当前位置:文档之家› 模拟开关的关键技术特性和应用实例分析

模拟开关的关键技术特性和应用实例分析

模拟开关的关键技术特性和应用实例分析
模拟开关的关键技术特性和应用实例分析

模拟开关的关键技术特性和应用实例分析

近年来,便携式产品越来越多地采用多源设计,因此开关功能是视频、音频传输及处理过程中的一个重要组成部分。早期采用的机械开关具有可靠性低、体积大、功耗大的缺点,所以模拟开关已经引起了越来越多人的重视,并已被广泛应用于各种电子产品中。

尽管模拟开关具有机械开关不可取代的优势,然而它的应用较机械开关稍微复杂些,初次使用模拟开关的工程人员往往会由于模拟开关使用不当,引起整个系统的故障。本文通过将模拟开关与普通机械开关作比较,论述了模拟开关的若干基本概念,并结合实例对模拟开关应用的关键技术进行研究。

模拟开关的模拟特性

许多工程师第一次使用模拟开关,往往会把模拟开关完全等同于机械开关。其实模拟开关虽然具备开关性,但和机械开关有所不同,它本身还具有半导体特性:

1. 导通电阻(R

on )随输入信号(V

IN

)变化而变化

图1a是模拟开关的简单示意图,由图中可以看出模拟开关的常开常闭通道实际上是由两

个对偶的N沟道MOSFET与P沟道MOSFET构成,可使信号双向传输,如果将不同V

IN

值所对

应的P沟道MOSFET与N沟道MOSFET的导通电阻并联,可得到图1b并联结构下R

on

随输入

电压(V

IN )的变化关系,如果不考虑温度、电源电压的影响,R

on

随V

in

呈线性关系,将导致

插入损耗的变化,使模拟开关产生总谐波失真(THD)。此外,R

on

也受电源电压的影响,通常随着电源电压的上升而减小。

图1:a. 模拟开关原理图;b. 模拟开关导通电阻与输入电压关系

2. 模拟开关输入有严格的输入信号范围

由于模拟开关是半导体器件,当输入信号过低(低于零电势)或者过高(高于电源电压)时,MOSFET处于反向偏置,当电压达到某一值时(超出限值0.3V),此时开关无法正常工作,严重者甚至损坏。因此模拟开关在应用中,一定要注意输入信号不要超出规定的范围。3. 注入电荷

应用机械开关我们当然希望R

on

越低越好,因为低阻可以降低信号的损耗。然而对于模拟开

关而言,低R

on 并非适用于所有的应用,较低的R

on

需要占据较大的芯片面积,从而产生较

大的输入电容,在每个开关周期其充电和放电过程会消耗更多的电流。时间常数t=RC,充

具有更长的导通和电时间取决于负载电阻(R)和电容(C),一般持续几十纳秒。这说明低R

on

和注入电荷。

关断时间。为此,选择模拟开关应该综合权衡R

on

4. 开关断开时仍会有感应信号漏出

这一特性指的是当模拟开关传输交流信号时,在断开情况下,仍然会有一部分信号通过感应由输入端传到输出端,或者由一个通道传到另一个通道。通常信号的频率越高,信号泄漏的程度越严重。

5. 传输电流比较小

模拟开关不同于机械开关,它通常只能传输小电流,目前CMOS工艺的模拟开关允许连续传输的电流大多小于500mA。

6. 逻辑控制端驱动电流极小

机械开关逻辑控制端的驱动电流往往都是毫安级,有时单纯靠数字I/O很难驱动。而模拟开关的逻辑控制端驱动电流极小,一般低于纳安级。因此,它完全可以由数字I/O直接驱动,从而达到降低功耗、简化电路的目的。

模拟开关的开关特性

既然称之为模拟开关,自然它还具有开关性,具体表现如下:

1. 信号可双向传输

有些人习惯于把模拟开关的两个常开常闭端称之为输入端,公共端称之为输出端,其实这只是根据模拟开关的具体应用给予的临时定义。模拟开关大多可以使信号双向传输,如果忽略这一点,就很容易使电路生成问题,比如将电压反向偏置、电流倒灌等。

2. 开关断开后漏电流极小

模拟开关在断开(OFF)时会呈现高阻状态,两传输端间的漏电流极小,一般只有纳安级以下,如SGM3001、SGM3002和SGM3005系列模拟开关,其断开后的漏电流均为1nA。这么微弱的电流在应用中可忽略不计,模拟开关此时可被认为是理想断开的。

总之,模拟开关是具有开关功能的半导体器件,在应用过程中既要充分利用它的开关功能,又要考虑它的半导体特性,否则可能会出现意想不到的麻烦。

模拟开关应用实例分析

图2是一音响设备前端放大及信号选通部分电路,其中选用了SGM324(四通道运算放大器)和SGM3002(双通道模拟开关)。

图2:音响前端放大及信号选通电路

该方案设计本意是当Input=0时,Line_outL和Line_outR音频信号选通;当Input=1时,Phone_outL和 Phone_outR音频信号选通。然而当实验机做出后,设计者发现当Input=1时,Line_outL和Line_outR通道有相当一部分信号分别漏到D1和D2端。应用网络分析仪HP/Agilent 3589A测试SGM3002的关断隔离度,当输入信号为10kHz时,SGM3002的关断隔离度仅为-120dB,因此芯片应该没有问题。

事实上,该电路在模拟开关应用上存在下面两处错误:

1. 模拟开关的输入信号缺少一个直流偏置

图2中模拟开关部分电路可以等效成图3,本文第一部分曾经提到模拟开关输入信号输入不能为负。

图3:模拟开关等效电路

通常来讲,CMOS工艺的模拟开关输入信号最小只能到-0.3V,如果再低于这个值,芯片将不能正常工作,甚至会损坏。图2中模拟开关输入信号没有直流偏置,所以输入信号有一部分处于负值区,模拟开关自然无法正常工作。

解决办法:将电容C2、C3均去掉,模拟开关输入信号便有了1/2VDC的直流偏置信号,此时模拟开关便可以轨到轨工作。此外,由于模拟开关公共端后面加了电容,所以直流信号依然可以被有效地隔离。

2. 在D1和D2端缺少耦合电阻

当模拟开关在断开的情况下,其输入与输出端等效串联了一个电容C,如果再假设在模拟开关输出端到地之间有一个等效电阻R,则模拟开关在断开时的等效电路如图4所示。

图4:模拟开关断开时的等效电路

此时的模拟开关其实等效为一个RC滤波电路,由此不难得出以下公式:

其中,u

out 为模拟开关输出信号;u

in

为模拟开关输入信号;R为模拟开关输出端电阻负载;

C为模拟开关断开时等效电容;f为输入信号频率。

由于模拟开关等效电容C会设计成很小,所以当输入信号f处于音频区时,增益A由R和f同时决定。当R取值较小时,f起主导作用,此时 A<<1,信号被有效隔离。当R取值较大时,此时R起主导作用,此时A—>1,信号几乎被完全泄漏过来。所以当输出端悬空时,其输出端与地之间电阻R—>+∞,此时模拟开关完全导通。

修正以上两个错误后,该音频应用电路便可以正常工作了。由以上实例可以看出,充分理解模拟开关的基本概念是正确应用模拟开关的基础。

参考文献

1. 魏智:《CMOS模拟开关的选择与典型应用》Maxim公司,2004

2. Graham Ls Connolly:《在超便携应用中模拟开关的关键设计参数》飞兆半导体公司,2004

曹会宾

应用工程师

caohuibin@https://www.doczj.com/doc/3d3793248.html, 哈尔滨圣邦微电子有限公司

线性系统的频率特性实验报告(精)

实验四 线性系统的频率特性 一、实验目的: 1. 测量线性系统的幅频特性 2. 复习巩固周期信号的频谱测量 二、实验原理: 我们讨论的确定性输入信号作用下的集总参数线性非时变系统,又简称线性系统。线性系统的基本特性是齐次性与叠加性、时不变性、微分性以及因果性。对线性系统的分析,系统的数学模型的求解,可分为时间域方法和变换域方法。这里主要讨论以频率特性为主要研究对象,通过傅里叶变换以频率为独立变量。 设输入信号)(t v in ,其频谱)(ωj V in ;系统的单位冲激响应)(t h ,系统的频率特性 )(ωj H ;输出信号)(t v out ,其频谱)(ωj V out ,则 时间域中输入与输出的关系 )()()(t h t v t v in out *= 频率域中输入与输出的关系 )()()(ωωωj H j V j V in out ?= 时间域方法和变换域方法并没有本质区别,两种方法都是将输入信号分解为某种基本单元,在这些基本单元的作用下求得系统的响应,然后再叠加。变换域方法可以将时域分析中的微分、积分运算转化为代数运算,将卷积积分变换为乘法;在信号处理时,将输入时间信号用一组变换系数(谱线)来表示,根据信号占有的频带与系统通带间的关系来分析信号传输,判别信号中带有特征性的分量,比时域法简便和直观。 三、实验方法: 1. 输入信号的选取 这里输入信号选取周期矩形信号,并且要求 τ T 不为整数。这是因为周期矩形信号具有丰富的谐波分量,通过观察系统的输入、输出波形的谐波的变化,分析系统滤波特性。周期矩形信号可以分解为直流分量和许多谐波分量;由于测量频率点的数目有限,因此需要排除谐波幅度为零的频率点,周期矩形信号谐波幅度为零的频率点是 Ω KT ,其中1=K 、2、3、… 。 图11.1 输入的周期矩形信号时域波形 t

高压开关柜检修及试验项目

高压开关柜检修及试验项目 一,组成 高压开关柜由:柜体、母线、分支母线、小母线、套管、端子板、综保仪表、静触头、真空断路器、电流互感器、接地刀、过电压保护器、传感器、带电显示器组成。 二、检修项目 1真空断路器 1)测量绝缘电阻 用2500V摇表分别测量A--B、C及地 B--A、C及地 C--A、B及地1分钟时绝缘电阻值并记录。 2)交流耐压试验 手动合上断路器,将交流耐压设备与A相相连,B、C相短封并接地,缓慢升压至试验值,同时注意观察现象,持续1分钟。无击穿闪络现象为耐压合格。B、C相试验与A相相同。分开断路器,将断路器上口A、B、C短接并与交流耐压设备相连,下口A、B、C短接并接地,缓慢升压至试验值,同时注意观察现象,持续1分钟。无击穿闪络现象为断口合格。 3)测量每相导电部分的回路电阻 手动合上断路器,用双臂电桥或回路电阻测试仪分别测量A、B、C三相导电部分的回路电阻三次取平均值并记录。 4)测量主触头分合闸时间、同期性、合闸时触头弹跳时间 在额定电压下用毫秒计分别测量断路器分合闸时间。 5)操纵机构试验(手、自动分别分合断路器三次,观察是否动作可靠,指示正确。) 2综合保护器 1)传动试验 在综合保护器上分合断路器,观察是否动作可靠,指示正确。 2测量及保护试验 根据电流互感器变比,在一次侧分段加入标准电流值,然后分段返回观察综保测量显示是否准确并记录及计算误差。 分别设定保护定值及时间,合上断路器,分相加入整定电流值,观察断路器是否可靠动作,并用毫秒计分别测量断路器分闸时间。 3电流互感器电压互感器、变压器 1)绝缘电阻 用2500V摇表测量变压器一次侧绝缘电阻,将二次侧短接并接地,记录R60/R15值。

随机信号经线性系统的特性分析

随机信号通过线性系 统实验 ——随机信号通过 低通滤波器 班级:010913 作者:葛楠(01091256) 李丹(01091272) 张卫康(01091220)

一、摘要 基于Matlab让产生的一个随机信号通过低通滤波器,并且分析随机信号的数学特征,当其通过低通滤波器后再次分析其数字特征,从而得出实验结论。 二、目的 1.研究随机信号的线性叠加型。 2了解输入、输出信号的特性,包括均值、方差、相关函数、频谱及功率谱密度等。 3.掌握随机信号的检测及分析方法。 三、实验的特点和原理 特点:完全基于Matlab仿真 原理:(1)均值:即为数学期望,表示信号变化的中心趋势,是信号的直流分量。 (2)均方值:表示信号的强度,代表信号的平均能量。 (3)方差:反映了信号绕均值的波动程度。 (4)自相关函数:表示波形自身在不同时间的相似程度,其值越大表示相似性越高。信号一般是相关的,即自相关函数不为零。而 噪声是随机的,基本上不相关,所以自相关理论上为零。 (5)频谱函数:从频域上分析信号在不同频率分量的大小,而信号的频谱和功率谱函数只是在数值上不同的,其图形相似。 四、实验的过程 1.分别生成一个方波信号和一个高斯白噪声,将两者线性叠加,研究各信号的频域和时域特性。设定采样频率Fs=44.1kHz,取的样本点数N=256,方波基频为1000Hz,加入SNR为10dB的高斯白噪声得到输入信号xi,间接获得白噪声xn。

1 2 34 5 6 x 10 -3 -1-0.8-0.6-0.4-0.200.2 0.40.60.8 1方波信号时域波形 t x s (t ) x 10 4 方波信号频域波形 f X S (f )

GYKG-F高压开关机械特性测试仪

GYKG-F 高压开关机械特性测试仪 使 用 说 明 书 上海国仪电气科技有限公司

一.概述 随着社会的发展,人们对用电的安全可靠性要求越来越高,高压断路器在电力系统中担 负着控制和保护的双重任务,其性能的优劣直接关系到电力系统的安全运行。机械特性参数 是判断断路器性能的重要参数之一。GYKG-F型高压开关机械特性测试仪,是我公司依据最 新的《高压交流断路器》GB1984-2003为设计蓝本,参照中华人民共和国电力行业标准《高 电压测试设备通用技术条件》第3部分,DL/T846.3-2004高压开关综合测试仪为设计依据, 为进行各类断路器动态分析提供了方便,能够准确地测量出各种电压等级的少油、多油、真 空、六氟化硫等高压断路器的机械动特性参数。 二.功能与特点 2.1测试功能 (1)合(分)闸顺序(12)超行程 (2)合(分)闸最大时间(13)过行程 (3)三相不同期(14)刚合(分)速度 (4)同相不同期(15)最大速度 (5)合(分)闸时间(16)平均速度 (6)动作时间(17)金短时间 (7)弹跳时间 (18)无流时间 (8)弹跳次数(19)电流波形曲线(动态) (9)弹跳幅度 (20) 时间行程速度动态曲线(ms) (10)行程 (21) 时间速度行程动态曲线(mm) (11)开距 单位均为: 时间ms 速度 m/s 距离 mm 2.2特点 (1)可做电动操作和手动操作; (2)适应500KV电压等级以内各种高压断路器的机械动特性测试; (3)可实测行程和自定义行程; (4)能够实现断路器的单合、单分、合分、重合,重分操作; (5)接线方便,操作简单,操作时只需一次合(分)动作便可得到合(分)全部数据, 可选择保存50组数据,提供后期查询,也可现场调阅打印所有数据及运动曲线图; (6)采用汉字提示以人机对话的方式操作; (7)数据准确,抗干扰性强,体积小,重量轻,美观大方; (8)机内配有时钟电路,可显示当前年、月、日、时、分、秒。 (9)机内带有延时保护功能,断路器动作后能自动切断动作电源,很好的保护了断路器 设备和高压开关测试仪; (10)仪器内置直流电源,可选择范围:30-270V/10A,不存在常规整流电源输出瞬间的电压 跌落,用以试验开关动作电压非常精确; (11)能动态地为您分析出断路器每1ms时间内的、行程、速度之间的关系;

高压开关设备的动作特性试验

高压开关设备的动作特性试验 断路器的分、合闸速度,分、合闸时间,分、合闸不同期程度,以及分合闸线圈的动作电压,直接影响断路器的关合和开断性能。断路器只有保证适当的分、合闸速度,才能充分发挥其开断电流的能力,以及减小合闸过程中预击穿造成的触头电磨损及避免发生触头烧损、喷油,甚至发生爆炸。而刚合速度的降低,若合闸于短路故障时,由于阻碍触头关合电动力的作用,将引起触头振动或使其处于停滞状态,同样容易引起爆炸,特别是在自动重合闸不成功情况下更是如此。反之,速度过高,将使运动机构受到过度的机械应力,造成个别部件损坏或使用寿命缩短。同时,由于强烈的机械冲击和振动,还将使触头弹跳时间加长。真空和SF6断路器的情况相似。 断路器分、合闸严重不同期,将造成线路或变压器的非全相接入或切断,从而可能出现危害绝缘的过电压。 断路器机械特性的某些方面是用触头动作时间和运动速度作为特征参数来表示的,在机械特性试验中一般最主要的是刚分速度、刚合速度、最大分闸速度、分闸时间、合闸时间、合-分时间、分-合时间以及分、合闸同期性等。 一、部分时间参量的定义 1、分闸时间 是指从断路器分闸操作起始瞬间(接到分闸指令瞬间)起到所有极的触头分离瞬间为止的时间间隔。应具有很短的合闸时间,减少合闸时的电弧的能量,防止电弧使触头熔焊。 2、合闸时间 是指处于分位置的断路器,从合闸回路通电起到所有极触头都接触瞬间为止的时间间隔。分闸时间必须在规定的时间范围内。分闸时间太短,则系统短路时直流分量过大,可能会引起分闸困难;分闸时间太长,则影响系统的稳定性。3、分-合时间 是断路器在自动重合闸时,从所有极触头分离瞬间起至首先接触极接触瞬间为止的时间间隔。

高压开关的动作特性试验方法

高压开关的动作特性试验方法 高压开关的分、合闸速度,分、合闸时间,分、合闸不同期程度,以及分合闸线圈的动作电压,直接影响高压开关的关合和开断性能。高压开关只有保证适当的分、合闸速度,才能充分发挥其开断电流的能力,以及减小合闸过程中预击穿造成的触头电磨损及避免发生触头烧损、喷油,甚至发生爆炸。而刚合速度的降低,若合闸于短路故障时,由于阻碍触头关合电动力的作用,将引起触头振动或使其处于停滞状态,同样容易引起爆炸,特别是在自动重合闸不成功情况下更是如此。反之,速度过高,将使运动机构受到过度的机械应力,造成个别部件损坏或使用寿命缩短。同时,由于强烈的机械冲击和振动,还将使触头弹跳时间加长。真空和SF6高压开关的情况相似。 高压开关分、合闸严重不同期,将造成线路或变压器的非全相接入或切断,从而可能出现危害绝缘的过电压。 高压开关机械特性的某些方面是用触头动作时间和运动速度作为特征参数来表示的,在机械特性试验中一般最主要的是刚分速度、刚合速度、最大分闸速度、分闸时间、合闸时间、合-分时间、分-合时间以及分、合闸同期性等。 一、部分时间参量的定义 1.分闸时间 是指从高压开关分闸操作起始瞬间(接到分闸指令瞬间)起到所有极的触头分离瞬间为止的时间间隔。应具有很短的分闸时间,减少分闸时电弧的能量,防止电弧使触头熔焊。 2.合闸时间 是指处于分位置的高压开关,从合闸回路通电起到所有极触头都接触瞬间为止的时间间隔。合闸时间必须在规定的时间范围内。合闸时间太短,则系统短路时直流分量过大,可能会引起合闸困难;合闸时间太长,则影响系统的稳定性。 3.分-合时间 是高压开关在自动重合闸时,从所有极触头分离瞬间起至首先接触极接触瞬间为止的时间间隔。 4.合-分时间 是高压开关在不成功重合闸的合分过程中或单独合分操作时,从首先接触极的触头接触瞬间起到随后的分操作时所有极触头均分离瞬间为止的时间间隔。 5.分闸与合闸操作同期性 是指高压开关在分闸和合闸操作时,三相分断和接触瞬间的时间差,以及同相各灭弧单元触头分断和接触瞬间的时间差,前者称为相间同期性,后者称为同相各断口间同期性。

随机信号通过线性系统的仿真

实验报告 实验课程:随机信号分析实验项目:随机信号通过线性系统的仿真学员姓名:学号: 专业班次:队别: 实验日期:实验成绩: 教员签字: 内容要求:一、实验目的; 二、实验内容或任务;三、实验仪器设备(名称、型号、精度、数量);四、实验原理与线路图;五、实验步骤与结果记录(数据、图表等);六、实验结果分析与结论。 一、实验目的 (1)掌握对随机过程通过线性系统后的统计特性的分析方法。 (2)掌握典型系统对随机过程的影响。 二、实验内容 (1)白噪声通过线性系统的仿真和分析; (2)高斯过程通过线性系统的仿真和分析。 三、实验仪器和设备 (1)计算机一台。 (2)Matlab软件。 四、实验原理 随机信号通过线性系统分析的中心问题是:给定系统的输入函数(或统计特性:均值和自相关函数)和线性系统的特性,求输出函数。设L为线性变换,信 号) (t (t Y为系统的输出,也是随机信号。即有:X为系统输入,) t L= Y X )( )] ( [t 众所周知,LTI系统又可以表示为 =) * ( y?+∞∞-- )( )( )( t ( ) = u h u x t du t y t x 其中)] t hδ L =是系统的冲激响应。如果考虑傅里叶变换,令 [ ( ) (t

)()(),()(),()(ωωωj Y t y j X t x j H t h ??? 则 )()()(ωωωj H j X j Y = 下面来分析输出随机信号的均值和相关函数。 依定理5.1,对于任何稳定的线性系统有 {}{})]([)]([t X E L t X L E = 依定理5.2,如果)(t X 为平稳过程,)(t h 为实LTI 系统,)()()(t h t X t Y *=,则)()(t Y T X 和是联合广义平稳的,并且有 ) ()()()() ()()() ()()() 0(ττττττττττ-**=-*=*==h h R R h R R h R R j H m m X Y X XY X YX X Y 其中,dt t h j H j H ?+∞∞-===)()()0(0ωω,是系统的直流增益。 进一步得到推论:若系统的频率响应函数为)(ωj H ,则其功率谱与互功率谱关系如下: )()()()()()() ()()(2 ωωωωωωωωωj H S S j H S S j H S S X XY X Y X YX *=== 五、实验步骤与结果记录 在本实验中我利用simulink 模拟的方法分析了随机信号通过LTI 系统的具体过程:图1 是用MATLAB 的sumulink 模拟白噪声通过图1 的RC 电路,用示波器观察输入和输出的波形,改变RC 的值,使电路时间常数改变,观察输出波形的变化。 图1 实验RC 电路 对于上述低通RC 滤波器, 用传递函数描述,令RC 1=α,则有 αα +=S S H )( 在 Similink 里,有时域连续系统的传递函数模块,如图2所示:

仿真实验线性系统稳定性分析报告

仿真实验线性系统稳定性分析报告 实用标准文档 文案大全实验四 Stability analysis of linear systems 线性系统稳定性分析 一、实验目的 1.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。 2.熟练掌握系统的稳定性的判断方法。 二、基础知识及MATLAB 函数 注意:routh ()和hurwitz ()不是MATLAB 中自带的功能函数,(在共享文件夹里有劳斯判据和赫尔维茨判据的m 文件,把其中的routh.m 和hurwitz .m 放到MATLAB 文件夹下的work 文件夹中才能运行)。 1)直接求根判稳roots() 控制系统稳定的充要条件是其特征方程的根均具有负实部。因此,为了判别系统的稳定性,就要求出系统特征方程的根,并检验它们是否都具有负实部。MATLAB 中对多项式求根的函数为roots()函数。 若求以下多项式的根24503510234++++s s s s ,则所用的MATLAB 指令为: >> roots([1,10,35,50,24])

-4.0000 -3.0000 -2.0000 -1.0000 特征方程的根都具有负实部,因而系统为稳定的。 2)劳斯稳定判据routh () 劳斯判据的调用格式为:[r, info]=routh(den) 该函数的功能是构造系统的劳斯表。其中,den 为系统的分母多项式系数向量,r 为返回的routh 表矩阵,info 为返回的routh 表的附加信息。 以上述多项式为例,由routh 判据判定系统的稳定性。 >> syms EPS den=[1,10,35,50,24]; ra=routh(den,EPS) r= 实用标准文档 文案大全 1 35 24 10 50 0 30 24 0 42 0 0 24 0 0

第4章测试系统的基本特性解析

第4章测试系统的基本特性 4.1 知识要点 4.1.1测试系统概述及其主要性质 1.什么叫线性时不变系统? 设系统的输入为x (t )、输出为y (t ),则高阶线性测量系统可用高阶、齐次、常系数微分方程来描述: )(d )(d d )(d d )(d 01111t y a t t y a t t y a t t y a n n n n n n ++++--- )(d )(d d )(d d )(d 01111t x b t t x b t t x b t t x b m m m m m m ++++=--- (4-1) 式(4-1)中,a n 、a n -1、…、a 0和b m 、b m -1、…、b 0是常数,与测量系统的结构特性、输入状况和测试点的分布等因素有关。这种系统其内部参数不随时间变化而变化,称之为时不变(或称定常)系统。既是线性的又是时不变的系统叫做线性时不变系统。 2.线性时不变系统具有哪些主要性质? (1)叠加性与比例性:系统对各输入之和的输出等于各单个输入的输出之和。 (2)微分性质:系统对输入微分的响应,等同于对原输入响应的微分。 (3)积分性质:当初始条件为零时,系统对输入积分的响应等同于对原输入响应的积分。 (4)频率不变性:若系统的输入为某一频率的谐波信号,则系统的稳态输出将为同一频率的谐波信号。 4.1.2测试系统的静态特性 1.什么叫标定和静态标定?采用什么方法进行静态标定?标定有何作用?标定的步骤有哪些? 标定:用已知的标准校正仪器或测量系统的过程。 静态标定:就是将原始基准器,或比被标定系统准确度高的各级标准器或已知输入源作用于测量系统,得出测量系统的激励-响应关系的实验操作。 静态标定方法:在全量程范围内均匀地取定5个或5个以上的标定点(包括零点),从零点开始,由低至高,逐次输入预定的标定值(称标定的正行程),然后再倒序由高至低依次输入预定的标定值,直至返回零点(称标定的反行程),并按要求将以上操作重复若干次,记录下相应的响应-激励关系。 标定的主要作用是:确定仪器或测量系统的输入-输出关系,赋予仪器或测量系统分度

仿真实验线性系统稳定性分析报告

实验四Stability an alysis of lin ear systems 线性系统稳定性分析 一、实验目的 1 ?通过响应曲线观测特征参量和n对二阶系统性能的影响。 2 ?熟练掌握系统的稳定性的判断方法。 二、基础知识及MATLAB函数 注意:routh ()和hurwitz ()不是MATLAB中自带的功能函数,(在共享文件夹里有劳斯判据和赫尔维茨判据的m文件,把其中的routh.m和hurwitz .m放到MATLAB文件夹下的work文件夹中才能运行)。 1) 直接求根判稳roots() 控制系统稳定的充要条件是其特征方程的根均具有负实部。因此,为了判别系统的稳定性,就要求出系统特征方程的根,并检验它们是否都具有负实部。MATLAB 中对多项式求根的函数为roots()函数。 若求以下多项式的根s4 10s3 35s2 50s 24,则所用的MATLAB指令为: >> roots([1,10,35,50,24]) ans = -4.0000 -3.0000 -2.0000 -1.0000 特征方程的根都具有负实部,因而系统为稳定的。 2) 劳斯稳定判据routh () 劳斯判据的调用格式为:[r, in fo]=routh(de n) 该函数的功能是构造系统的劳斯表。其中,den为系统的分母多项式系数 向量,r为返回的routh表矩阵,info为返回的routh表的附加信息。 以上述多项式为例,由routh判据判定系统的稳定性。

>> syms EPS den=[1,10,35,50,24]; ra=routh(de n,EPS) r= 13524 10500 30240 4200 2400 info= [] 由系统返回的routh表可以看出,其第一列没有符号的变化,系统是稳定的。 3) 赫尔维茨判据hurwitz () 赫尔维茨的调用格式为:H=hurwitz ( den )。该函数的功能是构造hurwitz 矩阵。其中,den为系统的分母多项式系数向量。 以上述多项式为例,由hurwitz判据判定系统的稳定性。 >>de n=[1,10,35,50,24]; H=hurwitz(de n) H= 105000 135240 010500 013524 由系统返回的hurwitz矩阵可以看出,系统是稳定的。与前面的分析结果完 全一致。 4) 开环增益K。和时间常数T改变对系统稳定性及稳态误差的影响 10K

随机信号通过线性系统和非线性系统后的特性分析

随机信号分析 ----通过线性系统和非线性系统后的特性分析 一、实验目的 1、了解随机信号自身的特性,包括均值、均方值、方差、相关函数、概率密度、频谱及功率谱密度等的概念和特性 2、研究随机信号通过线性系统和非线性系统后的均值、均方值、方差、相关函数、概率密度、频谱及功率谱密度有何变化,分析线性系统和非线性系统所具有的性质 3、掌握随机信号的分析方法。 4、熟悉常用的信号处理仿真软件平台:matlab、c/c++、EWB。 二、实验仪器 1、256MHz以上内存微计算机。 2、20MHz双踪示波器、信号源。 3、matlab或c/c++语言环境、EWB仿真软件。 4、fpga实验板、面包板和若干导线。 三、实验步骤 1、根据选题的内容和要求查阅相关的文献资料,设计具体的实现程序流程或电路。 2、自选matlab、EWB或c仿真软件。如用硬件电路实现,需用面包板搭建电路并调试成功。 3、按设计指标测试电路。分析实验结果与理论设计的误差,根据随机信号的特征,分析误差信号对信号和系统的影响。 四、实验任务与要求 1、用matlab或c/c++语言编程并仿真 2、输入信号为x(t)加上白噪声n(t),用软件仿真通过滤波器在通过限幅器后的信号y1(t),在仿真先平方律后在通过滤波器后的信号y2(t).框图如下: 3、计算x(t)、a、b、c、y(t)的均值、均方值、方差、频谱、功率谱密度,自相关函数,并绘出函数曲线。 五.实验过程与仿真 1、输入信号的获取与分析

(a)输入信号的获取 按照实验要求,Matlab仿真如下: %输入信号x的产生 t=0:1/16000:0.01; x1=sin(1000*2*pi*t)+sin(2000*2*pi*t)+sin(3000*2*pi*t); x=awgn(x1,5,'measured'); %加入高斯白噪声n=x-x1; %高斯白噪声 (b)输入信号及其噪声的分析 %输入信号x自相关系数 x_arr=xcorr(x); tau = (-length(x)+1:length(x)-1)/16000; %输入信号x的频谱和功率谱 x_mag=abs(fft(x,2048)); f=(0:2047)*16000/2048; x_cm=abs(fft(x_arr,2048)); %画出高斯白噪声n的时域图和频域图 figure(1) subplot(1,2,1) plot(t,n) title('高斯白噪声n') xlabel('t/s') ylabel('n(t)') grid on subplot(1,2,2) N=fft(n,2048); plot(f(1:length(f)/2),N(1:length(f)/2)) title('高斯白噪声n的频谱图') xlabel('f/Hz') ylabel('幅值') grid on 结果为:

系统及其特性教学设计

系统及其特性 一、教材分析 本节内容是在《技术与设计2》中,第三章第一节内容。系统与设计可以说是一个承上启下的中枢环节,它既是在“结构”与“流程”的基础上加以展开,又为“控制与技术”的讲述做好了铺垫,是全书的重点之一。本节先通过具体实例对系统的含义进行初步分析与学习,让学生形成系统意识,为学生用系统的观点和方法分析和认识事物奠定基础。系统的基本特性分析是对系统概念的深入研究,皆在让学生初步掌握系统的分析方法。系统的基本特性是本章的重点,让学生建立系统的观点是本节的难点。 二、学情分析 本节课的教学对象是高二的学生,总的来说,他们已经有一定的生活经历,对事物也有了一定的判断能力。在日常生活中,学生虽然接触过系统,知道系统这个名词,但实际上并不知道什么是系统,还不会有意识地用系统的方法去分析问题﹑解决问题。本节课结合丰富的案例,旨在教会学生认识系统,转变看待问题的方式。 三、教学目标 知识与技能目标: 1、理解系统的含义。 2、体会系统的组成和层次关系 3、理解系统的基本特性 4、能利用基本特性对系统进行简单的分析 过程与方法目标: 1、学会用系统的观点认识事物 2、培养学生理解实际问题的能力 通过案例分析,能联系各个领域对系统分析进行交流和讨论。 情感、态度与价值观目标: 培养学生养成严谨的学习态度和团结协作的作风,让学生感悟从系统的角度认识分析事物,渗透事物各部分普遍联系的观点。 四、教学重难点: 重点:1、系统的含义,2、系统的基本特性 难点:建立系统的观点 五、教学策略

教法:通过丰富的案例,在教学中把知识点的学习置于具体的情景中,把从日常生活中获得的感受提升到理性分析的思维上。在教学中要根据学生的认知规律,由浅到深,由易到难,以回想——分析——归纳——迁移为主线,组织教学。 学法:鼓励学生进行自主探究式的学习方法,交流讨论、归纳,要有团结合作的意识。明确技术离不开生活。要想真正的把技术这一学科掌握好,必须把学到的知识迁移到生活实际中去,要带着问题走进课堂,再从课堂中走进社会、走进生活的环境中。 六、教学资源准备:多媒体课件。 七、教学过程: 良好的教学设想必须通过教学实践来实现,根据以上的教学理念和设想,我将教学过程分为以下内容: (一)新课引入 虽然系统给我们的印象很模糊,似乎看不清,摸不透,但它却无处不在,学生展示系统在各个领域应用的图片。 (二)新课学习 对汽车与自行车的结构分析,汽车由车身、底盘、发动机、轮胎等构成,自行车由车架、车把、鞍座、前叉、脚蹬、链轮、车闸等主要部件组成。只有这些零件有机的组合在一起,才能让汽车和自行车都动以来,才能发挥它们的整体功能。 通过以上的实例,我们不难得出“系统是什么”, 什么是系统 1、系统的含义: 系统是由相互联系、相互作用、相互以来和相互制约的若干要素或部分组成的具有特定功能的有机整体。 要素:指构成系统的最主要的元素。 部分:相对整体而言,要素和部分可以通用 2、小组活动:拆卸圆珠笔 圆珠笔是系统,笔壳、笔芯、弹簧、等是组成要素。 3、两人一组讨论:请指出下列系统分别由哪些要素(部分)组成,并说出相互之间有怎样的联系。 系统的名称和组成要素(部分) 台灯:灯座、灯泡、灯罩、电线、开关等。 学校多媒体教室:计算机、实物展示台、投影机、电动屏幕、展台、音响设

仿真实验线性系统稳定性分析报告

实验四 Stability analysis of linear systems 线性系统稳定性分析 一、实验目的 1.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。 2.熟练掌握系统的稳定性的判断方法。 二、基础知识及MATLAB 函数 注意:routh ()和hurwitz ()不是MATLAB 中自带的功能函数,(在共享文件夹里有劳斯判据和赫尔维茨判据的m 文件,把其中的routh.m 和hurwitz .m 放到MATLAB 文件夹下的work 文件夹中才能运行)。 1)直接求根判稳roots() 控制系统稳定的充要条件是其特征方程的根均具有负实部。因此,为了判别系统的稳定性,就要求出系统特征方程的根,并检验它们是否都具有负实部。MATLAB 中对多项式求根的函数为roots()函数。 若求以下多项式的根24503510234++++s s s s ,则所用的MATLAB 指令为: >> roots([1,10,35,50,24]) ans = -4.0000 -3.0000 -2.0000 -1.0000 特征方程的根都具有负实部,因而系统为稳定的。 2)劳斯稳定判据routh () 劳斯判据的调用格式为:[r, info]=routh(den) 该函数的功能是构造系统的劳斯表。其中,den 为系统的分母多项式系数向量,r 为返回的routh 表矩阵,info 为返回的routh 表的附加信息。 以上述多项式为例,由routh 判据判定系统的稳定性。 >> syms EPS den=[1,10,35,50,24]; ra=routh(den,EPS) r=

信号通过线性系统的特性分析

线性系统 班级:12级电子信息 姓名:顾鹏伟 学号:1228401141 【实验目的】 1、掌握无失真传输的概念以及无失真传输的线性系统满足的条件 2、分析无失真传输的线性系统输入、输出频谱特性,给出系统的频谱特性 3、掌握系统幅频特性的测试及绘制方法 【实验原理】 通过频谱分析可以看出,在一般情况下线性系统的响应波形与激励波形是不同的,即:信号在通过线性系统传输的过程中产生了失真。 线性系统引起的信号失真是由两方面的因素造成的,一是系统对信号中各频率分量的幅度产生不同程度的衰减,使响应各频率分量的相对幅度产生变化,造成幅度失真;一是系统对各频率分量产生的相移不与频率成正比,是响应各频率分量在时间轴上的相对位置产生变化,造成相位失真。 线性系统的幅度失真一相位失真都不产生新的频率分量。对于非线性系统,由于其非线性特性,对于传输信号产生非线性失真,非线性失真可能产生新的频率分量。 为了实现信号无失真传输,线性系统应该满足: jwt e jw kE jw R -=)()(。 在信号无失真传输时,系统函数应该为:jwt ke jw H -= )(。 因此,为了实现任意信号通过线性系统不产生波形失真,该系统应满足一下两个理想条 件:?????-==wt w k jw H )()(φ 若R 1C 1=R 2C 2,该系统无线性失真。 【实验内容】 1、 用Multisim 研究线性电路的非线性失真 (1) 绘制测量电路

(2)无失真传输线性系统输入,输出信号幅度频谱的仿真测量 虚拟电压信号源采用参数为周期矩形信号,其中周期为T=100μs,脉冲宽度τ=60μs,脉冲幅度Vp=5V;采用虚拟示波器测量滤波器输入、输出信号的时域波形,波特仪测量线性系统传输特性的频谱图,并记录输出波形。 波形图 幅频

高二通用技术《系统的基本特性》教案分析

高二通用技术《系统的基本特性》教案分析 高二通用技术《系统的基本特性》教案分析 一、教学内容分析 系统的基本特性在《系统与设计》这一中具有很主要的地位和作用。学生通过学习了第一、二部分后,已经了解到了系统的含义并对系统有了初步的认识。掌握系统的基本特性不但可以使学生对系统有更深一步的了解,同时也为后续的系统分析和系统设计的教学起到承上启下的作用。 本节的重点是系统的整体性和相关性。学生在理解了系统的这两个重要特性以后,对系统的目的性、动态性、适应性等其他特性就比较容易理解了。 二、学情分析 学生在学习了系统的含义和类型之后,通常都会很想继续了解系统的特性。可以通过阅读、讨论等方法让学生理解本的理论知识,而对于学生说较难的是运用理论进行实际的系统分析。因此,如何用理解系统的基本特性并将其运用到分析实际的问题就成为了本节的难点。 三、学习目标 知识与能力:理解系统的整体性和相关性。 过程与方法:通过案例分析和堂讨论,使学生学会用所学的知识分析有关问题。

态度与情感:培养学生的学习兴趣的同时,使他们感受到运用知识的乐趣。 四、重、难点 重点:系统的基本特性,增强学生的系统意识。 难点:利用系统的整体性和相关性分析实际生活中的实际问题。五、教学策略 本节的教学重点是提高学生运用理论知识对系统进行实际分析的能力。因此,应以系统的基本特性作为教学主线逐步展开教学过程,以案例为载体完成教学目标、达到教学目的。 通用技术这门学科与其他学科的特点区别就是:教学资都大量包含学生身边的事物当中。所以,教师在教学过程中要善于充分利用学生身边的这些教学资,使学生在学习的过程中通过身边的事例理解所学的知识,在感受知识亲近感的同时提高堂学习效果。 有条时可安排学生以讨论(或辩论)的方式学习本部分的知识内容,让学生充分地参与到教学的互动中。 六、教学过程 时间安排:1时 1、复习旧知 教师提问并由学生回答:系统、子系统和元素的含义,并通过实例进行系统类型的划分。 2、新教学 教师提问:系统的子系统或要素之间的相互关联和制约关系,是通过

高压开关试验技术规范

https://www.doczj.com/doc/3d3793248.html,/products_list.html 高压开关试验技术规范 关键词:高压开关动特性测试仪 高压开关实验项目及技术规范: (1)速度特性测量方法和测量结果应该符合制造商规定; (2)短路器的分闸时间、合闸时间及分合时间(金属短接时间)、主触头、辅助触头的配合时间应该符合制造商出厂规定,运行时间较长的应另行考虑。(3)除了制造商规定以外,断路器机械特性试验应满足以下要求: 相间合闸不同期不大于5ms,相间分闸不同期不大于3ms,同相各断口间合闸不同期不大于3ms,同相各断口间分闸不同期不大于2ms,高压开关试验需要高压开关动特性性测试仪进行测量。 高压开关动特性性测试仪可以测量哪些参数? 包括(分)合闸顺序,三相不同期、同相不同期、合(分)闸时间、弹跳时间、弹跳次数、反弹幅度、行程、开距、超行程、刚合速度、刚分速度、最大速度、平均速度,金属短接时间、无电流时间、电流波形曲线和时间行程速度曲线等。 高压开关试验步骤: (1)高压开关动作时间测量。将断路器机械特性测试仪的合闸、分闸控制线分别接入短路器的二次控制线中,用试验接线将短路器一次各断口的引线接入断路器机械特性测试仪的时间通道,测试步骤如下: (a)将可调直流电源调至断路器额定操作电压,通过控制短路器机械特性测试仪,在额定操作电压及额定结构压力下对短路器进行合闸操作,分闸操作,测得各项合闸、分闸动作时间。

https://www.doczj.com/doc/3d3793248.html,/products_list.html (b)三相合闸时间中的最大值和最小值即为合闸不同期,三相分闸时间中的最大值与最小值只差即为分闸不同期。 (c)对于多断口的断路器,如果断路器每相存在多个断口的合闸、分闸时间并得出同相各断口合闸、分闸的不同期。 (d)如果断路器带有合闸电阻,则应同时测量合闸电阻的预投入时间。(2)断路器动作速度测量。可结合断路器动作时间同时进行,将速度传感器固定在断路器的垂直主轴或者是旋转轴,保持中心垂直,安全可靠,再通过高压开关进行断路器分闸、合闸操作,即可得到结果。

信号通过线性系统的特征分析 实验报告

信号通过线性系统的特性分析 学号: 1028401083 姓名:赵静怡 一、实验目的 1、掌握无失真传输的概念以及无失真传输的线性系统满足的条件 2、分析无失真传输的线性系统输入、输出频谱特性,给出系统的频谱特性 3、掌握系统幅频特性的测试及绘制方法 二、实验原理 通过频谱分析可以看出,在一般情况下线性系统的响应波形与激励波形是不同的,即:信号在通过线性系统传输的过程中产生了失真。 线性系统引起的信号失真是由两方面的因素造成的,一是系统对信号中各频率分量的幅度产生不同程度的衰减,使响应各频率分量的相对幅度产生变化,造成幅度失真;一是系统对各频率分量产生的相移不与频率成正比,是响应各频率分量在时间轴上的相对位置产生变化,造成相位失真。 线性系统的幅度失真一相位失真都不产生新的频率分量。对于非线性系统,由于其非线性特性,对于传输信号产生非线性失真,非线性失真可能产生新的频率分量。 为了实现信号无失真传输,线性系统应该满足: jwt jw R- kE jw e (。 ) ( =) 在信号无失真传输时,系统函数应该为:jwt H- jw ke (。 ) = 因此,为了实现任意信号通过线性系统不产生波形失真,该系统

应满足一下两个理想条件:???? ?-==wt w k jw H )()(φ 若R 1C 1=R 2C 2,该系统无线性失真。 三、实验内容 1.用Multisim 研究线性电路的非线性失真 (1)绘制测量电路 无失真传输线性系统 (2)当Ω =2202 R 、k 4k 1、 分别观测传输线性系统的幅频特性和相频特性,绘出幅频特性和相频特性曲线。 如上图,加上BIPOLAR_VOLTAGE 信号源

高压开关机械特性测试仪使用说明书

BC6880高压开关机械特性测试仪 使 用 说 明 书 宝应佳特高压电器设备厂

BC6880高压开关机械特性测试仪使用说明书 一、概述 高压开关机械特性测试仪,是我公司针对各种高压开关研制的一种通用型电脑智能化测试仪器。该仪器应用光电脉冲技术,单片计算机技术及可靠的抗电磁辐射技术,配以精确可靠的速度/距离传感器,可用于各种电压等级的真空、六氟化硫、少油、多油等高压开关的机械性参数的调试与测量。 该仪器接线方便、操作简单、操作时只需一次合(分)动作便可得到合(分)闸全部数据。并能打印所需的全部数据,断口电流波形和动触头运动曲线,便于分析保存。 二、功能与特点 2.1测试功能 1)三相不同期ms 2)同相不同期同时测三相双断口ms 3)动触头行程测六个断口mm 4)动触头超行程测六个断口mm 5)合(分)闸时间同时测一至六个断口ms 6)合(分)闸弹跳时间同时测一至六个断口ms 7)刚合(刚分)闸速度测一个断口(传感器安装断口)m/s 8)合(分)闸最大速度测一个断口(传感器安装断口)m/s 9)合(分)闸平均速度测一个断口(传感器安装断口)m/s 2.2 特点 1) 采用了最先进的传感器,精确、可靠、安装方便、适应面广。 2)对开关操动电压适应范围大,DC60V—220V均可操作。 3)能自动判别并显示开关操作中的错误指令和不成功操作。 4)测试方法灵活,无论是合闸操作、分闸操作,一次操作就能获得所需测量数据。 5)测量数据可窗口显示,也可以打印机输出,打印机还能提供六个断口的电流波形图和一个断口动触头的时间——行程的波形图。 6)测试仪体积小、重量轻、便于携带。 7)抗干扰能力强,能在较强的电磁场中正常工作,适合变电站现场测试。 8)仪器自带220V/5A直流操作电源,可现场操动各种开关。并具有延时(一秒钟)断电功能。 9)仪器严格按行业标准DL/T846.3—2004《高压开关综合测试仪》中的定义要求进行数据采集和处理。

随机信号通过线性和非线性系统后的特性分析-实验报告

实验三 随机信号通过线性和非线性系统后的特性分析 一、实验目的 1、了解随机信号的均值、均方值、方差、自相关函数、互相关函数、概率密度、频谱及功率谱特性。 2、研究随机信号通过线性系统和非线性系统后的均值、均方值、方差、自相关函数、互相关函数、概率密度、频谱及功率谱有何变化,分析随机信号通过线性系统和非线性系统后的特性 二、实验仪器与软件平台 1、 微计算机 2、 Matlab 软件平台 三、实验步骤 1、 根据本实验内容和要求查阅有关资料,设计并撰写相关程序流程。 2、 选择matlab 仿真软件平台。 3、 测试程序是否达到设计要求。 4、 分析实验结果是否与理论概念相符 四、实验内容 1、 随机信号通过线性系统和非线性系统后的特性分析 (1)实验原理 ①随机信号的分析方法 在信号系统中,可以把信号分成两大类:确定信号和随机信号。确定信号具有一定的变化规律,二随机信号无一定的变化规律,需要用统计特性进行分析。在这里引入了一个随机过程的概念。所谓随机过程,就是随机变量的集合,每个随机变量都是随机过程的一个采样序列。随机过程可以分为平稳的和非平稳的,遍历的和非遍历的。如果随机信号的统计特性不随时间的推移而变化。则随机过程是平稳的。如果一个平稳的随机过程的任意一个样本都具有相同的统计特性。则随机过程是遍历的。下面讨论的随机过程都认为是平稳的遍历的随机过程,因此,可以随机取随机过程的一个样本值来描述随机过程中的统计特性。 随机过程的统计特性一般采用主要的几个平均统计特性函数来描述,包括、均方值、方差、自相关系数、互相关系数、概率密度、频谱及功率谱密度等。 a.随机过程的均值 均值E[x(t)]表示集合平均值或数学期望值。基于过程的各态历经行,可用时间间隔T 内的幅值平均值表示,即 ∑-==10/)()]([N t N t x t x E 均值表达了信号变化的中心趋势,或称之为直流分量。

信号通过线性系统的特性分析

信号通过线性系统的特征分析 学号:……姓名:….. 成绩: 一实验原理及思路 通过频谱分析可以看出,在一般情况下线性系统的响应波形与激励波形是不同的,即:信号在通过线性系统传输过程中产生了失真。 线性系统引起的信号失真是由两方面的因素造成的,一是系统对信号中各频率分量的幅度产生不同程度的衰减,使响应各频率分量的相对幅度产生变化,造成幅度失真;一是系统对各频率分量产生的相移不与频率成正比,使响应各频率分量在时间轴上的相对位置产生变化,造成相位失真。 线性系统的幅度失真与相位失真都不产生新的频率分量。对于非线性系统,由于其非线性特性,对于传输信号产生非线性失真,非线性失真可能产生新的频率分量。 如果信号在传输过程中不失真,则响应r(t)与激励e(t)波形相同,只是幅度大小或出现的时间不同。激励与响应的关系可表示为 r(t)=ke(t-t0)(1) 为了实现信号无失真传输,线性系统应满足什么条件? R(jω)=kE(jω)e(-jωt0)(2) 设响应r(t)与激励e(t)的傅里叶变换分别是R(jω)和E(jω),则 R(jω)=H(jω)E(jω)(3) 比较(2)与(3),在信号无失真传输时,系统函数应为 H(jω)=▏H(jω)▕e(j(φω))=ke(-jωt0) 因此,为了实现任意信号通过线性系统不产生失真现象,该系统应满足以下两个理想条件, 幅频特性 k j H=|) ( |ω

相频特性 o t ωωφ-=)( 很显然,在传输有限频宽的信号时,上述的理想条件可以放宽,只要在信号占有频带范围内系统满足上述理想条件即可。 二 实验内容及结果 1. 系统传输函数幅频特性的测试 首先测试系统输入信号的频谱,在测试该信号通过系统后输出的频谱。比较输入输出的变化。为能反映出特性的整体形状,测试点的分布比较合理。应先找出谐振点,在其两边都要取数据点,越靠近谐振点测量点应取得密些。这些位置是特性变化大的地方,应该用较多的数据描述。 2. 系统传输函数幅频特性的绘制 由于幅频特性的频率范围跨度很大,采用对数坐标,能够在有限的空间内反映出全貌。 1. 在Multisim 上实现低通滤波器的输入、输出频谱的测试与分析 (1) 绘制测量电路并作出输入输出信号的参数仿真 R1200ΩC110nF C210nF R25kΩV1 0 V 5 V 0.06msec 0.1msec XBP1 IN OUT XSC1 A B Ext Trig + + _ _ +_ 2 1 (2) 无失真传输线性系统输入、输出信号幅度频谱的仿真测量 虚拟电压信号源设置参数为周期矩形信号,其中周期T=100μs ,脉冲宽度τ=60μs ,脉冲幅度Vp=5V ;采用虚拟示波器测量滤波器输入输出信号的时域波形,波特仪测量线性系统传输特性的频谱图,并记录输出波形。 (3) 通过变换R 、C 参数,掌握其对滤波器床舒特性的影响。 当R1=200Ω,C1=10nF ,R2=200Ω,C2=10nF ,测量系统传输特性频谱图;

相关主题
文本预览
相关文档 最新文档