体外合成的带突变序列的质粒由于没有甲基化而不被切开,因此在随后的转化中得以成功转化,即可得到突变质粒的克隆。这个试剂盒非常巧妙的利用甲基化的模版质粒对DpnI敏感而合成的突变质粒对DpnI酶切不敏感,利用酶切除去模版质粒,得到突变质粒,使得操作简单有效。另外由于Pfu聚合酶是公认的最好的高保真聚合酶之一,堪称高保真聚合酶的“黄金标准”,是Stratagene的看家之宝,能够有效避免延伸过程中不需要的错配。试剂盒采用的是低次数的循环延伸而非PCR,有助于减少无意错配。只需要一次酶切和转化,实验可以在一天完成。这个试剂盒适用于质粒大小不超过 8Kb的质粒。后来推出的QuikChange XL site-directed mutagenesis kit则是针对大于8Kb的质

同源重组和基因工程

同源重组(Homologus Recombination) 是指发生在染色体之间或同一染色体上含有同源序列的DNA分子之间或分子之内的重新组合,同源重组需要一系列的酶催化。 !!!是最基本的DNA重组方式,通过链的断裂和再连接,在两个DNA分子同源序列间进行单链或双链片段的交换。 Holliday中间体切开并修复,形成两个双链重组体DNA,分别为: 片段重组体(patch recombinant) 拼接重组体(splice recombinant) 片段重组体: 切开的链与原来断裂的是同一条链,重组体含有一段异源双链区,其两侧来自同一亲本DNA。拼接重组体: 切开的链并非原来断裂的链,重组体异源双链区的两侧来自不同亲本DNA。 基因克隆或重组DNA (recombinant DNA) :应用酶学的方法,在体外将各种来源的遗传物质与载体DNA接合成一具有自我复制能力的DNA分子——复制子(replicon),继而通过转化或转染宿主细胞,筛选出含有目的基因的转化子细胞,再进行扩增提取获得大量同一DNA分子。 基因工程(genetic engineering) :实现基因克隆所用的方法及相关的工作称基因工程。 工具酶功能 限制性核酸内切酶识别特异序列,切割DNA DNA连接酶催化DNA中相邻的5′磷酸基和3′羟基末端之间形成磷酸二酯键, 使DNA切口封合或使两个DNA分子或片段连接 DNA聚合酶Ⅰ①合成双链cDNA分子或片段连接 ②缺口平移制作高比活探针 ③DNA序列分析 ④填补3′末端 Klenow片段又名DNA聚合酶I大片段,具有完整DNA聚合酶I的5'→3'聚合、 3'→5'外切活性,而无5'→3'外切活性。常用于cDNA第二链合成, 双链DNA 3'末端标记等 反转录酶①合成cDNA ②替代DNA聚合酶I进行填补,标记或DNA序列分析 多聚核苷酸激酶催化多聚核苷酸5′羟基末端磷酸化,或标记探针 末端转移酶在3′羟基末端进行同质多聚物加尾 碱性磷酸酶切除末端磷酸基 基因载体:

定点诱变技术解析

第三章DNA突变技术

?基因突变包括单个碱基或片断的替换,基因片断的插入与删除等。 ?根据其特点可将基因突变技术分两大类: 1.位点特异性突变定点突变 2.随机突变表型筛选

?随机突变 易错PCR法(Error-prone PCR) ?降低一种dNTP的量(降至5%-10%)?加入dITP来代替被减少的dNTP ?缓冲液中另加0.5mmol/L Mn2+ DNA Shuffling ?外显子、单基因和基因家族的重组装?随机引物延伸法 ?交错延伸法 ?定点突变 点突变——碱基删除、增补和替换

易错PCR(epPCR)

How DNA shuffling is done in the tube ?Random fragmentation of a pool of related genes; ?Self-priming polymerase reaction and template switching (causing crossovers); ? PCR amplification with primers of reassembled products How DNA shuffling works

Similar mutants generated by error-prone PCR, random and site-directed mutagenesis . ... .. ... ..Single gene shuffling library of point mutants Family gene shuffling library of chimeras Generating chimeras with crossovers of large blocks of sequences 一、单基因和基因家族的重组装

定点突变protocol

基因定点突变试剂盒 产品简介: 碧云天生产的基因定点突变试剂盒(Site-directed Gene Mutagenesis Kit)可 以用于点突变,多个邻近密码子的突变,单个或多个邻近密码子的缺失 (deletion)或插入(insertion)。 本试剂盒是一个利用目前最新的基因点突变技术设计而成的试剂盒。只 需通过基于PCR的突变质粒的合成,和基于Dpn I的模板质粒的消化,转 化培养以及后续的酶切或测序鉴定,即可得到预期的突变质粒(参考图 1)。累计操作时间不足2小时即可完成基因的定点突变。 参考图1,使用本试剂盒时需要先设计长度通常为30个碱基以上的互补的 两个引物,在引物中含有预期的突变位点。然后以待突变的质粒为模 板,用这两个引物进行PCR扩增反应。这样可以产生含有预期的突变位 点的双链质粒,但这个双链质粒中有两个nick位点。待突变的质粒通常来 源于大肠杆菌等细菌,在细菌中会被甲基化修饰,而在体外通过PCR扩 增得到的质粒不会被甲基化。这样用甲基化酶Dpn I处理,可以消化掉待 突变的质粒模板,而使通过PCR扩增出来的含有突变位点的质粒被选择 性地保留下来。这样把Dpn I处理过的产物转化细菌后,质粒中有两个 nick位点可以被大肠杆菌修复,得到的克隆就会含有预期的突变质粒了。 本试剂盒提供了DH5α甘油菌,可用于感受态细菌的制备。 本试剂盒共可以进行十次基因定点突变反应。图1. 基因定点突变试剂盒原理图 保存条件: -20℃保存,一年有效。 注意事项: 需自行配制LB液体培养基和LB平板以用于细菌的培养。 需自行设计和合成用于基因定点突变的引物。需自备用于细菌转化的试剂。 使用本试剂盒前请先阅读后面的常见问题。 为了您的安全和健康,请穿实验服并戴一次性手套操作。 使用说明: 1. 引物设计: 用于特定基因突变的引物需要单独设计,请参考如下一些基本原则进行设计: (1) 共需设计两条互补的引物。可以先集中设计一条,然后就可以得到互补的另一条引物。 (2) 引物的长度通常为25-45个碱基。 (3) 引物中突变位点任何一侧都必需满足 4X(GC碱基数)+2X(AT碱基数) ≥45。但引物也不宜过长,否则通常会形成非常 稳定的二级结构。通常把突变位点两侧的碱基数控制在15个左右,且使两侧按照上述计算得到的数值相近。 例如引物为agtcaggccaattcg aag cagtcgaattgccaag,其中蓝色的aag为突变位点,则

基因定点突变全攻略

基因定点突变全攻略 一、定点突变的目的 把目的基因上面的一个碱基换成另外一个碱基。 二、定点突变的原理 定点突变是指通过聚合酶链式反应(PCR)等方法向目的DNA片段(可以是基因组,也 可以是质粒)中引入所需变化(通常是表征有利方向的变化),包括碱基的添加、删除、点 突变等。定点突变能迅速、高效的提高DNA所表达的目的蛋白的性状及表征,是基因研究工作中一种非常有用的手段。 体外定点突变技术是研究蛋白质结构和功能之间的复杂关系的有力工具,也是实验室中改造/优化基因常用的手段。蛋白质的结构决定其功能,二者之间的关系是蛋白质组研究的重 点之一。对某个已知基因的特定碱基进行定点改变、缺失或者插入,可以改变对应的氨基酸 序列和蛋白质结构,对突变基因的表达产物进行研究有助于人类了解蛋白质结构和功能的关 系,探讨蛋白质的结构/结构域。而利用定点突变技术改造基因:比如野生型的绿色荧光蛋 白(wtGFP)是在紫外光激发下能够发出微弱的绿色荧光,经过对其发光结构域的特定氨基 酸定点改造,现在的GFP能在可见光的波长范围被激发(吸收区红移),而且发光强度比原 来强上百倍,甚至还出现了黄色荧光蛋白,蓝色荧光蛋白等等。定点突变技术的潜在应用领 域很广,比如研究蛋白质相互作用位点的结构、改造酶的不同活性或者动力学特性,改造启动子或者DNA作用元件,提高蛋白的抗原性或者是稳定性、活性、研究蛋白的晶体结构,以 及药物研发、基因治疗等等方面。 通过设计引物,并利用PCR将模板扩增出来,然后去掉模板,剩下来的就是我们的PCR 产物,在PCR产物上就已经把这个点变过来了,然后再转化,筛选阳性克隆,再测序确定就 行了。 三、引物设计原则 引物设计的一般原则不再重复。 突变引物设计的特殊原则: (1)通常引物长度为25~45 bp,我们建议引物长度为30~35 bp。一般都是以要突变的 碱基为中心,加上两边的一段序列,两边长度至少为11-12 bp。若两边引物太短了,很可 能会造成突变实验失败,因为引物至少要11-12个bp才能与模板搭上,而这种突变PCR要求两边都能与引物搭上,所以两边最好各设至少12个bp,并且合成多一条反向互补的引物。 (2)如果设定的引物长度为30 bp,接下来需要计算引物的Tm值,看是否达到78℃(GC 含量应大于40%)。 (3)如果Tm值低于78℃,则适当改变引物的长度以使其Tm值达到78℃(GC含量应大于40%)。 (4)设计上下游引物时确保突变点在引物的中央位置。

同源重组的分子机制

同源重组的分子机制 一、断裂重接模型(breakage joining model) C.D.Darlington 1936年提出。 在同源染色体联会时,由于染色体的缠绕而产生张力,两个相对染色单体在同一位置断裂,然后彼此和另一染色单体重新连接起来从而形成重组并消除这种张力。 二、基因转换现象 Olive等广泛研究粪生粪壳菌g座位,g-决定子囊孢子灰色,g+决定子囊孢子的黑色,在g+×g-的杂交中,他们分析了20万子囊,发现0.06%是5∶3分离,0.05%是6∶2分离,0.008%是3∶1∶1∶3(或异常4∶4)分离。图示. (1)一个孢子中的两个孢子有着不同的基因型。(2)分离比例不是4∶4。(3)邻近的基因A/a都呈现正常分离。 断裂重接模型则无法解释异常现象。

1930年,德国遗传学家H.温克勒把这种不规则分离现象解释为减数分裂过程中同源染色体联会时一个基因使相对位置上基因发生相应的变化所致,因而称就基因转变。好象是由于一个基因转换为另一等位基因,所以称为基因转换(gene conversion)。 以后由于发现一个基因发生基因转变时,它两旁的基因常同时发生重组:在5∶3和6∶2分离的子囊中,大约有30%也在g座位的这边或那边发生重组;有基因转换的子囊中,基因转换和遗传重组都发生在同样两个单体的子囊比例竟高达90%。 所以认为基因转变是某种形式的染色体交换的结果。因此,基因转变的研究,实质上也是染色体交换机制的研究。 三、同源重组的Holliday模型

1964年,R. Holliday提出了重组的杂合DNA模型(hybrid DNA mode),并作修正。图示.过程:

蛋白质工程的定点突变

20世纪80年代以来,基因克隆技术与DNA化学合成方法相结合,建立和发展了定点突变技术。可以按照预定设计,在已知的DNA序列中增删或转换核苷酸,精确地是靶基因在特定位点发生碱基序列的变化,进而使基因表达及调控,基因产物发生相应改变。这种快速精确的基因突变已经被广泛地应用与基因工程和蛋白质工程之中。定点突变有多种方法,有的改变特定核苷酸,有的则是对一段最可能影响蛋白质功能的基因序列进行随机突变,产生一系列突变蛋白质。 寡核苷酸诱导的定点突变基本上分两类:一类是用单链噬菌体M13作载体的寡核苷酸介导的单链模板定点突变;另一类用双链质粒作载体,双引物法定点突变。为了在体外导入特定的点突变,小的限制性片段可以切除,并被包含所需要突变的合成接头所替代(称为盒式诱变)。如果不行,插入片段可以克隆到产生单链DNA的噬菌粒载体中,由所设计的错配引物知道DNA复制,产生异源双链的复制型,并在下面的复制循环中产生野生型和突变的复制型。 (图) 单链噬菌体作载体的定点突变的基本原理是,用已知序列的环状DNA变性后为模板,人工合成一段引物,将所要设计的定点突变寡核苷酸置于引物中,也就是说人工所合成的引

物不是完全和模板互补,而是在某个位点有意识地让碱基突变,和模板上的碱基不能配对,由于其他的碱基是互补的,所以任然可以通过复性,使引物和模板特异性结合。在M13单链环状模板上杂交一段寡核苷酸引物,利用DNA聚合酶和连接酶的作用,从引物延伸合成链,得到一个闭合环状的异源双链分子。由于预先在寡核苷酸引物中人为地引入碱基的错配对,插入或缺失,然后在将杂合双环DNA转化到细菌中,因此异源双链DNA经转化和筛选就可以分离到带有相应突变的DNA克隆。由于复制是半保留复制,经克隆后将有一半的后代环状DNA产生了定点突变,另一半和正常的亲代链一样。 环状双链质粒DNA作为载体进行基因的改造有它的优点。待改造基因中如有两个适当的限制性内切酶切点,可以用人工合成双链DNA片段置换两切点之间原有序列,在人工合成的双链DNA片段中包含有突变的序列。但是这种置换方法收到限制酶酶切位点的限制。 1.用M13DNA进行的寡核苷酸引物介导的定点突变:寡核苷酸引物介导的定点突变的步骤是用含有突变碱基的寡核苷酸片段作引物,在聚合酶的作用下启动DNA分子进行复制。主要过程是:(1)将待突变基因克隆到突变载体上; 2.制备含突变基因的M13DNA单链模板; 3.引物与模板与模

StarMut超长基因定点突变试剂盒

StarMut XL Site-directed Mutagenesis Kit StarMut 超长基因定点突变试剂盒 【货号和规格】T113-01,10 rxn 【产品概述】 本试剂盒采用反向PCR (Inverse PCR) 技术,对含有目标基因的双链环状质粒进行扩增,直接导入突变序列,从而实现单个或多个邻近碱基的突变(mutation)、缺失(deletion)、或插入(insertion)。该技术的原理如右图所示。首先以甲基化的质粒DNA 为模板,使用人工合成含有目的突变碱基的引物进行扩增反应,然后用DpnI 限制性内切酶消化不含突变的质粒模板,再进行转化和筛选。 本试剂盒采用保真性能和扩增效率俱佳的StarMut XL Enzyme ,能够快速扩增15 kb 以下的质粒DNA (15~30 sec/1 kb),最大限度地保持扩增质粒的保真性,大大缩短反应时间,是StarMut Site-directed Mutagenesis Kit (货号T111-01)的升级产品。该方法操作简单快捷,突变阳性率高,对引物设计的要求相对宽松、灵活。严格按说明书操作,6个以下连续碱基的突变率可达90%以上,最多可实现21个连续碱基的插入或删除。 对于非甲基化的质粒(例如从大肠杆菌JM110或SCS110菌株中提取的 质粒),可通过转化dam + 的大肠杆菌菌株(如DH5α、TOP10、JM109、XL1-Blue 等),再抽提获得甲基化的质粒作为PCR 反应模板。 本试剂盒提供一个 4.5 kb 、含有突变的lacZ 基因的对照质粒(Control Plasmid)。质粒转化大肠杆菌后在含Amp 、IPTG 和X-gal 的琼脂平板上呈白色菌落;采用试剂盒提供的Control Primers 成功进行突变反应后,菌落呈现蓝色,可据此检测突变效率。 【产品组分】 * 使用前请先短暂离心;? 使用前请完全解冻并充分混匀 【保存条件】 ?20℃保存,有效期一年。 【操作步骤】 1.引物设计原则: (1) 正、反向突变引物各一条,长度约25~45个碱基,分别包含带有突变点的互补区和3' 端延伸区(见下图); (2) 突变点分别位于正、反向引物的互补区,互补区应包含至少15个碱基; (3) 引物突变点的3' 端应包含10~15个与质粒模板互补的碱基; (4) 引物的3'端应包含至少一个G 或C 碱基,尽量避免三个以上的重复碱基,以免错配; (5) 尽量将引物的GC 含量控制在40~60%; (6) 请使用经过PAGE 或HPLC 纯化的引物,否则会降低突变阳性率。 引物设计举例: 互补区 延伸区 互补区 延伸区 Forward Primer : 5'-GATTACGCCAAGCT T CTAAATTAACCG-3' 5'-CCAAGCT T CTAAATTAACCGTG-3' Reverse Primer : 3'-GATACTGGTACTAATGCGGTTCGA A G-5' 3'-CTAATGCGGTTCGA A GATTTAATTG-5' 延伸区 互补区 延伸区 互补区 StarMut XL Enzyme * 8 μl 5 x StarMut XL Reaction Buffer ? 100 μl High-GC Additive * 30 μl dNTPs * 25 μl Dpn I (10 U/μl)* 12 μl Control Plasmid (5 ng/μl)* 10 μl Control Primers (10 μM of each)* 10 μl ddH 2O 1 ml 图1. StarMut 超长基因定点突变试剂盒原理和操作流程示意图 或 PCR 合成突变链 Dpn I 消化掉含有甲基化的DNA 质粒模板 转化至高效感受态细胞中 CH 3 CH 3 3CH 3 CH 3 CH 3 CH 3 CH 3

原核生物的同源重组

原核生物的同源重组 在生物细胞中,DNA或RNA分子间或分子内的同源序列能在自然条件下以一定的频率发生重新组合,这个过程称为同源重组(Homologous Recombination)。同源重组的频率与DNA或RNA序列的同源程度(即序列的相似程度)、同源区域大小以及生物个体的遗传特性密切相关,一般而言,同源程度越高、同源区域越大,重组的频率就越高。同源重组是生物进化的一种重要方式,对于原核细菌、噬菌体和病毒而言,同源重组现象的发生尤为普遍。 3.1.1 原核细菌的基因转移程序 原核细菌的基因转移程序是基于物理学和生物学的原理建立起来的,将质粒或噬菌体DNA导入细菌受体细胞的方法主要有以下几种: 1.Ca2+诱导转化法 1970年,有人发现用CaCl2处理过的大肠杆菌能够吸收 噬菌体DNA,此后不久,对这种程序进一步的优化实现了质粒DNA转化大肠杆菌的感受态细胞,其整个操作程序如图3-1所示。将处于对数生长期的细菌置入0℃的CaCl2低渗溶液中,使细胞膨胀,同时Ca2+协助细胞膜磷脂层形成液晶结构,使得位于外膜与内膜间隙中的部分核酸酶离开所在区域,这就构成了大肠杆菌人工诱导的感受态。此时加入DNA,Ca2+又与DNA结合形成抗脱氧核糖核酸酶(DNase)的羟基-磷酸钙复合物,并粘附在细菌细胞膜的外表面上。经短暂的42℃热脉冲处理后,细菌细胞膜的液晶结构发生剧烈扰动,随之出现许多间隙,致使通透性增加,DNA分子便趁机进入细胞内。此外在上述转化过程中,Mg2+的存在对DNA的稳定性起很大的作用,MgCl2和CaCl2又对大肠杆菌某些菌株感受态细胞的建立具有独特的协同效应。1983年,有人除了用CaCl2和MgCl2处理细胞外,还设计了一套用二甲基亚砜(DMSO)和二巯基苏糖醇(DTT)进一步诱导细胞产生高频感受态的程序,从而大大提高了大肠杆菌的转化效率。目前,Ca2+诱导法已成功地用于大肠杆菌、葡萄球菌以及其它一些革兰氏阴性菌的转化。 2.原生质体转化法 在高渗培养基中生长至对数生长期的细菌,用含有适量溶菌酶的等渗缓冲液处理,剥除其细胞壁,形成原生质体,它丧失了一部分定位在膜上的DNase,有利于双链环状DNA分子的吸收。此时,再加入含有待转化的DNA样品和聚乙二醇的等渗溶液,均匀混合。通过

毕赤酵母同源重组的原理及目的基因整合方式

毕赤酵母同源重组的原理及目的基因整合方式毕赤酵母同源重组的原理及目的基因整合方式通过转化DNA与毕赤酵母基因组中同源序列的同源重组,毕赤酵母与酿酒酵母一样可产生 稳定的阳性转化子。这些重组的菌株在无选择压力条件下,即使其携带的基因是多拷贝的, 也表现出极度稳定性。常用的表达载体都含有HIS4基因,编码组氨酸脱氢酶基因,这些载 体经限制性内切线性化以后,可在AOX1或his4位点进行同源重组,从而产生HIS+重组子。单交换插入比双交换(替换)要更容易发生,多拷贝事件自发发生的几率只有单交换几率的 1-10%。 1. 基因插入AOX1或aox1::AGR4位点 GS115 的AOX1或KM71 的aox1::AGR4 位点可以与载体上AOX1位点(AOX1 启动 子,AOX1 转录终止子TT或下游3’AOX1三个位点发生同源重组,这样就在AOX1 或 aox1::AGR4 基因的上游或下游插入一个或多个基因拷贝。因为插入的表达盒没有破坏 原有基因组中的AOX1,所以转化子在GS115 中为HIS+ Mut+表型,在KM71 中为HIS+ Muts表型。 2. 基因替换AOX1位点

在his4 菌株如GS115 中,载体及基因组中AOX1启动子及3’AOX1 区的双交 换事件(取 代),结果AOX1 编码区全部被取代,产生HIS+Muts 表型。以AOX1 位点由基 因替 代而产生的Muts表型作为指示,可很容易地筛选出HIS+转化子的Mut 表 型。基因取 代的结果是缺失了AOX1 位点(Muts),增加了含有pAOX1、目的基因、HIS4 的表达 盒。基因取代(双交换事件)不如基因插入(单交换事件)发生得多。 3. 基 因插入His4位点 GS115(Mut+)或KM71(Muts)中,载体上HIS4 基因与染色体上his4 位点之 间发生 单交换事件,结果在his4位点插入一个或多个基因拷贝。由于基因组上AOX1 或 aox1::AGR4 位点未发生重组,这些His+转化子的表型均与亲本菌株相同。 4. 多拷贝插入 尽管多拷贝事件自发发生的概率很低,但是通过在培养基中加入选择性标记, 还是很容 易在转化子中筛选到插入多拷贝的表达核的转化子。

基因定点突变技术描述

基因定点突变step by step" 本贴先讲最简单的一个点的定点突变技术,其它较长片段的突变,删除,插入技术以后会慢慢奉 上: 在做实验之前,我们首先要搞清楚实验的目的和实验的原理。 实验的目的应该比较明确吧:就是要把自己的基因上面的一个碱基换成另外一个碱基。一般情况 下我们会有几种可能使我们需要这样去做: 第一:我们吊出来的基因有点突变,相信这可能是大家经常会遇到的问题。基因好不容易吊出来,并装进了自己的载体,却发现有一两个碱基跟自己的预期序列或所有的公共数据库不匹配,然后 暴昏。 大家实验室里面还是用Taq酶为主吧,Pfu这样的高保真酶大家应该用得不多吧,Taq酶的优点和缺点都很明显:优点就是扩增效能强,缺点就是保真性差,其错配机率是比较高的,相关数字忘了,大家可以去网上查那个数字,不过感觉如果是2000bp的基因,如果扩四五十个循环的话,很大机率会出现点突变,当然这也跟具体PCR体系里的Buffer有很大关系,详细情况这里就不 讨论了。 第二:要研究基因的功能,在基因上自己选定位置更换碱基的保守序列,或者改造成不同的亚型,总之就是要人工改造碱基序列符合自己的实验需要,相信这也是那些研究基因的人经常的一种思 路吧。 对于第一种情况:我们首先要分析出现碱基不匹配的位置是不是重要的位置,如果不是很重要,大可不必管它,比如说是三联密码子的最后一位,碱基的改变并没有引起相应氨基酸的改变,那么一般情况下也可以不去理它。另外,在NCBI上人类的基因的版本一直在变化,也就是说同一个基因有不同的版本,或者称不同的亚型,其碱基序列有些许的差异,只要自己克隆出来的碱基序列与其中一个相匹配,一般也就可以不做定点突变了。如果有时间没钱,那干脆重新PCR然后再克隆进自己的载体了,不过最好换个保真性好一点的酶如PFU,或者PCR循环数低一点,不过这些东西有时候也得靠运气啦。实在不行的话再来做定点突变。 对于第二种情况:这种情况下一般也就只能做定点突变了。 接下来开始聊一聊定点突变的原理吧,那个Stratagene试剂盒!上面有一个说明书,说得好像很正规,不过上面好多都是什么专利啊什么注意之类的话,看都不看,我们简明扼要地只讲实验方面,通过设计引物,并利用PCR将模板扩增出来,然后去掉模板,剩下来的就是我们的PCR 产物,在PCR产物上就已经把这个点变过来了,然后再转化,筛选阳性克隆,再测序确定就行 了。 大家马上就会想到几个问题了: 第一:引物怎么设计呢? 第二:模板怎么去掉呢? 第三:怎么拿到质粒呢?

一种高效构建同源重组DNA片段的方法_融合PCR

中国生物工程杂志 China B i otechnol ogy,2007,27(8):53~58 技术与方法 一种高效构建同源重组D NA 片段的方法 ———融合PCR 李 敏 杨 谦 3 (哈尔滨工业大学生命科学与工程系 哈尔滨 150001) 摘要 融合PCR 技术(fusi on PCR )采用具有互补末端的引物,形成具有重叠链的PCR 产物,通过PCR 产物重叠链的延伸,从而将不同来源的任意DNA 片段连接起来,此技术在不需要内切酶消 化和连接酶处理的条件下实现DNA 片段的体外连接,为同源重组片段的构建提供了快速简捷的途径。对原有的融合PCR 技术进行改进,以3个同源重组线性DNA 片段的构建为例,详细论述了改进的融合PCR 技术的反应过程及技术体系。结果表明,改进的融合PCR 技术可以同时进行3个片段及4个片段的融合反应,产物长度均在4.5kb 以上,各同源重组片段在扩增过程中均无 突变发生,获得的片段可以用于后续实验分析。关键词 融合PCR 重组片段 同源臂 抗性基因 中图分类号 Q784 收稿日期:2007204217 3通讯作者,电子信箱:yangq@hit .edu .cn 随着大规模的基因组测序计划的完成及大量表达序列标签数据库(dbEST )的建立,基因组研究已由结构基因组逐渐转向了功能基因组研究 [1] 。以同源重组技 术为基础,通过构建突变或缺失的同源媒介基因载体并取代基因组中野生型的等位基因,进而研究目的基因与表型性状间的关系,是研究动物、植物、微生物基因功能的一种非常有用的遗传操作方法 [2~4] 。 同源重组的发生依赖于载体与目的片段间存在一定的DNA 序列同源片段,同源片段越长越有利于同源重组事件的发生。传统的同源重组载体的构建以限制性内切酶和DNA 连接酶为基础,通过一系列的酶切连接反应将各片段逐步连接起来。这种方法费时费力,不但在连接过程中引入了不必要的酶切位点碱基序列,而且对于长片段的连接有时难以找到合适的酶切位点。为了克服传统的同源重组载体构建方法的缺陷,出现了以聚合酶链式反应为基础的片段拼接技术———融合PCR 技术(fusion PCR )。融合PCR 技术在 不需要内切酶消化和连接酶处理的条件下,采用具有互补末端的引物将不同来源的扩增片段连接起来,为同源重组片段的构建提供了快速简捷的途径。现有的融合PCR 技术一般包括两步PCR 反应:(1)应用特异性引物,对各片段进行独立扩增,特异性引物的5′末端带有一段相邻片段的互补序列;(2)在同一反应体系中加入各片段的混合物,以一对外侧引物进行融合片段的全长扩增。由于融合PCR 技术正处于初步发展阶段,在应用过程中还存在很多方面的问题,如融合产物长度一般在4.0kb 以下、待融合片段的个数一般不超过3个、产物特异性差等。Robert 等 [5] 应用融合PCR 方法进行了3个片段的融合反应,获得了3个融合产物,融合产物长度最大为 4.2kb 。Majid 等 [6] 在进行4 个片段的连接时,首先将425bp 的alcA 启动子片段和 1.9kb 的pyr4基因片段连接到pUC19载体上,得到一 个2.1kb 的pyr4ΟalcA 表达盒,再通过两步PCR 将 2.1kb 的pyr4ΟalcA 表达盒与两个长度分别为410bp 和513bp 的片段进行了融合,最终才获得了一个由4个片 段组成的长3.0kb 的融合产物。

无缝克隆,同源重组克隆 (1)

1.1.1Gibson assembly 简介(INTRODUCTION) 原理:Gibson assembly是一种one step, one pot的快速基因组装方法。它只需要将基因片段和需要的三种酶混合在同一个管内在50°C下培养15-60 min就可以得到组装好的DNA。 装配原理基于DNA片段间的重叠区域,过程依赖于三种酶:DNA 外切酶(T5 exonuclease), 高 保真DNA聚合酶。(Phusion polymerase)和耐热DNA连接酶(Taq DNA ligase)的共同作用。首先,T5 核酸外切酶消化DNA片段的链方向是从5’到3’. 每个DNA片段分别形成一个单链的突出部分,由于着这两个相邻的突出片段有一部分具有同源性能够互补,所以DNA片段退火,互补的序列重新配对连接。然后,在空缺的部分DNA聚合酶以另一条DNA单链为模板,沿3' 方向将对应的脱氧核苷酸连接到单链上,填补缺口。最后,连接酶将两条DNA 单链黏合起来,密封裂缝。这样具有重叠区域的DNA片段就组装成一整条DNA分子了。下面是组装的示意图。 材料(MATERIALS) ?试剂(REAGENTS) NAD,H2O ,1 M MgCl2,1 M DTT,10 mM dNTP mix,1 M Tris-HCl pH ,50% PEG-8000,mg/ mL Tag ligase,μg/ mL T5_ExO,Phusion(1×)、LB培养基、抗生素(据载体而定)、LB 平板(相应抗性) ?实验前准备(SETUP) 于冰水浴中配制如下反应体系。如果不慎将液体粘在管壁,可通过短暂离心使其沉入管底。 4x isothermal assembly buffer NAD 20 mg

DNA同源重组修复的分子机制

?综述? 作者单位:300192 天津,中国医学科学院放射医学研究所 DNA 同源重组修复的分子机制 王勇 樊飞跃 电离辐射直接造成生物靶分子细胞DNA 的损伤,DNA 的损伤类型很多,其中以DNA 双链断裂(double strand break , DS B )最为严重。DNA DS B 的修复较其他类型的DNA 损伤更 加困难,不修复则可能导致染色体断裂和细胞死亡,而修复不当则可能导致染色体缺失、重排、转位和倒置等,从而易于形成肿瘤等疾病[1]。DNA 损伤的不完全修复可导致基因组不稳定,机体细胞为了对抗损伤,发展出多个修复系统来保证基因组的完整性,同源重组修复(hom olog ous recombination repair ,HRR )是DNA DS B 损伤修复的主要方式,对于保持哺乳 动物细胞的基因组完整性十分重要[2]。重组即遗传物质的重排,同源重组是指发生在同源DNA 序列间的重组,主要是利用DNA 序列间的同源性来识别,而负责配对和重组的蛋白质因子并无碱基序列特异性。 本文综述了国外近来对HRR 分子机制的研究进展,包括引发HRR 的DNA 损伤机制;HRR 的基本修复过程和多条修复通路;HRR 关键分子重要功能的实现机制;HRR 与细胞周期调控等其他事件的相互关系;辐射和HRR 及其与肿瘤之间的关系。 11DNA 损伤的感受识别:HRR 参与的蛋白质有RAD51,RAD51b ,c ,d ,RAD52,RAD54,BRC A1,BRC A2,XRCC2,XRCC3 和MRN 复合物等,另外还需大量起始和损伤应激感受分子,包括AT M ,ATR 和DNA 2PK cs [3]。 细胞在受到电离辐射照射后,一系列重组或修复蛋白及复合物重新定位形成核焦点,以应答DNA 损伤。这些蛋白有γ2H2AX ,AT M ,RAD51,BRC A1,BRC A2,NBS1,RPA 和 MRN ,它们相互作用,完成DNA 损伤信号的接受功能并转导 信号给其他蛋白质,介导并协调包括周期检控点、凋亡、修复的损伤应答。在电离辐射引起的DS B 损伤应答中AT M 是最有可能的感受分子,它属于三磷酸肌醇激酶样激酶(PIKK )家族成员(如AT M 、ATR 、DNA 2PK ),都具有磷酸化谷氨酰氨酸残基后的丝或苏氨酸残基的激酶活性。AT M 以二或多聚体非活化形式储存于未受损伤的细胞,DNA 损伤后AT M 通过自我磷酸化,解离二聚体释放出AT M 对其他分子磷酸化的结构域。活化的AT M 可磷酸化组蛋白H2AX 的139位丝氨酸残基,M DC1ΠNF BD1的俩末端BRCT 结构域,BRC A1的1189, 1542和1524位丝氨酸残基 [4] 。在磷酸化M DC1ΠNF BD1促进 下,DNA 损伤后1~3min ,最先定位于DS B 2Mbp 左右区域内的蛋白之一H2AX 就被磷酸化为γ2H2AX ,磷酸化组蛋白可使染色体的部分结构改变,释放出损伤位点的DNA ,并以其为 装配中心继续募集MRN 、BRC A1等其他因子形成大型复合物来监控基因组的损伤[5]。 21HRR 的起始:在AT M 介导的H2AX 磷酸化波之后,活 化的AT M 与DS B DNA 结合,进而磷酸化结合至γ2H2AX 核焦点的53BP1、NBS1,随后RAD502MRE11复合物由MRE11结合到NBS1,完成定位于DS Bs MRN 复合物的装配,同时BRC A1也结合至损伤位点的53BP1。很可能由具有内切酶和外切酶活性的MRN 复合物发挥5′23′外切酶活性切割DNA 断裂末端,同时MRN 也参与从DS B 到下游DNA 应答蛋白的信号转导。由于NBS1只是3′25′而不是5′23′外切酶活性,故需其他核酸酶的协助切割DNA 来提供DNA 配对和链交换所必需的 3′ssDNA 突出。MRE11定位于细胞核内,Mn 2+ 为辅因子,亚基 参与构成RAD50复合物,有单链内切酶活性和双链特异性 3′25′外切酶活性。RAD50有ATPase 活性的头部球状结构域, 使得DNA 结合具有ATP 依赖性,而其高度柔性的分子卷曲尾部,就像是从核心蛋白向外伸出的长臂,可以较大倍率的易化两DS B 末端互寻,进而桥接两个断裂末端[6]。之后由人复制蛋白A (RPA )与突出末端结合以保护并去除其二级结构。RPA 是由14、32和70kDa 3亚基组成稳定的异质三聚体,与ssDNA 结合,是DNA 复制、重组和修复的必需蛋白。 31链侵入和修复性合成:E .coli 的RecA 的真核细胞同 源物RAD51代替RPA 在ssDNA 区域形成核蛋白纤维,催化同源序列的寻找、链配对和链交换。这是一个需要同源序列的RAD51依赖性链侵入机制。RAD51催化重组中的分子间稳定的联会配对包括:RAD51核蛋白纤维同源双螺旋DNA DS B 被加工的单链末端链侵入成为同源dsDNA ,核蛋白纤维 的ssDNA 和侵入DNA 双螺旋同源链之间的Wats on 2Crick 氢键作用导致随后的双螺旋非互补链的置换,最后形成含有异源双螺旋DNA 的D 环结构重组中间体。随着链交换的深入,重组中间体分岔结构向两边迁移的同时,以侵入中的DS B 加工后的3′末端作为引物,侵入双螺旋的互补链作为模板,进行修复性DNA 合成[7]。 RPA 参与链侵入,通过稳定ssDNA 和被置换来促进RAD51结合ssDNA 。RAD51属于RecA RAD51亚家族,可能定 位于核内,广泛参与普遍的DNA 损伤应答通路,结合单或双链DNA ,可显示DNA 依赖的ATPase 活性,Mg 2+和K +是辅因子[8]。RAD51同系物中RAD51D 的地位特殊,一旦缺失,人和大鼠细胞将不能增殖,小鼠在出生前就会死亡[9]。 参与DS B 的HRR 的RAD52以环状七聚体钳住DNA 链,募集RAD51结合到RPA 覆盖的ssDNA ,结合两者并协助 RAD51形成DNA 交换中间体,可将ssDNA 暴露于蛋白质表

DNA同源重组机制的确立

287 doi:10.3969/j.issn.0253-9608.2015.04.007 DNA同源重组机制的确立 向义和? 清华大学物理系,北京 100084 摘要 介绍了DNA同源重组机制确立的过程。其主要内容包括基因连锁和重组现象的发现,交叉假设的提出,断裂重接假设和复制选择假设的出现,同源重组的三个模型(Holliday模型、单链断裂模型和双链断裂模型)的确立。关键词 连锁基因;同源重组;交叉假设;Holliday模型;单链断裂模型;双链断裂模型 DNA 重组(recombination)是指发生在DNA 分子内部或DNA 分子之间核苷酸序列的交换、重排和转移现象,是已有遗传物质的重新组合过程。同源重组(homologous recombination)是在两个DNA 分子的同源序列之间直接进行交换的一种重组形式。进行交换的同源序列可能是完全相同的,也可能是非常相近的。同源生物体通过重组可以产生新的基因或等位基因的组合,还可以提高种群内遗传物质的多样性,而人们可使用同源重组进行遗传作图。 本文介绍了DNA 同源重组机制确立的过程。20世纪初发现了基因连锁和重组现象,在探讨重组现象出现的原因时又提出了交叉假设,形成了交换概念。20世纪30年代中期在探讨基因交换的机制时,出现了染色体交换的两种假设:断裂重接假设和复制选择假设。1953年DNA 双螺旋结构发现后,科学家开始在分子水平上探讨同源重组的机制。20世纪60—80年代,科学家分别提出了DNA 同源重组的三种模型:Holliday 模型,单链断裂模型和双链断裂模型。 1 基因连锁和重组现象的发现 1.1 连锁现象的发现 1905年,英国生物学家贝特森(Bateson W., 1851—1926)和庞尼特(Punnet R. C.)研究香豌豆两对性状的遗传。他们选择的一对性状是花的颜色,有紫色和红色两种;另一对是花粉粒的形状,有长形和圆形两种。将紫花长花粉粒和红花圆花粉粒的植株作亲本进行杂交,结果F 1代都是紫花长花粉粒,可见紫花对红花是显性,长花粉粒对圆花粉粒是显性。将F 1代自交得到的F 2代有紫长、紫圆、红长、红圆4种表型。这4种表型的比率不符合孟德尔的两对遗传因子的分离比9∶3∶3∶1,其中紫长和红圆的表型的比率远远超出9/16和1/16,而相应的紫圆和红长的表型却大大少于3/16(表1)。[1] 表1 香豌豆紫长×红圆杂交试验 F 2紫长紫圆红长红圆总数实得数 4 831390393 1 338 6 952预计数 3 910.5 1 303.5 1 303.5 434.5 6 952 将实验数据与由孟德尔自由组合定律所预期结果相比较,F 2代中性状的亲本组合类型远远多于重组组合的类型。这等于说,两对基因在杂交子代中的组合并不是随机的,在F 1杂种形成配子时,原来属于同一亲本的两个基因更倾向于进入同一配子中,有更多保持亲本原来组合的倾向,而且这种倾向与显隐性无关。这是在自由组合定律方面第一次出现的显著的例外,无疑,这 ?通信作者,E-mail :xiangyhts@https://www.doczj.com/doc/3c15190550.html,

利用PCR进行基因定点突变方法的改进_李艳君

第30卷第3期2009年9月内蒙古农业大学学报 Journa l o f Inne r M ongo li a A gr icultural U niversity V o.l30N o.3 Sep.2009 利用PCR进行基因定点突变方法的改进* 李艳君,刘惠荣* (内蒙古农业大学生物工程学院,呼和浩特010018) 摘要:本研究旨在对利用PCR进行定点突变的方法进行改进。设计1对含突变碱基对的互补引物,以插入目的外源基因的质粒为模板,经过20个循环的PCR扩增出质粒的全长序列之后,用氯仿抽提PCR产物,然后转化感受态细胞TO P10,通过测序验证阳性克隆。利用这种改进的方法可以简单、快速对质粒上的外源基因进行定点突变,降低了构建突变体的成本。 关键词:基因;定点突变;PCR;改进 中图分类号:Q781文献标识码:A文章编号:1009-3575(2009)01-0234-04 AN I M PROVE MENT ON SI TE-DI RECTED MUTAGENESI S USING PCR L I Yan-Jun,LIU H u i-Rong* (Co llege of B ioengineering,Inner M ongoli a Agr icultural Universit y,H uhho t010018,Ch i na) Abstrac:t T he ai m o f this study is t o i m prove an ex i sti ng site-directed mutagenesis m et hod.PCR w as app lied to generati ng the mu-tant using a pair of co m ple m entary nuc l eotides conta i n i ng t he m utation of i nte rest as pri m ers and a plas m i d conta i n i ng t he targeted gene as temp l a te.T hen the PCR products w ere purified w ith ch l orofo r m and directl y transfor m ed i nto t he TO P10co m peten t ce ll s.The pos-i ti ve c l ones w ere ver ifi ed by sequenci ng.M uta ti on o f a targe t gene can be ach i eved si m p l y and rapidly by t h is i m proved site-d i rected mu tagenesi s m e t hod and t he cost can be reduced g reatly i n the co mm on labs. Key words:G ene;s ite-d irec ted mutagenesis;PCR;I m prove m ent 对目标基因进行定点突变早已成为生物学研究过程中的1种常规策略,许多不同的定点突变方法被广泛的应用于基因的功能、调控、表达以及蛋白质的结构与功能的研究。聚合酶链式反应(PCR)是于1986年报道的由M u lli s等人创建的1种对特定DNA 序列进行快速体外扩增的技术方法。在其诞生之初,就开始有人将之应用于基因的定点突变[1,2]。随着时间的推移,利用PCR进行定点突变的方法也不断的改进和创新。迄今为止,利用PCR进行定点突变的方法主要包括:重组PCR法、重叠延伸法、含U 模板法和大引物突变等[3-6]。其中重叠延伸突变法和大引物突变法应用更为广泛,然而这些方法的一个共同特点就是操作较为复杂,步骤较为繁琐,均需要多轮PC R和多个引物来完成突变并且非目标突变率较高[7]。近年来,又有1种新的快速的PCR定点突变方法产生,该方法是以带有目的基因的质粒载体为模板,设计1对含有突变位点的互补引物,对质粒载体进行PCR扩增,扩增产物依次通过KpnI限制性内切酶酶切、pfu DNA聚合酶补平、T4DNA连接酶连接、乙醇沉淀4个步骤之后转化入感受态细胞,筛选阳性克隆[8]。与以前的方法相比,该方法操作简便且高效,因此被很多试验室采用。但该法的最大缺点就是价格昂贵。随后又有人在此方法的基础上进行了改进,提出只需要将PCR产物进行一次 *收稿日期:2008-11-28 作者简介:李艳君(1982-),男,硕士研究生,主要从事蛋白质功能研究.

相关主题
文本预览
相关文档 最新文档