当前位置:文档之家› 望远镜的历史

望远镜的历史

望远镜的历史

望远镜的由来

17世纪初的一天,荷兰小镇的一家眼镜店的主人利伯希(HansLippershey),为检查磨制出来的透镜质量,把一块凸透镜和一块凹镜排成一条线,通过透镜看过去,发现远处的教堂塔尖好像变大拉近了,于是在无意中发现了望远镜的秘密。1608年他为自己制作的望远镜申请专利,并遵从当局的要求,造了一个双筒望远镜。据说小镇好几十个眼镜匠都声称发明了望远镜,不过一般都认为利伯希是望远镜的发明者。

随着时代的变迁,科学的发展,在风景旖旎的Colorado— CO 科罗拉多州,Onick早在海湾战争期间,就和美国军队有着密切合作,为盟军制造最先进光学仪器。它源于美国英文单词Optics+nick,代表:光学+挑剔,意思是追求挑剔的完美光学品质。Onick自成立以来一直致力于研发和生产高质量、人性化的便携式光学测量仪器。以其优越的产品性能和完善的售后承诺,是客户值得信赖的保障。

Onick(欧尼卡)产品多样,采用美国激光技术核心并制造,设计、加工、装配并通过最先进的设备进行测试,产品因其坚固耐用的精良做工、完美的防水性能以及绝佳的光学质量而闻名全球,广泛运用于户外运动、航海巡视、安防工程、电力工程、极地考察等多方向应用领域。公司不断探索新时代光学电子科技,将其实现于尽可能多的应用领域。Onick(欧尼卡)的使命:正如其名字的寓意一样,制造经得起挑剔的完美的户外关系产品,进一步成为世界领先的光学电子

测量技术开创者。通过不断创新科技来令人们的工作或生活更便捷、更惬意、更精彩!

望远镜的主要分类

望远镜的主要分类 文章来源:网站管理员发布时间:2010-6-24 7:26:10 一般天文望远镜以构造来分类,可分为折射望远镜、反射望远镜及折反射望远镜三大类。 折射望远镜 伽利略制作的折射望远镜 所谓折射望远镜是以会聚远方物体的光而现出实象的透镜为物镜的望远镜它会使从远方来的光折射集中在焦点,折射望远镜的好处就是使用方便,稍微忽略了保养也不会看不清楚,因为镜筒内部由物镜和目镜封着,空气不会流动,所以比较安定,此外,由于光轴的错开所引起的像恶化的情形也比反射望远镜好,而口径不大透镜皆为球面,所以可以机械研磨大量生产,故价格较便宜。 伽利略型望远镜 人类第一只望远镜,使用凹透镜当目镜,透过望远镜所看到的像与实际用眼睛直接看的一样是正立像,地表观物很方便但不能扩大视野,目前天文观测已不再使用此型设计。 开普勒型望远镜 使用凸透镜当目镜,现今所有的折射式望远镜皆为此型,成像上下左右巅倒,但这样对我们天体观测是没有影响的,因为目镜是凸透镜可以把两枚以上的透镜放在一起成一组而扩大视野,并且能改善像差除却色差。 市面上一般售卖的小型天文望远镜,多属折射望远镜。 反射望远镜 牛顿制作的反射望远镜 反射望远镜是利用一块镀了金属(通常是铝)的凹面玻璃聚焦,由于焦点在镜前,所以必须在物镜焦点之前用另一块镜将影像反射出镜筒外,再用目镜放大。 反射望远镜没有色差(因不用透过玻璃故无色散),但有其它各类的像差。如将反射凹面磨成

拋物线形(Parabolic),则可消除球面差,但受彗形像差的影响严重,故边缘部份仍觉松散。 现时一般中小型的反射望远镜有下列二种型式: 牛顿式(Newtonian) 利用一块与光轴成45度平面镜(Flat or diagonal)作为副镜(Secondary)将影像反射至镜筒前侧。这种结构最为简单,影像反差较高,亦最多人选用,通常焦比在f4至f8之间。 卡赛格林式或简称卡式(Cassegrain) 利用一块双曲面凸镜(Convex hyperboloid)作为副镜,在主镜焦点前将光线聚集,穿过主镜一个圆孔而聚焦在主镜之后。因为经过一次反射,所以镜筒可以缩短,但视场较窄,像散较牛顿式严重,同时有少许场曲(Curvature of field)。 由于反射式望远镜只要磨制一个光学面,所以以同一口径而论,价钱较折射镜为廉。普通天文爱好者,拥有150mm、200mm口径的为数不少,反射式望远镜同时可以自己磨制。 折反射望远镜 反射望远镜主要用于天体物理方面的工作。 折反射望远镜 折反射望远镜的物镜是由折射镜和反射镜组合而成。主镜是球面反射镜,副镜是一个透镜,用来矫正主镜的像差。此类望远镜视场大,光力强,适合观测流星,彗星,以及巡天寻找新天体。根据副镜的形状,折反射镜又可以分为施密特结构和马克苏托夫结构,前者视场大,像差小;后者易于制造。

卡塞格林望远镜的结构形式

卡塞格林望远镜的结构形式11种,主要是根据主镜和次镜面型及有无校正器来分的, 以下就是这11种的类型及结构形式(主镜面型在前,次镜在后)。 1、Classical Cassegrain 抛物面双曲面 2、Ritchey-Chretien双曲面双曲面 3、Dall-Kirkham椭圆面球面 4、Houghton-Cassegrain双凸透镜+双凹透镜球面球面 5、Schmit-Cassegrain施密特校正器面型任意 6、Maksutov-Cassegrain弯月透镜球面球面 7、Schmidt-meniscus Cassegrain施密特校正器+弯月透镜球面球面 8、Mangin-Cassegrain多个球面透镜球面球面 9、Pressmann-Camichel 球面椭圆面 10、Schiefspiegler 斜反射离轴 11、Three-mirror Cassegrain三片反射镜面型任意 以下详细介绍这几种卡塞格林结构形式: 1、Classical Cassegrain (经典的卡塞格林系统): "传统的"卡塞格林望远镜有抛物面镜的主镜,和双曲面的次镜将光线反射并穿过主镜中 心的孔洞,折叠光学的设计使镜筒的长度紧缩。在小望远镜和照相机的镜头,次镜通常安装 在封闭望远镜镜筒的透明光学玻璃板上的光学平台。这样的装置可以消除蜘蛛型支撑架造成 的"星状"散射效应。封闭镜筒虽然会造成集光量的损失,但镜筒可以保持干净,主镜也能得到保护。 它利用双曲面和抛物面反射的一些特性,凹面的抛物面反射镜可以将平行于光轴入射的所有 光线汇聚在单一的点上一焦点;凸面的双曲面反射镜有两个焦点,会将所有通过其中一个焦 点的光线反射至另一个焦点上。这一类型望远镜的镜片在设计上会安放在共享一个焦点的位置上,以便光线能在双曲面镜的另一个焦点上成像以便观测,通常外部的目镜也会在这个点 上。抛物面的主镜将进入望远镜的平行光线反射并汇聚在焦点上,这个点也是双曲线面镜的 一个焦点。然后双曲面镜将这些光线反射至另一个焦点,就可以在那儿观察影像

Hartmann 望远镜介绍

KARL HARTMANN OPTIK UND FEINMECHANIK WETZLAR, GERMANY(1921-1992) Small company, high quality A short history by Dr. Gijs van Ginkel The story of Karl Hartmann Optik in Wetzlar starts with the birth of Karl Hartmann I on June 25, 1888 as the son of a widely respected innkeeper in the small village of Steindorf near Wetzlar. Karl Hartmann decided for a career in optics and in 1903 at the age of 15 he started as an optics student to make prisms and lenses in the optical workshop of Moritz Hensoldt in Wetzlar. In that time Moritz Hensoldt and his two sons had already acquired a great international reputation for the quality of their optical instruments and prism designs. Karl Hartmann developed himself at Hensoldt as a specialist in the making of prisms. Around 1906 Hartmann got acquainted with Dr. Ernst Leitz II (1871-1956), who asked him to join the Leitz company in order to start the production of Leitz Porro prism binoculars, which Leitz intended to introduce on the market. Hartmann agreed and he became responsible for the prism production at Leitz, where worked from 1906- 1921. However in 1915, one month after the birth of his daughter, Hartmann had to join the German military because of Germany’s involvement in World War 1. Three years later, in 1918, his daughter saw her father for the first time when he returned from the battlefields. Immediately upon his return he started again at the Leitz company, but he wanted to have his own optical workshop. On November 17, 1921 his plan was realised: on that date he started his own optical workshop in an annex to the house of his parents in law in Wetzlar. In the beginning the Hartmann optical workshop produced eyepieces and objective lenses for microscopes made by Steindorf & Co in Berlin, but he also produced theatre binoculars, telescopes, lenses and prisms for the optical companies Füllgrabe (Kassel, Germany), Beck (Kassel, Germany) and Keiner (Wetzlar, Germany). In 1936 Hartmann introduced his first line of Hartmann Porro prism binoculars. The series consisted of the Hartmann Porlerim models 6x30, 7x50, 8x50 and 10x50. The Porlerims have central focussing and the identical Porlerom binoculars have individual eyepiece focussing. The Hartmann Porlerims/Porleroms became quickly very popular because of their excellent quality at a very reasonable price. Therefore the binocular production had to be increased at the expense of the production of microscope optics. On July 27, 1925 son Karl Hartmann-2 was born. He was only 15 years old when World War 2 started. During WW-2 the Hartmann Optik had to change to the production of airplane parts, the binocular production was stopped. In 1943 Karl Hartmann-2 became a prisoner of war of the English army so he stayed in England until his release in 1948. After WW-2 Karl Hartmann-1 tried to restart his optical workshop, but the Allied Forces did not allow the production of binoculars, therefore he started with the production of spectacle lenses, magnifying glasses and small theatre binoculars (so-called Holland type binoculars), the Hartmann Gilda and the Hartmann Martha which had a leather covering. In 1948 the Allied Forces again allowed the production of binoculars, but it was not allowed to print “Made in Germany” on the instruments, so now the binoculars were engraved with the text: “Hartmann-Wetzlar, made in US-zone”. On March 23, 1948 son Karl Hartmann-2 was released as a prisoner of war and already on March 24 he signed a so-called “Lehr-Vertrag”, which meant that he would receive training in the making of optics and fine mechanics. He finished this training successfully in 1956 with a so-called “Meister-Prüfung”: from then on has was a qualified opticist. That was actually not his dream in life, since he wanted to become a surgeon, but he did the opticist training as a token of loyalty to his father.

望远镜的原理及发展历史

望远镜的原理及发展历史 望远镜是一种利用凹透镜和凸透镜观测遥远物体的光学仪器。利用通过透镜的光线折射或光线被凹镜反射使之进入小孔并会聚成像,再经过一个放大目镜而被看到。又称“千里镜”。望远镜的第一个作用是放大远处物体的张角,使人眼能看清角距更小的细节。望远镜第二个作用是把物镜收集到的比瞳孔直径(最大8毫米)粗得多的光束,送入人眼,使观测者能看到原来看不到的暗弱物体。1608年荷兰人汉斯·利伯希发明了第一部望远镜。1609年意大利佛罗伦萨人伽利略·伽利雷发明了40倍双镜望远镜,这是第一部投入科学应用的实用望远镜。 17世纪初的一天,荷兰小镇的一家眼镜店的主人利伯希(Hans Lippershey),为检查磨制出来的透镜质量,把一块凸透镜和一块凹镜排成一条线,通过透镜看过去,发现远处的教堂塔尖好象变大拉近了,于是在无意中发现了望远镜的秘密。1608年他为自己制作的望远镜申请专利,并遵从当局的要求,造了一个双筒望远镜。据说小镇好几十个眼镜匠都声称发明了望远镜。 望远镜是一种用于观察远距离物体的目视光学仪器,能把远物很小的张角按一定倍率放大,使之在像空间具有较大的张角,使本来无法用肉眼看清或分辨的物体变清晰可辨。所以,望远镜是天文和地面观测中不可缺少的工具。它是一种通过物镜和目镜使入射的平行光束仍保持平行射出的光学系统。根据望远镜原理一般分为三种。BOSMA博冠望远镜. 一种通过收集电磁波来观察遥远物体的仪器。在日常生活中,望远镜主要指光学望远镜。但是在现代天文学中,天文望远镜包括了射电望远镜,红外望远镜,X射线和伽马射线望远镜。近年来天文望远镜的概念又进一步地延伸到了引力波,宇宙射线和暗物质的领域。或者再经过一个放大目镜进行观察。日常生活中的光学望远镜又称“千里镜”。它主要包括业余天文望远镜,观剧望远镜和军用双筒望远镜。 常用的双筒望远镜还为减小体积和翻转倒像的目的,需要增加棱镜系统,棱镜系统按形式不同可分为别汉棱镜系统(RoofPrism)(也就是斯密特。别汉屋脊棱镜系统)和保罗棱镜系统(PorroPrism)(也称普罗棱镜系统),两种系统的原理及应用是相似的。个人使用的小型手持式望远镜不宜使用过大放大倍率,一般以3~12倍为宜,倍数过大时,成像清晰度就会变差,同时抖动严重,超过12倍的望远镜一般使用三角架等方式加以固定。 与此同时,德国的天文学家开普勒也开始研究望远镜,他在《屈光学》里提出了另一种天文望远镜,这种望远镜由两个凸透镜组成,与伽利略的望远镜不同,比伽利略望远镜视野宽阔。但开普勒没有制造他所介绍的望远镜。沙伊纳于1613年─1617年间首次制作出了这种望远镜,他还遵照开普勒的建议制造了有第三个凸透镜的望远镜,把二个凸透镜做的望远镜的倒像变成了正像。沙伊纳做了8台望远镜,一台一台地观察太阳,无论哪一台都能看到相同形状的太阳黑子。因此,他打消了不少人认为黑子可能是透镜上的尘埃引起的错觉,证明了黑子确实是观察到的真实存在。在观察太阳时沙伊纳装上特殊遮光玻璃,伽利略则没有

折射式望远镜

折射式望远镜 望远镜是一种利用凹透镜和凸透镜观测遥远物体的光学仪器。利用通过透镜的光线折射或光线被凹镜反射使之进入小孔并会聚成像,再经过一个放大目镜而被看到。又称“千里镜”。望远镜的第一个作用是放大远处物体的张角,使人眼能看清角距更小的细节。望远镜第二个作用是把物镜收集到的比瞳孔直径(最大8毫米)粗得多的光束,送入人眼,使观测者能看到原来看不到的暗弱物体。1608年荷兰人汉斯·利伯希发明了第一部望远镜。1609年意大利佛罗伦萨人伽利略·伽利雷发明了40倍双镜望远镜,这是第一部投入科学应用的实用望远镜。 折射式望远镜,是用透镜作物镜的望远镜。 伽利略之折射望远镜分为两种类型:由凹透镜作目镜的称伽利略望远镜;由凸透镜作目镜的称开普勒望远镜。因单透镜物镜色差和球差都相当严重,现代的折射望远镜常用两块或两块以上的透镜组作物镜。其中以双透镜物镜应用最普遍。它由相距很近的一块冕牌玻璃制成的凸透镜和一块火石玻璃制成的凹透镜组成,对两个特定的波长完全消除位置色差,对其余波长的位置色差也可相应减弱 在满足一定设计条件时,还可消去球差和彗差。由于剩余色差和其他像差的影响,双透镜物镜的相对口径较小,一般为1/15-1/20,很少大于1/7,可用视场也不大。口径小于8厘米的双透镜物镜可将两块透镜胶合在一起,称双胶合物镜,留有一定间隙未胶合的称双分离物镜。为了增大相对口径和视场,可采用多透镜物镜组。对于伽利略

望远镜来说,结构非常简单,光能损失少。镜筒短,很轻便。而且成正像,但倍数小视野窄,一般用于观剧镜和玩具望远镜。对于开普勒望远镜来说,需要在物镜后面添加棱镜组或透镜组来转像,使眼睛观察到的是正像。一般的折射望远镜都是采用开普勒结构。由于折射望远镜的成像质量比反射望远镜好,视场大,使用方便,易于维护,中小型天文望远镜及许多专用仪器多采用折射系统,但大型折射望远镜制造起来比反射望远镜困难得多,因为冶炼大口径的优质透镜非常困难,且存在玻璃对光线的吸收问题,所以大口径望远镜都采用反射式。

折射望远镜

折射望远镜 在科学研究中没有比使用望远镜的工作更能吸引大众兴趣的了。我想读者也一定很想明确地知道望远镜究竟是什么,以及用望远镜又能看到些什么。这种工具的最完整的形式,例如天文学家在天文台上用的,是非常复杂的。可是其中有几个要点却只需细心一点加以注意便可大致体会。明白了这些要点以后,再去参观天文台,审视这些仪器时,便能比一个毫无所知的人得到更多的满足和知识。 我们都知道,望远镜的重要用途是使我们能把远处的东西看得近些;看一件若干千米以外的东西竟能仿佛是在几米之内。造成这种结果的光学工具就是用的一些很大的磨得很好的透镜——这种透镜跟我们所用的眼镜是一类的东西,只不过更大更精美罢了。收集从物体来的光至少有两种方法:一是让光通过许多透镜,二是用一凹面镜把光反射出来。因此我们有多种望远镜:一种叫做折射望远镜,一种叫反射望远镜,还有一种叫折反射望远镜。我们先从折射望远镜讲起。 望远镜中的透镜 一架折射望远镜中的透镜由两个系统组合而成:一个是“物镜”,用来在望远镜的焦点上形成远处物体的像;另一个是“目镜”,用来在人眼看得最清晰的地方形成新的像。 物镜才是望远镜中真正困难而且精巧的一部分。制造这一部分比其他所有部分加在一起都需要更多精巧的工艺。其中需要怎样大的天赋才能,我们只需举出一件事实来:100多年以前,任何地方的天文学家都相信,全世界只有一个人有能力制造巨大而精美的物镜,这人名叫阿尔凡·克拉克(Alvan Clark),不久我们就要提到他。 通常制成的物镜由两大透镜构成。望远镜的能力便完全依赖于这些透镜的直径,这便叫做望远镜的“口径”(aperture)。口径的大小不等,可以从家用小望远镜的10厘米左右,一直到叶凯士天文台(Yerkes Observatory)大型折射望远镜的1.02米。 10

AR数字望远镜简介

AR数字望远镜 随着科技不断的发展起来,增强现实系统和数字沙盘等技术越来越成熟,AR望远镜有着广泛的应用前景。 中文名 AR数字望远镜 外文名 AR digital telescope AR望远镜有着广泛的应用前景,因为现实是把计算机产生的虚拟物体或其他信息合成到用户感知的真实世界的一 种技术,它是对真实世界的补充,而不是完全替代真实世界,它与传统的虚拟现实(VR)不同,增强现实只是实现对现实环境的增强,加深了对现实环境的感受,AR望远镜增强了用户对现实世界的感知能力与现实世界的交互能力。 由于增强现实系统既有虚拟的成分,同时也有现实世界的真实环境使得增强现实系统成为除了现实世界之外的最 有沉浸感的环境。增强现实系统将成为一种新型的媒介,逐渐深入到从房地产到旅游景区等各个领域。 现在科技的进步和发展更多追求的是技术的实用性,继增强现实系统这项科技的出现,北京龙博时代展览有限公司为了使各个企业更好的用到增强现实系统这项科技,又通过团队的努力提出来AR望远镜的出现。对于增强现实系统来说,AR望远镜就是一个辅助性的设备,这个设备的作用就是更好的帮助完善增强现实系统这项科技。

房地产行业的应用 AR望远镜应用在房地产行业,可以使看房客户不在需要亲临现场,可通过本设备观测沙盘,以达到了解房屋结构、楼宇建设、开发商信息、物业信息等等。 旅游景区的应用 可将本AR数字望远镜设立在旅游景区最高观测点,使游客通过AR数字望远镜观测各个场景,同时产生每个场景的年代、历史、人文信息等等。 一项技术和一项设备的产生就是为了更好的服务于另外一项技术,同时又有着其独特的作用力产生,这些都是慧凯科技团队不懈的探寻和努力得到的。 规格及参数 文字说明:

望远镜的发展史

1608年,荷兰的一位眼镜商偶然发现用两块镜片可以看清远处的景物,受此启发,他制造了人类历史上的第一架望远镜。经过近400年的的发展,望远镜的功能越来越强大,观测的距离也越来越远。 为庆祝“2009国际天文年”,英国《新科学家》评选出了人类历史上最著名的望远镜。以下是这14架最著名的望远镜: 1、伽利略折射望远镜 伽利略是第一个认识到望远镜将可能用于天文研究的人。虽然伽利略没有发明望远镜,但他改进了前人的设计方案,并逐步增强其放大功能。图中的情景发生于1609年8月,伽利略正在向当时的威尼斯统治者演示他的望远镜。伽利略制作了一架口径4.2厘米,长约1.2米的望远镜。他是用平凸透镜作为物镜,凹透镜作为目镜,这种光学系统称为伽利略式望远镜。伽利略用这架望远镜指向天空,得到了一系列的重要发现,天文学从此进入了望远镜时代。折射望远镜的优点是焦距长,底片比例尺大,对镜筒弯曲不敏感,最适合于做天体测量方面的工作。但是它总是有残余的色差,同时对紫外、红外波段的辐射吸收很厉害 2、牛顿反射式望远镜 牛顿反射式望远镜的原理并不是采用玻璃透镜使光线折射或弯曲,而是使用一个弯曲的镜面将光线反射到一个焦点之上。这种方法比使用透镜将物体放大的倍数要高数倍。牛顿经过多次磨制非球面的透镜均告失败后,决定采用球面反射镜作为主镜。他用2.5厘米直径的金属,磨制成一块凹面反射镜,并在主镜的焦点前面放置了一个与主镜成45o角的反射镜,使经主镜反射后的会聚光经反射镜以90o角反射出镜筒后到达目镜。这种系统称为牛顿式反射望远镜。它的球面镜虽然会产生一定的象差,但用反射镜代替折射镜却是一个巨大的成功。反射望远镜的主要优点是不存在色差,当物镜采用抛物面时,还可消去球差。图中显 哈勃太空望远镜 示的是牛顿首个反射式望远镜的复制品。 3、赫歇尔望远镜

望远镜系统结构设计

光学课程设计 望远镜结构系统设计 姓名:曾茂桃 班级:光通信082 学号:2008031126 指导老师:张翔

摘要 该报告运用应用光学知识,了解望远镜的历史,在工作原理的基础上,完成望远镜的外形尺寸、物镜组、目镜组及转像系统的简易或原理设计。了解光学设计中的PW 法基本原理。并应用光学设计软件对系统误差、成像质量进行理论分析。初级像差理论与像差的校正和平衡方法,像质评价与像差公差,光学系统结构参数的求解方法。望远物镜设计的特点、双胶合物镜结构参数的求解和光学特性。目镜设计的特点、常用目镜的型式和像差分析等都有了一个明确的简要的介绍。 关键字:望远镜物镜目镜放大率分辨率内调焦望远镜 PW法光栅

目录 一概述…………………………………………………………页二望远镜尺寸设计与分析…………………………………页2.1 望远镜的简述…………………………………………………………页2.2 望远镜的主要特性分析………………………………………………页三分物镜组与目镜组的选………………………………………………页 3.1望远镜物镜需要消除的像差类型及主要结构形式…………………页3.2双胶物镜和双分离物镜………………………………………………页 3.3内调焦望远镜…………………………………………………………页 四.目镜组的主要种类及其结构:………………………….. 页 4.1惠更斯目镜……………………………………………………………页4.2冉斯登目镜……………………………………………………………页 4.3Porro、Roof棱镜结构及其特点…………………………………页 五.望远镜像差设计PW法………………………………….. 页 5.2物体在有限距离时的P,W的规化……………………………………页5.5用C ,表示的初级像差系数………………………………………页 P, W 六.光学系统中的光栅分析……………………………………页

天文望远镜介绍

?光学望远镜 天文光学望远镜主要由物镜和目镜组镜头及其它配件组成。通常按照物镜的不同,可把光学望远镜分为三类:折射望远镜、反射望远镜和折反射望远镜。 一折射望远镜 折射望远镜的物镜由透镜组成折射系统。早期的望远镜物镜由一块单透镜制成。由于物点发射的光线与透镜主轴有较大的夹角,玻璃对不同颜色的光的折射率不同,会造成球差和色差,严重影响成像质量。为了克服这一缺点,人们发现近轴光线几乎没有球差和色差,于是尽量制造长焦距透镜,促使望远镜向长镜身发展。1722年希拉德雷测定金星直径的望远镜,物镜焦距长达65m,用起来非常不便,跟踪天体时甚至需很多人推动。 为解决上述缺点,后来人们用不同玻璃制成的一块凸透镜和一块凹透镜组成复合物镜。所以,现代的折射望远镜的物镜,都是由两片或多片透镜组成折射系统(双透镜组或三合透镜组等)这样,可使望远镜口径增大,镜身缩短。1897年安装在美国叶凯士天文台的折射望远镜,口径 1.02m,焦距19.4m,仅物镜就重达230kg,至今仍是世界上最大的折射望远镜。 从理论上说,望远镜越大,收集到的光越多,自然威力也越大。但巨大物镜对光学玻璃的质量要求极高,制作困难。镜身太大,支撑结构的刚性难保,大气抖动影响明显,其观测效果反倒不佳。这就限制了折射望远镜向更大口径发展。现在天文学家们发展了一种新技术,可以在望远镜镜面背后加上一套微调装置,根据大气的抖动情况,随时调整望远镜的镜面,把大气的抖动影响矫正过来,这套技术叫做主动光学,这样一来,望远镜口径问题有望突破。 二反射望远镜 反射望远镜的物镜,不需笨重的玻璃透镜,而是制成抛物面反射镜。 其光学性能,既没有色差,又消弱了球差。 反射望远镜物镜表面有一层金属反光膜,通常用铝或银,反光性能相当理想,且镜筒大大缩短。由于抛物面反射可作得很轻薄,于是就可以增大望远镜的口径。现代世界上大型光学望远镜都是反射望远镜。 反射望远镜需在镜筒里面装有口径较小的反射镜,叫作副镜,以改变由主镜反射后,光线行进方向和焦平面的位置。反射望远镜有几种类型,通常使用的主要有牛顿式,副镜为平面镜;卡塞格林式,副镜是凸双曲面镜,它可把主物镜的焦距延长,并从主镜的光孔中射出。

最新Nikon望远镜历史

尼康望远镜的历史 1917年,东京计器制作所的光学计量仪器部门和岩城玻璃制作所的反射镜部门合并,成为一家更完善的光学企业,并命名为Nippon Kogaku K.K.(日本光学工业株式会社)。然后又兼并了藤井镜头制作所,这奠定Nikon日后的发展基础,而Nippon Kogaku K.K.这一个名字一直沿用至1988年,只是它的知名度却远不及它的品牌——Nikon,因此,Nippon Kogaku K.K.早已改称Nikon Corporation。 1917年,尼康向德国聘请了8名光学专家外加上自己的200名员工开张之后,早期产品以望远镜显微镜和光学测量仪器为主。从1917年开始,望远镜就一直是其产品线中的拳头产品之一。1918年,Nippon Kogaku K.K.正式有了大规模的生产中心厂房,并且开始研究光学玻璃的生产,仅今年尼康公司就向包括英国、美国、法国、俄罗斯等国出口了18种型号共计15000架之多的高质量的棱镜式望远镜,而這仅仅只是开始而已!到1921年它们推出三支反射式望远镜,口径分别为5㎝、7.5㎝及10㎝,还有mikron4X,6X这两支棱镜倒像的开普勒双筒望远镜,这是尼康在光学器材领域叱咤风云90年的开始。1920年,尼康从德国请来了光学工程师Heinrich Acht负责设计镜头,Heinrich Acht回国后改由日本工程师Kakuya Sunayama接手,他根据Acht的资料在1929年完成了Nikon第一颗 120mm f/4.5镜头,从此开始了由望远镜转向相机镜头的转变。在上世紀20年代早期,Nikon和德国工程师合作生产了一系列经典望远镜产品,如产于1922年的Mikron4x and6x望远镜(其中6x型望远镜重量仅有90g),以及随后于1923年投产的Orion6×24,8×26,和Nova系列。值得一提的是Nikon的Mikron型望远镜的性能足以和比它体积大得多望远镜相抗衡,它甚至在上世纪50年代仍很流行。不过随着时局的变化,此后Nikon就主力生产为满足军方需求的望远镜产品了。 1938-1945:真正用在战场的军镜 1938年到1945年间,随着战争的全面爆发及太平洋战争的开始,Nippon Kogaku K.K.配合政府的需要,开设了一连串大型厂房,以生产军需光学仪器, 军用望远镜什么的都是小儿科, 咱举点高科技的例子,二战期间 日军排水量最大(4.6万吨),火 炮口径最大(460mm)的大和武 藏两艘战列舰上所使用的光学 测距仪就是尼康生产的,测距基 线长15.8米,性能极为出色,虽 然是仿制的蔡司给德军做的类 似产品,不过就战后的资料来 看,其工艺和性能已与原型相差 无几了。尼康在战争期间的作为 常常被愤青抓住,进而上升到买 尼康就是支持军国主义,买尼克

短篇感人故事

短篇感人故事 人生漫长的一生中总会发生一些令人感动流泪的事情,或许是因为亲情或许是因为爱情甚至是手足之情。是否想知道其他人人生中的感人故事呢?以下为感人短篇故事。 有一对情侣,男的非常懦弱,做什么事情之前都让女友先试。女友对此十分不满。一次,两人出海,返航时,飓风将小艇摧毁,幸亏女友抓住了一块木板才保住了两人的性命。 女友问男友:"你怕吗?"男友从怀中掏出一把水果刀,说:怕,但有鲨鱼来,我就用这个对付它。"女友只是摇头苦笑。 不久,一艘货轮发现了他们,正当他们欣喜若狂时,一群鲨鱼出现了,女友大叫:'我们一起用力游,会没事的!"男友却突然用力将女友推进海里,独立扒着木板朝货轮了,并喊道:"这次我先试!"女友惊呆了,望着男友的背影,感到非常绝望。鲨鱼正在靠近,可对女友不感兴趣而径直向男友游去,男友被鲨鱼凶猛地撕咬着,他发疯似地冲女友喊道:"我爱你!" 女友获救了,甲板上的人都在默哀,船长坐到女友身边说:"小姐,他是我见过最勇敢的人。我们为他祈祷!" "不,他是个胆小鬼。"女友冷冷地说。"您怎么这样说呢?刚才我一直用望远镜观察你们,我清楚地看到他把你推开后用刀子割破了自己的手腕。鲨鱼对血腥味很敏感,如果他不这

样做来争取时间,恐怕你永远不会出现在这艘船上.." 从前有个A,在日本留学,往返于日本和C城。认识了C城的B,A和B保持联络。聊天记录长达119页。 A说喜欢B。 A说为了让B喜欢自己,A什么都愿意做。 A说在A的心中,只有B一个人。 A说A绝对不喜欢其他女人。A眼中其他女人们都很丑。B看见,A的那些日本友人明明都是浓妆艳抹长得很“小姐”类型的漂亮。B想,作为一个男人,A怎么可能对她们没想法呢? A说要约B。 A又说认为B和A不太可能。A又说,约会约的。继续着那些扯蛋的甜言蜜语。 B问A,那么过去那么久了。A你怎么还不约我呢? A说,亲爱的,我忙啊。 这种对方反复出现。每次,A都说,亲爱的,我忙啊!我忙!我在成田机场。我的位置,谷歌给你。亲爱的。 最后一次,B生气的质问A,你不是在C城了吗?为什么不约我?你到底……微博放偷拍别的女生的照片,这种事又是几个意思?? A把B黑了,各种社交网络全部黑光。 B哭了。B伤心委屈地哭了几天几夜。几年后,B想,她

牛顿式反射望远镜光轴的校准(精选.)

牛顿式反射望远镜光轴的校准 很多爱好者在使用反射式望远镜,特别是近年来越来越多的爱好者开始使用大口径、短焦距的抛物面牛顿式反射望远镜。说到望远镜的光学质量,人们比较关心的是主镜的口径及表面精度,而对于是否将反射镜的整个光学系统调整到最佳状态,似乎并没有给予足够的重视。我根据最近的一些实践经验,参考了网上的一些相关文章,把自己的体会写成此文。 反射望远镜光轴校准的重要性: 如果你拥有了一架反射望远镜,并且主镜是抛物面的,当你满怀希望投入观测,却发现像质平平,甚至恒星都不能聚成一个点,这个时候先别急着换镜子,你拥有的可能是一架很不错的望远镜,问题仅仅出在镜片装配上,经过对光轴的重新调整,望远镜里展现出的可能是完全不同的景象。 抛物面反射镜的成像有个特点,在光轴上成像很完美,没有像差,但离开光轴就会有明显的彗差(星点带了小尾巴)。在光轴上,使用一般视场的目镜,视场中心的星点是很锐利的,实际上视场边缘的像差也不易察觉。而如果在光轴外,整个视场中的星点可能都不实,而且离光轴越远这一点越严重。 怎样才算调好光轴了? 反射镜的光学系统中有两个光轴:主镜(物镜)光轴平行于主镜筒的轴线,经过副镜(小平面镜);目镜光轴垂直于主镜筒轴线,也经过副镜。当两个光轴都经过副镜上的同一点,且被副镜反射后二者完全重合,也就是成了一个光轴,那么光轴就算调好了。 在缺乏检验手段时,可以通过实际观测来判断光轴是否调好。找一个大气宁静度较好的晴夜,用望远镜的最高倍率(用毫米表示的主镜的直径数)看一颗恒星(如果没有赤道仪则可以看北极星)。把星点放在目镜视场中心(以减少目镜带来的像差),仔细调整焦距,从焦点外调到焦点,然后调到焦点内。如果光轴调整没有问题,可以看到如下图所示的从左到右一系列图象(图中的圆环是光的衍射引起的,散焦后实际上还会看到副镜及其支架的影子,图中没有画出)。 在焦点上星像是否凝结得很实、很细、很锐利,散焦后衍射环是否是同心圆,这些都反映了望远镜的像质。如果散焦后可以看到几圈衍射环,但不象上图中那样完美,四周均匀地带有一些“毛刺”,这说明反射镜面的精度稍差,但光轴调整的还是好的。如果散焦后星点变成了一个小的扇形,而且在目镜视场中移动星象,扇形的发散方向不变,这说明望远镜的光轴需要调整了。 光轴调整步骤及辅助工具 光轴调整可按如下步骤进行: 调节目镜调焦筒使之垂直于主镜筒轴线

带你认识望远镜的结构与原理

带你认识望远镜的结构与原理 望远镜基本构造 一般来说,常规的双筒望远镜有以下几个部分组成:目镜,物镜,中间的棱镜,两个镜筒的连接部分,以及聚焦系统。根据不同的尺寸大小,放大倍率,和用途以及个人喜好,双筒望远镜又可细分为好几种类型(详见双筒望远镜类型一表)。下图是常规双筒望远镜的基本构造图:

望远镜常见问题解答 1.望远镜上的两个数字代表什么?

望远镜上的两个数字分别代表望远镜的放大倍率和物镜口径。例如10x42的双筒望远镜,代表该望远镜的放大倍率是10x,物镜口径是42mm。10x的倍率表示透过望远镜看到的物体被放大了10倍,即100米处的物体看起来是在10米处。 2.望远镜的放大倍率越大越好吗? 不是,放大倍数越大,表示远处的目标在视场中显得更大,但同时意味着实际的视场会变得更小,也就是说进入望远镜的光通量会减少,也就是说你看到的目标会变得黯淡审视模糊。同时,放大倍率过大,会造成晃动不易于手持,也会引起眼睛疲劳,不利于观察。 3.双筒望远镜能否选择变倍的? 可以选择,但最好可变倍数不要太大。变倍望远镜很方便、适合多种用途,是牺牲如下指标为代价的:价格稍高;结构复杂,容易损坏;视角一般偏小;镜片多,分辨能力稍差;逆光表现不如固定倍数,反差会低一点。 4.双筒望远镜和单筒望远镜到底哪一个好? 如同字面所示,双筒望远镜有左右对称的镜头,便于人用双眼观察。而单筒望远镜是用单眼观察。不过,我们并不能武断地认为双筒望远镜更好。一般来讲单筒望远镜的倍率比双筒望远镜高,可以将远处的物体放得更大。而双筒望远镜虽然比单筒望远镜的倍率低,但由于可以用双眼观察,可以得到立体感。同时由于倍率较低,可以用手

天文望远镜基础知识介绍

天文望远镜基础知识介绍

天文望远镜基础知识科普 一、望远镜基本原理与天文望远镜 望远镜是一种利用凹透镜和凸透镜观测遥远物体的光学仪器,是通过透镜的光线折射或光线被凹镜反射使之进入小孔并会聚成像,再经过一个放大目镜而使人看到远处的物体,并且显得大而近的一种仪器。所以,望远镜是天文和地面观测中不可缺少的工具。 天文望远镜是望远镜的一种,是观测天体的重要工具,可以毫不夸大地说,没有望远镜的诞生和发展,就没有现代天文学。随着望远镜在各方面性能的改进和提高,天文学也正经历着巨大的飞跃,迅速推进着人类对宇宙的认识。 二、天文望远镜的结构 下面是天文望远镜的结构图,不是说每一款望远镜都是这样的。有的天文望远镜没有寻星镜,有的在镜筒上还安装了中垂来调节平衡。还有会赠送很多其他的天文配件,比如太阳滤镜、增倍镜(巴洛镜)、更多倍数的目镜。 天文望远镜重要部位的作用: 1.主镜筒:观测星星的主要部件。 2. 寻星镜:快速寻找星星。主镜筒通常都以数十倍以上的倍率观测 星体。在找星星时,如果使用数十倍来找,因为视野小,要用主镜筒将星星找出来,可没那麼简单,因此我们就使用一支只有放大数倍的小望远镜,利用它具有较大视野的功能,先将要观测的星星位置找出来,如此就可以在主镜筒,以中低倍率直接观测到该星星。 3. 目镜:人肉眼直接观看的必要部件。目镜起放大作用。通常一部 望远镜都要配备低、中和高倍率三种目镜。 4.天顶镜:把光线全反射成90°的角,便于观察。 5. 三脚架:固定望远镜观察时保持稳定。

三、天文望远镜的性能指标 评价一架望远镜的好坏首先看它的光学性能,然后看它的机械性能的指向精度和跟踪精度是否优良。光学性能主要有以下几个指标: 1.口径:物镜的有效口径,在理论上决定望远镜的性能。口径越大,聚光本领越强,分辨率越高,可用放大倍数越大。 2.集光力:聚光本领,望远镜接收光量与肉眼接收光量的比值。人的瞳孔在完全开放时,直径约7mm。70mm口径的望远镜,集光力是70/7=10倍。 3.分辨率:望远镜分辨影像细节的能力。分辨率主要和口径有关。 4.放大倍数:物镜焦距与目镜焦距的比值,如开拓者60/700天文望远镜,使用H10mm目镜,放大倍数=物镜焦距700mm/目镜焦距10mm=70倍;放大倍数变大,看到的影像也越大。 5.视场:望远镜成像的天空区域在观测者眼中所张的角度,也称视场角。放大倍数越大,视场越小。 6.极限星等:是望远镜所能观测到最暗的星等,主要和口径、焦比有关。正常视力的人,在黑暗、空气透明的场合最暗可看到6等星,而70mm口径望远镜的集光力是肉眼的100倍,能看到比6等星再暗五个星等的11等星。 因此,衡量望远镜的重要参量是口径。 四、天文望远镜的分类 (一)光学望远镜 1609年,伽利略制造出第一架望远镜,至今已有近四百年的历史,其间经历了重大的飞跃,根据物镜的种类可以分为三种: 1.折射望远镜:物镜为凸透镜,位于镜筒的前端,来自天体的光线经物镜折射后成像在焦面上,故称为折射望远镜。优点---使用方便,镜体轻巧,便于

望远镜的基本原理

望远镜的基本原理 望远镜是一种用于观察远距离物体的目视光学仪器,能把远物很小的张角按一定倍率放大,使之在像空间具有较大的张角,使本来无法用肉眼看清或分辨的物体变清晰可辨。所以,望远镜是天文和地面观测中不可缺少的工具。它是一种通过物镜和目镜使入射的平行光束仍保持平行射出的光学系统。一般分为三种。 一、折射望远镜 折射望远镜是用透镜作物镜的望远镜。分为两种类型:由凹透镜作目镜的称伽利略望远镜;由凸透镜作目镜的称开普勒望远镜。两种望远镜的成像原理如图1所示。 图1 伽利略望远镜是物镜是凸透镜而目镜是凹透镜的望远镜。光线经过物镜折射所成的实像在目镜的后方(靠近人目的后方)焦点上,这像对目镜是一个虚像,因此经它折射后成一放大的正立虚像。伽利略望远镜的放大率等于物镜焦距与目镜焦距的比值。其优点是镜筒短而能成正像,但它的视野比较小。把两个放大倍

数不高的伽利略望远镜并列一起、中间用一个螺栓钮可以同时调节其清晰程度的装置,称为“观剧镜”;因携带方便,常用以观看表演等。伽利略发明的望远镜在人类认识自然的历史中占有重要地位。其优点是结构简单,能直接成正像。 开普勒望远镜由两个凸透镜构成。由于两者之间有一个实像,可方便的安装分划板,并且各种性能优良,所以目前军用望远镜,小型天文望远镜等专业级的望远镜都采用此种结构。但这种结构成像是倒立的,所以要在中间增加正像系统。正像系统分为两类:棱镜正像系统和透镜正像系统。我们常见的前宽后窄的典型双筒望远镜既采用了双直角棱镜正像系统。这种系统的优点是在正像的同时将光轴两次折叠,从而大大减小了望远镜的体积和重量。透镜正像系统采用一组复杂的透镜来将像倒转,成本较高。 因单透镜物镜色差和球差都相当严重,现代的折射望远镜常用两块或两块以上的透镜组作物镜。其中以双透镜物镜应用最普遍。它由相距很近的一块冕牌玻璃制成的凸透镜和一块火石玻璃制成的凹透镜组成,对两个特定的波长完全消除位置色差,对其余波长的位置色差也可相应减弱,如图2所示。 图2

光学望远镜的发展简介

光学望远镜的发展简介 天文学是研究天体和宇宙的科学,观测是天文学研究的主要实验方法.在17世纪以前,天文学家只能用肉眼观测星空中几千个比较亮的天体.17世纪初,伽利略发明了天文望远镜,人类的眼界随之大为开阔,望远镜成了近代天文观测的眼睛.本文就光学天文望远镜的发展作一简单介绍. 一、折射式望远镜 1.伽利略望远镜 图1 第一个望远镜是荷兰的一位眼镜商人里帕席于1608年做成的.据说,里帕席无意间将两块镜片重叠并使其相隔一定的距离观看时,发现远处教堂上的风标明显地放大了.于是,他把两块镜片装在一个铜管的两头,发明了最初的望远镜,这引起了许多人的兴趣.1609年,当伽利略得知荷兰人发明了望远镜的消息后,他激动不已,立即亲自动手制作望远镜.他用一个凸透镜作为物镜,一个凹透镜作为目镜,于1609年7月初制成了倍率为3的望远镜,这种望远镜的构造如图1所示,这种光学系统现称为伽利略望远镜.经过进一步的改进,到1610年9月,将倍率提高到了33倍.伽利略用自制的望远镜观察天空,发现了月球表面的环行山、太阳黑子、木星的卫星等一系列重大的天文现象,从此天文学进入了望远镜时代. 2.开普勒望远镜 图2 鉴于伽利略望远镜放大倍数和视场都较小的缺点,1611年,德国天文学家开普勒设计了用两片双凸透镜分别作为物镜和目镜的望远镜,使得放大倍数和视场都有了明显的提高,如图2所示,这种光学系统现称为开普勒望远镜.用这种望远镜看到的像是倒立的,这会使人很不习惯,不过对于天文观测则毫无影响.从17世纪中叶起,开普勒望远镜在天文观测中得到了普遍的应用. 当时的望远镜都采用单个透镜作为物镜,存在着严重的色差,为了获得好的观测效果,需要用曲率非常小的透镜,因此镜身越来越长,最长的竟达65米.直至英国光学仪器商杜隆用冕牌玻璃和火石玻璃制造了消色透镜,从此,长镜身望远镜被消色差折射望远镜所取代. 二、反射式望远镜 图3 由于伽利略和开普勒望远镜均存在明显的色差,所以人们又发明了消色差的反射式望远镜.牛顿在清楚地解释了“色差”问题后,于1688年制作了一种与众不同的反射式望远镜.他采用球面镜作为主镜,将金属磨制成一块凹面镜,并在主镜的焦点前面放置了一个与主镜成45°角的反射镜,使经主镜反射后的会聚光经反射镜以90°角反射出镜筒后到达目镜,如图3所示,这种光学系统称为牛顿式反射望远镜.它的球面镜虽然会产生一定的相差,但用反射镜代替折射镜却是一个巨大的成功.

相关主题
文本预览
相关文档 最新文档