当前位置:文档之家› 列主元高斯消去法求逆矩阵

列主元高斯消去法求逆矩阵

列主元高斯消去法求逆矩阵
列主元高斯消去法求逆矩阵

列主元高斯消去法求逆矩阵程序代码:

#include

#include

#define Max 10

int n;

double M[Max][Max];

double E[Max][Max];

bool FindMax(int t) //列主元素

{

int i, j, k=t;

double max = fabs(M[t][t]), temp;

for (i = t+1 ;i < n; i++)

if (max

{

max = fabs(M[i][t]); k = i;

}

if (max==0)

return 0;

for (j = 0; j < n; j++)

{

temp = M[t][j];

M[t][j] = M[k][j];

M[k][j] = temp;

temp = E[t][j];

E[t][j] = E[k][j];

E[k][j] = temp;

}

return 1;

}

void XiaoQu(int t) //消去

{

int i, j;

double max = M[t][t], m;

for (i = t+1; i < n; i++)

{

m=M[i][t]/max;

for(j=0;j

{

M[i][j] = M[i][j] - M[t][j]*m;

E[i][j] = E[i][j] - E[t][j]*m;

}

}

}

void HuiDai(int t)

{

int i,j;

double max;

max=M[t][t];

for(i=t;i

M[t][i]=M[t][i]/max;

for(i=0;i

E[t][i]=E[t][i]/max;

for(i=t-1;i>=0;i--)

{

max=M[i][t];

M[i][t]=0;

for(j=0;j

E[i][j]=E[i][j]-max*E[t][j];

}

}

int main()

{

int i, j;

printf("请输入n阶方阵n值:");

scanf("%d", &n);

printf("请输入矩阵:\n");

for (i=0; i

for (j=0; j

{

if (i==j) E[i][j] = 1;

else E[i][j] = 0;

scanf("%lf", &M[i][j]);

}

for(i=0; i

{

if(FindMax(i)) XiaoQu(i);

else

{

printf("该矩阵不可逆!\n");

return 0;

}

}

for(i=n-1; i>=0;i--)

HuiDai(i);

printf("原矩阵的逆矩阵为:\n");

for (i=0; i

{

for (j=0; j

printf("%8.2f", E[i][j]);

printf("\n");

}

}

数值分析列主元消去法的实验报告

实验一 列主元消去法 【实验内容】 1.掌握列主元消去法的基本思路和迭代步骤 2.并能够利用列主元的高斯消去法解任意阶数的线性方程组; 3、从课后题中选一题进行验证,得出正确结果,交回实验报告与计算结果。 【实验方法与步骤】 1.列主元消去法基本思路 设有线性方程组Ax b =,设A 是可逆矩阵。列主元消去法的基本思想就是通过列主元的选取将初等行变换作用于方程组的增广矩阵[]|B A b =,将其中的A 变换成一个上三角矩阵,然后求解这个三角形方程组。 2.列主元高斯消去法算法描述 将方程组用增广矩阵[]()(1)|ij n n B A b a ?+==表示。 步骤1:消元过程,对1,2,,1k n =-L (1) 选主元,找{},1,,k i k k n ∈+L 使得 ,max k i k ik k i n a a ≤≤= (2) 如果,0k i k a =,则矩阵A 奇异,程序结束;否则执行(3); (3) 如果k i k ≠,则交换第k 行与第k i 行对应元素位置,k kj i j a a ?, ,,1j k n =+L ; (4) 消元,对,,i k n =L ,计算/,ik ik kk l a a =对1,,1j k n =++L ,计算 .ij ij ik kj a a l a =- 步骤 2:回代过程: (1) 若0,nn a =则矩阵奇异,程序结束;否则执行(2); (2) ,1/;n n n nn x a a +=对1,,2,1i n =-L ,计算 ,11/n i i n ij j ii j i x a a x a +=+??=- ??? ∑

[实验程序] #include #include #include #include #define NUMBER 20 #define Esc 0x1b #define Enter 0x0d using namespace std; float A[NUMBER][NUMBER+1] ,ark; int flag,n; void exchange(int r,int k); float max(int k); void message(); void main() { float x[NUMBER]; int r,k,i,j; char celect; void clrscr(); printf("\n\nUse Gauss."); printf("\n\n1.Jie please press Enter."); printf("\n\n2.Exit press Esc."); celect=getch(); if(celect==Esc) exit(0); printf("\n\n input n="); scanf("%d",&n); printf(" \n\nInput matrix A and B:"); for(i=1;i<=n;i++) { printf("\n\nInput a%d1--a%d%d and b%d:",i,i,n,i); for(j=1;j<=n+1;j++) scanf("%f",&A[i][j]); } for(k=1;k<=n-1;k++) { ark=max(k); if(ark==0) { printf("\n\nIt’s wrong!");message();

利用高斯列主元消去法求如下线性方程组的解

%利用高斯列主元消去法求如下线性方程组的解 clear all; A=[3 -2 1 -1;4 0 -1 2;0 0 2 3;0 0 0 5]; b=[8;-3;11;15]; function [X,XA] = UpGaussFun(A,b) %利用高斯列主元消去法求如下线性方程组的解 %A为一个n阶上三角非奇异矩阵 %b为线性方程组的阐述向量 %X为线性方程组AX=b的解 %XA为消元后的系数矩阵 N=size(A); n=N(1); index=0; for i=1:(n-1) me=max(abs(A(1:n,i)));%选列主元 for k=i:n if(abs(A(k,i))==me) index=k; break; end; end; end; temp=A(i,1:n); A(i,1:n)=A(index,1:n); A(index,1:n)=temp; bb=b(index); b(index)=b(i); b(i)=bb;%交换主行 for j=(i+1):n if(a(i,i)==0) disp('?????a???a0£?'); return; end; l=A(j,i); m=A(i,i); A(j,1:n)=A(j,1:n)-l*A(i,1:n)/m; b(j)=b(j)-l*b(i)/m;

end; X=UpTriangleFun(A,b); XA=A; ----------------------------------------------------------------------------------------------------------------------------- % 函数定义 function [X,XA]= UpGaussFun(A,b) %利用高斯列主元消去法求如下线性方程组的解 %A为一个n阶上三角非奇异矩阵 %b为线性方程组的阐述向量 %X为线性方程组AX=b的解 %XA为消元后的系数矩阵 [N,M]=size(A); %N=sizes(A); n=N; index=0; for i=1:(n-1) me=max(abs(A(1:n,i))); %选列主元 for k=i:n if(abs(A(k,i))==me) index=k; break; end; end; temp=A(i,1:n); A(i,1:n)=A(index,1:n); A(index,1:n)=temp; bb=b(index); b(index)=b(i); b(i)=bb; %交换主行 for j=(i+1):n if(A(i,i)==0) disp('?????a???a0£?'); return; end; l=A(j,i); m=A(i,i); A(j,1:n)=A(j,1:n)-l*A(i,1:n)/m; b(j)=b(j)-l*b(i)/m; end; end;

Gauss列主元消去法

贵州师范大学数学与计算机科学学院学生实验报告 课程名称:数值分析班级:数本(一)班实验日期:年月日 学号: 0098(81)姓名:吴胜指导教师:杨一都 实验成绩:一、实验名称 实验五:线性方程组的数值解法 二、实验目的及要求 1. 让学生掌握用列主元gauss消去法、超松弛迭代法求解线性方程组. 2. 培养Matlab编程与上机调试能力. 三、实验环境 每人一台计算机,要求安装Windows XP操作系统,Microsoft office2003、(或. 四、实验内容 1. 编制逐次超松弛迭代(SOR迭代)函数(子程序),并用于求解方程组

???????=-++=+-+=++-=+++-1 4141414432143214 3214321x x x x x x x x x x x x x x x x 取初始向量T x )1,1,1,1()0(=,迭代控制条件为 5)1()(102 1 ||||--?≤-k k x x 请绘制出迭代次数与松弛因子关系的函数曲线,给出最佳松弛因子.SOR 迭代的收敛速度是否一定比Gauss-Seidel 迭代快 2. 编制列主元 Gauss 消去法函数(子程序),并用于解 ??? ??=++-=-+-=+-6 15318153312321 321321x x x x x x x x x 要求输出方程组的解和消元后的增广矩阵. 注:题2必须写实验报告 五、算法描述及实验步骤 Gauss 消去法: 功能 解方程组b Ax = . 输入 n ,n n ij a A ?=)(,T n b b b b ),,,(21 =. 输出 方程组的解T n x x x x ),,,(21 =或失败信息. 步1 对1,,2,1-=n k 执行步2→步4 . 步2 调选列主元模块 .

高斯消元法(完整)

高斯消元法解线性方程组 在工程技术和工程管理中有许多问题经常可以归结为线性方程组类型的数学模型,这些模型中方程和未知量个数常常有多个,而且方程个数与未知量个数也不一定相同。那么这样的线性方程组是否有解呢?如果有解,解是否唯一?若解不唯一,解的结构如何呢?这就是下面要讨论的问题。 一、线性方程组 设含有n 个未知量、有m 个方程式组成的方程组 a x a x a x b a x a x a x b a x a x a x b n n n n m m mn n m 11112211211222221122+++=+++=+++=???????ΛΛΛΛΛΛΛΛΛ (3.1) 其中系数a ij ,常数b j 都是已知数,x i 是未知量(也称为未知数)。当右端常数项b 1, b 2, …, b m 不全为0时,称方程组(3.1)为非齐次线性方程组;当b 1=b 2= … =b m = 0时,即 a x a x a x a x a x a x a x a x a x n n n n m m mn n 111122121122221122000 +++=+++=+++=???????ΛΛΛΛΛΛΛΛΛ (3.2) 称为齐次线性方程组。 由n 个数k 1, k 2, …, k n 组成的一个有序数组(k 1, k 2, …, k n ),如果将它们依次代入方程组(3.1)中的x 1, x 2, …, x n 后,(3.1)中的每个方程都变成恒等式,则称这个有序数组(k 1, k 2, …, k n )为方程组(3.1)的一个解。显然由x 1=0, x 2=0, …, x n =0组成的有序数组(0, 0, …, 0)是齐次线性方程组(3.2)的一个解,称之为齐次线性方程组(3.2)的零解,而当齐次线性方程组的未知量取值不全为零时,称之为非零解。 (利用矩阵来讨论线性方程组的解的情况或求线性方程组的解是很方便的。因此,我们先给出线性方程组的矩阵表示形式。) 非齐次线性方程组(3.1)的矩阵表示形式为: AX = B 其中 A = ????????????mn m m n n a a a a a a a a a ΛΛΛΛΛΛΛ212222111211,X = ????????????n x x x M 21, B = ????? ???????n b b b M 21 称A 为方程组(3.1)的系数矩阵,X 为未知矩阵,B 为常数矩阵。将系数矩阵A 和常数矩阵B 放在一起构成的矩阵

高斯列主元消元法解线性方程组

高斯列主元消元法解线性方程组 一、题目:用Gauss 列主元消去法解线性方程组Ax b =,其中, A=17.031 -0.615 -2.991 1.007 -1.006 0.000-1.000 34.211 -1.000 -2.100 0.300 -1.7000.000 0.500 13.000 -0.500 1.000 -1.5004.501 3.110 -3.907 -61.705 12.170 8.9990.101 -8.012 -0.017 -0.910 4.918 0.1001.000 2.000 3.000 4.500 5.000 21.803?? ? ? ? ? ? ? ? ??? 0.230 -52.322 54.000 240.236 29.304 -117.818b ?? ? ? ?= ? ? ? ? ??? T X=(0.907099 -1.961798 3.293738 -4.500708 3.029344 -5.255068) 二、原理及步骤分析 设 n n ij R a A ?∈=][)1(,n n R b b b b ∈=],,,[)1()2(2)1(1 。若约化主元素 ),,2,1(0)(n k a k kk =≠,则通过高斯消元法将方程b AX =约化为三角形方程组求解。 如果在消元过程中发现某个约化主元0) (=k kk a , 则第K 次消元就无法进行。此外,即 使所有约化主元全不为零,虽然可以完成方程组的求解,但也无法保证结果的可靠性,因为计算过程中存在舍入误差。 为减少计算过程中的舍入误差对解的影响,在每次消元前,应先选择绝对值尽可能大的元作为约元的主元,如果在子块的第一列中选取主元,则相应方法称为列主元消元法。相应过程为: (1)选主元:在子块的第一列中选择一个元) (k k i k a 使) (max k ik n i k k k i a a k ≤≤= 并将第k 行元与第k i 行元互换。 (2)消元计算:对k=1,2,……n-1依次计算 ()()()?? ?? ?????++=-=++=-=++==++n k k i b m b b n k k j i a m a a n k k i a a m k k ik k i k i k kj ik k ij k ij k kk k ik k ik ,,2,1,,2,1,,,2,1) ()()1() ()()1()() ()( (3)回代求解

列主元消去法

实验一 列主元消去法 【实验内容】1. 掌握列主元消去法的基本思路和迭代步骤 2. 并能够利用列主元的高斯消去法解任意阶数的线性方程组; 【实验方法与步骤】列主元消去法编写程序 1.列主元消去法基本思路 设有线性方程组Ax b =,设A 是可逆矩阵。列主元消去法的基本思想就是通过列主元的选取将初等行变换作用于方程组的增广矩阵[]|B A b =,将其中的A 变换成一个上三角矩阵,然后求解这个三角形方程组。 2.列主元高斯消去法算法描述 将方程组用增广矩阵[]()(1)|ij n n B A b a ?+==表示。 步骤1:消元过程,对1,2,,1k n =- (1) 选主元,找{},1,,k i k k n ∈+ 使得 ,max k i k ik k i n a a ≤≤= (2) 如果,0k i k a =,则矩阵A 奇异,程序结束;否则执行(3); (3) 如果k i k ≠,则交换第k 行与第k i 行对应元素位置,k kj i j a a ?, ,,1j k n =+ ; (4) 消元,对,,i k n = ,计算/,ik ik kk l a a =对1,,1j k n =++ ,计算 .ij ij ik kj a a l a =- 步骤 2:回代过程: (1) 若0,nn a =则矩阵奇异,程序结束;否则执行(2); (2) ,1/;n n n nn x a a +=对1,,2,1i n =- ,计算 ,11/n i i n ij j ii j i x a a x a +=+??=- ??? ∑ 习题3第一题程序如下

#include #include #define N 3 int I; float max_value(float a[N][N+1],int n,int k) { float max; int i; max=a[k][k]; for(i=k+1;i

实验三高斯列主元消去法

实验三 高斯列主元消去法 一、实验目的: 1、掌握高斯消去法的基本思路和迭代步骤。 2、 培养编程与上机调试能力。 二、高斯列主元消去法的基本思路与计算步骤: 设有方程组Ax b =,设A 是可逆矩阵。高斯消去法的基本思想就是僵局真的初等行变换作用于方程组的增广矩阵[]B A b = ,将其中的A 变换成一个上三角矩阵,然后求解这个三角形方程组。 列主元高斯消去法计算步骤: 将方程组用增广矩阵[]()(1)ij n n B A b a ?+== 表示。 步骤1:消元过程,对1,2,,1k n =- (1) 选主元,找{},1,,k i k k n ∈+ 使得 ,max k i k ik k i n a a ≤≤= (2) 如果 ,0k i k a =,则矩阵A 奇异,程序结束;否则执行(3)。 (3) 如果k i k ≠,则交换第k 行与第k i 行对应元素位置,k kj i j a a ?,,,1j k n =+ 。 (4) 消元,对,,i k n = ,计算/,ik ik kk l a a =对1,,1j k n =++ ,计算 . ij ij ik kj a a l a =- 步骤 2:回代过程: (1) 若0,nn a =则矩阵奇异,程序结束;否则执行(2)。 (2) ,1/;n n n nn x a a +=对1,,2,1i n =- ,计算,11/n i i n ij j ii j i x a a x a +=+??=- ???∑ 三:程序流程图

四:程序清单: function X=uptrbk(A,b) % A是一个n阶矩阵。 % b是一个n维向量。 % X是线性方程组AX=b的解。 [N N]=size(A); X=zeros(1,N+1); Aug=[A b]; for p=1:N-1 [Y,j]=max(abs(Aug(p:N,p)));%返回向量的最大值存入y,最大值的序号存入j。 C=Aug(p,:); Aug(p,:)=Aug(j+p-1,:); Aug(j+p-1,:)=C; if Aug(p,p)==0 'A是奇异阵,方程无惟一解' break end for k=p+1:N m=Aug(k,p)/Aug(p,p); Aug(k,p:N+1)=Aug(k,p:N+1)-m*Aug(p,p:N+1); end end % 这里用到程序函数backsub来进行回代。 X=backsub(Aug(1:N,1:N),Aug(1:N,N+1)); function X=backsub(A,b) % A是一个n阶上三角非奇异阵。 % b是一个n维向量。 % X是线性方程组AX=b的解。 n=length(b);%取b向量的个数。 X=zeros(n,1); X(n)=b(n)/A(n,n); for k=n-1:-1:1 X(k)=(b(k)-A(k,k+1:n)*X(k+1:n))/A(k,k); End 五、测试数据与结果: 测试数据:(第8章习题三第2题)求解线性方程组: 解:建立一个主程序gs.m clc clear A=[1,2,3;5,4,10;3,-0.1,1]; b=[1;0;2];

高斯法和列主元高斯消去法解线性方程组(MATLAB版)

clear;clc; %Gauss消去法解线性方程组 A=[3 -5 6 4 -2 -3 8; 1 1 -9 15 1 -9 2; 2 -1 7 5 -1 6 11; -1 1 3 2 7 -1 -2; 4 3 1 -7 2 1 1; 2 9 -8 11 -1 -4 -1; 7 2 -1 2 7 -1 9];%系数矩阵 b=[11 2 29 9 5 8 25]';%n维向量 y=inv(A)*b %matlab的计算结果 n=length(b);%方程个数n x=zeros(n,1);%未知向量 %-------------消去----------- for k=1:n-1 % if A(k,k)==0; % error('Error'); % end for i=k+1:n % A(i,k)=A(i,k)/A(k,k); Aik=A(i,k)/A(k,k) for j=k:n A(i,j)=A(i,j)-Aik*A(k,j); end A b(i)=b(i)-Aik*b(k) end end %-------------回代----------- x(n)=b(n)/A(n,n) for k=n-1:-1:1 S=b(k); for j=k+1:n S=S-A(k,j)*x(j); end x(k)=S/A(k,k) end x %程序的计算结果 error=abs(x-ones(n,1))%误差 clear;clc;

%列主元Gauss校区法解线性方程组 A=[3 -5 6 4 -2 -3 8; 1 1 -9 15 1 -9 2; 2 -1 7 5 -1 6 11; -1 1 3 2 7 -1 -2; 4 3 1 -7 2 1 1; 2 9 -8 11 -1 -4 -1; 7 2 -1 2 7 -1 9];%系数矩阵 b=[11 2 29 9 5 8 25]';%n维向量 y=inv(A)*b %matlab的计算结果 n=length(b);%方程个数n x=zeros(n,1);%未知向量 %-------------消去----------- for k=1:n-1 Auk=A(k:n,k); [m,u]=max(abs(Auk)); u=u+k-1 %u为最大元所在的列 %------交换最大的行和当前行的值------- for j=k:n temp=A(u,j);A(u,j)=A(k,j);A(k,j)=temp; end temp=b(k);b(k)=b(u);b(u)=temp; % if A(k,k)==0; % error('Error'); % end for i=k+1:n % A(i,k)=A(i,k)/A(k,k); Aik=A(i,k)/A(k,k) for j=k:n A(i,j)=A(i,j)-Aik*A(k,j); end A b(i)=b(i)-Aik*b(k) end end %-------------回代----------- x(n)=b(n)/A(n,n) for k=n-1:-1:1 S=b(k); for j=k+1:n S=S-A(k,j)*x(j);

Gauss列主元消去法程序设计

《Gauss列主元消去法》实验报告 实验名称:Gauss列主元消去法程序设计???成绩:_________ 专业班级:数学与应用数学1202班?姓名:王晓阳???学号: 实?验?日?期:?2014?年11月10日 实验报告日期:?2014年?11月10日 一.实验目的 1. 学习Gauss消去法的基本思路和迭代步骤. 2. 学会运用matlab编写高斯消去法和列主元消去法程序,求解线性方程组. 3. 当绝对值较小时,采用高斯列主元消去法? 4. 培养编程与上机调试能力. 二、实验内容 用消去法解线性方程组的基本思想是用逐次消去未知数的方法把原线性方程组Ax二b 化为与其等价的三角形线性方程组,而求解三角形线性方程组可用回代的方法求解 1. 求解一般线性方程组的高斯消去法? (1) 消元过程: 设a kk k-0 ,第i个方程减去第k个方程的m ik Tk k倍,("k 1^1, n),得到 A k1x=b k1.

经过n-1次消元,可把方程组A1^b1化为上三角方程组A n x=b n. ⑵回代过程: 以解如下线性方程组为例测试结果 2. 列主元消去法 由高斯消去法可知,在消元过程中可能出现a kk k =0的情况,这是消去法将无法进行, 即使主元素a kk k-0但很小时,用其作除数,会导致其他元素数量级的严重增长和舍入误差的扩散,最后也使得计算解不可靠.这时就需要选取主元素,假定线性方程组的系数矩阵A是菲奇异的. (1)消元过程: 对于k =1,2,川,n -1,进行如下步骤: 1) 按列选主元,记 2) 交换增广阵A的p,k两行的元素 A(k,j)=A(p,j) ( j=k,…,n +1) 3) 交换常数项b的p,k两行的元素。 b(k)=b(p) 4) 计算消元 (2) 回代过程 (3) 以解如下线性方程组为例测试结果 三、实验环境 MATLAB R2014a 四、实验步骤

高斯消元法讲解

#include "Stdio.h" #include "Conio.h" /*L是矩阵的行减1,从程序上看是最外层循环的次数 N 对应矩阵的行数,M对应矩阵的列数 可以通过改变L、N、M来控制矩的阶数 */ #define L 3 #define N 4 #define M 5 void gauss(double a[N][M],double x[N]) {int i,j,l,n,m,k=0; double temp[N]; /*第一个do-while是将增广矩阵消成上三角形式*/ do{n=0; for(l=k;l=0;l--)temp[n++]=a[k-l][k+1]/a[k+1][k+1]; for(m=0,i=k;i>=0;i--,m++) for(j=k;j=0) ; /*下一个for是解方程组*/ for(i=0;i

完整版高斯消元法MATLAB实现

《数值分析》实验报告 一、实验目的与要求 1.掌握高斯消去法的基本思路和迭代步骤; 2.培养编程与上机调试能力。 二、实验内容 1.编写用高斯消元法解线性方程组的MATLAB程序,并求解下面的线性方程组,然后用逆矩阵解方程组的方法验证. 5x?2x?x?80.101x?2.304x?3.555x?1.183??312312??(1)(2) 21x?8x?32x?2.137x?3.712x?4.623?1.347x???312312??1x?3x?6x??2.835x?1.072x?5.643x?3.035??132 312 2.编写用列主元高斯消元法解线性方程组的MATLAB程序,并求解下面的线性方程组,然后用逆矩阵解方程组的方法验证. 5x?2x?x?80.101x?2.304x?3.555x?1.183??312312??(1)(2) 2x?8x?3x?212.137?4.6231.347?x?3.712x?x??321321??1x?3x?6x??2.835x?1.072x?5.643x?3.035??132 312三.MATLAB计算源程序 AX?b MATLAB1. 程序用高斯消元法解线性方程组的b;输入的量:系数矩阵和常系数向量A RA,RB, n方程组中未知量的个数的秩输出的量:系数矩阵和增广矩阵BA.及其解的信息和有关方程组解X gaus(A,b) function [RA,RB,n,X]=B=[A b]; n=length(b); RA=rank(A); RB=rank(B);zhica=RB-RA; if zhica>0, disp('RA~=RB.') ,所以此方程组无解请注意:因为return end if RA==RB if RA==n disp('RA=RB=n.') ,所以此方程组有唯一解请注意:因为X=zeros(n,1); C=zeros(1,n+1); for p= 1:n-1 for k=p+1:n m= B(k,p)/ B(p,p); B(k,p:n+1)= B(k,p:n+1)-m* B(p,p:n+1);

高斯消元法 主元消去法

实验内容 1.编写用高斯消元法解线性方程组的MATLAB程序,并求解下面的线性方程组,然后用逆矩阵解方程组的方法验证. (1) 123 123 123 0.101 2.304 3.555 1.183 1.347 3.712 4.623 2.137 2.835 1.072 5.643 3.035 x x x x x x x x x ++= ? ? -++= ? ?-++= ? (2) 123 123 123 528 28321 361 x x x x x x x x x ++= ? ? +-= ? ?--= ? MATLAB计算源程序 1. 用高斯消元法解线性方程组b AX=的MATLAB程序 输入的量:系数矩阵A和常系数向量b; 输出的量:系数矩阵A和增广矩阵B的秩RA,RB, 方程组中未知量的个数n 和有关方程组解X及其解的信息. function [RA,RB,n,X]=gaus(A,b) B=[A b]; n=length(b); RA=rank(A); RB=rank(B);zhica=RB-RA; if zhica>0, disp('请注意:因为RA~=RB,所以此方程组无解.') return end if RA==RB if RA==n disp('请注意:因为RA=RB=n,所以此方程组有唯一解.') X=zeros(n,1); C=zeros(1,n+1); for p= 1:n-1 for k=p+1:n m= B(k,p)/ B(p,p); B(k,p:n+1)= B(k,p:n+1)-m* B(p,p:n+1); end end b=B(1:n,n+1);A=B(1:n,1:n); X(n)=b(n)/A(n,n); for q=n-1:-1:1 X(q)=(b(q)-sum(A(q,q+1:n)*X(q+1:n)))/A(q,q); end else disp('请注意:因为RA=RB

列主元高斯消去法求逆矩阵

列主元高斯消去法求逆矩阵程序代码: #include #include #define Max 10 int n; double M[Max][Max]; double E[Max][Max]; bool FindMax(int t) //列主元素 { int i, j, k=t; double max = fabs(M[t][t]), temp; for (i = t+1 ;i < n; i++) if (max

M[i][j] = M[i][j] - M[t][j]*m; E[i][j] = E[i][j] - E[t][j]*m; } } } void HuiDai(int t) { int i,j; double max; max=M[t][t]; for(i=t;i=0;i--) { max=M[i][t]; M[i][t]=0; for(j=0;j

高斯列主元消去法

数值分析大作业 --――(高斯列主元消去法求解线性方程组) 课程名称:数值分析 授课老师:宋国乡 指导导师:丁振国 学生:王伟伟 学号:0425121523 日期:2004/11/20

高斯列主元消去法解线性方程组 一:问题的提出 我们都知道,高斯列主元素消去法是计算机上常用来求解线性方程组的一种直接的方法。就是在不考虑舍入误差的情况下,经过有限步的四则运算可以得到线性方程组的准确解的一类方法。实际运算的时候因为只能有限小数去计算,因此只能得到近似值。在实际运算的时候,我们很多时候也常用高斯消去法。但是高斯消去法在计算机中运算的时候常会碰到两个问题。 1.一旦遇到某个主元等于0,消元过程便无法进行下去。 2.在长期使用中还发现,即使消元过程能进行下去,但是当某个主元的绝对值很小时,求解出的结果与真实结果相差甚远。 为了避免高斯消去法消元过程中出现的上述两个问题,一般采用所谓的选择主元法。其中又可以分为列选主元和全面选主元两种方法。目前计算机上常用的按列选主元的方法。因此我在这里做的也是列选主元高斯消去法。 二、算法的基本思想 大家知道,如果一个线性方程组的系数矩阵是上三角矩阵时,即这种方程组我们称之为上三角方程组,它是很容易求解的。我们只要把方程组的最下面的一个方程求解出来,在把求得的解带入倒数第二个方程,求出第二个解,依次往上回代求解。然而,现实中大多数线性方程组都不是上面所说的上三角方程组,所以我们有可以把不是上三角的方程通过一定的算法化成上三角方程组,由此我们可以很方便地求出方程组的解。高斯消元法的目的就是把一般线性方程组简化成上三角方程组。于是高斯消元法的基本思想是:通过逐次消元将所给的线性方程

LU分解高斯消元列主元高斯消元matlab代码

数学实验作业 一、矩阵LU分解: function [L,U,p]=lutx(A) [n,n]=size(A); p=(1:n)'; for k=1:n-1 [r,m]=max(abs(A(k:n,k))); m=m+k-1; if (A(m,k)~=0) if (m~=k) A([k m],:)=A([m k],:); p([k m])=p([m k]); end i=k+1:n; A(i,k)=A(i,k)/A(k,k); j=k+1:n; A(i,j)=A(i,j)-A(i,k)*A(k,j); end end L=tril(A,-1)+eye(n,n) U=triu(A) p end 高斯消元法求解方程: n=3; a=[1 2 3 ;4 5 6 ;7 8 9 ]; b=[17 18 19]; l=eye(n); y=1; for i=1:(n-1) for j=1:(n-i) if a(j+(i-1)*n+y)~=0 l(j+(i-1)*n+y)=a(j+(i-1)*n+y)/a(j+(i-1)*n+y-j) for k=1:(n-i+1) a(j+(i-1)*n+y+(k-1)*n)=a(j+(i-1)*n+y+(k-1)*n)-a(j+(i-1)*n+y+(k-1)*n-j)*l(j+(i-1)*n+y) end b(j+y-1)=b(j+y-1)-b(y)*l(j+(i-1)*n+y); end end y=y+1;

end sum=0; for j=1:n sum=sum+x(j)+a(k,j); end sum=0; for j=1:n x(j)=0; end for k=n:-1:1 for j=1:n sum=sum+x(j)*a(k,j) end x(k)=(b(k)-sum)/a(k,k) sum=0; end 列主元高斯消元法代码: n=3; a=[1 2 3 ;4 5 6 ;7 8 9 ]; b=[17 18 19]; l=eye(n); p=eye(n); ma=0 for i=1:(n-1) for j=i:n if a(j,i)>ma; ma=a(j,i) end end for k=i:n if a(k,i)==ma m=k; end end for j=1:n a1=a(m,j); a(m,j)=a(i,j);

数值分析实验二(列主元Gauss消去法)

《数值分析》实验报告 实验编号:实验二 课题名称:列主元Gauss消去法 一、算法介绍 1、输入矩阵的阶数n,方程组的增广矩阵A; 2、对k=0,1,…,n-2,循环:选取列中绝对值最大的元素,将主元所在的行的元素保存在 数组temp[n+1]中。若主元为零,则系数矩阵奇异,计算停止;否则,顺序进行。如果绝对值最大的元素就在矩阵的对角线上,则进行普通高斯消元法的第一大步,否则将方程组系数换行之后再进行普通高斯消元法的第一大步; 3、然后利用回代法求解线性方程组。 二、程序代码 #include #include #include using namespace std; int main() { int n=0,k=0,i=0,j=0,h=0,g=0,flag=0,i1,j1; double max=0,m=0; cout<<"***利用列主元Gauss消元法求解线性方程组***"<>n; double a[n][n+1]; double t[n+1]; double x[n]; memset(a,0,sizeof(a)); memset(x,0,sizeof(x)); cout<<"请输入方程组的增广矩阵:"<>a[i][j]; } } for(k=0;kmax) { max=fabs(a[i][k]); i1=i; j1=k; } } if(max==0)

高斯消元法简介

高斯消元法简介 一,教学目标 知识与技能:了解高斯消元法 过程与方法:直接演示说明,学习做简单练习 情感,态度和价值观:进一步体会解方程组的根本思想消元,通过高斯消元的学习增强学习数学的能力 二,重点与难点:高斯消元法 三,课型:新授课 四,教学过程: 1.在前面的几节课,已经用加减消元和代入消元法求解二元或者三元一次方程组,其基本的思想就是从已知的方程导出未知数较少的方程组,直到最后得到一个一元一次方程,这种做法可适用于一般的n 元线性方程组(线性方程组),但是由于未知数的增加,我们希望我们的消元是有规律的,以避免混乱,下面介绍高斯消元法 2.例1:解方程组 1234123412341234251027612632517315292763 x x x x x x x x x x x x x x x x ---=?? -++-=?? ---=??--++=-? 解:把第一个方程的2倍,-3倍,5倍分别加到第2,3,4个方程上,可以消去2,3,4个 方程的未知数1x 12342342342342510 522226 2 1 7213 x x x x x x x x x x x x x ---=?? +-=?? +-=??--+=-? 为了使以后少出现分数运算,交换第二,三个方程的位置 12342342342342510 2 1 522226 7213 x x x x x x x x x x x x x ---=?? +-=?? +-=??--+=-? 把第2个方程的-5倍,7倍分别加到第3,4个方程,可以消去第3,4个方程未知数2x 123423434342510 2 1 31221 6126 x x x x x x x x x x x ---=?? +-=?? --=??-=-? 整理一下方程,第3个方程的左右两边乘以13 - ,第4个方程左右两边乘以1 6 123423434342510 2 1 47 21 x x x x x x x x x x x ---=?? +-=?? +=-??-=-?

Gauss列主元消去法的C程序

#include #include #define N 20 #define EPSILON 0.000000001 void main() { int i,j,k,n,i0; double a[N][N]; double b[N]; double l[N][N]; double t; printf("数组的维数n\n"); scanf("%d",&n); printf("输入a[i][j]\n"); for(i=0;i

for(j=k;j-1;i--) { for(j=i+1;j

相关主题
文本预览
相关文档 最新文档