当前位置:文档之家› 双柱设基础梁之基础计算程序兼计算书

双柱设基础梁之基础计算程序兼计算书

双柱设基础梁之基础计算程序兼计算书

塔吊格构柱计算书2

塔吊格构式基础计算书 本计算书主要依据本工程地质勘察报告,塔吊使用说明书、《钢结构设计规范》(GB50017-2003)、《钢结构设计手册》(第三版)、《建筑结构静力计算手册》(第二版)、《结构荷载规范》(GB5009-2001)、《混凝土结构设计规范》(GB50010-2002)、《建筑桩基技术规范》(JGJ94-2008)、《建筑地基基础设计规范》(GB50007-2002)等编制。 基本参数 1、塔吊基本参数 塔吊型号:QTZ70(JL5613);标准节长度b:2.8m; 塔吊自重Gt:852.6kN;最大起重荷载Q:30kN; 塔吊起升高度H:120m;塔身宽度B: 1.758m; 2、格构柱基本参数 格构柱计算长度lo:12.7m;格构柱缀件类型:缀板; 格构柱缀件节间长度a1:0.4m;格构柱分肢材料类型:L140x14; 格构柱基础缀件节间长度a2:0.4m;格构柱钢板缀件参数:宽360mm,厚14mm; 格构柱截面宽度b1:0.4m; 3、基础参数 桩中心距a:3.9m;桩直径d:0.8m; 桩入土深度l:22m;桩型与工艺:泥浆护壁钻(冲)孔灌注桩; 桩混凝土等级:C35;桩钢筋型号:HRB335; 桩钢筋直径:14mm; 承台宽度Bc:5.5m;承台厚度h:1.4m; 承台混凝土等级为:C35;承台钢筋等级:HRB400; 承台钢筋直径:25;承台保护层厚度:50mm; 承台箍筋间距:200mm;

4、塔吊计算状态参数 地面粗糙类别:B类城市郊区;风荷载高度变化系数:2.38; 主弦杆材料:角钢/方钢;主弦杆宽度c:160mm; 非工作状态: 所处城市:天津市滨海新区,基本风压ω0:0.3 kN/m2; 额定起重力矩Me:0kN·m;基础所受水平力P:80kN; 塔吊倾覆力矩M:1930kN·m; 工作状态: 所处城市:天津市滨海新区,基本风压ω0:0.3 kN/m2,额定起重力矩Me:756kN·m;基础所受水平力P:50kN; 塔吊倾覆力矩M:1720kN·m; 非工作状态下荷载计算 一、塔吊受力计算 1、塔吊竖向力计算 承台自重:G c=25×Bc×Bc×h=2.5×5.50×5.50×1.40×10=1058.75kN;作用在基础上的垂直力:F k=Gt+Gc=852.60+1058.75=1911.35kN; 2、塔吊倾覆力矩 总的最大弯矩值M kmax=1930.00kN·m; 3、塔吊水平力计算 挡风系数计算: φ = (3B+2b+(4B2+b2)1/2c/Bb) 挡风系数Φ=0.50; 水平力:V k=ω×B×H×Φ+P=0.3×1.758×120.00×0.50+80.00=111.644kN;4、每根格构柱的受力计算

塔吊天然基础的计算书(pkpm计算)

塔吊天然基础的计算书依据《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2009)。 一. 参数信息 二. 荷载计算 1. 自重荷载及起重荷载 1) 塔机自重标准值 F k1=1274.21kN 2) 基础以及覆土自重标准值 G k=5×5×(1.45×25+2×17)=1756.25kN 3) 起重荷载标准值 F qk=58.8kN 2. 风荷载计算

1) 工作状态下塔机塔身截面对角线方向所受风荷载标准值 a. 塔机所受风均布线荷载标准值 (Wo=0.2kN/m2) =0.8×1.77×1.95×0.99×0.2=0.55kN/m2 =1.2×0.55×0.35×1.6=0.37kN/m b. 塔机所受风荷载水平合力标准值 F vk=q sk×H=0.37×135=49.60kN c. 基础顶面风荷载产生的力矩标准值 M sk=0.5F vk×H=0.5×49.60×135=3347.88kN.m 2) 非工作状态下塔机塔身截面对角线方向所受风荷载标准值 a. 塔机所受风均布线荷载标准值 (本地区 Wo=0.30kN/m2) =0.8×1.81×1.95×0.99×0.3=0.84kN/m2 =1.2×0.84×0.35×1.6=0.56kN/m b. 塔机所受风荷载水平合力标准值 F vk=q sk×H=0.56×135=76.08kN c. 基础顶面风荷载产生的力矩标准值 M sk=0.5F vk×H=0.5×76.08×135=5135.31kN.m 3. 塔机的倾覆力矩 工作状态下,标准组合的倾覆力矩标准值 M k=-1552+0.9×(850.56+3347.88)=2226.60kN.m 非工作状态下,标准组合的倾覆力矩标准值 M k=-1552+5135.31=3583.31kN.m 三. 地基承载力计算 依据《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2009)第4.1.3条承载力计算。

某框架结构柱下条形基础设计讲解

某框架结构柱下条形基础设计(倒梁法) 一、设计资料 1、某建筑物为7层框架结构,框架为三跨的横向承重框架,每跨跨度为7.2m ;边柱传至基础顶部的荷载标准值和设计值分别为:Fk=2665KN 、Mk=572KN ?M 、Vk=146KN ,F=3331KN 、M=715KN ?M 、V=182KN ;中柱传至基础顶部的荷载标准值和设计值分别为:Fk=4231KN 、Mk=481KN ?M 、Vk=165KN ,F=5289KN 、M=601KN ?M 、V=206KN 。 2、根据现场观察描述,原位测试分析及室内试验结果,整个勘察范围内场地地层主要由粘性土、粉土及粉砂组成,根据土的结构及物理力学性质共分为7层,具体层位及工程特性见附表。勘察钻孔完成后统一测量了各钻孔的地下水位,水位埋深平均值为0.9m ,本地下水对混凝土无腐蚀性,对钢筋混凝土中的钢筋无腐蚀性。 3、根据地质资料,确定条基埋深d =1.9m ; 二、内力计算 1、基础梁高度的确定 取h =1.5m 符合GB50007-2002 8.3.1柱下条形基础梁的高度宜为柱距的 11 ~48 的规定。 2、条基端部外伸长度的确定 据GB50007-2002 8.3.1第2条规定外伸长度宜为第一跨的0.25倍考虑到柱端存在弯矩及其方向左侧延伸0.250.257.2 1.8l m m =?= 为使荷载形心与基底形心重合,右端延伸长度为ef l ,ef l 计算过程如下:

a . 确定荷载合力到E点的距离 o x: 333137.2528927.271526012182 1.52206 1.52 3331252892 o x ??+??-?-?-??-??= ?+? 得 182396 10.58 17240 o x m == b . 右端延伸长度为 ef l: (1.8 2.77.2210.58)2 1.87.23 2.24 ef l m =++?-?--?= 3、地基净反力 j p的计算。 对E点取合力距即:0 E M ∑=, 2 2.24 2.2433317.2352897.23(25.64 2.24)0.5(71526012)(1821.522061.52)0 2 j j p p ??+??+??--?-?+?-??+??= 即271.2712182396672.3751 j j KN p p m =?= 4、确定计算简图 5、采用结构力学求解器计算在地基净反力Pj作用下基础梁的内力图 A B C D E F 1089.25 1804.25 2868.92 -2020.41 3469.922946.05 -1149.01 3547.05 971.85 -2180.78 1686.85 弯矩图(KN·M)

格构柱计算计算书

格构柱计算计算书 阳江项目工程;工程建设地点:;属于结构;地上0层;地下0层;建筑高度:0m;标准层层高:0m ;总建筑面积:0平方米;总工期:0天。 本工程由投资建设,设计,地质勘察,监理,组织施工;由担任项目经理,担任技术负责人。 格构柱肢体采用双肢柱,格构柱的计算长度lox= 1 m,loy= 1 m。 (1)y轴的整体稳定验算 轴心受压构件的稳定性按下式验算: σ = N/φA ≤ [f] 型钢采用双肢 5号槽钢,A=13.86 cm2, i y=1.94 cm; λy=l oy / i y=1×102 / 1.94=51.546 ; λy≤[λ]=150,长细比设置满足要求; 查得φy= 0.847 ; σ=50×103/(0.847×13.86 ×102)= 42.592 N/mm ; 格构柱y轴稳定性验算σ= 42.592 N/mm≤钢材抗压强度设计值 215 N/mm,满足要求; (2)x轴的整体稳定验算 x轴为虚轴,对于虚轴,长细比取换算长细比。换算长细比λox按下式计算:

λox= (λx2 + 27A/A1x)1/2 单个槽钢的截面数据: z o=1.35 cm,I1 = 8.3 cm4,A o=6.93 cm2,i1 = 1.1 cm; 整个截面对x轴的数据: Ix=2×(8.3+ 6.93×(1.6/2- 1.35)2)= 20.793 cm4; ix= (20.793 /13.86)1/2= 1.225 cm; λx=l ox / i x=1×102 / 1.225=81.644 ; λox=[81.6442+(27×13.86 / 0.5)]1/2=86.106 ; λox≤[λ]=150,长细比设置满足要求; 查得φy= 0.648 ; σ=50×103/(0.648×13.86 ×102)= 55.671 N/mm ; 格构柱x轴稳定性验算σ= 55.671 N/mm≤钢材抗压强度设计值 215 N/mm,满足要求;

条形基础计算书

A 轴柱下条形基础设计 基础布置及尺寸确定 本设计采用天然地基,地质资料如下表所示,本人计算A 轴条形基础 表9-1 地基土层物理力学指标综合表 表9-2 A 轴柱内力(恒载+活载标准值)统计 ∑=?+?=m kN M k · 32.61271.6558.9 ∑=?+?=kN N k 75.3335285.364521.521 ∑-=?+?-=kN V k 11.39)228.4511.6( 底层墙重: KN l g k 89.15964.21.245.06285.04.21.25.765.4812.7=???+????-??=∑ (1)条形基础沿三条纵向柱列分别设置。 (2)条形基础两端各伸出柱边外:

m m l 150.1,125.15.44 1 410取=?=,基础总长:6×+2×=29.3m (3)基础高度 1125mm ~75041~61=?? ? ??=l h ,取h=800 mm (4)基础梁宽 mm b 500100400100=+=+=柱宽 (5)基础埋深 m d 7.18.05.04.0=++= (6)基础底宽 ()2/59.127 .145 .0101925.019)5.02/4.0(18m kN r m =?-+?++?= 查规范,因为 e>,得0=b η,0.1=d η 2/11.1455.07.159.120.1130)5.0()3(m kN d r b r f f m d b ak a =-? ?+=-+-+=)(ηη ()() m d r f l N B G a k 03.145.01025.12011.1453.2989.15975.3335=?-?-?+= -+≥∑底层墙重 取B=2m 基础承载力验算 9.2.1 A 轴持力层承载力验算 基底平均压力: 2 2/11.145/80.8945 .01025.12023.2989.15975.3335m kN f m kN A G F p a k k k =<=?+?+?+=+= ()()2 22/13.1742.1/481.1002 3.298.011.3932.61680.896m kN f m kN lB h V M A G F w M A G F p a k k k k k k k kMax =<=??+?+ =+++=++= ∑∑ 综上,持力层地基承载力满足。 9.3 A 轴基础梁设计

柱下条形基础计算书

1. 工程概况及设计资料 某柱下条形基础,所受外荷载大小及位置如图1.1所示。柱采用C40混凝土,截面尺寸800800mm mm ?。地基为均质粘性土,地基承载力特征值160ak a f KP =,土的重度3 19/KN m γ=。地基基础等级:乙级。地下防水等级:二级。 图1.1 2. 基础宽度计算 基础埋深定为2m 。总竖向荷载值 1000180014004000ki N KN KN KN KN =++=∑ 180********.5 5.334000N KN m KN m e m KN ?+?= = 假设两端向外延伸总长度为3m ,则 4.56313.5L m m m m =++= 地基底面以上土的加权重度3 19/m KN m γ= 查得《地基规范》中对于粘性土: 1.6d η=,0.3b η=

持力层经深度修正后的地基承载力特征值 3(0.5)160 1.619/(20.5)205.6a ak d m a a f f d m KP KN m m m KP ηγ=+-=+??-=()()3 4000 1.789205.620/ 2.013.5ki a G a N KN b m f d l KP KN m m m γ≥ = =--??∑取 2.0b m = 3. 两端外伸长度验算即地基承载力验算 320/ 2.013.5 2.01044k G KN m m m m KN =???= 400010445044ki k N G KN KN KN +=+=∑ 80ki M KN m =?∑ 800.0155244N G KN m e m KN +?= = 113.5 5.445 1.3052l m m ??=-= ??? 213.5 5.055 1.6952l m m ??=-= ??? 5244194.22205.62.013.5ki k k a a a N G KN p KP f KP bl m m +== =<=?∑ ,max ,min 6195.58 1.2246.7524460.015(1)(1)2.013.513.5192.860 ki k k N G a a a k a N G p e KP f KP KN p bl l m m KP ++>=?= ± =±=?>∑

某框架结构柱下条形基础设计

某框架结构柱下条形基础设计

————————————————————————————————作者:————————————————————————————————日期: ?

某框架结构柱下条形基础设计(倒梁法) 一、设计资料 1、某建筑物为7层框架结构,框架为三跨的横向承重框架,每跨跨度为7.2m ;边柱传至基础顶部的荷载标准值和设计值分别为:Fk =2665KN 、Mk=572K N?M、Vk=146KN ,F=3331KN 、M=715KN ?M、V=182KN ;中柱传至基础顶部的荷载标准值和设计值分别为:F k=4231KN 、Mk=481K N?M 、Vk=165KN,F=5289KN 、M=601KN ?M 、V=206KN 。 2、根据现场观察描述,原位测试分析及室内试验结果,整个勘察范围内场地地层主要由粘性土、粉土及粉砂组成,根据土的结构及物理力学性质共分为7层,具体层位及工程特性见附表。勘察钻孔完成后统一测量了各钻孔的地下水位,水位埋深平均值为0.9m,本地下水对混凝土无腐蚀性,对钢筋混凝土中的钢筋无腐蚀性。 3、根据地质资料,确定条基埋深d=1.9m; 二、内力计算 1、基础梁高度的确定 取h=1.5m 符合G B50007-2002 8.3.1柱下条形基础梁的高度宜为柱距的 11 ~48 的规定。 2、条基端部外伸长度的确定 据GB50007-2002 8.3.1第2条规定外伸长度宜为第一跨的0.25倍考虑到柱端存在弯矩及其方向左侧延伸0.250.257.2 1.8l m m =?= 为使荷载形心与基底形心重合,右端延伸长度为ef l ,ef l 计算过程如下: a . 确定荷载合力到E 点的距离o x :

柱下条形基础计算方法与步骤

柱下条形基础简化计算及其设计步骤 提要:本文对常用的静力平衡法和倒梁法的近似计算及其各自的适用范围和相互关系作了一些叙述,提出了自己的一些看法和具体步骤,并附有柱下条基构造表,目的是使基础设计工作条理清楚,方法得当,既简化好用,又比较经济合理。 一、适用范围: 柱下条形基础通常在下列情况下采用: 1、多层与高层房屋无地下室或有地下室但无防水要求,当上部结构传下的荷载较大,地基的承载力较低,采用各种形式的单独基础不能满足设计要求时。 2、当采用单独基础所需底面积由于邻近建筑物或构筑物基础的限制而无法扩展时。 3、地基土质变化较大或局部有不均匀的软弱地基,需作地基处理时。 4、各柱荷载差异过大,采用单独基础会引起基础之间较大的相对沉降差异时。 5、需要增加基础的刚度以减少地基变形,防止过大的不均匀沉降量时。 其简化计算有静力平衡法和倒梁法两种,它们是一种不考虑地基与上部结构变形协调条件的实用简化法,也即当柱荷载比较均匀,柱距相差不大,基础与地基相对刚度较 件下梁的计算。 二、计算图式 1、上部结构荷载和基础剖面图 2、静力平衡法计算图式 3. 倒梁法计算图式 三、设计前的准备工作 1. 确定合理的基础长度 为使计算方便,并使各柱下弯矩和跨中弯矩趋于平衡,以利于节约配筋,一般将偏心地基净反力(即梯形分布净反力)化成均布,需要求得一个合理的基础长度.当然也可直接根据梯形分布的净反力和任意定的基础长度计算基础. 基础的纵向地基净反力为: j j i p F bL M bL min max =±∑∑62

式中 P jmax ,P jmin —基础纵向边缘处最大和最小净反力设计值. ∑F i —作用于基础上各竖向荷载合力设计值(不包括基础自重和其上覆土重,但包括其他局部均布q i ). ∑M—作用于基础上各竖向荷载(F i ,q i ),纵向弯矩(M i )对基础底板纵向中点产生的总弯矩设计值. L —基础长度,如上述. B —基础底板宽度.先假定,后按第2条文验算. 当P jmax 与P jmin 相差不大于10%,可近似地取其平均值作为均布地基反力,直接定出基础悬臂长度a 1=a 2(按构造要求为第一跨距的1/4~1/3),很方便就确定了合理的基础长度L ;如果P jmax 与P jmin 相差较大时,常通过调整一端悬臂长度a 1或a 2,使合力∑F i 的重心恰为基础的形心(工程中允许两者误差不大于基础长度的3%),从而使∑M 为零,反力从梯形分布变为均布,求a 1和a 2的过程如下: 先求合力的作用点距左起第一柱的距离: 式中, ∑M i —作用于基础上各纵向弯矩设计值之和. x i —各竖向荷载F i 距F 1的距离. 当x≥a/2时,基础长度L=2(x+a 1), a 2=L-a-a 1. 当x

单管塔施工组织设计方案方案 单根抱杆施工

单管塔施工组织设计 一、工程简况 1、工程名称:吴兴太湖兰庭 2、工程概述:15M单管塔 二、施工技术准备 甲方提供移动通信铁塔工艺要求,委托有相关资质的入围设计院设计图纸,设计院根据工艺要求及地质勘探报告,设计出符合工艺要求的基础及铁塔图纸。 1、相关设计、验收规范 (1)《建筑结构荷载规范》(GB50009-2001)(2006年版) (2)《钢结构设计规范》(GB50017-2003) (3)《高耸结构设计规范》(GB50135-2006) (4)《移动通信工程钢塔桅结构设计规范》(YD/T5131-2005) (5)《建筑抗震设计规范》(GB50011-2001)及(2008修订条文) (6)《建筑钢结构焊接技术规程》(JGJ81-2002) (7)《钢结构高强度螺栓连接的设计、施工及验收规程》(JGJ82-91) (8)《微波铁塔技术条件》(YD/1757-95) (9)《移动通信工程钢塔桅结构验收规范》(YD/T5132-2005) (10)《塔桅钢结构工程施工质量验收规程》(CECS 80∶2006) (11)《钢结构工程施工质量验收规范》(GB50205-2001) (12)《电力建设安全工作规程》 DL5009.2-94 2、施工图纸审核 根据国家标准和技术规范及施工现场的具体情况,组织工程技术人员对设计图纸中的要求和技术问题进行分析,提出具体的工作安排,结合加工与安装实际情况,对施工图纸中不清楚的或存在的问题及时向设计方提出,以及时制定解决、处理方案。 3、技术交底 根据施工工期、工程特点和施工图纸技术要求对施工中的关键环节、控制要点进行技术交底,其内容应包含以下内容: (1)如因材料代替、施工安装困难、工程变更、基础偏差等引起加工图纸变更。 (2)采用新塔型、新工艺、新技术,以及新材料的运用。 (3)焊接要求、焊接方法:按已评定合格成熟的焊接工艺进行,采用埋弧自动焊。 (4)本施工方案的实施及要求。 4、施工材料准备 必须对进厂的各种原材料的品种、规格和数量认真进行检查验收,并分类堆放,并做好标记。各类物资应有对应的出厂合格证或其它可靠的材质证明书。对连接用材料(焊材、螺栓等)应具有.质量合格说明书且应符合现行国家标准的规定及设计文件的要求。 5、钢结构的制作 1)施工放样、划线 电脑放样是钢结构制作的第一道工序,为保证制作后的外形尺寸达到规程要求,制作前对钢板进行放样检查,长度、宽度的偏差为0.5mm,对角线偏差为1.0mm。必须用同一把钢尺测量一件钢板,且不允许用同一线段分两段测量尺寸叠加计算。 为保证尺寸,对钢板在轧制中产生的误差,在施工中要对钢板的轧制边进行修正处理。钢板

恒智天成安全计算格构柱计算计算书

恒智天成安全计算格构柱计算计算书 格构柱肢体采用双肢柱,格构柱的计算长度lox= 1.00 m,loy= 1.00 m。 (1)y轴的整体稳定验算 轴心受压构件的稳定性按下式验算: 型钢采用双肢 5号槽钢,A=13.86 cm2, i y=1.10 cm; λy=l oy / i y=1.00×102 / 1.10=90.909 ; λy≤[λ]=150,长细比设置满足要求; 查得φy= 0.615; σ=50.00×103/(0.615×13.86 ×102)= 58.693 N/mm ; 格构柱y轴稳定性验算σ= 58.693 N/mm≤钢材抗压强度设计值 215 N/mm,满足要求; (2)x轴的整体稳定验算 x轴为虚轴,对于虚轴,长细比取换算长细比。换算长细比λox按下式计算: 单个槽钢的截面数据:

z o=1.35 cm,I1 = 26 cm4,A o=6.93 cm2; 整个截面对x轴的数据: Ix=2×(26+ 6.93×(1.6/2- 1.35)2)= 56.193 cm4; ix= (56.193 /13.86)1/2= 2.014 cm; λx=l ox / i x=1×102 / 2.014=49.664 ; λox=[49.6642+(27×13.86 / 0.5)]1/2=56.701 ; λo x≤[λ]=150,长细比设置满足要求; 查得φx= 0.824; σ=50×103/(0.824×13.860 ×102)= 43.754 N/mm ; 格构柱x轴稳定性验算σ= 43.754 N/mm≤钢材抗压强度设计值 215 N/mm,满足要求;恒智天成安全计算软件

单管塔-检验指导书

钢结构单管塔检验作业指导书 检验依据:钢结构单管塔通信技术规程CECS236:2008 检验工具:10米钢卷尺、倾角仪、测厚仪、焊检尺、经纬仪 一、钢结构单管塔材料要求 1、钢板、型钢、钢管:力学性能应满足《碳素结构钢》GB700-2006的要求。 2、所有钢材、连接材料(螺栓、焊条、焊丝、焊剂和防腐材料)应符合现行国家标准、设计图纸的要求,应具有出厂质量合格证明书、标识清楚。 3、所有钢材(钢板、型钢、钢管)厚度的负偏差不应大于板厚的10%且不能超过0.5mm。 4、钢材的表面不得有裂纹、折叠、结疤、夹渣。如钢材(钢板、型钢、钢管)表面有锈蚀、麻点或划痕等缺陷时,其深度不应大于钢材厚度负偏差值的1/2,且累计误差在允许负偏差内。 5、单管塔如出现钢材或辅助材料混批、对质量有疑义、使用国外进口钢材或设计有明确要求时,应进行材料抽样复验。复验内容应包括力学性能试验、化学成分分析。复验结果应符合现行国家标准和设计要求。 6、紧固件热浸镀锌。镀锌后机械性能应符合《紧固件机械性能》GB/T 3098.1~GB/T 3098.17,GB/T 3098的规定。热镀锌螺栓应保证螺母旋进方便、交货时配套的螺母拧到根部。

7、单管塔选用的钢材材质应符合现行国家标准《钢结构设计规范》GB 50017的要求。 8、单管塔结构采用热浸锌作长效防腐蚀处理。对于厚度不小于6mm 的构件,锌层平均厚度不小于86μm;对于厚度小于6mm的构件,锌层平均厚度不小于65μm。 二、单管塔制作要求 (一)一般规定 1 单管塔的制作单位应有完善的质量管理体系和相应的生产许可资质。 2 制作前应根据结构设计施工图编制设计施工详图,如详图设计需对原结构设计进行修改,应取得设计单位以及建设单位的同意,并签署设计更改文件。 3 每道生产工序均应按本规程进行质量控制,每道工序完成后应由有相应资质的检验人员进行检查。 4 验收前应自检合格,工程的观感质量应由验收人员通过现场检查后共同确认。 5 单管塔制作过程中应采用经计量检定、在时效内校准合格的计量器具。 (二)下料要求 1 钢材切割面或剪切面应无裂纹、夹渣、分层和大于1mm的缺棱,

计算书大师软件使用教程砼冲切承载力计算

“计算书大师计算书大师””软件使用教程软件使用教程——————砼冲切计算砼冲切计算 1、砼抗冲切承载力计算功能 1.1开发目的 砼抗冲切承载力是路桥施工中经常要计算的一个项目,比如砼搅拌站水泥罐支腿对基础砼的冲切,桩基对承台砼的冲切等等,为了快速、方便、准备地进行该项计算,并生成word 版本计算书,特开发该项功能以减轻技术人员的劳动强度。 1.2软件界面 如下图所示 1.3软件界面说明 计算书大师软件中砼冲切计算根据《混凝土结构设计规范》(GB20010-2002)7.7受冲切承载力计算中的相关规定和公式进行计算。为了更好地理解程序各参数的含义建议读者阅读该规范!该规范的电子版将随软件一同赠给软件使用者! 程序中各参数输入框均是为了计算获得相关参数的需要。截面中各参数的含义为: ●局部荷载设计值:Fl ——局部荷载设计值或集中反力设计值; ●砼强度等级:通过组合框选择; 强度取值根据《公路钢筋砼和预应力砼桥涵设计规范》(JTG D62-2004)中

的表格3.1.4取值。 ●临界截面周长:对应规范中的Um 。 ●临界截面2个方向有效预压应力σpc,m。 ●长宽比βs,含义如下。当为圆形时,程序默认取2,不必输入。 ●截面高度h——板厚或基础厚。 两个配筋方向截面有效高度h0=h-as(m) 其中h0,h,as的含义如下图所示。

●板柱结构中柱类型的影响系数-αs: 1.4计算事例 某喷射砼搅拌站有一个100t水泥罐,罐自重40t,共4个支腿,支腿下钢板0.6×0.6m,储料罐基础采用砼扩大基础,材料为C20砼,长3.27m,宽为3.27m,浇注深度为1m,基础底面积A=3.27×3.27=10.69m2 。底层钢筋距基础底5cm。 其中100t料罐基基础尺寸如下图所示:

柱下条形基础内力计算(zhang)

一、柱下条形基础的计算 1. 倒梁法 倒梁法假定上部结构是刚性的,柱子之间不存在差异沉降,柱脚可以作为基础的不动铰支座,因而可以用倒连续梁的方法分析基础内力。这种假定在地基和荷载都比较均匀、上部结构刚度较大时才能成立。此外,要求梁截面高度大于1/6柱距,以符合地基反力呈直线分布的刚度要求。 倒梁法的内力计算步骤如下: (1).按柱的平面布置和构造要求确定条形基础长度L ,根据地基承载力特征值确定基础 底面积A ,以及基础宽度B=A/L 和截面抵抗矩6/2 BL W =。 (2).按直线分布假设计算基底净反力n p : min max n n p p W M A F i i ∑±∑= (4-12) 式中 ∑i F 、∑i M ?相应于荷载效应标准组合时,上部结构作用在条形基础上的竖向力(不 包括基础和回填土的重力)总和,以及对条形基础形心的力矩值总和。当为轴心荷载时, n n n p p p ==min max 。 (3).确定柱下条形基础的计算简图如图4-13,系为将柱脚作为不动铰支座的倒连续梁。 基底净线反力 B p n 和除掉柱轴力以外的其它外荷载(柱传下的力矩、柱间分布荷载等)是 作用在梁上的荷载。 (4).进行连续梁分析,可用弯矩分配法、连续梁系数表等方法。 (5).按求得的内力进行梁截面设计。 (6).翼板的内力和截面设计与扩展式基础相同。 倒连续梁分析得到的支座反力与柱轴力一般并不相等,这可以理解为上部结构的刚度对基础整体挠曲的抑制和调整作用使柱荷载的分布均匀化,也反映了倒梁法计算得到的支座反力与基底压力不平衡的缺点。为此提出了“基底反力局部调整法”,即将不平衡力(柱轴力与支座反力的差值)均匀分布在支座附近的局部范围(一般取1/3的柱跨)上再进行连续梁分析,将结果叠加到原先的分析结果上,如此逐次调整直到不平衡力基本消除,从而得到梁的最终内力分布。由图4-14,连续梁共有n 个支座,第i 支座的柱轴力为i F ,支座反力为i R ,左右柱跨分别为1-i l 和i l ,则调整分析的连续梁局部分布荷载强度i q 为: 边支座)1(n i i ==或 3 /)(1)1(0) (1)(1)(1n n n n n l l R F q +-= + (4-13a ) 中间支座)1(n i << i i i i i l l R F q +-= -1)(3 (4-13b ) 当i q 为负值时,表明该局部分布荷载应是拉荷载,例如图4-14中的2q 和3q 。 倒梁法只进行了基础的局部弯曲计算,而未考虑基础的整体弯曲。实际上在荷载分布和地基都比较均匀的情况下,地基往往发生正向挠曲,在上部结构和基础刚度的作用下,边柱和角柱的荷载会增加,内柱则相应卸荷,于是条形基础端部的基底反力要大于按直线分布假设计算得到的基底反力值。为此,较简单的做法是将边跨的跨中和第一内支座的弯矩值按计算值再增加20%。

柱下条形基础计算简化及步骤

柱下条形基础简化计算及其设计步骤 摘要:本文对常用的静力平衡法和倒梁法的近似计算及其各自的适用范围和相互关系作了一些叙述,提出了自己的一些看法和具体步骤,并附有柱下条基构造表,目的是使基础设计工作条理清楚,方法得当,既简化好用,又比较经济合理. 关键字:柱下条形基础简化计算设计步骤 一.适用范围: 柱下条形基础通常在下列情况下采用: 1.多层与高层房屋无地下室或有地下室但无防水要求,当上部结构传下的荷载较大,地基的承载力较低,采用各种形式的单独基础不能满足 设计要求时. 2.当采用单独基础所需底面积由于邻近建筑物或构筑物基础的限制而无法扩展时. 3.地基土质变化较大或局部有不均匀的软弱地基,需作地基处理时. 4.各柱荷载差异过大,采用单独基础会引起基础之间较大的相对沉降差异时. 5.需要增加基础的刚度以减少地基变形,防止过大的不均匀沉降量时. 其简化计算有静力平衡法和倒梁法两种,它们是一种不考虑地基与上部结构变形协调条件的实用简化法,也即当柱荷载比较均匀,柱距相差不大,基础与地基相对刚度较大,以致可忽略柱下不均匀沉降时,假定基底反力按线性分布,仅进行满足静力平衡条件下梁的计算. 二.计算图式 1.上部结构荷载和基础剖面图 2.静力平衡法计算图式 3.倒梁法计算图式

三.设计前的准备工作 在采用上述两种方法计算基础梁之前,需要做好如下工作: 1.确定合理的基础长度 为使计算方便,并使各柱下弯矩和跨中弯矩趋于平衡,以利于节约配筋,一般将偏心地基净反力(即梯形分布净反力)化成均布,需要求得一个合理的基础长度.当然也可直接根据梯形分布的净反力和任意定的基础长度计算基础.基础的纵向地基净反力为: 式中Pjmax,Pjmin—基础纵向边缘处最大和最小净反力设计值. ∑Fi—作用于基础上各竖向荷载合力设计值(不包括基础自重和其上覆土重,但包括其它局部均布qi). ∑M—作用于基础上各竖向荷载(Fi,qi),纵向弯矩(Mi)对基础底板纵向中点产生的总弯矩设计值. L—基础长度,如上述. B—基础底板宽度.先假定,后按第2条文验算. 当Pjmax与Pjmin相差不大于10%,可近似地取其平均值作为均布地基反力,直接定出基础悬臂长度a1=a2(按构造要求为第一跨距的1/4~1/3),很方便就确定了合理的基础长度L;如果Pjmax与Pjmin相差较大时,常通过调整一端悬臂长度a1或a2,使合力∑Fi的重心恰为基础的形心(工程中允许两者误差不大于基础长度的3%),从而使∑M为零,反力从梯形分布变为均布,求a1和a2的过程如下: 先求合力的作用点距左起第一柱的距离: 式中,∑Mi—作用于基础上各纵向弯矩设计值之和. xi—各竖向荷载Fi距F1的距离. 当x≥a/2时,基础长度L=2(X+a1),a2=L-a-a1.

柱下条形基础设计计算书

柱下条形基础课程设计计算书 由平面图和荷载可知A 、D 轴的基础受力情况相同,B 、C 轴的基础受力情况相同。所以在计算时,只需对A 、B 轴的条形基础进行计算。 一、A 、D 轴基础尺寸设计 1、确定基础底面尺寸并验算地基承载力 由已知的地基条件,地下水位埋深12m ,假设基础埋深1.55m (基础底面到室外地面的距离),持力层为粘土层。 (1)求修正后的地基承载力特征值 查得0=b η,0.1=d η, 3180.518 1.05 18/1.55 m kN m γ?+?= = (0.5)160 1.018(1.550.5)178.9a ak d m f f d kPa ηγ=+-=+??-= (2)初步确定基础宽度 条形基础轴线方向不产生整体偏心距,设条形基础两端均向外伸出0.25 5.4 1.35m ?= 基础总长57 5.40.25259.7l m =+??= 则基础底面在单位1m 长度内受平均压力 1864.73 282.536.6k F kN = = 则基础底面在单位1m 长度内受平均弯矩 83.50 12.656.6 k M kN m = =? 282.53 1.87178.918 1.55 k a G F b m f d γ≥ ==--? 考虑偏心荷载的作用,取b=2.5m 。 (3)计算基底压力并验算 基底处的总竖向荷载为: 282.5318 1.0 1.55 2.5352.28k k F G kN +=+???= 基底总弯矩为:83.50k M kN m =? 偏心距为:83.50 2.5 0.2370.417352.2866 k k k M l e m m F G = ==<==+ 基底平均压力为:352.28 140.9178.92.5 1.0 k k k a F G p kPa f kPa A +===<=? 基底最大压力为: max 660.2371140.91201.04 1.2214.682.5k k a e p p kPa f kPa l ????? =+=?+=<= ? ???? ?满 足条件。

格构柱计算

格构式轴心受压构件 6.7.1 格构式轴心受压构件绕实轴的整体稳定 格构式受压构件也称为格构式柱(latticed columns),其分肢通常采用槽钢和工字钢,构件截面具有对称轴(图6.1.1)。当构件轴心受压丧失整体稳定时,不大可能发生扭转屈曲和弯扭屈曲,往往发 生绕截面主轴的弯曲屈曲。因此计算格构式轴心受压构件的整体稳定时,只需计算绕截面实轴和虚轴抵抗弯曲屈曲的能力。 格构式轴心受压构件绕实轴的弯曲屈曲情况与实腹式轴心受压构件没有区别,因此其整体稳定计算也相同,可以采用式(6.4.2)按b类截面进行计算。 6.7.2 格构式轴心受压构件绕虚轴的整体稳定 1.双肢格构式轴心受压构件 实腹式轴心受压构件在弯曲屈曲时,剪切变形影响很小,对构件临界力的降低不到1%,可以忽略不计。格构式轴心受压构件绕虚轴弯曲屈曲时,由于两个分肢不是实体相连,连接两分肢的缀件的抗剪刚度比实腹式构件的腹板弱,构件在微弯平衡状态下,除弯曲变形外,还需要考虑剪切变形的影响,因此稳定承载力有所降低。根据弹性稳定理论分析,当缀件采用缀条时,两端铰接等截面格构式构件绕虚轴弯曲屈曲的临界应力为:

构式轴心受压构件(图6.1.2d) 缀条的三肢组合构件(图6.1.2d) 6.7.3 格构式轴心受压构件分肢的稳定和强度计算 格构式轴心受压构件的分肢既是组成整体截面的一部分,在缀件节点之间又是一个单独的实腹式受压构件。所以,对格构式构件除需作为整体计算其强度、刚度和稳定外,还应计算各分肢的强度、刚度和稳定,且应保证各分肢失稳不先于格构式构件整体失稳。 一、分肢稳定和强度的计算方法 分肢内力的确定

条形基础计算书

A轴柱下条形基础设计 9.1基础布置及尺寸确定 本设计采用天然地基,地质资料如下表所示,本人计算A轴条形基础 表9-1地基土层物理力学指标综合表 表9-2 A轴柱内力(恒载+活载标准值)统计 M k9.58 5 6.71 2 61.32kN m N k521.21 5 364.85 2 3335.75kN V k (6.11 5 4.28 2) 39.11kN 底层墙重: g k l 7.812 4.5 6 7.5 2.1 2.4 0.285 6 0.45 2.1 2.4 6 159.89KN (1) 条形基础沿三条纵向柱列分别设置。 (2) 条形基础两端各伸出柱边外: 1 1 — Io — 4.5 1.125m,取1.150m,基础总长:6X 4.5+2X 1.15=29.3m 4 4 (3) 基础高度

1 1 h ---------- l 750 ~ 1125mm ,取 h=800 mm 6 4 (4) 基础梁宽 b 柱宽 100 400 100 500mm (5) 基础埋深 d 0.4 0.5 0.8 1.7m (6) 基础底宽 18 (0.4/2 0.5) 19 0.25 19 10 0.45 2 r m 12.59kN/m 1.7 查规范,因为 e >0.85,得b 0, d 1.0 f a f ak b r(b 3) d r m (d 0.5) 130 1.0 12.59 (1.7 0.5) 145.11kN /m 2 厂 N k 底层墙重 3335.75 159.89 d B - 1.03m l f a r G d 29.3 145.11 20 1.25 10 0.45 取 B=2m 9.2基础承载力验算 9.2.1 A 轴持力层承载力验算 基底平均压力: 2 2 89.80kN/m f a 145.11kN/m M k F k G k 6 M k V k h 2 w A I B 2 “ "6 61.32 39.11 0.8 89.80 29.3 2 2 2 100.481kN /m 1.2 f a 174.13kN /m 综上,持力层地基承载力满足。 9.3 A 轴基础梁设计 9.3.1基础梁荷载计算 表9-3 A 轴内力(恒+活设计值)统计 P k F k G k A 3335.75 159.89 29.3 2 20 1.25 10 0.45 P kMax F k G k A

格构柱计算

塔吊桩基础的计算书 一. 参数信息 塔吊型号: QTZ63 自重(包括压重):F1=450.80kN 最大起重荷载: F2=60.00kN 塔吊倾覆力距: M=630.00kN.m 塔吊起重高度: H=101.00m 塔身宽度: B=1.80m 桩混凝土等级: C35 承台混凝土等级:C35 保护层厚度: 50mm 矩形承台边长: 4.00m 承台厚度: Hc=1.35m 承台箍筋间距: S=200mm 承台钢筋级别: Ⅱ级承台预埋件埋深:h=0.5m 承台顶面埋深: D=0.00m 桩直径: d=0.80m 桩间距: a=2.00m 桩钢筋级别: Ⅱ级 桩入土深度: 34.00 桩型与工艺: 泥浆护壁钻(冲)孔灌注桩 二. 塔吊基础承台顶面的竖向力与弯矩计算 1. 塔吊自重(包括压重)F1=450.80kN 2. 塔吊最大起重荷载F2=60.00kN 作用于桩基承台顶面的竖向力 F=F1+F2=510.80kN 塔吊的倾覆力矩 M=1.4×630.00=882.00kN.m 三. 矩形承台弯矩的计算 计算简图: 图中x轴的方向是随机变化的,设计计算时应按照倾覆力矩M最不利方向进行验算。

1. 桩顶竖向力的计算(依据《建筑桩基础技术规范》JGJ94-94的第5.1.1条) 其中 n──单桩个数,n=4; F──作用于桩基承台顶面的竖向力设计值,F=510.80kN; G──桩基承台的自重,G=25.0×Bc×Bc×Hc+20.0×Bc×Bc× D=540.00kN; M x,M y──承台底面的弯矩设计值(kN.m); x i,y i──单桩相对承台中心轴的XY方向距离(m); N i──单桩桩顶竖向力设计值(kN)。 经计算得到单桩桩顶竖向力设计值: 最大压力: N=1.2×(510.80+540.00)/4+882.00×(2.00×1.414/2)/[2×(2.00× 1.414/2)2]=627.12kN 最大拔力: N=(510.80+540.00)/4-882.00×(2.00×1.414/2)/[2×(2.00× 1.414/2)2]=-49.18kN 2. 矩形承台弯矩的计算(依据《建筑桩基础技术规范》JGJ94-94的第5.6.1条) 其中 M x1,M y1──计算截面处XY方向的弯矩设计值(kN.m); x i,y i──单桩相对承台中心轴的XY方向距离(m); N i1──扣除承台自重的单桩桩顶竖向力设计值(kN),N i1=N i-G/n。 经过计算得到弯矩设计值: 压力产生的承台弯矩: N=1.2×(510.80+540.00)/4+882.00×(2.00/2)/[4× (2.00/2)2]=535.74kN M x1=M y1=2×535.74×(1.00-0.90)=107.15kN.m 四. 矩形承台截面主筋的计算 依据《混凝土结构设计规范》(GB50010-2002)第7.2条受弯构件承载力计算。 式中1──系数,当混凝土强度不超过C50时,1取为1.0,当混凝土强度等级为C80时,

相关主题
文本预览
相关文档 最新文档