当前位置:文档之家› 雷达物位计的介绍

雷达物位计的介绍

雷达物位计的介绍
雷达物位计的介绍

1.雷达物位计产品概述

1.1 简介

KTRD80 系列传感器是先进的雷达式物位测量仪表,测量距离最大35 米,可以用于存储罐、中间缓冲罐或过程容器的物位测量,输出4...20mA 模拟信号。

1.2 应用

●采用先进的非接触式测量

●采用极其稳定的材料制造

●测量液体、固体介质的物位

●可以测量所有介电常数>1.8 的介质

●测量范围0...20m(可以扩展到35 米)

●采用两线制、回路供电的技术,供电电压和输出信号通过一根两芯电缆传输

●4...20mA 输出或数字型信号输出

●分辨率1mm

●不受噪音、蒸汽、粉尘、真空等工况影响

●不受介质密度、粘稠度和温度的变化的影响

●过程压力可达40bar

●过程温度可达250℃

1.3测量原理

高频微波脉冲通过天线系统发射并接收,雷达波以光速运行,运行时间可以通过电子部件被转换成物位信号。一种特殊的时间延伸方法可以确保极短时间内稳定和精确的测量。

即使工况比较复杂的情况下,存在虚假回波,用最新的微处理技术和调试软件也可以准确的识别出物位的回波。

1.4 输入

天线接收反射的微波脉冲并将其传输给电子线路,微处理器对此信号进行处理,识别出微脉冲在物料表面所产生的回波。正确的回波信号识别由智能软件完成,精度可达到毫米级。距离物料表面的距离D 与脉冲的时间行程T 成正比:D=C×T/2 (其中C 为光速)因空罐的距离E 已知,则物位L 为:L=E-D

1.5 输出

通过输入空罐高度E(=零点),满罐高度F(=满量程)及一些应用参数来设定,应用参数将自动使仪表适应测量环境。对应于4-20mA 输出。

2.仪表介绍:

应用:过程条件简单,腐蚀性的液体。浆料、固体

比如:污水储罐,酸碱储罐,浆料储罐,固体颗粒,小型储油罐

测量范围:20 米

过程连接:G11/2 螺纹或11/2NPT

介质温度:-40-120℃

过程压力:-1.0-3bar

重复性:±2mm

精度:< 0.1%

频率范围:6.8GHz

防爆/防护等级:Exia II CT6/IP67

信号输出:4...20mA/HART(两线)

应用:存储或过程容器腐蚀性的液体、浆料、固体

比如:水液储罐,酸碱储罐,浆料储罐,固体颗粒,小型储油罐

测量范围:20 米

过程连接:法兰

介质温度:-40-150℃

过程压力:-1.0-20bar

重复性:±2mm

精度:< 0.1%

频率范围:6.8GHz

防爆/防护等级:Exia II CT6/IP67

信号输出: 4...20mA/HART(两线)

应用:适应各种存储容器或过程计量环境,液体、浆料、固体比如:原油、轻油储罐,原煤、粉煤仓位,挥发性液体储罐,焦碳料位,浆料储罐,固体颗粒

测量范围:35 米

过程连接:法兰

过程温度:-40-250℃

过程压力:-1.0-40bar

重复性:±2mm

精度:< 0.1%

频率范围:6.8GHz

防爆/防护等级:Exia II CT6/IP67

信号输出:4...20mA/HART(两线)

3.安装指南

3.1 安装位置说明

●建议距离(1)罐体内壁至安装短管的外壁应大于罐直径的1/6;

●离罐壁最小距离为300mm;

●不能安装在入料口的上方(4)。

●不能安装在中心位置(3),如果安装在中央,会产生多重虚假回波,干扰回波会导致信号丢失。

●如果不能保持仪表与罐壁的距离,罐壁上的介质会黏附造成虚假回波,在调试仪表的时候应该进行虚假回波存储。

3.2 罐内安装

●在信号波束内,应避免有如下安装物

(1):例如限位开关,温度传感器等。

●对称装置(2),如真空环,加热线圈,挡板等等。

●如果罐内有(1)(2)干涉物件,应采用导波管进行测量。

3.3 最佳安装选择

●天线尺寸:天线越大,波束角越小,干扰回波将越弱。

●天线调整:将天线调整到最佳测量位置。

●导波管:导波管用来避免干扰回波。

3.4 KTRD83的罐内安装

3.4.1 标准安装

●喇叭天线必须延伸出安装短管,否则应使用天线延伸管。

●喇叭天线必须调整至垂直,不要让雷达束指向罐壁

3.4.2 安装短管较长时使用天线延伸管

●当喇叭长度小于安装短管长度时,应使用天线延伸管。

●如果喇叭口直径大于安装短管的直径,包括延伸管在内的天线需要从容器里面安装,并将仪表抬高。选择延伸管使仪表至少抬高100mm。

特殊延伸管

●若天线需要倾斜或垂直于罐壁安装,可使用120°或90°的延伸管。从外部穿过塑料罐壁进行测量

●介质的介电常数εr ﹥10

●最高液面应低于罐顶20cm

●距离H 应大于100mm

●建议使用支座安装以便调整至理想的H

●若有可能应避免安装在冷藏或粘附的场合,天线与容器之间的空间应有保护措施

●选择低介电常数的容器建造材料及相应的厚度,不得使用导电塑料

●若有可能,使用天线DN250/10″

●在罐外的波束范围内不要安装任何可能引起干扰的部件(如管子)

3.5最佳安装位置

标准安装

标记应指向罐壁;安装标记应位于法兰的两个螺栓孔的正中间

法兰的定位方向

为了准确定位,在法兰或螺纹上均有标记,在安装时,此标记必须符合下述方向:

●法兰的指示标记应指向罐壁或罐的中心

●如使用导波管安装,法兰标记应指向开孔的一侧

●如使用旁通管安装,法兰标记应与指向连通管的一侧

雷达在使用过程中,回波信号的幅度表明了安装位置是否最佳,如果回波信号幅度较低可转动法兰,每次转动一个孔位使干扰回波达到最小。另外还可以通过虚假回波存储,达到最好测量效果。

操作步骤如下:

Ⅰ) 在打开储罐的过程连接之前,必须确认罐内无压力,并无有害介质。

Ⅱ) 应确认容器内空罐或料位刚好覆盖罐底的情况下进行定位调整,料位较少的情况下也可进行定位调整;可通过虚假回波存储,对回波信号进行优化;

Ⅲ) 将法兰标记转动一个孔位,或将螺纹转动1/8 圈,注意回波幅度,继续旋转法兰或螺纹,直到转动一圈为止,在回波信号最佳位置定位;

Ⅳ) 在最优位置固定好法兰或拧紧螺纹,若有必要,更换密封圈

以下是回波信号示意图:

图一正常的物位回波

图二有虚假回波

4.导波管内的测量

4.1 一般介绍

●如果容器内的装置复杂,比如:加热盘管、换热器或运转很快的搅拌器等,需要使用安装导波管的天线。当介质产生持续涡流或者容器内装置造成虚假反射时,也可以采用这种天线。

●由于雷达信号在导波管内被聚焦,所以可以测量介电常数小的介质(εr=1.6....3)

●下面开口的导波管必须达到需要的最低液位,这样才能在管道中进行测量。

●注意导波管上方的通气孔应该与仪表标牌一侧在一条直线上。

●除了在容器内安装导波管之外,还可以在容器外安装旁通管。

●如果通过导波管或旁通管测量,由于雷达信号的运行时间的改变,最大测量范围会缩小

5...20%(比如:DN50:15m 而不是20m,DN100:18m,而不是20m)。

●将传感器的标牌对准导波管开孔的轴线。由于雷达信号的极化,只有在这个方向上,才能保证稳定可靠的测量。焊接在容器上的导波管安装在容器接管上的导波管安装旁通管的天线

●如果传感器安装在旁通管上(比如:以前使用的是浮子钢带测量装置),雷达传感器必须安装在高于旁通管与容器上部的连通部分至少500mm 的地方。如果旁通管的内壁不平,需要在附加使用一个测量套管(管子套管子)。

●如果介质的介电常数小(<4),旁通管的长度应较普通的旁通管长,因为部分雷达信号可以穿透介电常数小的介质,当旁通管的介质很少的时候,由旁通管底部反射的回波信号要比介质反射的信号还要强,此时,经常出现测量误差。在这种情况下,如果将旁通管延长(300...800mm),穿透介质的那部分雷达信号可以在这部分介质中被衰减。也可以在旁通管底部安装折射板,将到达底部的雷达信号折射走。延长的旁通管用于测量表面波动大的介质利用旁通管测量介电常数小的介质

4.2 粘附性介质

●对于粘附性介质,导波管的直径应该尽量大一些。对于非粘附性的介质,导波管的直径可以为50mm.对于有些粘附的介质,导波管的直径一般为100mm 或150mm。

●DN50、DN80、DN100、DN150 安装导波管如果介质的粘附性太强,不能通过导波管进行测量

4.3 通过导波管测量混合介质

●如果需要测量导波管内的混合介质或分层介质,导波管上需要开圆形孔、长圆形孔或矩形孔。开孔是为了充分混合导管内的介质。

●由于雷达信号极性的问题,应该在导波管上成180°开两排圆形或矩形孔。雷达传感器在安装的时候应该注意:开孔的轴线应该与传感器的标牌的一侧对齐。

●较宽的矩形孔会造成虚假回波,因此矩形孔不能宽于10mm。为了降低信号的噪音面,圆形的开孔优于矩形的开孔。

相同的介质混合介质混合介质

4.4 带球阀的导波管

●如果在导波管上使用球阀,可以在不打开容器的条件下对仪表进行维护保养(比如:测量液态煤气或有毒的介质).

●要做到球阀的通道对测量没有影响,必须使球阀的直径与导波管的直径相匹配。球阀距离仪表法兰至少500mm。

5. 导波管的设计指南

雷达传感器的导波管一般用于DN50、DN80、DN100 和DN150 的法兰。

●图一是用于DN50 法兰的导波管,以此举例进行介绍。

导波管的内壁必须光滑(平均粗糙度Rz≤30)。导波管可以采用拉伸的或纵缝焊接的不锈钢管。通过焊接法兰或管接头的时候必须注意管内壁上不能有焊缝或凸缘,在焊接前从内侧固定好套管和法兰。

焊接时注意不要焊透套管壁。套管内壁必须保持平滑。如果不小心焊透了套罐壁,您必须重新整平内壁,否则会产生很大的虚假回波。

●图二介绍是用于DN100 法兰的导波管。

DN80、DN100、DN150 法兰的雷达传感器带喇叭口天线。对于这些传感器,在传感器一端可以通过一个平的焊接法兰代替预焊的法兰盘。

●如果搅动或流动的介质,需要将导波管固定在容器底上。对于较长的导波管,必须考虑使用分段固定。如果介质介电常数小(<3),雷达信号会穿透介质。当容器近似空仓的时候,容器底的反射回波会影响测量。可以在导波管末端安装折射板将容器底的反射回波折射走。通过折射板可以保证空仓这一点的物位被准确测量。如果不使用折射板,也可以将导波管的末端弯成一个弯度,同样可以折射走容器底部的回波。

6. 虚假回波

由于安装的不正确会产生很大的虚假回波,以下是经常出现安装错误的举例。

导波管末端弯曲示意图旁通管末端弯曲示意图

容器内的突起部分

●如果容器内有上表面是平面的凸起部分,会对测量有很大的影响。必须在凸出部分上加一个折射板,以保证正常测量。

介质附着

●如果传感器距离容器太近安装,附着在容器壁上的介质会造成虚假反射。传感器应该与容器壁保持一定距离。

容器内的装置

●容器内的装置,比如:梯子等都会造成虚假回波。在设计安装位置的时候,不能有任何专职阻挡雷达信号的运行。

容器内的支架

●和其它容器装置一样,容器内支架会造成很强的虚假回波。采用折射板可以很好地防止虚假反射。

7. 典型的安装错误

容器接管太长

●如果容器接管太长,会造成虚假反射。一定要保证喇叭口天线伸出接管至少10mm.如果使用棒式天线,容器接管的长度为max.100 或60mm(棒长545mm,容器接管最长250mm)。

喇叭口天线:正确与错误的接管长度

棒式天线正确与错误的接管长度

半球形或拱形罐顶

●半球形或拱形罐顶相对于雷达传感器就相当于一个凸透镜。如果雷达传感器正好安装再这个凸透镜的焦点上,传感器接受到的虚假回波会增强。最佳的安装位置在容器半径的1/2 处。

安装在拱形罐顶上

介质波动大

●如果介质产生很强的涡流,比如:由于搅拌或很强的化学反应等,建议采用导波管或旁通管测量。注意导波管或旁通管内不能附着介质。如果介质有可能产生附着的话,要使用100mm 标准的或更粗的导波管或旁通管。

传感器没有对准介质表面安装

●如果传感器没用对准介质表面安装的话,测量信号就会减弱。必须将雷达传感器的轴线垂直对准介质表面。

●传感器距离容器壁太近

如果传感器距离容器太近,会产生很强的虚假回波。附着的介质、铆钉、螺钉或焊缝都会造成虚假反射。所以传感器一定要与容器壁保持一定距离。

●如果反射条件好(液体介质、没有其它容器装置),建议锥形发射角内侧不能有容器壁阻挡雷达信号运行,如果发射条件不好,建议锥形发射角外侧不能有干扰。

产生泡沫

●介质表面的又厚又稠的泡沫会造成测量误差。必须对此采取措施,可以选用旁通管会使用其它测量方法,比如:电容式电极或静压式传感器。

导波管安装错误

●没有开通气孔

在导波管上端必须开通气孔,如果不开通气孔,会造成错误测量。

极性方向错误

●如果通过导波管测量,特别是为了混合导波管内外的介质,导波管上开圆形孔或矩形孔,特别要注意极性方向。

●导波管的两排孔(成180°)必须和雷达信号的极性方向处在同一个平面上。雷达信号的极性方向总是和雷达传感器的标牌一侧处在同一个平面上。

8. KTRD80系列尺寸

9. 法兰外形尺寸图

10. 发射角和虚假反射

●雷达信号通过天线系统聚焦,雷达波束的发射就像手电筒的光束,呈锥形。锥形发射角的大小取决于天线尺寸。

●锥形发射内的任何物体都会反射雷达信号。特别是最近的几米内的管道、支架或其它装置造成的虚假反射特别强。

比如:距离发射天线6 米处的虚假回波要比18 米处的强9 倍。

●对于远处的虚假反射面,雷达信号的能量倍分散到一个很大的面积上,这样反射回来的虚假信号就很弱,不像近处的

虚假回波对测量的影响很大。

●一定要沿传感器轴线方向垂直介质表面发射,而且要避免在整个发射角内有任何装置,特别是距离天线最近的1/3区域内。

●如果发射的雷达信号可以垂直到达介质表面,而且没有任何容器装置,这样的测量条件是最好的。

11. 仪表线性

12. 测量条件

注意事项

?? 测量范围从波束触及罐底的那一点开始计算,但在特殊情况下,若罐低为凹型或锥形,当物位低于此点时无法进行测量。

?? 若介质为低介电常数当其处于低液位时,罐底可见,此时为保证测量精度,建议将零点定在低高度为C 的位置。

?? 理论上测量达到天线尖端的位置是可能的,但是考虑到腐蚀及粘附的影响,测量范围的终值应距离天线的尖端至少100mm。

?? 对于过溢保护,可定义一段安全距离附加在盲区上。

?? 最小测量范围与天线有关。

?? 随浓度不同,泡沫既可以吸收微波,又可以将其反射,但在一定的条件下是可以进行测量的。

?? 当测量范围超出时,仪表输出为22mA 电流。

13. 接线方式

14.调试

KTRD80 可以通过三种方式调试:

?? 通过显示调整模块KTPM

?? 通过调试软件KTSOFT

?? 通过HART 手持编程器

14.1通过编程模块调试(KTPM)

?? KTPM 编程器由6 个按键和一个液晶显示屏,可以显示调整菜单和参数设置。其功能相当于一个分析处理仪表。

14.2 通过KTSOFT软件调试

无论那种信号输出,4...20mA/HART,雷达传感器都可以通过软件进行调试。采用KTSOFT 软件进行仪表调试,需要一个仪表CONNECTCAT 驱动器。使用软件调试的时候,给雷达仪表加电24VDC,同时在连接HART 适配器前端加一个250 欧姆的电阻。如果一体式HART 电阻(内部电阻250 欧姆)的供电仪表,就不需要附加外部电阻,HART 适配器可以和4...20mA 线并联。

14.3 通过HART手持编程器

15. 技术数据:

基本参数工作频率:6.8GHz

波束角:20°KTRD83 带DN150 法兰

16°KTRD83 带DN200 法兰

14°KTRD83 带DN250 法兰

测量范围:0...35m

重复性:±2mm

分辨率:1mm

采样:回波采样55 次/s

响应速度:>0.2s(根据具体使用情况而定)

电流信号:4...20mA

精度:<0.1%

KTRD83 :不锈钢

通讯接口HART 通讯协议

KTRD83(喇叭口形式天线):法兰DN50、DN80、DN100、DN150、DN200、DN250

电源电源:24V DC(+/-10%),波纹电压:1Vpp

耗电量:max22.5mA

环境条件温度:-40℃ (70)

容器压力(表压)-1...40bar

防爆认证Exia II C T6

外壳保护等级IP67

两线制接线供电和信号输出共用一根两芯导线

电缆入口2 个M20*1.5 或2 个1/2NPT(电缆直径5...9mm)

hawk导波雷达物位计产品说明书[2]

导波雷达物位计 使用手册 重庆霍克川仪仪表有限公司

目录 测量原理 (3) 产品介绍 (4) 安装指南 (5) 仪表调试 (10) 接线方式 (21) 技术参数 (21) 产品选型 (22)

MPS2000系列导波雷达物位计 测量原理 导波雷达是基于TDR(时间行程)原理的测量仪表。 探头发出高频脉冲并沿缆绳传播,当脉冲遇到物料表面 时反射回来被仪表内接收器接收。通过独特的等效采样 技术,将记录脉冲发射到接收之间的时间差,最终转化 为仪表到料位之间的距离。并将距离信号转化为物位信 号。 输入 反射的脉冲信号沿缆绳传导至仪表电子线路部分,微处理器对此信号进行处理,识别出 微波脉冲在物料表面所产生的回波。正确的回波信号识别由智能软件完成,距离物料表面的距离D与脉冲的时间行程T成正比: D=C×T/2 其中C为光速 因空罐的距离E已知,则物位L为: L=E-D 输出 通过输入空罐高度(零点),满罐高度(满量程)及一些现场工况和应用参数来来使得仪表自动使用现场的测量环境,对应料位的比例输出4~20mA电流信号以及HART仪表总线上的数据。

产品介绍

安装指南 下述的安装指南适用于缆式和杆式探头测量固体颗粒料和 液体物体。同轴管式探头只适用于液体物体。 安装位置: 尽量远离出料口和进料口。 对金属罐和塑料罐,在整个量程范围内不碰壁。如果是金属罐, 物位仪表不要安装在罐的中央。 建议安装在料仓直径的1/4处。 缆式探头或杆式探头离罐壁最小距离不小于30厘米。 探头底部距罐底大约30mm。 探头距罐内障碍物最小距离不小于200mm。 如果容器底部是锥型的,传感器可以安装 罐顶中央,这样可以一直测量到罐底。 测量范围 说明: H----测量范围 L----空罐距离 B----顶部盲区 E----探头到罐壁的最小距离 顶部盲区是指物料最高料面与测量参考点之间的最小距离。 底部盲区是指缆绳最底部附近无法精确测量的一段距离。 顶部盲区和底部盲区之间是有效测量距离。 注意: 只有物料处于顶部盲区和底部盲区之间时,才能保证罐内物位的可靠测量。

雷达液位计的测量原理、特点与应用

雷达液位计的测量原理、特点与应用 摘要:雷达液位计是一种非接触式无可动部件、真正免维护的液位测量仪表。该仪表经过多年的应用及技术改进,目前广泛应用于石化行业,并得到了用户的认可。本文简要介绍了雷达液位计的2种不同的测量原理,根据其特点与优点,指出了适合应用的场合及安装要求。 关键词:雷达液位计脉冲微波调频连续波应用 雷达液位计是20世纪60年代中期国外开始生产使用的新技术产品。它是一种采用微波测量技术、非接触式的液位测量仪表。在初期,它主要用于海船油槽液位测量。它克服了以前使用机械式接触型液位仪表的诸多缺点,比如清洗的困难和维修的不便等。随后,雷达液位计被用于在岸上储罐液位的测量以及炼油装置中液位的测量。随着石油化工行业的不断发展,雷达液位计的应用范围日益广泛,特别是高精度的特点得到了国际计量机构的认证,满足贸易交接的物料计量要求[1]。 一、雷达液位计的测量原理与特点 雷达液位计是利用超高频电磁波经天线向被测容器的液面发射,当电磁波到达液面后反射回来,被同一天线接收并检测出发射波及回波的时差,从而计算出液面高度[2]。 雷达液位计有2种工作模式,分别对应两种测量原理。 1.脉冲微波方式(PTOF) 这种方式是一种“俯视式”时间行程测量系统,测量系统经过天线以固定的带宽周期地发射某一固定频率的微波脉冲,在被测物料表而产生反射后由雷达系统所接收。天线接收反射的微波脉冲并将其传给电子线路,微处理器对此信号进行处理,识别出微波脉冲在物料表而所产生的回波,并据此计算液位(如图1所不),将被测液位距离成正比关系的时间再转换为电信号。 2.调频连续波方式(FMCW) 这种方式的雷达液位计的微波源是x波段的旅控振荡器,天线发射的微波是频率被线形调制的连续波,当回波被天线接收到时,微波发射频率已经改变。发射波与回波的频率差正比于天线到液面的距离,以此计算出液位高度。 二、PTOF法与FMCW法的比较 对于PTOF方法,脉冲的时间行程可以直接返回到不受温度影响的石英振荡器。对于FMCW方法,必须采用昂贵的振荡器温度稳定装置,或安装内部的参

雷达物位计型号

雷达物位计天线发射极窄的微波脉冲,这个脉冲以光速在空间传播,碰到被测介质表面,其部分能量被反射回来,被同一天线接收。发射脉冲与接收脉冲的时间间隔与天线到被测介质表面的距离成正比。由于电磁波的传播速度极高,发射脉冲与接受脉冲的时间间隔很小(纳秒量级)很难确认。 RD5X系列雷达物位计采用一种特殊的相关解调技术,可以准确识别发射脉冲与接收脉冲的时问间隔,从而进一步计算出天线到被测介质表面的距离。 由于采用了先进的微处理器和独特的EchoDiScOVery回波处理技术,雷达物位计可以应用于各种复杂工况。 “虚假回波学习”功能使得仪表在多个虚假回波的工况下,可正确地确认真实回波,获得准确的测量结果。 多种过程连接方式及天线型式,使得RD5X系列雷达物位计适用于各种复杂工况及应用场合。如:高温、高压及小介电常数介质的测量等。 采用脉冲工作方式,雷达物位计发射功率极低,可安装于各种金属、非金属容器内,对人体及环境均无伤害。

应用:最大量程:30m测量精度:±10mm 过程连接:G11/2A、11/2NPT天线材料:PP/PTEE过程温度:-40...+120℃过程压力:-1.0...3bar频率范围:6GHz 信号输出: 两线制/四线制4...20mA/HART 液体特别是腐蚀性液体, 简单过程条件 液体特别是腐蚀性强的,又有一定温度压 力的条件下的液体,简单过程条件30m±10mm G11/2A、11/2NPTPP/PTEE-40...+120℃-1.0...3bar6GHz 两线制/四线制4...20mA/HART 应用:存储容量或过程容器,复杂最大量程:35m测量精度:±10mm过程连接:法兰316L 天线材料:不锈钢/PTFE过程温度:-40...+200℃过程压力:-1.0...40bar频率范围:6GHz 信号输出: 两线制/四线制4...20mA/HART 过程条件316L存储容器或过程容器,过程条件复杂,小介电常数介质。70m±20mm/PTEE-40...+200℃-1.0...40bar6GHz 两线制/四线制4...20mA/HART 法兰不锈钢316L 316L

雷达液位计的工作原理

雷达液位计的工作原理 雷达液位计的工作原理 发射—反射—接收是雷达液位计的基本工作原理。 雷达传感器的天线以波束的形式发射电磁波信号,发射波在被测物料表面产生反射,反射回来的回波信号仍由天线接收。发射及反射波束中的每一点都采用超声采样的方法进行采集。信号经智能处理器处理后得出介质与探头之间的距离,送终端显示器进行显示、报警、操作等。微波测距示意图如图1所示。 图中,E-空槽(罐)的高度;F—满槽(罐)的高度; D—探头至介质表面的距离;L—实际物位 雷达脉冲信号从发射到接收的运行时间与探头到介质表面的距离D成正比,即: D=v×t/2 式中,t—脉冲从发射到接收的时间间隔 v—波形传播速度 因空槽距离E已知,故实际物位的距离L为: L=E-D 式中,E的基准点是过程连接的底部 在发射的时间间隔里,天线系统作为接收装置使用。仪表分析、处理运行

时间小于十亿分之一秒的回波信号,并在极短的一瞬间分析处理回波。 雷达传感器利用特殊的时间间隔调整技术将每秒的回波信号进行放大、定位,然后进行分析处理。因此雷达传感器可以在0.1s内精确细致地分析处理这些被放大的回波信号,无须花费很多时间来分析频率。 雷达液位计的特点 雷达液位计最大的特点是在恶劣条件下功效显著。无论是有毒介质,还是腐蚀性介质,也无论是固体、液体还是粉尘性、浆状介质,它都可以进行测量。在测量方面,具有以下特点: 1、连续准确地测量 由于电磁波的特点,不受环境的影响。故其测量的应用场合比较广。雷达液位计的探头与介质表面无接触,属非接触测量,能够准确、快速地测量不同的介质。探头几乎不受温度、压力、气体等的影响(500℃时影响仅为0.018%,50bar时为0.8%)。 2、对干扰回波具有抑制功能 比如,波束范围内接头引起的干扰回波和进料或出料的噪声引起的干扰回波等可由内部的模糊逻辑控制自动进行抑制。 3、准确安全节省能源 雷达液位计在真空、受压状态下都可进行测量,而且准确安全,可*性强。可以不受任何限制,适用于各种场合。雷达液位计采用材料的化学性、机械性都相当稳定,且材料可以循环利用,极具环保功效。 4、无须维修且可*性强 微波几乎不受干扰,与测量介质不直接接触,几乎可以被应用于各种场合,如真空测量、液位测量或料位测量等。由于高级材料的使用,对情况极其复杂的化

雷达物位计-软件算法说明

1.法兰距离计算 1.1.流程图 1.2.信号加窗 信号加窗用于减小频谱泄露,可选择三种窗函数之一:矩形窗、汉宁窗、布莱克曼窗。假设中频信号电压采样数组为v[N],采样点数为N(N=1199);加窗实际上是构建一个N点的数组w[N],将v[N]和w[N]进行点乘运算;信号加窗后的输出数组x[N]可表示为:

x n=v n?w n(0≤n

频谱峰值探测的输出为波峰索引数组。

1.6.回波筛选 有效回波必须满足一定的位置条件和幅值条件。系统的距离分辨单元为: ?D=C 2B ?1199 4096 (1-5) 式中,C—真空中光速 B—扫频带宽 则回波的位置和幅度可以表示为: D=?D?i?TCL A=Y[i] (1-6) 式中,i—波峰索引 TCL— TCL长度 1)位置条件 有效回波位置必须处于盲区和罐底之间,将处于该范围之外的回波剔除。 2)幅值条件 有两种幅值条件:统一阈值、ATP阈值。统一阈值是将峰值小于某阈值的回波剔除;ATP阈值是由位置——阈值构成的一条折线,将峰值处于折线下方的回波剔除。 回波筛选的输出为回波索引数组。 1.7.谱估计 对回波索引数组中的每一个回波D,Y i,根据该回波前后各1个点D??D,Y i?1、D+?D,Y i+1的值,利用二次曲线拟合法估算回波的真实位置为: D0=D+Y i?1?Y i+1 2Y i?1+Y i+1?2Y i ??D (1-7) 回波的幅度为:

导波雷达液位计的原理及应用

导波雷达料位计的原理及应用 导波雷达料位计的原理及应用 一、导波雷达料位计概述 料位是工业生产中的一个重要参数。料位测量的方法很多,针对不同的工况和介质可以使用不同测量原理的料位计,吹气法、静压式、浮球式、重锤式、超声波等几种常用的料位测量仪表,都有各自的特点和应用范围。导波雷达料位计运用先进的雷达测量技术,以其优良的性能,尤其是在槽罐中有搅拌、温度高、蒸汽大、介质腐蚀性强、易结疤等恶劣的测量条件下,显示出其卓越的性能,在工业生产中发挥着越来越重要的作用。 二、原理及技术性能 雷达波是一种特殊形式的电磁波,导波雷达料位计利用了电磁波的特殊性能来进行料位检测。电磁波的物理特性与可见光相似,传播速度相当于光速。其频率为300MHz-3000GHz。电磁波可以穿透空间蒸汽、粉尘等干扰源,遇到障碍物易于被反射,被测介质导电性越好或介电常数越大,回波信号的反射效果越好。 雷达波的频率越高,发射角越小,单位面积上能量(磁通量或场强)越大,波的衰减越小,导波雷达料位计的测量效果越好。 1.导波雷达料位计的基本原理 导波雷达料位计组成:它主要由发射和接收装置、信号处理器、天线、操作面板、显示、故障报警等几部分组成。 发射-反射-接收是导波雷达料位计工作的基本原理。雷达传感器的天线以波束的形式发射最小5.8GHz的雷达信号。反射回来的信号仍由天线接收,雷达脉冲信号从发射到接收的运行时间与传感器到介质表面的距离以及物位成比例。

即:h=?H–vt/2? 式中?h为料位;H为槽高;?v为雷达波速度;t为雷达波发射到接收的间隔时间;2.导波雷达料位计测量料位的先进技术: (1)回波处理新技术的应用 从导波雷达料位计的测量原理可以知道,导波雷达料位计是通过处理雷达波从探头发射到介质表面然后返回到探头的时间来测量料位的,在反射信号中混合有许多干扰信号,所以,对真实回波的处理和对各种虚假回波的识别技术就成为导波雷达料位计能够准确测量的关键因素。 (2)测量数据处理: 由于液面波动和随机噪声等因素的影响,检测信号中必然混有大量噪声。为了提高检测的准确度,必须对检测信号进行处理,尽可能消除噪声。 经过大量的实验验证,采用数据平滑方法可以达到满意的效果。此方法也可有效的克服罐内搅拌器对测量的影响。 (3)导波雷达料位计的特点: 由于导波雷达料位计采用了上述先进的回波处理和数据处理技术,加上雷达波本身频率高,穿透性能好的特点,所以,导波雷达料位计具有比接触式料位计和同类非接触料位计更加优良的性能。 ①可在恶劣条件下连续准确地测量。 ②操作简单,调试方便。 ③准确安全且节省能源。 ④无需维修且可靠性强。 ⑤几乎可以测量所有介质。

雷达物位计的原理及应用

雷达物位计的原理及应用 一、概述 料位是工业生产中的一个重要参数。料位测量的方法很多,针对不同的工况和介质可以使用不同测量原理的料位计,吹气法、静压式、浮球式、重锤式、超声波等几种常用的料位测量仪表,都有各自的特点和应用范围。雷达料位计运用先进的雷达测量技术,以其优良的性能,尤其是在槽罐中有搅拌、温度高、蒸汽大、介质腐蚀性强、易结疤等恶劣的测量条件下,显示出其卓越的性能,在工业生产中发挥着越来越重要的作用。 二、原理及技术性能 雷达波是一种特殊形式的电磁波,雷达料位计利用了电磁波的特殊性能来进行料位检测。电磁波的物理特性与可见光相似,传播速度相当于光速。其频率为300MHz-3000GHz。电磁波可以穿透空间蒸汽、粉尘等干扰源,遇到障碍物易于被反射,被测介质导电性越好或介电常数越大,回波信号的反射效果越好。 雷达波的频率越高,发射角越小,单位面积上能量(磁通量或场强)越大,波的衰减越小,雷达料位计的测量效果越好。 1.雷达料位计的基本原理 雷达式料位计组成:它主要由发射和接收装置、信号处理器、天线、操作面板、显示、故障报警等几部分组成。 发射-反射-接收是雷达式料位计工作的基本原理。雷达传感器的天线以波束的形式发射最小5.8GHz的雷达信号。反射回来的信号仍由天线接收,雷达脉冲信号从发射到接收的运行时间与传感器到介质表面的距离以及物位成比例。 即:h= H–vt/2 式中 h为料位;H为槽高; v为雷达波速度;t为雷达波发射到接收的间隔时间; 2.雷达料位计测量料位的先进技术: (1)回波处理新技术的应用 从雷达料位计的测量原理可以知道,雷达料位计是通过处理雷达波从探头发射到介质表面然后返回到探头的时间来测量料位的,在反射信号中混合有许多干扰信号,所以,对真实回波的处理和对各种虚假回波的识别技术就成为雷达料位计能够准确测量的关键因素。 (2)测量数据处理:

(参考)智能雷达液位计操作手册

873智能雷达液位计操作手册 (973智能雷达液位计的操作,与873智能雷达液位计完全相同,本手册可供973雷达液位计的用户使用) 前言: 873智能雷达液位计是一种用雷达技术进行液位测量的精密仪表。 以下内容涉及到对873智能雷达液位计基本功能的调试、使用和日常维护的指导。一些选项的功能比如液位报警、标定针补偿、温度测量、模拟输出和压力测量等会在其他的说明手册里进行描述。 法律问题 873智能雷达液位计的机械和电器安装必须由拥有在危险地区安装防爆设备知识和训练的人员来实施。 以下全部说明内容的版权属于荷兰恩拉福有限公司。荷兰恩拉福有限公司对于由下列内容所造成的人身伤害和设备损失不服责任: ●没有按照说明进行操作 ●进行了说明中没有提到的操作 ●没有按照规定实施个人安全保护措施,没有采用安全操作所需要的设备和工具。 电磁兼容性 873智能雷达液位计符合以下的电磁兼容性标准: EN 50081-2 Generic Emission Standard EN 50082-2 Generic Immunity Standard 如果您有任何的疑问,请随时和荷兰恩拉福有限公司联系,也可以和恩拉福在全球的任何代表处联系。

1. 简介 恩拉福873智能雷达液位计是一种使用雷达技术探测液位的精密液位计。这种仪表能够长时间保持很高的液位测量精度,同时非常的可靠,不受环境变化的影响。 873雷达液位计带有4个可编程的液位报警,同时还可以提供自诊断信息。 这些信息都可以显示在表头的显示器上,也可以显示在手操器上,或者远传到控制室在上位机上显示。 873雷达液位计可以安装MPU选项板,用于输出4~20mA模拟信号,这样873可以被连接到控制系统当中或者和模拟记录设备连接在一起。 873雷达液位计还可以通过配备TPU-2或者HSU选项板接入点温度计测量点温度。 873雷达液位计通过配备MPU, HPU或者OPU选项板连接多点温度计,通过多点温度计准确测量产品的平均温度和罐内气相的平均温度。 Honeywell ST3000系列压力变送器可以通过OPU选项板连接到液位计,通过HPU或者HSU 选项板,所有支持HART协议的压力变送器或者水探头都可以接入到液位计。 1.1. 测量原理 雷达液位计是通过发射频率高达10GHz的高频电磁波来检测液位的。 电磁波发射到罐中,被产品的表面反射回液位计。 众所周知,真空中电磁波的传播速度是光速,但是液位的准确测量不能依靠测量传播的时间差,我们测量的是反射波和发射波之间的相位差。电磁波在空中传播的距离可以通过对相位差的计算而获得。 这种测量的原理称为合成脉冲雷达(Synthesized Pulse Radar, SPR)。 873智能雷达液位计通过安装在罐顶的天线单元来产生电磁波。 电磁波通过罐分离器的引导,进入雷达天线。 雷达天线对电磁波进行整形,然后发射到罐中。从液面反射的回来的电磁波被同一个雷达天线接受到。天线单元内部的电子线路会同时测量发射合接受到的信号。 在经过处理之后,数字信号被传送到控制单元。控制单元把测量到的距离转换成实尺或者是空尺,并且上传到现场总线等通讯网络中去。

E+H雷达物位计的分类和原理

E+H雷达物位计的分类和原理 雷达物位计分类 雷达物位计已成为物位测量仪表市场上的主流产品,主要分为雷达物位计和导波雷达物位计。雷达物位计 雷达物位计发射功率很低的极短的微波通过天线系统发射并接收。雷达波以光速运行。运行时间可以通过电子部件被转换成物位信号。一种特殊的时间延伸方法可以确保极短时间内稳定和精确的测量。即使存在虚假反射的时候,最新的微处理技术和软件也可以准确地分析出物位回波。通过输入容器尺寸,可以将上空距离值转换成与物位成正比的信号。仪表可以空仓调试。在固体测量中的应用可以使用K-频段的高频传感器。由于信号的聚焦效果非常好,料仓内的安装物或仓壁的粘附物都不会影响测量。 E+H雷达物位计的分类和原理 导波雷达物位计的微波脉冲沿着一根缆、棒或包含一根棒的同轴套管运行,接触到被测介质后,微波脉冲被反射回来,并被电子部件接收,并分析计算其运行时间。微处理器识别物位回波,分析计算后将它转换成物位信号给出。由于测量原理简单,可以不带料调整,从而节省了大量调试费用。测量缆或棒可以截短,使之更加适应现场的应用。对于蒸汽不敏感,即使在烟雾、噪音、蒸汽很强烈的情况下,测量精度也不受到影响。不受介质特性变化的影响,被测介质的密度变化或介电常数的变化不会影响测量精度。粘附:没有问题,在测量探头或容器壁上粘附介质不会影响测量结果。容器内安装物如果采用同轴套管式的测量完全不受容器内安装物的影响,不需要特殊调试。可以提供不同形式的探头用于不同应用:缆式,用于测量液体介质或重量大的固体介质,量程可达60米;棒式,用于测量液体介质或重量轻的固体介质,量程可达6米;同轴套管,用于测量低黏度的介质,不受过程条件的影响,量程可达6米。 3E+H雷达物位计的分类和原理 微波物位计工作方式类似雷达:向被测目标发射微波,由目标反射的回波返回发射器被接收,与发射波进行比较,确定目标存在并计算出发射器到目标的距离。 4组成部分 仪表部分 z 环境温度:-20-60℃ z 供电电源:AC 220V±10% 50Hz z 测量精度:0.5% 功耗:≤3W z 模拟输出:4-20mA,负载能力≤550Ω z 继电器输出:4 组继电器转换接点(AC 220V 2A) z 安装方式:盘装开孔152 (宽) ×76 (高) 壁挂尺寸210(宽) × 280 (长) ×110(厚) 探极部分 z 介质温度:-40-240℃ z 传输距离:传感器和仪表之间的信号传输距离小于1.2km z 探极种类:棒式、缆式、同轴式、重型缆式 z 安装尺寸:G1.5 管螺纹 z 仓内压力:小于4MPa LD-DLE 型通用电容式物位计 实现了电容式物位计进料一次完成标定的简易操作;从而实现了物位测量的强功能与易操作的完美结合,充分体现了我司与时俱进的创新精神和能力。它由传感器和二次仪表两部份组成。传感器放在料仓顶,探极垂直伸进料仓内,二次仪表放在其他合适的地方。传感器把物位的变化转变成与之对应的电脉冲信号,远传给二次仪表处理,再用光柱显示物位高度,并有高/低限报警和4~20mA 变送输出,适用于液体/固体物料作物位高度显示、报警、控制和远传显示或组

雷达物位计工作原理

雷达物位计工作原理 美国AMETEK DE公司生产的非接触式雷达物位计,采用世界先进的FMCW (调频连续波)技术,对比较复杂的场合能进行比较准确地物位测量。 FMCW:调频连续波 FMCW雷达技术采用高频扫描信号,通常频率为8.5到9.9GHz。雷达信号从天线的一端发射,经时间t后被接收器接收。通过付氏变换分析将发射和接收的频率差△f转换为所测介质的物位。 FMCW雷达系统一般利用线性调频信号,发射频率随一定的时间(扫描频率)线性增加。由于微波发射频率是随着信号传播的时间而变化的,所以与反射体距离成比例的低频信号的频率f是从前发射频率和接收频率之间的差异获取的。这样介质的液位可以由储罐的高度和距离计算出来。 频率扫描线性度 FMCW雷达系统的精度取决于频率扫描的线性度和重复性,线性校正是通过对振荡器的参考测量来实现的。 非线性可校正到98%。 FMCW优势 与脉冲雷达技术相比,FMCW雷达技术具有以下优点: ?较高波段,较宽范围的微波信号,从而反射强度高,不受测量环境干扰; ?较高的发射频率,较小的反射角,较小的干扰反射; ?对于同样的应用场合,较小直径的天线就可满足测量要求。 容器底部跟踪 如果容器中的介质(大多数石油化工产品)对微波的反射性较差,则微波穿过介质传播。微波传播至容器底部然后返回,这样介质对波变成“透明”。由于微波在介质中的传播速度比在大气中的传播速度小,容器底部似乎下移动了。对这种应用场合,“容器底部跟踪”方法就能适用,其物位计能自动分析和评价这种移位。

射频导纳液位计工作原理 射频导纳是一种从电容式发展起来的、防挂料、更可靠、更准确、适用性更广得了为控制技术,射频导纳中导纳的含义为电学中阻抗的倒数,它由电阻性成分、电容性成分、感性成分综合而成,而射频即高频无线电波谱,所以射频导纳可以理解为高频无线电波测量导纳。 1、电容式物位测量原理 实验室中,平行板电容器是一个理想型的电容器,其电容量为:C=ε╳S/D,其中ε为两电容极板间介质的介质常数,S为两极板间面积,D为两极板间距离。对于一个料仓,安装一个测量系统,形成一个同轴电容器。仓内存在一个电容 C= ε 0╳S╳H0/D+ε╳S╳ (H-H ),其中ε 为两极间空气的介电常数, ε0=1.0006,近似=1;ε为两电极间介质的介电常数,S为两极板间等效面积,D 为两极板间距离,Ho为空气段探头长度,H为探头长度。对于一个固定的料仓来说,物料的ε是固定的,S、D也是固定的,所以,推导上式可知,测量电容与物料的高度成正比。图2是测量原理框图。 利用检测桥路上的可调电容可以平衡掉初始电容,包括安装电容和线缆电容等,只剩下探头物料电容,该电容信号放大后,输出一个与料位成正比的信号。这种电容式原理存在一个严重弱点:即物位升高淹没探头后又落下去时,探头可能会留有附着物即挂料。这会导致被测电容加大,如果是导电液体情况会更严重,产生很大的误差。另一个缺点是探头到电路单元之间的连接电缆,在这相当于一个较大的电容,而且随温度变化。这个变化的电缆电容与物位电容叠加在一起会引起很大的误差,尤其在物料介电常数较低的场合,信号较小,这些误差将是很严重的。而射频导纳技术就能克服上述缺点。 2、点位射频导纳原理 点位射频导纳技术与电容几乎的重要区别是采用了三端技术,如图3。在电路单元测量信号上引出一根线,经同相放大器放大,其输出与同轴电缆屏蔽层相连,然后又连到滩头的屏蔽层相连(Cote-shield元件)。该放大器是一个同相放大器,其增益为“1”,输出信号与输入信号等电位、同相位、同频率但互相隔离。地线是电缆中另一条独立的导线。由于同轴电缆的中心线与外层屏蔽存在上述关系,所以二者之间没有电位差,也就没有电流流过,即没有电流从中心线漏出来,相当于二者之间没有电容或电容等于零。因此电缆的温度效应,安装电容等也就不会产生影响。对于探头上的挂料问题采用一种新的探头结构,五层同心结构:最里层是中心测杆,中间是Cote-shield屏蔽层,最外面是接地的安装螺纹,用绝缘层将其分别给起来。图4给出了探头上挂料的等效电路。与同轴电缆的情况时一样的,中心测杆与屏蔽层之间没有电势差,即使传感元件上挂料阻抗很小,也不会有电流流过,电子仪器测量的仅仅是从探头中心到主要是到对面罐壁(地)的电流,因为Cote-shield元件能阻碍电流沿探头向上流向容器壁,因而对地电流只有经探头末端通过被测物料到对面容器壁。即 U A =U B I AB =(U A -U B )/R=0由于屏蔽层与容器壁之间存在电势差,两者之间虽有电流通 过,但该电流不被测量,不影响测量结果。这样就将测量段保护起来,中心测杆与地之间形成被测电流。 3、连续射频导纳原理

雷达物位计的介绍

1.雷达物位计产品概述 1.1 简介 KTRD80 系列传感器是先进的雷达式物位测量仪表,测量距离最大35 米,可以用于存储罐、中间缓冲罐或过程容器的物位测量,输出4...20mA 模拟信号。 1.2 应用 ●采用先进的非接触式测量 ●采用极其稳定的材料制造 ●测量液体、固体介质的物位 ●可以测量所有介电常数>1.8 的介质 ●测量范围0...20m(可以扩展到35 米) ●采用两线制、回路供电的技术,供电电压和输出信号通过一根两芯电缆传输 ●4...20mA 输出或数字型信号输出 ●分辨率1mm ●不受噪音、蒸汽、粉尘、真空等工况影响 ●不受介质密度、粘稠度和温度的变化的影响 ●过程压力可达40bar ●过程温度可达250℃ 1.3测量原理 高频微波脉冲通过天线系统发射并接收,雷达波以光速运行,运行时间可以通过电子部件被转换成物位信号。一种特殊的时间延伸方法可以确保极短时间内稳定和精确的测量。 即使工况比较复杂的情况下,存在虚假回波,用最新的微处理技术和调试软件也可以准确的识别出物位的回波。 1.4 输入 天线接收反射的微波脉冲并将其传输给电子线路,微处理器对此信号进行处理,识别出微脉冲在物料表面所产生的回波。正确的回波信号识别由智能软件完成,精度可达到毫米级。距离物料表面的距离D 与脉冲的时间行程T 成正比:D=C×T/2 (其中C 为光速)因空罐的距离E 已知,则物位L 为:L=E-D 1.5 输出 通过输入空罐高度E(=零点),满罐高度F(=满量程)及一些应用参数来设定,应用参数将自动使仪表适应测量环境。对应于4-20mA 输出。 2.仪表介绍: 应用:过程条件简单,腐蚀性的液体。浆料、固体 比如:污水储罐,酸碱储罐,浆料储罐,固体颗粒,小型储油罐 测量范围:20 米 过程连接:G11/2 螺纹或11/2NPT 介质温度:-40-120℃ 过程压力:-1.0-3bar 重复性:±2mm 精度:< 0.1% 频率范围:6.8GHz 防爆/防护等级:Exia II CT6/IP67

雷达料位计的选型和应用总结

雷达料位计的选型和应用总结 一总结: 物位是水泥工业生产过程的主要测量参数之一,和其他行业不同,在水泥工业中主要是固体物料的物位测量,液位测量则很少。固体物料种类繁多,有块状、颗粒状、粉状,这些物料的介电常数、容重、温度、水分含量也各不相同。接触式测量是过去测量物位的主要手段,如电容式、重锤式、音叉式、阻旋式,揽式等测量方法,由于测量时仪表和物料是接触的,在使用过程中往往会出现各种问题,如电容的挂料;重锤的断锤、埋锤;音叉的堵料等,且日常的维护量很大。到20世纪末,水泥工业开始采用非接触的物位测量,较早成熟的非接触的测量技术有超声波技术. 超声波技术近几年来发展很快,是目前应用最广泛的非接触式测量方法,特别在液位测量。在水泥厂超声波物位测量已较普遍应用在原料调配库、原煤库、熟料库等,但超声波必须借助于介质传播,如在水泥厂的储库物位测量通常以空气作为传播介质,而空气的温度、湿度的变化会影响超声波传播速度,空气中的粉尘也将衰减超声波的传播信号;当前超声波物位测量仅用于测量块料或颗粒状的物料,对粉仓料位的测量,由于粉仓料位表面在下料时非常疏松,对超声波信号有较强的衰减,现未使用. 九十年代末期,在过程检测领域出现了高性能、低价格的微波物位计即雷达料位计,所谓微波是电磁波,其频率范围为300MHz~300GHz, 微波的传播速度为3x108 m/s, 如设频率为5. 8GHz, 在大气中波长约为52mm,其穿透力强,传播速度不受粉尘、蒸汽及介质组分的影响,传播衰减也很小;对被测固体物料除要求其介电常数ε>1.8外,物料的温度、压力、密度等几乎不影响对其准确的测量;现有雷达料位计在天线设计和形状确保了接受回波的能量;另外现场调试也十分简单,通过专用的软件,能把正确的回波迅速找到,并立即换算为物位值。由于比超声料位计有其更卓越的性能,近几年来,雷达料位计迅速、大量进入了过程检测仪表的市场,在各行业普遍使用,如中环天仪西门子组装雷达料位计。在水泥行业也几乎由雷达料位计统占物位测量的领域,据统计近几年来新设计的大型水泥厂和粉磨站的各类库和仓近90%采用了各种类型的雷达料位计如西门 子雷达料位计,成功用在内蒙古冀东水泥厂,北京水泥厂等项目. 二. 雷达料位测量原理和主要技术因素 雷达料位计是利用回波测距原理。发射天线向被测目标发射微波,被测目标的微波被接收天线接收,信号处理器将发射信号与接收信号比较,计算出被测距离,并可算出相应的物位值。 微波脉冲来回传播时间t由下式决定: t= (1) 式中a—天线到被测目标的距离 c—微波传播的速度(光速) 由于微波在传播途径上有衰减和干扰反射,故测量的关键是要能接收到反射回波,并识别出有效回波。接收的回波能量Pk可用简化的雷达方程表示如下: Pk=Pτx C x GiGtGr/r4 (2) 式中: Pτ—天线辐射功率

常见几种液位计工作原理

常见几种液位计工作原理 关键字:液位计 一、磁翻板液位计 主要原理 磁翻板液位计也称为磁翻柱液位计,结构主要基于浮力和磁力原理设计生产的带有磁体的浮子(简称磁性浮子)被测介质中的位置受浮力作用影响。液位的变化导致磁性浮子位置的变化、磁性浮子和磁翻柱(也成为磁翻板)静磁力耦合作用导致磁翻柱翻转一定角度(磁翻柱外表涂敷不同的颜色)进而反映容器内液位的情况。 配合传感器(磁簧开关)和精密电子元器件等构成的电子模块和变送器模块,可以变送输出电阻值信号、电流值(420mA 信号、开关信号以及其他电学信号。从而实现现场观测和远程控制的完美结合。 适用范围及特点 磁翻板液位计采用优质磁体和进口电子元件,使产品具有:设计合理、结构简单、使用方便、性能稳定、使用寿命长、便于装置维护等优点。 磁翻板液位计输出信号多样,实现远距离的液位指示、检测、控制和记录。 磁翻板液位计几乎可以适用于各种工业自动化过程控制中的液位丈量与控制。可以广泛运用于石油加工、食品加工、化工、水处理、制药、电力、造纸、冶金、船舶和锅炉等领域中的液位测量、控制与监测。

二、磁浮球液位计(液位开关) 主要原理 磁浮球液位计(液位开关)结构主要基于浮力和静磁场原理设计生产的带有磁体的浮球(简称浮球)被测介质中的位置受浮力作用影响:液位的变化导致磁性浮子位置的变化。浮球中的磁体和传感器(磁簧开关)作用,使串联入电路的元件(如定值电阻)数量发生变化,进而使仪表电路系统的电学量发生改变。也就是使磁性浮子位置的变化引起电学量的变化。通过检测电学量的变化来反映容器内液位的情况。 该液位计可以直接输出电阻值信号,也可以配合使用变送模块,输出电流值(420mA 信号;同时配合其他转换器,输出电压信号或者开关信号(也可以依照客户需求转换器由公司配送)从而实现电学信号的远程传输、分析与控制。 适用范围及特点 本产品采用优质磁体和进口电子元件,使产品具有:结构简单、使用方便、性能稳定、使用寿命长、便于装置维护等优点。 本产品几乎可以适用与各种工业自动化过程控制中的液位丈量与控制,可以广泛运用于石油加工、食品加工、化工、水处理、制药、电力、造纸、冶金、船舶和锅炉等领域中的液位测量、控制与监测。

仪表选型原则

检测仪表(元件)及控制阀选型的一般原则 ①工艺过程的条件 工艺过程的温度、压力、流量、粘度、腐蚀性、毒性、脉动等因素是决定仪表选型的主要条件,它关系到仪表选用的合理性、仪表的使用寿命及车间的防火、防爆、保安等问题。 ②操作上的重要性 各检测点的参数在操作上的重要性是仪表的指示、记录、积算、报警、控制、遥控等功能选定依据。一般来说,对工艺过程影响不大,但需经常监视的变量,可选指示型;对需要经常了解变化趋势的重要变量,应选记录式;而一些对工艺过程影响较大的,又需随时监控的变量,应设控制;对关系到物料衡算和动力消耗而要求计量或经济核算的变量,宜设积算;一些可能影响生产或安全的变量,宜设报警。 ③经济性和统一性 仪表的选型也决定于投资的规模,应在满足工艺和自控的要求前提下,进行必要的经济核算,取得适宜的性能/价格比。 为便于仪表的维修和管理,在选型时也要注意到仪表的统一性。尽量选用同一系列、同一规格型号及同一生产厂家的产品。 ④仪表的使用和供应情况 选用的仪表应是较为成熟的产品,经现场使用证明性能可靠的;同时要注意到选用的仪表应当是货源供应充沛,不会影响工程的施工进度。

仪表选性手册 物位仪表在选型时,与压力、流量等仪表有很大不同。物位测量的现场工况千差万别,很难设计出能满足所有工况应用的物位仪表。 在非接触式物位测量仪表中,超声波物位计和雷达物位计是两大主流仪表。这两类仪表各有特点,只有充分了解仪表特点及应用条件,才能做到选型合理,充分利用仪表的测量性能。 超声波物位计 传感器发出的超声波碰到被测介质被反射,反射回波的质量反映了物位计应用效果。回波质量定义为最小回波幅度(在最恶劣条件下回波幅度)比最大噪声幅度(虚假回波、多径反射回波等的幅度)。回波质量数值越大,物位计应用效果越好。 超声波物位计工作频率及测量性能:传感器高频(40-70KHz)工作时,传感器的尺寸小,盲区小,方向性好,精度高,但其声波衰减快,传播介质(空气)波动时穿透性差,测距较小。传感器低频(10-20KHz)工作时,传感器尺寸大,盲区大,方向性不好,精度低,其优势是声波衰减慢,传播介质(空气)波动时穿透性较好,测距 稍远。 超声波的回波强度主要受以下两个因素影响: 1.传播介质越稳定越有利于传播。

雷达物位计原理特点

雷达物位计是20世纪60年代中期国外开始生产使用的一种新技术产品。它是一种采用微波测量技术的非接触式液位测量仪表。在初期,它主要用于海船油槽液位测量。它克服了以前使用机械式接触型液位仪表的诸多缺点,比如清洗的困难和维修的不便等。随后,雷达物位计被用于在岸上储罐液位的测量以及炼油装置中液位的测量。随着石油化工行业的不断发展,雷达物位计的应用范围日益广泛,特别是高精度的特点得到了国际计量机构的认证,满足贸易交接的物料计量要求。 雷达物位计的测量原理 雷达液位计是利用超高频电磁波经天线向被测容器的液面发射,当电磁波到达液面后反射回来,被同一天线接收并检测出发射波及回波的时差,从而计算出液面高度。采用发射--反射--接收的工作模式,雷达液位计的天线发射出电磁波,这些波经被测对象表面反射后,再被天线接收,电磁波从发射到接收的时间与到液面的距离成正比,关系式如下: D=CT/2 式中 D——雷达液位计到液面的距离 C——光速 T——电磁波运行时间 雷达液位计记录脉冲波经历的时间,而电磁波的传输速度为常数,则可算出液面到雷达天线的距离,从而知道液面的液位。 雷达物位计的特点 1、雷达物位计主要由电子控制单元和天线构成,无可动部件,不存在机械磨损,与机械部件的液位测量仪表相比使用寿命较长。真正免维护。 2、雷达物位计能用于大部分液位的液位测量,其发出的微波能穿过真空,不需要传输媒介,受大气、蒸汽、罐内挥发雾的影响小。 3、采用非接触式测量,不受罐内液位密度、浓度等物理特性影响。测量范围大、抗腐蚀能力强。 4、安装方便、故障率低、维护容易、精度高、可靠性高等优点。 5、采用数字与模拟两种输出方式,可以单台或多台按总线式配置,能方便地与上位监控计算机相连接。 6、仪表辐射率低,对周围环境及人员基本上没有伤害。

几种液位计的原理与选型

几种液位计的原理与选型. 磁翻柱液位计 主要原理 磁翻柱液位计也称为磁翻板液位计,它的结构主要基于浮力和磁力原理设计生产的。带有磁体的浮子(简称磁性浮子)在被测介质中的位置受浮力作用影响。液位的变化导致磁性浮子位置的变化、磁性浮子和磁翻柱(也成为磁翻板)的静磁力耦合作用导致磁翻柱翻转一定角度(磁翻柱表面涂敷不同的颜色),进而反映容器内液位的情况。 配合传感器(磁簧开关)和精密电子元器件等构成的电子模块和变送器模块,可以变送输出电阻值信号、电流值(4~20mA)信号、开关信号以及其他电学信号。从而实现现场观测和远程控制的完美结合。 适用范围及特点 本液位计采用优质磁体和进口电子元件,使产品具有:设计合理、结构简单、使用方便、性能稳定、使用寿命长、便于安装维护等优点。 本液位计输出信号多样,实现远距离的液位指示、检测、控制和记录。 本液位计几乎可以适用于各种工业自动化过程控制中的液位测量与控制。可以广泛运用于石油加工、食品加工、化工、水处理、制药、电力、造纸、冶金、船舶和锅炉等领域中的液位测量、控制与监测。 磁浮球液位计(液位开关) 主要原理 磁浮球液位计(液位开关)结构主要基于浮力和静磁场原理设计生产的。带有磁体的浮球(简称浮球)在被测介质中的位置受浮力作用影响:液位的变化导致磁性浮子位置的变化。浮球中的磁体和传感器(磁簧开关)作用,使串联入电路的元件(如定值电阻)的数量发生变化,进而使仪表电路系统的电学量发生改变。也就是使磁性浮子位置的变化引起电学量的变化。通过检测电学量的变化来反映容器内液位的情况。 该液位计可以直接输出电阻值信号,也可以配合使用变送模块,输出电流值(4~20mA)信号;同时配合其他转换器,输出电压信号或者开关信号(也可以按照客户需求转换器由公司配送)。从而实现电学信号的远程传输、分析与控制。 适用范围及特点 本产品采用优质磁体和进口电子元件,使产品具有:结构简单、使用方便、性能稳定、使用寿命长、便于安装维护等优点。 本产品几乎可以适用与各种工业自动化过程控制中的液位测量与控制,可以广泛运用于石油加工、食品加工、化工、水处理、制药、电力、造纸、冶金、船舶和锅炉等领域中的液位测量、控制与监测。 防爆浮球液位开关 主要原理 防爆浮球液位开关,也称为防爆浮球液位控制器。它是专门为爆炸性环境中使用而设计制造的液位控制仪表,本产品是基于浮力原理和杠杆原理设计的,当容器内液位发生变化时,浮球的位置将随液位的变化而变化,浮球的这种位移将通过杠杆作用于微动开关,进而由微动开关产生开关信号。 适用范围及特点 本产品采用优质材料和进口电子元件,使产品具有:设计合理、结构简单、使用方便、性能

雷达液位计工作原理及故障判断处理课件

洛阳三隆安装检修有限公司 2011.7.6

雷达液位计工作原理及故障判断处理 一、雷达液位计结构组成与工作原理 二、雷达液位计测量系统结构组成 三、雷达液位计工具软件及使用 四、雷达液位计校定 五、雷达液位计故障判断处理

一、雷达液位计结构组成与工作原理 1、结构组成:雷达液位计是由发射器头(TH)与天线组成。发射器头一般是通用的,同系列雷达液位计间可以互换。天线有多种形式,从而形成多种型号的雷达液位计。 发射器头由表体和电子单元(THE)组成。电子单元由微波单元、信号处理、数据通信、电源及瞬变保护电路板等构成。

2、工作原理:调频连续波(FMCW)测量原理。如下图所示,雷达液位计向液体表面发射微波,而约为10GHz带宽的微波信号连续地改变频率。在雷达信号被液面反射后,回波被天线接收。由于信号频率不断变化,与此时发射的信号相比,回波的频率稍微有所不同。频率的差异与到达液面的距离成比例,因此可得到空高。罐高减去空高,即为液位值。该方法称为调频连续波方法。并用于所有高性能雷达液位计。(另一种为微波脉冲时间行程(PTOF)测量原理:D =c ?t/2 )

二、雷达液位计测量系统结构组成及接线 雷达液位计:RTG39、RTG40,罐旁指示仪:DAU2100、RDU40、751,DU2210-R ,多点温度计:MST RTL/2 RTL/2MODBUS FCU2160 DCS RTG RTG .... .. RTG RTG ..................DAURTD DAURTD DAU RTD DAURTD RTG DAURTD RTG DAURTD 原油罐区雷达液位计测量系统结构示意图 751751FCU2160 1、SAAB 雷达液位计测量系统是由RTG 液位计、FCU 现场通讯单元、RTL/2现场总线、DAU 现场数据采集单元、多点温度计MST (RTD 测温元件Pt100)等组成,如下图所示,通过FCU 与DCS 通讯。

相关主题
文本预览
相关文档 最新文档