当前位置:文档之家› 消音器设计计算书

消音器设计计算书

消音器设计计算书
消音器设计计算书

消音器设计计算书

由于我国目前对消音器的设计,还没有统一的标准规范可以遵照执行,大多数厂家均根据自己的经验来设计制作,且技术又相对保密的。因此本消音器的设计,经查阅大量资料,采用科学院声学研究所马大猷教授等人提出的小孔喷注噪声极其控制理论,采用节流降压与小孔消音的原理结合现场实际情况来设计解决环境噪声超标的难题。

消音器的工艺参数为:蒸汽排放绝对压力:40 kg/ cm2,排汽温度:390℃,蒸汽比容ρ:0.0721 m3/ kg,排汽流量Q:8t/h;

噪声达到110dB以上,要求消音器的噪声小于85dB的环保要求。

一、设计原理。

复合式小孔喷注消音器是利用节流作用降低小孔喷注前的驻压,预先消耗部分声能,再dB与小孔降噪相结合,达到较高的消声量;其原理是利用节流降压与小孔喷注两种消声机理,通过适当结构复合而成的。

1. 小孔喷注消音器

小孔喷注消音器的设计机理是根据科学院声学研究所马大猷教授等人提出的小孔喷注噪声极其控制理论,从发声机理上使它的干扰噪声减少,由于喷注噪声峰值频率与喷口直径成反比,若喷口直径变小,喷口辐射的噪声能量将丛低频移向高频,于是低频噪声被降低,高频噪声反而增高,当孔径小到一定值(达到mm 级),实验表明,当孔径≤4mm时具有移频作用,喷注噪声将移到

人耳不敏感的频率范围(听觉最敏感的区域250~5000赫兹);根据这一机理将一个大的喷口改为许多小孔来代替,便能达到降低可听声的目的。从实用角度考虑,孔径不能选得过小,因为过小的孔径不仅难于加工,同时易于堵塞,影响排汽。一般选用直径1~3mm的小孔为宜。

2.节流降压消音器

节流降压消音器是利用节流降压原理而制成的。根据排汽流量的大小,适当设计通流截面,使高压气体通过节流孔板时,压力都能最大限度地降低到临界值。这样通过多级节流孔板串联,就能把排空的一次压降分散到若干个小的压降。由于排汽噪声功率与压力降的高次方成正比例,所以把压力突变排空改为压力在消音器内就逐渐降下来再排空,这样能使消音器内流速控制在临界流速下,不致产生激波噪声,压力在最大限度地降到临界值,使消音器获得较好的消声效果。同时节流降压后小孔喷注层的驻压大大变小,小孔喷注层强度设计所需的壁厚也大为减薄,这样给小孔喷注层的钻孔加工减小难度。

消音器入口处的压力通常是给定的,当排放压力较高时,为了取得所需的消声值,经过几次节流降压,使汽体进入小孔喷注前的压力由消音器入口处的压力P1按比例降低设计;通常情况下,节流降压消音器的各级压力选择为等比级数下降,设节流孔板级数为n,临界压力比为q (q<1) ,可得:

n

g

P P q

(1)后前

根据气体状态方程、连续性方程和临界流速公式,由资料可

知节流装置的通流截面,可按下式计算:

113.4S μ= (2) 式中: S1为节流面积(cm 2);

G 为排放气体的质量流量(t/h );

V1为节流前气体的比容(m 3/kg),

P1为节流前气体的绝对压力(kg/ cm 2);

μ为保证排汽量的截面修正系数,通常取~,

二、 结构设计

根据上述原理,经综合分析,本消音器考虑采用节流降压与小孔喷注相结合的结构,首先为保正小孔喷注有良好的消音效果,据资料[2]上的经验数据表明,将小孔喷注层的驻压确定为5~10kgf/cm 2,则小孔喷注将获得较好的效果;再根据预定的小孔喷注层的驻压及[1]式,就可确定消音器节流降压所需要的级数。

1)节流前后的降压比q 值的确定

节流前后的压降比q 值的取值,对高压排放的节流降压装置,通常按临界状态或亚临界状态设计;根据资料[1],临界状态下,过热蒸汽的压降比为q=,q 值过大,各级压力降低缓慢,所需节流级数增多,致使消音器体积增大;q 值过小,不能有效地把流速控制在临界流速下,仍会产生强烈的激波噪声,会使消音器的性能下降。由于本消音器的气源压力较高,按接近临界状态选取各级压强比,经查阅有关资料,按亚临界状态设计比按临

界状态设计的的消音效果好,因此本设计采用亚临界状态设计,取q=;取小孔喷注层的驻压为cm2,则根据 [1]式,需要的节流孔板级数为n=2。

2)节流降压层及小孔喷注层开孔面积及参数的确定

根据科学院声学研究所的研究证明,只有当小孔总面积与排气管截面积之比为时,才能使排气管排气无阻,因此修正系数μ取;由式(2),根据给定的设计参数,通过计算第一级节流孔板的通流面积为S1=7.65 cm2,为了便于实际加工而不影响消音器性能,本设计的穿孔直径取为 d=6mm,即得第一级穿孔数N1=27个,实取28个;在计算出第一级节流孔板通流面积S1后;由于各级降压后汽体温度可考虑为近似保持不变(气流在消音器器中流动,流速很高,气体来不及与外界发生热交换即排出),则其它各级的计算与第一级相同,各级计算结果列表如下:各级节流降压小孔喷注复合消音器设计参数

3)消音量的计算

㈠、根据资料(3),节流降压的消声量按下式计算

3

101210

3.7()10lg p p L k np p -=V 式中k----- 经验修正系数,取±;取

P 1-------消音器入口前排气压力kg/cm 2,取40 kg/cm 2

p 0-------环境大气绝对压力kg/cm 2,取1.033kg/cm 2。

n-------节流级数。 则310210

3.7()10lg p p L k np p -=V =10××lg 323.7(40 1.033)240 1.033?-??= ㈡、小孔喷注消音器辐射的消声量,根据资料(3)按下式计算: 227.530lg 27.530lg3L D =-=-?V = dB

其中:D 为小孔孔径mm 。

通过上述计算本消音器经节流降压及小孔喷注消音后的消声量为VL=VL 1+VL 2=+=

则消音器的排放噪声110 dB 减去消音器的消声量,尿素CO 2压缩机的主蒸汽排放噪声经消音器消声后产生的噪声为,小于国家环保的规定,因此本消音器的设计满足现场实际的需要。

总之,由于本人对消音器的设计还缺乏经验,虽然理论上计算满足了生产实际的要求,是否能达到理论上的计算结果,还有待消音器实施安装后经实践的检验。

防撞墩及助航设施施工图设计计算书

京杭运河特大桥 防撞墩及助航设施施工图设计 计 算 书 交通勘察设计有限公司 年月

京杭运河特大桥 防撞墩及助航设施施工图设计 证书等级:工程设计甲级 发证机关: 证书编号: 计算: 复核: 审核: 浙江交通勘察设计有限公司 年月

一、工程背景 京杭运河特大桥为宁杭高速铁路浙江段中重要桥梁。京杭运河特大桥主桥为(84+152+84)m双薄壁连续刚构桥,桥址位于京杭运河崇贤港区附近,即杭州绕城高速公路京杭运河大桥北侧约1公里处。由于受杭州市城市规划所限,桥轴线与航道夹角35°,双薄壁墩置于河道内,容易受到过往船只的碰撞,给铁路正常运营带来隐患。 受宁杭高铁有限公司的委托,我公司对京杭运河特大桥主墩防撞设施及助航设施进行设计。 二、采用规范及设计依据 2.1 设计依据 1、《京杭铁路跨京杭运河防撞墩设施和导航助航设施设计》合同编号:2009-gl-24; 2、《宁杭铁路(浙江段)京杭运河特大桥通航净空尺度和技术要求论证报告》 浙江省交通规划设计研究院2009年4月编制; 3、《关于宁杭铁路(浙江段)京杭运河特大桥通航净空尺度和技术要求论证报告的审查意见》浙港航函【2008】74号文件; 4、《京杭运河特大桥防撞和助导航设施方案专家审查意见》2009.11.29。 2.2 技术规范 1、《铁路桥涵设计基本规范》TB10002.1-2005 2、《公路桥涵地基与基础设计规范》JTG D63-2007

3、《公路桥涵设计通用规范》JTG D60-2004 4、《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D62-2004 三、计算程序 本次计算采用桥梁博士3.03分析软件对局部冲刷线处桩的作用效应进行建模计算。 四、防撞墩主体结构设计要点 防撞墩主体结构采用群桩基础加防撞承台的形式。 4.1设计原则 1、遵照国家现行的技术规范和标准; 2、在满足防撞设施结构安全的前提下,优化防撞设施的尺寸,使其满足Ⅲ级航道通行的要求,并对航运的影响最小化,使前期投入和后期维护效益最大化。 3、以冲刷线下桩基的最大弯矩为控制指标,确定桩基直径及配筋的数量,根据地质情况及桩基承载力确定桩长。 4、此水域最高通航水位3.46m,最低通航水位0.6m(85国家高程)。 5、京杭运河规划为三级航道,选用1000t级机动驳船作为通航的代表船型。 6、承台混凝土强度等级为C30,承台顶面高程控制为3.66m。 4.2 设计参数 1、混凝土容重取26KN/m3;

300KW发电机用电方案计算书_secret

300KW发电机用电方案计算书 一、编制依据 《低压配电设计规范》GB50054-95 《建筑工程施工现场供电安全规范》GB50194-93 《通用用电设备配电设计规范》GB50055-93 《供配电系统设计规范》GB50052-95 《施工现场临时用电安全技术规范》JGJ46-2005 《建筑施工安全检查标准》JGJ59-99 二、施工条件 施工现场用电量统计表: 三、设计内容和步骤 1、现场勘探及初步设计: (1)现场采用380V低压供电,设一配电总箱,内有计量设备,采用TN-S系统供电。 (2)根据施工现场用电设备布置情况,总箱进线采用电缆线架空线路敷设,用电器导线采用空气明敷。布置位置及线路走向参见临时配电系统图及现场平面图,采用三级配电,三级防护。 (3)按照《JGJ46-2005》规定制定施工组织设计,接地电阻R≤4Ω。 2、确定用电负荷:

(1)、竖井提升机 K x = 0.30 Cosφ = 0.6 tgφ = 1.33 P js = K x×P e =0.30×55.2 = 16.56kW Q js = P js× tgφ=16.56×1.33 = 22.02 kvar (2)、空压机 K x = 0.7 Cosφ = 0.70 tgφ = 1.02 P js = 0.75×75 = 52.5 kW Q js = P js× tgφ=52.5×1.02 = 53.55 kvar (3)、空压机 K x = 0.7 Cosφ = 0.80 tgφ =0.75 P js = 110×0.7 = 77kW Q js = P js× tgφ=77×0.75 = 57.75 kvar (4)、蒸发器 K x = 1.00 Cosφ =1.00 tgφ = 0.00 P js = 1.00×24= 24kW Q js = P js× tgφ=24×0.00= 0.00 kvar (5)、电焊机 K x = 0.45 Cosφ = 0.7 tgφ = 1.02 P js = 0.45×5×13.06 = 30.06 kW Q js = P js× tgφ=30.06×1.02 = 31.21 kvar (6)、照明灯 K x = 0.8 Cosφ = 0.8 tgφ = 0.00 P js = 3×0.8 = 2.4kW Q js = P js× tgφ=2.4×0.00 =0.00 kvar (8)总的计算负荷计算,总箱同期系数取 Kx = 0.9 总的有功功率 P js = K x×ΣP js = 0.9×(16.56+52.5+77+24+30.06+2.4) = 182.27 kW 总的无功功率 Q js = K x×ΣQ js =0.9×(22.02+53.55+57.75+0.00+31.21+0.00) = 148.08 kvar

实验楼施工图计算书

一、概况 本工程位于黄山学院,钢筋混凝土框架结构,地上5层,综合基地面积10490平方米,总建筑面积13139.6平方米,建筑高度22.1米,本工程设计标高±0.00相当于绝对标高134.60,顶层地坪设计标高15.60相当于绝对标高150.20。本次设计为单体设计,范围为教学楼室内给排水、水消防系统、手提式灭火器及消防水泵接合器布置。单体周围给排水总平面设计由校园给排水总平面设计单位统一设计。 二、生活用水 最高日用水量为152m3/d,最大小时用水量为28.5m3/hr。 2.供水方式: 根据甲方提供有关资料:综合实验楼东侧有校园市政给水管接口,该处绝对标高134.10,最不利供水压力3.2Mpa,水质符合生活饮用水标准。本单体生活给水均由市政给水管直供。3.水力计算 α=1.8,q=0.2×1.8×N+1.1=0.36N+1.1

三、消防系统 1.消防用水量: 根据规划,校园北区设置一座集中消防泵站。利用图书馆内的消防泵房作为北区集中消 防泵站供校区北侧图书馆、教学楼等的室内消防、喷淋用水。 2.高位消防水箱 高位消防水箱容积V=15x10x60/1000=9m3 高位消防水箱储存10分钟室内消火栓系统用水量9m3,利用图书馆屋顶18m3高位消防水箱。 3.消火栓系统 最不利消火栓高度16.7m,栓口压力H1 = 18.5m(衬胶龙带长度为25米),管路损失H = 8 m H = 16.7+18.5 +8=43.2 m 室内消火栓系统入户处压力为0.44Mpa(以室内地坪0.00为基准,绝对标高134.60米),流量为15l/s。 4.手提式灭火器数量计算:

消声器选型计算

燃气发电机组消声器选型书 燃气发电机组配置465Q-1发动机,发动机相关参数如下: 型式:四冲程、水冷、自然吸气式 发动机排量:0.97L 额定转速:3000r/min 气缸数:4 一、消声器主要结构形式 1.抗性消声器:通常对低、中频带消声效果好,高频消声效果差。 2.阻性消声器:对中、高频消声效果好,通常与抗性消声器组合起来使用 3.阻抗性符合型消声器:对低、中、高频噪声都有很好的消声效果 二、消声器性能要求 1.插入损失 D=L1-L2 式中:D-插入损失,dB; L1-安装消声器前在某点测量的排气声压级,dB;取 111 dB; L2-安装消声器后在某点测量的排气声压级,dB;取91.5 dB; D= 19.5 Db 2.消声器功率损失 R=(P1-P2)/P1×100% 式中:R-发动机额定功率点的功率损失比,%; P1-不带消声器而带空管时的发动机功率,kW; P2-带消声器后发动机功率,kW; 我国汽车消声器行业对不同车型的功率损失要求为:重型汽车R≤3%;中型汽车R≤5%;轻型汽车R≤6%,轿车R≤8%。 功率损失<5% 三、消声器的消声量 首先要确定降低排气噪声的目标值,即由发动机排气噪声大小,频谱特性和消声器所匹配车辆的噪声标准限制来决定消声器消声量大小。根据整车噪声限制来计算消声器出口噪声限制,假设声源特性属线性声源,声衰减量L为: L=10lg(R2/R1) (dB)(A) 式中:R1-消声器出口处噪声限制点到声源点距离;取1m(按试验测试收归返要求); R2-整车噪声限制测点到声源点距离。取7m(按试验测试要求) L=8.45dB 消声量Lm按以下公式计算: Lm=L1-( La+Lb) 式中:La-整机噪声限制,取68bB; Lb-机柜降低的噪声,91.5-72=19.5,取19.5 dB; Lm=111-(68+19.5)=23.5 dB 国华配YH465Q:>25 dB ,可满足要求。 7m处噪声限定值为:

[学士]道勘标准设计计算书_secret

目录 1 设计总说明书 (2) 1.1设计概述 (2) 1.1.1 任务依据 (2) 1.1.2 设计标准 (2) 1.1.3 路线起讫点 (2) 1.1.4 沿线自然地理概况 (2) 1.1.5 沿线筑路材料等建设条件 (2) 1.2路线 (2) 1.3横断面设计 (3) 1.3.1 路基横断面布置: (3) 1.3.2 加宽、超高方式 (3) 1.3.3 路基施工注意事项: (3) 1.3.4 排水 (4) 2 平面设计 (4) 2.1公路等级的确定 (4) 2.2设计行车速度的确定 (4) 2.3选线设计 (4) 2.4平面线形的设计 (7) 3 纵断面设计 (10) 3.1纵坡设计 (10) 3.2竖曲线设计 (10) 4 横断面设计 (14) 4.1.路幅的宽度及路拱的确定 (14) 4.2超高,加宽的确定及值的计算 (14) 4.3土石方量的计算 (16) 4.4土石方的调配及路基设计表 (16) 5设计总结 (16) 主要参考文献: (17)

道路勘测设计说明书 1 设计总说明书 1.1 设计概述 1.1.1 任务依据 根据南阳理工学院土木工程专业道路工程方向《道路勘测设计任务书》。 1.1.2 设计标准 1、根据设计任务书要求,本路段按2级公路技术标准勘察、设计。设计车速为60Km/小时,路基单幅双车道,宽8.5米。 2、设计执行的部颁标准、规范有: 《公路工程技术标准》JTGB01-2003 《公路路线设计规范》JTJ011-94 《公路路基设计规范》JTJ013-95 1.1.3 路线起讫点 本路段起点A:K0+000为所给地形图坐标(4146,3956),终点B:K1+347.1为所给地形图坐标(4560,2784),全长1.3471公里。 1.1.4 沿线自然地理概况 该工程位于河南省境内,公路自然区划为XX。整个地形、地貌特征平微区,地形起伏不大,最高海拔高为326米,河谷海拔高为294米,总体高差在2米左右。 1.1.5 沿线筑路材料等建设条件 沿线地方材料有:碎石、砾石、砂、石灰、粉煤灰等。其他材料如沥青、水泥、矿粉需到外地采购。 1.2 路线 本路段按二级公路标准测设,设计车速60KM/h,测设中在满足《公路路线设计规范》及在不增加工程造价的前提下,充分考虑了平、纵、横三方面的优化组合设计,力

消音器设计计算书样本

消音器设计计算书 由于中国当前对消音器的设计, 还没有统一的标准规范能够遵照执行, 大多数厂家均根据自己的经验来设计制作, 且技术又相对保密的。因此本消音器的设计, 经查阅大量资料, 采用科学院声学研究所马大猷教授等人提出的小孔喷注噪声极其控制理论, 采用节流降压与小孔消音的原理结合现场实际情况来设计解决环境噪声超标的难题。 消音器的工艺参数为: 蒸汽排放绝对压力: 40 kg/ cm2, 排汽温度: 390℃, 蒸汽比容ρ: 0.0721 m3/ kg, 排汽流量 Q: 8t/h; 噪声达到110dB以上, 要求消音器的噪声小于85dB 的环保要求。 一、设计原理。 复合式小孔喷注消音器是利用节流作用降低小孔喷注前的驻压, 预先消耗部分声能, 再dB与小孔降噪相结合, 达到较高的消声量; 其原理是利用节流降压与小孔喷注两种消声机理, 经过适当结构复合而成的。 1. 小孔喷注消音器 小孔喷注消音器的设计机理是根据科学院声学研究所马大猷教授等人提出的小孔喷注噪声极其控制理论, 从发声机理上使它的干扰噪声减少, 由于喷注噪声峰值频率与喷口直径成反比, 若喷口直径变小, 喷口辐射的噪声能量将丛低频移向高频, 于是低频噪声被降低, 高频噪声反而增高, 当孔径小到一定值

( 达到mm级) , 实验表明, 当孔径≤4mm时具有移频作用, 喷注噪声将移到人耳不敏感的频率范围( 听觉最敏感的区域250~5000赫兹) ; 根据这一机理将一个大的喷口改为许多小孔来代替, 便能达到降低可听声的目的。从实用角度考虑, 孔径不能选得过小, 因为过小的孔径不但难于加工, 同时易于堵塞, 影响排汽。一般选用直径1~3mm的小孔为宜。 2.节流降压消音器 节流降压消音器是利用节流降压原理而制成的。根据排汽流量的大小, 适当设计通流截面, 使高压气体经过节流孔板时, 压力都能最大限度地降低到临界值。这样经过多级节流孔板串联, 就能把排空的一次压降分散到若干个小的压降。由于排汽噪声功率与压力降的高次方成正比例, 因此把压力突变排空改为压力在消音器内就逐渐降下来再排空, 这样能使消音器内流速控制在临界流速下, 不致产生激波噪声, 压力在最大限度地降到临界值, 使消音器获得较好的消声效果。同时节流降压后小孔喷注层的驻压大大变小, 小孔喷注层强度设计所需的壁厚也大为减薄, 这样给小孔喷注层的钻孔加工减小难度。 消音器入口处的压力一般是给定的, 当排放压力较高时, 为了取得所需的消声值, 经过几次节流降压, 使汽体进入小孔喷注前的压力由消音器入口处的压力P1按比例降低设计; 一般情况下, 节流降压消音器的各级压力选择为等比级数下降, 设节流孔板级数为n, 临界压力比为q (q<1) , 可得:

设计计算书

设计计算书. 剑河县县城张雨松、张细明民房后侧(北东侧)局部变形挡土墙整治工程施工图设计计算书 目录 1工程概况……………………………………………

(1) 2设计依据 (1) 3设计原则 (1) 4 设计基础参数取值 (2) 5支护工程设计方案 (2) 6设计计 算…………………………………………………… (3)

6.1开挖放坡稳定性验算 (3) 6.2挡土墙验算 (4) 地质工程勘察公司101贵州地矿凯里 剑河县县城张雨松、张细明民房后侧(北东侧)局部变形挡土墙整治工程施工图设计计算书6.2.1土压力计算 (4) 6.1.2稳定性验算 (5) 6.2.1墙身强度验算 (7) 6.2.4地基承载力验算 (7) 6.3墙脚排水沟设计 (8) 7算过程及结 果…………………………………………………… (9) 7.1开挖放坡稳定性验算(采用理正6.0软件 计 算) (9)

7.2挡土墙计算过程及结果(采用理正6.0软 件计算) ........................................................... 10 地质工程勘察公司101贵州地矿凯里 剑河县县城张雨松、张细明民房后侧(北东侧)局部变形挡土墙整治工程施工图设计计算书 1工程概况 剑河县县城张雨松、张细明民房后侧(北东侧)局部变形段挡土墙建于上个世纪50年代,全长20.0m,墙顶高程666.90m,墙底高程663.05m,该段挡土墙顶后缘为在建8层砖混结构民房(基础为桩基础),墙脚 前缘为已建的6层砖混结构民房。 2012年6月,发现该段挡土墙出现变形,并且变形在持续发展,目 前该段挡墙的变形主要表现为墙体鼓胀。 根据现场调查和勘察,墙后地层主要为第四系老回填土,填土层厚5.0~8.0m,挡墙基础持力层为老回填土,基底以下老回填土层厚度大于1.0m,下覆基岩为寒武系下统牛蹄塘组(∈n)碳质页岩。l2 设计依据 (1) 现场踏勘、勘察、调查、收集资料; (2) 现场实测工程区1:500地形图; (3)《工程测量规范》(GB50026-93);

消音器设计计算书

消音器设计计算书 由于我国目前对消音器的设计,还没有统一的标准规范可以遵照执行,大多数厂家均根据自己的经验来设计制作,且技术又相对保密的。因此本消音器的设计,经查阅大量资料,采用科学院声学研究所马大猷教授等人提出的小孔喷注噪声极其控制理论,采用节流降压与小孔消音的原理结合现场实际情况来设计解决环境噪声超标的难题。 消音器的工艺参数为:蒸汽排放绝对压力:40 kg/ cm2,排汽温度:390℃,蒸汽比容ρ:0.0721 m3/ kg,排汽流量Q:8t/h; 噪声达到110dB以上,要求消音器的噪声小于85dB的环保要求。 一、设计原理。 复合式小孔喷注消音器是利用节流作用降低小孔喷注前的驻压,预先消耗部分声能,再dB与小孔降噪相结合,达到较高的消声量;其原理是利用节流降压与小孔喷注两种消声机理,通过适当结构复合而成的。 1. 小孔喷注消音器 小孔喷注消音器的设计机理是根据科学院声学研究所马大猷教授等人提出的小孔喷注噪声极其控制理论,从发声机理上使它的干扰噪声减少,由于喷注噪声峰值频率与喷口直径成反比,若喷口直径变小,喷口辐射的噪声能量将丛低频移向高频,于是低频噪声被降低,高频噪声反而增高,当孔径小到一定值(达到mm 级),实验表明,当孔径≤4mm时具有移频作用,喷注噪声将移

到人耳不敏感的频率范围(听觉最敏感的区域250~5000赫兹); 根据这一机理将一个大的喷口改为许多小孔来代替,便能达到降低可听声的目的。从实用角度考虑,孔径不能选得过小,因为过小的孔径不仅难于加工,同时易于堵塞,影响排汽。一般选用直径1~3mm的小孔为宜。 2.节流降压消音器 节流降压消音器是利用节流降压原理而制成的。根据排汽流量的大小,适当设计通流截面,使高压气体通过节流孔板时,压力都能最大限度地降低到临界值。这样通过多级节流孔板串联,就能把排空的一次压降分散到若干个小的压降。由于排汽噪声功率与压力降的高次方成正比例,所以把压力突变排空改为压力在消音器内就逐渐降下来再排空,这样能使消音器内流速控制在临界流速下,不致产生激波噪声,压力在最大限度地降到临界值,使消音器获得较好的消声效果。同时节流降压后小孔喷注层的驻压大大变小,小孔喷注层强度设计所需的壁厚也大为减薄,这样给小孔喷注层的钻孔加工减小难度。 消音器入口处的压力通常是给定的,当排放压力较高时,为了取得所需的消声值,经过几次节流降压,使汽体进入小孔喷注前的压力由消音器入口处的压力P1按比例降低设计;通常情况下,节流降压消音器的各级压力选择为等比级数下降,设节流孔板级数为n,临界压力比为q (q<1) ,可得: n g P P q (1)后前 根据气体状态方程、连续性方程和临界流速公式,由资料可

管网设计计算书_secret

目录 第一章给水管网用水量计算一.最高日生活用水量 二.水压 三.清水池容积 第二章给水管网流量计算 一.长度比流量 二.沿线流量 三.节点流量 第三章管网平差及校核 一.最高时用水管网平差及校核 二.事故时管网平差及校核 三.消防时管网平差及校核 第四章水泵的选择 一.水泵选择原则 二.水泵流量和扬程 第一章给水管网用水量计算 一.最高日生活用水量 1)居民生活用水量(用水普及率为90﹪) Q1=N*q1*f=(3+1.2)*104*0.9*0.12=4536 m3/d

式中:q1——最高日用水量标准(0.12 m3/人·d) N——居住区人口数(cap) f—用水普及率 (2)大用户生产用水量 Q2=2000+1200*3+400*2+300*3+200=7300m3/d (3)大用户职工生活用水量(取生活用水定额25L/cap.班,淋浴定额为40L/cap.班) Q3=25*(300+1500+1000+1200+50)/1000+40*(1500/2+1000/2+1200/2)/10 00=175.25m3/d (4)浇洒道路和绿化用水Q4(喷洒道路:q1=1.2L/次·m2,n=3次;绿化:q2=1.8L/d·m 2) Q4 =1.2*3*200000+1.8*300000=1260000L3/d=1260m3/d (5)公共事业用水Q5 公共事业供水取居民生活用水的30%。Q5=0.3 *Q1=1360.8 m3/d (6)未预见用水量及管网漏水量按最高日的20﹪计。 (7)最高日用水量 Qd=1.20(Q1+Q2+Q3+Q4+Q5)=1.2*(4536+7300+175.25+1260+1360.8)=17558.46m3/d 二.水压 由于该开发区内的建筑物的层数都为6层,所以自由水压=4*(n+1)=28m 四.清水池容积 V清=V消防+V自用+V调节+V安全 由于缺乏该城市综合生活每小时用水量占最高日用水量百分比的情况的资料,所按照经验发取值,V调节=10%Qd=1755.846 m3。 该开发区规划人口为4.2万人,查《给水排水设计手册》,确定同一时间内的火灾次数为两次,一次灭火用水量为25L/s,火灾延续时间内所需总水量V消防=2*25*3.6*2.0=360 m3。 水厂自用水量调节容积按最高日用水设计用水量的5%计算,则V自用=5%Qd=877.923m3。 清水池的安全储备V安全=1/6(V调+V消+V自)=498.96 m3。 V清=V消防+V自用+V调节+V安全=3492.73 考虑到部分安全调节容积,取清水池的有效容积为4000 m3。 第二章给水管网流量计算

考试题

2015年压力管道设计人员考核试卷答案 姓名:成绩: 一、判断题(每题0.5分,共5分) 1. 同一建筑物内、应将人员集中的房间布置在火灾危险性较小的一端。 ----------------------------(√) 2. 空冷器不应布置在操作温度等于或高于物料自燃点和输送、储存液化烃设备的上方;否则应采用非燃烧材料的隔板隔离保护。 ---------------------------------------------------------------------------(√) 3. 布置固体物料或含有固体物料的管道时,应使管道尽可能短、少拐弯和不出现死角。--------------(√) 4. 蒸汽支管应自蒸汽主管的顶部接出,支管上的切断阀应尽量安装在靠近主管管段上,以避免存液。---( ×) 5. 放气或排液管上的切断阀宜用闸阀。对于高压、极度危害及高度危害介质的管道应设双阀,当设置单阀时,应加盲板或法兰盖。 --------------------------------------------------------------------------(√) 6. 储罐的进出料管道在罐体下部连接,由于储罐在使用过程中,基础有可能继续下沉,其进出口管道宜采用金属软管连接或其他柔性连接。 ----------------------------------------------------------------(√) 7. 弯头宜选用曲率半径等于1.5倍公称直径的长半径弯头;输送气固、液固两相流物料的管道应选用大曲率半径弯管。 ----------------------------------------------------------------------------------(√)

设计计算书(可打印)_secret

第二部分设计计算书

目录 1 坝顶高程确定 (1) 1.1 计算超高Y (1) 1.1.1 计算波浪爬高R (1) 1.1.2 计算坝前壅水位的高度e (2) 1.1.3 安全加高A (2) 1.1.4 对于正常运行情况的计算 (2) 1.1.5 对于非常运用情况的计算 (3) 1.1.6 超高计算结果表 (4) 1.1.7 坝顶高程计算结果表 (4) 2 土坝的渗透计算 (5) 2.1 参数取值 (6) 2.2 计算公式 (6) 2.3 浸润线绘制 (7) 2.3.1 I断面(170m高程): (7) 2.3.2 II断面(200m高程) (8) 2.3.3 III断面(230m高程) (9) 2.4 全坝长的总渗流量 (10) 3 稳定计算 (11) 3.1 计算方法与原理 (11) 3.1.1 确定定圆心位置 (11) 3.2.2 计算步骤 (12) 3.2 计算过程 (14) 3.3稳定成果分析 (17) 4 泄水隧洞 (18) 4.1 工程布置及洞径确定 (18) 4.1.1 工程布置 (18) 4.1.2 洞径确定 (18)

4.2 高程确定 (19) 4.3 隧洞设计 (19) 4.3.1 平压管 (19) 4.3.2 通气孔 (20) 4.3.3 渐变段 (21) 4.3.4 洞身段 (21) 4.3.5 出口段 (22) 4.3.6 消能设置 (22) 4.3.7 消能计算、 (22) 4.3.8 水力计算 (25) 4.4 隧洞的衬砌设计 (26) 4.4.1 衬砌类型的选择 (26) 4.4.2 计算断面的选择 (27) 4.4.3 拟定厚度 (27) 4.4.4 计算各种荷载产生的内力 (27) 4.4.5 荷载组合 (30) 4.4.6 配筋计算抗裂验算 (31) 4.4.7 灌浆孔布置 (31)

直通穿孔管消声器声学性能计算及分析

直通穿孔管消声器声学性能计算及分析 季振林 (哈尔滨工程大学动力与核能工程学院,黑龙江哈尔滨150001) 摘 要:一维解析法和三维子结构边界元法被用于预测直通穿孔管消声器的消声性能.单腔直通穿孔管消声器传递 损失的预测结果与实验测量结果比较表明:一维解析法只适合于消声器的低频声学分析;对于高频声学性能的精确预测需要使用三维处理方法.进而边界元法被应用于研究穿孔率和几何参数对直通穿孔管消声器消声性能的影响.增加穿孔率能够拓宽消声器的有效消声频率范围.中心管部分穿孔时,消声器的传递损失在平面波域内呈现出拱形衰减和轴向共振的叠加,合理选择穿孔段长度和位置以匹配共振和通过频率能够获得理想的宽带消声效果.使用双级膨胀腔能够大大改善直通穿孔管消声器的中频消声性能.关键词:穿孔管消声器;消声性能;边界元法中图分类号:T B 535.2 文献标识码:A 文章编号:1006-7043(2005)03-0302-05 Acoustic attenuati on p erf or m ance calcul ati on and anal y sis of strai g ht -t hrou g h p erf orated t ube silencers JI Zhen-li n (S choo l o f Pow er and n uclear Ener gy En g i neeri n g ,H arb i n En g i neeri n g U n ivers it y ,H arb i n 150001,Ch i na ) Abstract :A one-di m ensional anal y tical a pp roach and a t hree-di m ensional substruct ure boundar y ele m ent m et hod (BEM )are develo p ed to p redict t he acoustic attenuation p erf or m ance o f strai g ht-t hrou g h p erf orated t ube silenc-ers.C om p arisons o f trans m ission loss p redictions w it h ex p eri m ental results f or si n g le cha m ber strai g ht-t hrou g h p erf orated t ube silencers ill ustrated t hat t he t hree-di m ensional a pp roach is needed f or accurate p rediction at hi g h-er fre C uencies , while t he one-di m ensional anal y tical a pp roach p rovi des a reasonable accurac y at low er fre C uencies onl y .T he BEM w as t hen used to i nvesti g ate t he eff ects o f p orosit y and g eom etrical p ara m eters on t he acoustic attenuation p erf or m ance o f strai g ht-t hrou g h p erf orated t ube silencers.I ncreasi n g t he p orosit y m a y ex p and t he eff ecti ve acoustic attenuation to hi g her fre C uenc y .T he trans m ission loss o f silencer w it h p artiall y -p erf orated t ube exhi bits a su p er p osition o f dom e attenuation and ax ial resonance i n t he p lane w ave re g ion.B y choosi n g t he len g t h and location o f p erf orated section to m atch t he resonances w it h t he trou g hs o f t he silencer ,a desirable broadband acoustic attenuation m a y be obtai ned.T he double ex p ansion cha m ber m a y g reatl y i m p rove t he no ise attenuation p erf or m ance o f strai g ht t hrou g h p erf orated t ube silencers i n t he m i ddle fre C uenc y ran g e. K e y words :p erf orated t ube silencer ; acoustic attenuation p erf or m ance ;boundar y ele m ent m et hod (BEM )收稿日期:2004-06-29. 基金项目:哈尔滨市科学研究基金资助项目(2004A FLX J010).作者简介:季振林(1965-),男,教授,博士生导师. 由于直通穿孔管消声器具有极低的流动阻力损失和良好的消声性能,已被广泛应用于内燃机进排气噪声控制.一维频域和时域方法虽已被应用于预 测直通穿孔管消声器的消声性能[1-3] ,但只适用于 消声器的低频声学分析.为精确预测消声器的高频 消声性能,需要使用三维数值方法.w an g 等[4] 应用 边界元法计算了同轴穿孔管共振器的传递损失.他们分别使用边界元法来模拟由穿孔结构分开的2个声学域,然后使用速度连续性和穿孔阻抗边界条件获得整个系统节点上声压和质点振速形成的方程组.Ji 和S ela m et [5]提出了一种多域边界元法预测三通穿孔管消声器的消声特性,数值预测结果与实验测量结果吻合良好.尽管一维解析法和三维数值法 第26卷第3期哈尔滨工程大学学报V o l .26N.32005年6月 Journal o f H arbi n En g i neeri n g U ni versit y Jun.2005

钢屋架课程设计计算书及施工图

一、课程设计名称 梯形钢屋架设计 二、课程设计资料 北京地区某金工车间,采用无檩屋盖体系,梯形钢屋架。跨度为27m,柱距6m,厂房高度为15.7m,长度为156m。车间内设有两台200/50kN中级工作制吊车,计算温度高于-20℃。采用三毡四油,上铺小石子防水屋面,水泥砂浆找平层,厚泡沫混凝土保温层,1.5m×6m预应力混凝土大型屋面板。屋面积灰荷载为0.4kN/㎡,屋面活荷载为0.4kN/㎡,雪荷载为0.4kN/㎡,风荷载为0.45 kN/㎡。屋架铰支在钢筋混凝土柱上,柱截面为400mm×400mm,混凝土标号为C20。 设计荷载标准值见表1(单位:kN/㎡)。 表1 三、钢材和焊条的选用 根据北京地区的计算温度、荷载性质和连接方法,屋架刚材采用Q235沸腾钢,要求保证屈服强度fy、抗拉强度fu、伸长率δ和冷弯实验四项机械性能及硫(S)、磷(P)、碳(C)三项化学成分的合格含量。焊条采用E43型,手工焊。

四、 屋架形式和几何尺寸 屋面材料为预应力混凝土大型屋面板,采用无檩屋盖体系,平坡梯形钢屋架。屋面坡度。10/1=i 屋架计算跨度。mm l l 2670015022700015020=?-=?-= 屋架端部高度取:mm H 20000=。 跨中高度:mm i l H 335033351.02/2670020002H 0 0≈=?+=?+=。 屋架高跨比:0 .812670033500==l H 。 屋架跨中起拱,54500/mm l f ==取50 mm 。 为了使屋架节点受荷,配合屋面板1.5m 宽,腹杆体系大部分采用下弦节间水平尺寸为3.0m 的人字形式,上弦节间水平尺寸为 1.5m ,屋架几何尺寸如图 1 所示。 图1:27米跨屋架几何尺寸 五、 屋盖支撑布置 根据车间长度、跨度及荷载情况,在车间两端 5.5m 开间内布置上下弦横

消声器设计计算

计算并设计一消声器,用于频率为100Hz的发动机排气消声器,消声量不小于30dB,需选定已知内壁管壁厚,开孔个数,每个孔直径,扩张室直径,排气管道直径为5cm,用三维软件画出设计图。 消声器类型消声原理主要应用 阻性消声器(中高频)多孔性吸声材料的吸收 风机、通风空调、燃气轮机 等设备的进、排气噪声 抗性消声器(低频好)管道阻抗变化所产生的声反 射和耗损 空压机的进气噪声、内燃 机、汽车的排气噪声等 阻抗复合型消声器联合阻性消声器和抗性消声 器的消声机理 采用阻性消声器、抗性消声 器的场所 扩散消声器改变喷注结构、降低喷口的压 力和流速 高温、高压、高速气流等高 声强噪音 噪声按声音的频率可分为:<400Hz的低频噪声、400~1000Hz的中频噪声及>1000Hz的高频噪声。根据设计要求及各种消声器的适用范围,选用抗性消声器进行设计改进。 抗性消声器 消声原理:通过控制声抗的大小来进行消声的。与阻性消声器不同,它不使用吸声材料而是在管道上接截面积突变的管段或旁接共振腔,声波在管道截面的突然扩张(或收缩),造成通道内声阻抗突变,使声波传播方向发生改变,某些频率的声波在声阻抗突变的界面发生反射、干涉等现象,从而在消声器的外测,达到了消声的目的。

消声的频率特性:具有中、低频消声性能。 适用范围:消除空压机、内燃机、汽车排气噪声(气体流速较高气速的情况) 抗性消声器具有的特点: (1)不需要使用多孔吸声材料 (2)耐高温、抗潮 (3)流速较大,洁净 (4)对低频、窄带噪声有较好的效果。 常用抗性消声器的类型: (1)扩张室式消声器 (2)共振腔消声器 (3)干涉式消声器 按共振腔消声器进行设计: (1)倍频带消声量不小于30dB,由式: K L+ 102 ? = lg 20 ) 1( 302 K + 10 = lg 20 ) 1( 查表 不同频带下的消声量△L 与K值的关系 频带 0.2 0.4 0.6 0.8 1.0 1.5 2 3 4 5 6 8 10 15 类别 倍频 1.1 1.2 2.4 3.6 4.8 7.5 9.5 12.8 1 5.2 17 18.6 20 23 27 带 1/3倍 2.5 6.2 9.0 11.2 1 3.0 16.4 19 22.6 25.1 27 28.5 31 33 36.5 频带 2 / 4

幕墙设计计算书_secret

合肥某公寓 设 计 计 算 书 计算: 校核: 审核: 二〇一〇年十二月十二日

目录 第一部分、计算书........................................................................................... 错误!未定义书签。

第一部分、墙角区石材幕墙 一、计算依据及说明 1、工程概况说明 工程名称:合肥某公寓 工程所在城市:合肥 工程所属建筑物地区类别:C类 工程所在地区抗震设防烈度:6度 工程基本风压:0.35kN/m2 工程强度校核处标高:13m 2、设计依据 《建筑结构荷载规范》 GB 50009-2001 (2006年版)《建筑设计防火规范》 GB50016-2006 《建筑用不锈钢绞线》 JG/T 200-2007 《建筑幕墙》 GB/T 21086-2007 《建筑门窗玻璃幕墙热工计算规程》 JGJ/T151-2008 《不锈钢棒》 GB/T 1220-2007 《混凝土用膨胀型、扩孔型建筑锚栓》 JG 160-2004 《铝合金结构设计规范》 GB50429-2007 《建筑陶瓷薄板应用技术规程》 JGJ/T172-2009 《建筑玻璃采光顶》 JG/T 231-2008 《建筑抗震设计规范》 GB 50011-2001(2008年版)《建筑结构可靠度设计统一标准》 GB 50068-2001 《钢结构设计规范》 GB 50017-2003 《玻璃幕墙工程技术规范》 JGJ 102-2003 《塑料门窗工程技术规程》 JGJ103-2008 《中空玻璃稳态U值(传热系数)的计算和测定》 GB/T22476-2008 《玻璃幕墙工程质量检验标准》 JGJ/T 139-2001 《金属与石材幕墙工程技术规范》 JGJ 133-2001 《建筑制图标准》 GB/T 50104-2001 《建筑玻璃应用技术规程》 JGJ 113-2009 《全玻璃幕墙工程技术规程》 DBJ/CT 014-2001 《点支式玻璃幕墙工程技术规程》 CECS 127:2001 《点支式玻幕墙支承装置》 JC 1369-2001 《吊挂式玻幕墙支承装置》 JC 1368-2001 《建筑结构用冷弯矩形钢管》 JG/T178-2005 《建筑用不锈钢绞线》 JG/T200-2007 《铝合金建筑型材基材》 GB/T 5237.1-2008 《铝合金建筑型材阳极氧化、着色型材》 GB/T 5237.2-2008 《铝合金建筑型材电泳涂漆型材》 GB/T 5237.3-2008

建筑采暖设计计算书secret

1 工程概况 本工程为大同市一栋三层的办公楼,其中有办公、会议、培训等功能用途的房间。层高为3.7米,建筑占地面积约550平米,建筑面积约1300平米。本工程以0.4MPa饱和蒸汽的市政管网为热源、为本办公楼设计供暖系统。 2 设计依据 2.1任务书 <<供热课程设计提纲>> 2.2规范及标准 [1]<<采暖通风与空气调节设计规范>>GBJ 19-87 [2]<<通风与空气调节制图标准>>GJ114-88 2.3 设计参数 室外气象参数[1]:采暖室外计算(干球)温度为-17℃。最低日平均温度为-24℃。冬季大气压89920Pa。冬季室外最多风向平均风速 3.5m/s。 室内设计温度见表[1]。 表 [1]室内设计参数 3 围护结构要求 为了保证室内人员的热舒适性要求,根据室内空气温度与围护结构内表面的温差要求来确定围护结构的最小传热阻。 3.1大同地区在不同室内设计温度下的最小传热阻 为验证围护结构的热阻满足最小传热阻的要求,本设计先计算出不同围护结构类型下,对应不同室内计温度的最小传热阻,再根据围护的结构来计算需求多少厚度的保温层才能满足需要。 ? = e w t 计算冬季围护结构室外计算温度时,围护结构类型类不同选择的公式也不同。式中为采暖室 外计算温度, min ?p t为累年最低日平均温度。再根据室内设计温度由式[1]计算最小传热阻。

式[1] 式中:――冬季围护结构室外计算温度,℃; ――采暖室内设计温度,℃; ――根据舒适性确定的室内温度与围护结构内表面的温差,这里取6℃。 计算结果列于表[2]。 3.2某种外围护结构在不同保温层厚度下的隋性和热阻 图[1]外墙结构 已知外墙结构如图[1]所示,根据式[2]、[3]计算当取不同砖墙厚度时的热隋性指标和实际传热阻,结果列于表[4]。 总结构的热惰性指标按下式计算: ∑∑ ∑= = = i i i i i i s s R D D λ δ 式[2] 式中:――各层材料的传热阻,m2·℃/W; ――各层材料的畜热系数,W/m2·℃; ――各层材料的厚度,mm; ――各层材料的导热系数,W/m·℃。 总结构的传热热阻按下式计算: w i i n R α λ δ α 1 1 + + =∑m2·℃/W 式[3] 式中:――内表面换热系数,这里取8.7 W/m2·℃; ――外表面换热系数,这里取23 W/m2·℃。 3.3围护结构确定 根据以上两节的分析,本工程选择砖墙厚度为490mm,结构如图[1]所示的外墙结构才可以满足室内人员的热舒适性要求。内墙选择240mm砖墙双面抹灰的结构。为了减少冬季的冷风渗透和考虑到装修的标准,选择推拉铝窗作为外窗。外窗的空气渗透性能等级为I级。 4 采暖热负荷计算 对于本办公楼的热负荷计算只考虑围护结构传热的耗热量和冷风渗透引起的耗热量,人员、灯光等得热作为有利因素暂不考虑在热负荷计算当中。 y e w n t t t R ? + =? ? ) ( min α

阻性消声器的设计与消声量计算方式

阻性消声器的设计 (1)确定消声量 根据法规、标准及声源确定消声器所需的消声量。在大多数情况下,消声量是以A计权声级计算。参照相应的NR曲线,确定各倍频带或1/3倍频带需要的消声量。 (2)选定消声器的结构形式 根据消声器的流量和允许的流速大小(一般情况下,流速控制决定于阻力要求和消声器消声量要求),确定所需要的通流面积,然后根据通流面积的大小来选定消声器的结构形式。按照一般的常规设计,通道的当量直径小于300mm 时,可选用单通道直管式;当通道当量直径大于300mm而小于500mm时,应在通道中加设吸声层或吸声芯,消声器的有效通流面积要扣除吸声层或吸声芯所占面积,以避免由于流速增加而引起的不良影响;当直径大于500mm时,当考虑采用片式、蜂窝式等其他形式的消声器。 (3)选用吸声材料 吸声材料声学性能的好坏是决定消声器声学性能的重要因素。除首先考虑其声学性能外,还需考虑消声器的实际使用条件。在高温、潮湿、有腐蚀气体等特殊环境中使用的消声器,应考虑吸声材料的耐热、防潮、抗腐蚀性能。 (4)决定消声器长度 在通道截面确定后,增加消声器的长度可以提高消声量。消声器的长度主要根据声源强度和具体的降噪要求决定,还应注意现场有限空间所允许的安装尺寸。 (5)选择吸声材料的护面结构 由于消声器中一般要通过具有一定流速的气流,所以必须采用护面结构固定

和保护吸声材料。 XW-Ⅲ型.Ⅳ型微穿孔板消声器 XW-Ⅲ型.Ⅳ型微穿孔板消声器为圆形。其中XW-Ⅲ型是单空腔结构,XW-Ⅳ型是双空腔结构。 XW-Ⅲ型消声量为 15-20dB(A), XW-Ⅳ型消声量为20-25dB(A)。XW-Ⅲ型.Ⅳ型消声器压力损失10-40Pa(风速5-15m/s)。有效长度L=2m,安装长度L1=2.16m。 XW-Ⅲ型微穿孔板消声器结构外形图 XW-Ⅳ型微穿孔板消声器结构外形图 2 150 350 450 540 3 200 400 500 890 4 250 450 550 1400 5 300 540 640 1850 6 350 620 720 2880 7 400 700 800 3590 8 450 750 850 4550 9 500 820 920 5620 10 550 870 970 7110 11 600 1000 1100 8100 12 650 1080 1180 9000

相关主题
文本预览
相关文档 最新文档