当前位置:文档之家› 线性代数第二章答案讲课稿

线性代数第二章答案讲课稿

线性代数第二章答案讲课稿
线性代数第二章答案讲课稿

第二章 矩阵及其运算

1. 已知线性变换:

?????++=++=++=3

21332123

2113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换. 解 由已知:

?

??? ?????? ?

?=???? ??221321323513122y y y x x x ,

故 ???? ?????? ?

?=???? ??-3211

221323513122x x x y y y ?

??? ?????? ??----=321423736

947y y y , ?????-+=-+=+--=3

21332123

211423736947x x x y x x x y x x x y .

2. 已知两个线性变换

?????++=++-=+=3

2133212311542322y y y x y y y x y y x , ?????+-=+=+-=3233122

11323z z y z z y z z y ,

求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换. 解 由已知

???? ?????? ?

?-=???? ??221321514232102y y y x x x ???

?

?????? ??--???? ??-=32131

010

2013514232102z z z

????

?????? ??----=321161109412316z z z ,

所以有?????+--=+-=++-=3

21332123

2111610941236z z z x z z z x z z z x .

3. 设???? ??--=111111111A , ???

?

??--=150421321B , 求3AB -2A 及A T B .

解 ???

?

??---???? ??--???? ??--=-1111111112150421321111111111323A AB

????

??----=???? ??---???? ??-=2294201722213211111111120926508503,

???

?

??-=???? ??--???? ??--=092650850150421321111111111B A T .

4. 计算下列乘积:

(1)???

?

?????? ??-127075321134;

解 ???? ?????? ??-127075321134???? ???+?+??+?-+??+?+?=102775132)2(71112374???? ??=49635.

(2)???

? ??123)321(;

解 ???

?

??123)321(=(1?3+2?2+3?1)=(10).

(3))21(312-???

?

??;

解 )21(312-????

?????? ???-??-??-?=23)1(321)1(122)1(2???

?

?

?---=6321

42. (4)????

?

??---??? ??-20

4

131

210131

43110412 ; 解 ????

?

??---??? ??-20

4

131210131

43110412??? ??---=6520876.

(5)???

? ?????? ??321332313232212131211321)(x x x a a a a a a a a a x x x ; 解

???

? ?????? ??321332313232212131211321)(x x x a a a a a a a a a x x x =(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)???

?

??321x x x 3223311321122

33322222111222x x a x x a x x a x a x a x a +++++=.

5. 设???

??=3121

A , ??

? ??=2101

B , 问:

(1)AB =BA 吗? 解 AB ≠BA . 因为???

??=6443AB , ??

? ??=8321

BA , 所以AB ≠BA .

(2)(A +B )2=A 2+2AB +B 2吗? 解 (A +B )2≠A 2+2AB +B 2. 因为??

?

??=+5222

B A ,

??? ?

???? ??=+52225222)(2B A ??? ??=2914148,

??? ?

?+??? ??+??? ?

?=++4301

1288611483222B AB A ??

? ??=27151610,

所以(A +B )2≠A 2+2AB +B 2. (3)(A +B )(A -B )=A 2-B 2吗? 解 (A +B )(A -B )≠A 2-B 2. 因为???

??=+5222

B A , ??

? ??=-1020

B A ,

?

?? ??=??? ????? ??=-+906010205222))((B A B A ,

而 ?

?

? ??=??? ??-??? ??=-718243011148322B A , 故(A +B )(A -B )≠A 2-B 2.

6. 举反列说明下列命题是错误的:(也可参考书上的答案) (1)若A 2=0, 则A =0; 解 取??

?

??=0010A , 则A 2=0, 但A ≠0.

(2)若A 2=A , 则A =0或A =E ; 解 取??

?

??=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y . 解 取

??? ??=0001A , ??? ??-=1111X , ??

? ??=1011

Y ,

则AX =AY , 且A ≠0, 但X ≠Y . 7. 设?

?

?

??=101λA , 求A 2, A 3, ? ? ?, A k . 解

?

?? ??=??? ????? ??=12011011012λλλA ,

?

?

? ??=??? ????? ??==1301101120123λλλA A A , ? ? ? ? ? ?,

?

?

? ??=101λk A k .

8. 设???

?

??=λλλ001001A , 求A k .

解 首先观察

???? ?

????? ??=λλ

λλλλ0010010010012A ???? ??=222002012λλλλλ,

???

? ??=?=323

2

323003033λλλλλλA A A ,

????

??=?=43423434004064λλλλλλA A A ,

???

?

??=?=545345450050105λλλλλλA A A ,

? ? ? ? ? ?,

??=k

A k

k k

k k k

k k k k λλλλλλ0

2)1(1

2

1

----????

? . 用数学归纳法证明: 当k =2时, 显然成立. 假设k 时成立,则k +1时,

???? ???????

? ??-=?=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ?????

? ??+++=+-+--+1

1111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:

?????

? ??-=---k k k k k k k k k k k A λλλλλλ0002)1(121. (也可提取公因式,变成书上的答案)

9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵. 证明 因为A T =A , 所以

(B T AB )T =B T (B T A )T =B T A T B =B T AB , 从而B T AB 是对称矩阵.

10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA . 证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以 (AB )T =(BA )T =A T B T =AB , 即AB 是对称矩阵.

必要性: 因为A T =A , B T =B , 且(AB )T =AB , 所以 AB =(AB )T =B T A T =BA .

11. 求下列矩阵的逆矩阵: (1)??

? ??5221; 解

??

? ?

?=5221A . |A |=1, 故A -1存在. 因为

??? ?

?--=??? ??=1225*22122111A A A A A ,

*||11A A A =-?

?

? ??--=1225.

(2)??

? ??-θθθθcos sin sin cos ;

解 ??

? ??-=θθθθcos sin sin cos A . |A |=1≠0, 故A -1存在. 因为

??? ?

?-=??? ??=θθθθcos sin sin cos *22122111A A A A A ,

所以

*||11A A A =-?

?

? ??-=θθθθcos sin sin cos .

(3)???

? ??---145243121;

解 ???

?

??---=145243121A . |A |=2≠0, 故A -1存在. 因为

???? ?

?-----=???? ??=214321613024*332313322212312111A A A A A A A A A A , 所以

*||11

A A A =-?????

?

?-----=1716213213012.

(4)????? ??n a a a O 002

1(a 1a 2? ? ?a n ≠0) .

解 ???

?

? ??=n a a a A O 002

1, 由对角矩阵的性质知

?????

??

? ??=-n a a a A 10011211O .

12. 解下列矩阵方程: (1)??

? ??-=???

??12643152X ;

??? ??-??? ??=-126431521

X ??? ??-??? ??--=12642153??

? ??-=80232.

(2)??

? ??-=???

? ??--234311*********X ; 解

1

111012112234311-?

??

? ??--?

?? ??-=X

?

??

? ??---?

?? ??-=03323210123431131 ????

??---=3253

8122. (3)??

? ??-=??? ??-??? ??-101311022141X ; 解

1

1

1102

10132141--??

?

?

?-??? ??-??? ??-=X

??

? ????? ??-??? ??-=210110131142121

??? ????? ??=21010366121???

? ??=04111. (4)???

? ??---=???? ?????? ??021102341010100001100001010X .

1

1010100001021102341100001010--???

? ?????? ??---???? ??=X

???? ?????? ??---???? ??=010100001021102341100001010???

? ??---=201431012.

13. 利用逆矩阵解下列线性方程组:

(1)?????=++=++=++3

532522132321321321

x x x x x x x x x ;

解 方程组可表示为

????

??=???? ?????? ??321153522321321x x x ,

故 ?

??? ??=???? ?????? ?

?=???? ??-0013211535223211

321x x x , 从而有 ?????===001321

x x x .

(2)?????=-+=--=--0

52313223213213

21x x x x x x x x x .

解 方程组可表示为

????

??=???? ?????? ??-----012523312111321x x x ,

故 ?

??? ??=???? ?????? ?

?-----=???? ??-3050125233121111

321x x x ,

故有 ?????===3

05321

x x x .

14. 设A k =O (k 为正整数), 证明(E -A )-1=E +A +A 2+? ? ?+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为 E -A k =(E -A )(E +A +A 2+? ? ?+A k -1), 所以 (E -A )(E +A +A 2+? ? ?+A k -1)=E , 由定理2推论知(E -A )可逆, 且 (E -A )-1=E +A +A 2+? ? ?+A k -1.

证明 一方面, 有E =(E -A )-1(E -A ). 另一方面, 由A k =O , 有

E =(E -A )+(A -A 2)+A 2-? ? ?-A k -1+(A k -1-A k ) =(E +A +A 2+? ? ?+A k -1)(E -A ), 故 (E -A )-1(E -A )=(E +A +A 2+? ? ?+A k -1)(E -A ), 两端同时右乘(E -A )-1, 就有

(E -A )-1(E -A )=E +A +A 2+? ? ?+A k -1.

15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E )-1. 证明 由A 2-A -2E =O 得 A 2-A =2E , 即A (A -E )=2E , 或

E E A A =-?)(2

1, 由定理2推论知A 可逆, 且)(2

11

E A A -=-. 由A 2-A -2E =O 得

A 2-A -6E =-4E , 即(A +2E )(A -3E )=-4E ,

E A E E A =-?+)3(4

1)2(

由定理2推论知(A +2E )可逆, 且)3(4

1)2(1

A E E A -=+-.

证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A |=2, 即 |A ||A -E |=2, 故 |A |≠0,

所以A 可逆, 而A +2E =A 2, |A +2E |=|A 2|=|A |2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ?A (A -E )=2E ?A -1A (A -E )=2A -1E ?)(2

11

E A A

-=-, 又由 A 2-A -2E =O ?(A +2E )A -3(A +2E )=-4E ? (A +2E )(A -3E )=-4 E ,

所以 (A +2E )-1(A +2E )(A -3E )=-4(A +2 E )-1,

)3(4

1)2(1A E E A -=+-.

16. 设A 为3阶矩阵, 2

1||=A , 求|(2A )-1-5A *|.

解 因为*|

|11A A A =

-, 所以

|||521||*5)2(|111----=-A A A A A |2

521|11---=A A

=|-2A -1|=(-2)3|A -1|=-8|A |-1=-8?2=-16.

17. 设矩阵A 可逆, 证明其伴随阵A *也可逆, 且(A *)-1=(A -1)*. 证明 由*|

|11A A A =

-, 得A *=|A |A -1, 所以当A 可逆时, 有

|A *|=|A |n |A -1|=|A |n -1≠0, 从而A *也可逆.

因为A *=|A |A -1, 所以 (A *)-1=|A |-1A . 又*)(||)*(|

|1111---==

A A A A A , 所以 (A *)-1=|A |-1A =|A |-1|A |(A -1)*=(A -1)*.

18. 设n 阶矩阵A 的伴随矩阵为A *, 证明: (1)若|A |=0, 则|A *|=0; (2)|A *|=|A |n -1. 证明

(1)用反证法证明. 假设|A *|≠0, 则有A *(A *)-1=E , 由此得 A =A A *(A *)-1=|A |E (A *)-1=O ,

所以A *=O , 这与|A *|≠0矛盾,故当|A |=0时, 有|A *|=0. (2)由于*|

|11A A A =

-, 则AA *=|A |E , 取行列式得到 |A ||A *|=|A |n . 若|A |≠0, 则|A *|=|A |n -1;

若|A |=0, 由(1)知|A *|=0, 此时命题也成立. 因此|A *|=|A |n -1.

19. 设???

?

??-=321011330A , AB =A +2B , 求B .

解 由AB =A +2E 可得(A -2E )B =A , 故

???? ??-???? ??---=-=--321011330121011332)2(1

1A E A B ???

? ??-=011321330.

20. 设???

?

??=101020101A , 且AB +E =A 2+B , 求B .

解 由AB +E =A 2+B 得 (A -E )B =A 2-E , 即 (A -E )B =(A -E )(A +E ).

因为010

010101

00||≠-==-E A , 所以(A -E )可逆, 从而

???

?

??=+=201030102E A B .

21. 设A =diag(1, -2, 1), A *BA =2BA -8E , 求B . 解 由A *BA =2BA -8E 得 (A *-2E )BA =-8E , B =-8(A *-2E )-1A -1 =-8[A (A *-2E )]-1 =-8(AA *-2A )-1 =-8(|A |E -2A )-1 =-8(-2E -2A )-1 =4(E +A )-1

=4[diag(2, -1, 2)]-1

)2

1 ,1 ,21(diag 4-= =2diag(1, -2, 1).

22. 已知矩阵A 的伴随阵????

?

?

?-=80

3001010010

0001

*A , 且ABA -1=BA -1+3E , 求B . 解 由|A *|=|A |3=8, 得|A |=2.

由ABA -1=BA -1+3E 得 AB =B +3A ,

B =3(A -E )-1A =3[A (E -A -1)]-1A

11*)2(6*)2

1(3---=-=A E A E

????

? ?

?-=?????

?

?--=-10

30060

6006000

0660

3001010010

000161

.

23. 设P -1AP =Λ, 其中???

??--=1141P , ?

?

? ??-=Λ2001, 求A 11. 解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A =P Λ11P -1. |P |=3,

??

? ?

?-=1141*P , ??? ??--=-1141311P ,

??

? ??-=??? ??-=Λ1111

1120 0120

01,

????

?

??--??? ??-??? ??--=31313431200111411111A ??

? ??--=68468327322731.

24. 设AP =P Λ, 其中????

??--=111201111P , ???

? ??-=Λ511, 求?(A )=A 8(5E -6A +A 2). 解 ?(Λ)=Λ8(5E -6Λ+Λ2)

=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ?(A )=P ?(Λ)P -1

*)(|

|1P P P Λ=?

????

??------???? ?????? ??---=1213032220000000011112011112

???

?

??=1111111114.

25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为

A -1(A +

B )B -1=B -1+A -1=A -1+B -1,

而A -1(A +B )B -1是三个可逆矩阵的乘积, 所以A -1(A +B )B -1可逆, 即A -1+B -1可逆. (A -1+B -1)-1=[A -1(A +B )B -1]-1=B (A +B )-1A .

26. 计算????

? ??---?????

?

?300032001210130130

0012001010

0121. 解 设??? ??=10

211A , ??? ?

?=3012

2A , ??? ??-=12131B , ??

? ??--=30322B ,

??? ????? ??2121B O B E A O E A ??

? ??+=222111B A O B B A A ,

??

? ??-=??? ??--+??? ??-??? ??=+42253032121310

21211B B A ,

??

? ??--=??? ??--??? ?

?=90343032301222B A , 所以 ??? ????? ??2121B O B E A O E A ??? ??+=222111B A O B B A A ????

? ?

?---=9000

340042102521

,

即 ????? ??---?????

?

?300032001210130130

00120010100121????

?

??---=90003400

42102521. (最后一行的-9也可除以-1变成9,从而变成书上的答案) 27. 取???

??==-==1001

D C B A , 验证|||||||| D C B A D C B A ≠.

4100120021

10

010100200

00210100101

10100101==--=--=D C B A , 而

01111|||||||| ==D C B A , 故 |

||||||| D C B A D C B A ≠.

28. 设???

?

? ??-=22023443O O A , 求|A 8|及A 4. 解 令??? ??-=34431A , ??

? ??=22022A , 则

??

? ??=21A O O A A ,

故 8

218

??? ??=A O O A A ??

? ??=8281A O O A ,

16

82818281810||||||||||===A A A A A .

????

? ??=??? ??=464444241422025005O O A O O A A .

29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求

(1)1

-??

? ??O B A O ;

解 设??

? ??=??? ??-43211

C C C C O B A O , 则

??? ??O B A O ??? ??4321C C C C ??? ??=??? ??=s n E O O E BC BC AC AC 2143. 由此得 ?????====s n E BC O BC O AC E AC 2143??????====--12

1413B C O C O C A C ,

所以 ??

? ??=??? ??---O A B O O B A O 11

1

. (2)1

-??

?

??B C O A .

解 设??

? ??=??? ??-43211

D D D D B C O A , 则

??

? ??=??? ??++=??? ????? ??s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321. 由此得 ?????=+=+==s n

E BD CD O BD CD O

AD E AD 423121??????=-===----14

113211B D CA B D O D A D ,

所以 ??

? ??-=??? ??-----1111

1

B CA B O A B

C O A .

30. 求下列矩阵的逆阵:

(1)?????

?

?25

00380000120025; 解 设??? ??=1225A , ??

? ??=25

38B , 则

??? ??--=??? ??=--522112

251

1A , ??

? ??--=??? ?

?=--85322538

1

1B .

于是 ????

? ??----=??? ??=??? ??=?????

?

?----850032000052002125

00380000120025

1111

B A B A .

(2)?????

?

?41

21031200210001

. 解 设??? ??=2101A , ??? ??=41

03B , ??

? ??=2112

C , 则

??? ??-=??? ??=????

?

?

?------11111

1

41

21031200210001

B CA B O A B

C O A

???????

?

??-----=4112

1245

8103

16121002

1210001

.

线性代数知识点总结

线性代数知识点总结 第一章 行列式 1. n 阶行列式()() 12 1212 11121212221212 1= = -∑ n n n n t p p p n p p np p p p n n nn a a a a a a D a a a a a a 2.特殊行列式 () () 1112 11222211221122010 n t n n nn nn nn a a a a a D a a a a a a a = =-= 1 2 12 n n λλλλλλ=, () ()1 12 2 121n n n n λλλλλλ-=- 3.行列式的性质 定义 记 11121212221 2 n n n n nn a a a a a a D a a a =,11211 1222212n n T n n nn a a a a a a D a a a = ,行列式T D 称为行列式D 的转置行列式。 性质1 行列式与它的转置行列式相等。 性质2 互换行列式的两行() ?i j r r 或列() ?i j c c ,行列式变号。 推论 如果行列式有两行(列)完全相同(成比例),则此行列式为零。 性质3 行列式某一行(列)中所有的元素都乘以同一数()?j k r k ,等于用数k 乘此行列式; 推论1 D 的某一行(列)中所有元素的公因子可以提到D 的外面; 推论2 D 中某一行(列)所有元素为零,则=0D 。 性质4 若行列式的某一列(行)的元素都是两数之和,则 1112111212222212 () ()()i i n i i n n n ni ni nn a a a a a a a a a a D a a a a a '+'+='+11121111121121222221222212 12 i n i n i n i n n n ni nn n n ni nn a a a a a a a a a a a a a a a a a a a a a a a a ''=+ ' 性质6 把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,

线性代数第二章答案

第二章 矩阵及其运算 1 已知线性变换 ?????++=++=++=3 213321232113235322y y y x y y y x y y y x 求从变量x 1 x 2 x 3到变量y 1 y 2 y 3的线性变换 解 由已知 ? ??? ?????? ? ?=???? ??221321323513122y y y x x x 故 ???? ?????? ? ?=???? ??-3211 221323513122x x x y y y ? ??? ?????? ??----=321423736 947y y y ?????-+=-+=+--=3 21332123 211423736947x x x y x x x y x x x y 2 已知两个线性变换 ?????++=++-=+=321332123 11542322y y y x y y y x y y x ?????+-=+=+-=3 233122 11323z z y z z y z z y 求从z 1 z 2 z 3到x 1 x 2 x 3的线性变换 解 由已知 ???? ?????? ? ?-=???? ??221321514232102y y y x x x ??? ? ?????? ??--???? ??-=32131 010 2013514232102z z z ??? ? ?????? ??----=321161109412316z z z

所以有?????+--=+-=++-=3 21332123 2111610941236z z z x z z z x z z z x 3 设???? ??--=111111111A ??? ? ??--=150421321B 求3AB 2A 及A T B 解 ??? ? ??---???? ??--???? ??--=-1111111112150421321111111111323A AB ???? ??----=???? ??---???? ??-=2294201722213211111111120926508503 ??? ? ??-=???? ??--???? ??--=092650850150421321111111111B A T 4 计算下列乘积 (1)??? ? ?????? ??-127075321134 解 ???? ?????? ??-127075321134???? ???+?+??+?-+??+?+?=102775132)2(71112374??? ? ??=49635 (2)???? ??123)321( 解 ??? ? ??123)321((132231)(10)

线性代数详细知识点

线性代数 第一章 行列式 §1 二阶和三阶行列式 一、二元一次线性方程组与二阶行列式 结论:如果112212210a a a a -≠,则二元线性方程组 1111221 2112222 a x a x b a x a x b +=??+=? 的解为 122122*********b a a b x a a a a -= -,112121 2112121 a b b a x a b b a -=-。 定义:设11122122,,,a a a a ,记11221221a a a a -为 11122122a a a a 。称1112 2122 a a a a 为二阶行列式 有了行列式的符号,二元线性方程组的求解公式可以改写为 1 122221111221 22 b a b a x a a a a = ,111 122 2111221 22 a b a b x a a a a = 二、三阶行列式与三元一次线性方程组 定义:11 121321 222331 32 33 a a a a a a a a a 112233122331132132132231122133112332a a a a a a a a a a a a a a a a a a =++--- 定理:如果11 1213 21 22233132 33 0a a a D a a a a a a =≠,则***1 23(,,)x x x 是下面的三元线性方程组的解

111122133121122223323113223333 a x a x a x b a x a x a x b a x a x a x b ++=?? ++=??++=? 当且仅当 *1x =1 12132 22233 3233 /b a a b a a D b a a ,* 2x =111132122331 3 33 /a b a a b a D a b a ,* 3 x =111212122231 32 3 /a a b a a b D a a b 其中11 1213 21 222331 32 33 a a a a a a a a a 为系数行列式。 证明:略。 性质1:行列式行列互换,其值不变。即11 121311213121 222312 223231 32 33 13 23 33 a a a a a a a a a a a a a a a a a a =。 性质2:行列式某两行或列互换,其值变号。例如 11121321222321222311 121331 32 33 31 32 33 a a a a a a a a a a a a a a a a a a =- 推论:行列式有两行相同,其值为零。 性质3:行列式某一行的所有数乘一常数等于行列式乘该常数。例如 11121311121321222321 222331 32 33 31 32 33 a a a a a a ka ka ka k a a a a a a a a a = 推论:行列式某一行或列的公因数可以提到行列式外面。 推论:行列式有一行全为零,其值为零。 性质4:行列式有两行成比例时,其值为零。 性质5:行列式关于它的每一行和每一列都是线性的。例如

线性代数第二章矩阵试题及答案

第二章矩阵 一、知识点复习 1、矩阵的定义 由m n个数排列成的一个m行n列的表格,两边界以圆括号或方括号,就成为一个m n型矩阵。例如 2 -1 0 1 1 1 1 1 0 2 2 5 4 -2 9 3 3 3 -1 8 是一个45矩阵. 一个矩阵中的数称为它的元素,位于第i行第j列的数称为(i,j)位元素。 元素全为0的矩阵称为零矩阵,通常就记作0。 两个矩阵A和B相等(记作A=B),是指它的行数相等,列数也相等(即它们的类型相同),并且对应的元素都相等。 2、 n阶矩阵与几个特殊矩阵 行数和列数相等的矩阵称为方阵,行列数都为n的矩阵也常常叫做n阶矩阵。 n阶矩阵的从左上角到右下角的对角线称为主对角线。 下面列出几类常用的n阶矩阵,它们都是考试大纲中要求掌握的. 对角矩阵: 对角线外的的元素都为0的n阶矩阵. 单位矩阵: 对角线上的的元素都为1的对角矩阵,记作E(或I). 数量矩阵: 对角线上的的元素都等于一个常数c的对角矩阵,它就是c E. 上三角矩阵: 对角线下的的元素都为0的n阶矩阵. 下三角矩阵: 对角线上的的元素都为0的n阶矩阵. 对称矩阵: 满足A T=A矩阵,也就是对任何i,j,(i,j)位的元素和(j,i)位的元素总是相等的n阶矩阵. 反对称矩阵:满足A T=-A矩阵.也就是对任何i,j,(i,j)位的元素和(j ,i)位的元素之和总等于0的n阶矩阵.反对称矩阵对角线上的元素一定都是0.) 正交矩阵:若AA T=A T A=E,则称矩阵A是正交矩阵。 (1)A是正交矩阵?A T=A-1 (2)A是正交矩阵?2 A=1 阶梯形矩阵:一个矩阵称为阶梯形矩阵,如果满足: ①如果它有零行,则都出现在下面。 ②如果它有非零行,则每个非零行的第一个非0元素所在的列号自上而下严 格单调递增。 把阶梯形矩阵的每个非零行的第一个非0元素所在的位置称为台角。 每个矩阵都可以用初等行变换化为阶梯形矩阵,这种运算是在线性代数的各类 计算题中频繁运用的基本运算,必须十分熟练。 请注意:一个矩阵用初等行变换化得的阶梯形矩阵并不是唯一的,但是其非零 行数和台角位置是确定的。 3、矩阵的线形运算 (1)加(减)法:两个m n的矩阵A和B可以相加(减),得到的和(差)仍是m n 矩阵,记作A+B (A-B),运算法则为对应元素相加(减). (2)数乘: 一个m n的矩阵A与一个数c可以相乘,乘积仍为m n的矩阵, 记作c A,运算法则为A的每个元素乘c. 这两种运算统称为线性运算,它们满足以下规律: ①加法交换律:A+B=B+A. 2加法结合律:(A+B)+C=A+(B+C). ③加乘分配律:c(A+B)=c A+c B.(c+d)A=c A+d A. ④数乘结合律: c(d)A=(cd)A. ⑤ c A=0 c=0 或A=0. 4、矩阵乘法的定义和性质 (1)当矩阵A的列数和B的行数相等时,则A和B可以相乘,乘积记作AB. AB的行数和A相等,列数和B相等. AB的(i,j)位元素等于A的第i个行向量 和B的第j个列向量(维数相同)对应分量乘积之和.

线性代数课后习题答案(陈维新)

第一章 行列式 习题1.1 1. 证明:(1)首先证明)3(Q 是数域。 因为)3(Q Q ?,所以)3(Q 中至少含有两个复数。 任给两个复数)3(3,32211Q b a b a ∈++,我们有 3 )()3()3)(3(3)()()3()3(3)()()3()3(2121212122112121221121212211b a a b b b a a b a b a b b a a b a b a b b a a b a b a +++=++-+-=+-++++=+++。 因为Q 是数域,所以有理数的和、差、积仍然为有理数,所以 ) 3(3)()3()3)(3()3(3)()()3()3()3(3)()()3()3(2121212122112121221121212211Q b a a b b b a a b a b a Q b b a a b a b a Q b b a a b a b a ∈+++=++∈-+-=+-+∈+++=+++。 如果0322≠+b a ,则必有22,b a 不同时为零,从而0322≠-b a 。 又因为有理数的和、差、积、商仍为有理数,所以 )3(33) (3)3() 3)(3()3)(3(3 32 2 22212122222121222222112211Q b a b a a b b a b b a a b a b a b a b a b a b a ∈--+--= -+-+= ++。 综上所述,我们有)3(Q 是数域。 (2)类似可证明)(p Q 是数域,这儿p 是一个素数。 (3)下面证明:若q p ,为互异素数,则)()(q Q p Q ?。 (反证法)如果)()(q Q p Q ?,则q b a p Q b a +=? ∈?,,从而有 q ab qb a p p 2)()(222++==。 由于上式左端是有理数,而q 是无理数,所以必有02=q ab 。 所以有0=a 或0=b 。 如果0=a ,则2 qb p =,这与q p ,是互异素数矛盾。 如果0=b ,则有 a p =,从而有“有理数=无理数”成立,此为矛盾。 所以假设不成立,从而有)()(q Q p Q ?。

线性代数知识点总结汇总

线性代数知识点总结 1 行列式 (一)行列式概念和性质 1、逆序数:所有的逆序的总数 2、行列式定义:不同行不同列元素乘积代数和 3、行列式性质:(用于化简行列式) (1)行列互换(转置),行列式的值不变 (2)两行(列)互换,行列式变号 (3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k 乘此行列式 (4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。 (5)一行(列)乘k加到另一行(列),行列式的值不变。 (6)两行成比例,行列式的值为0。 (二)重要行列式 4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积 5、副对角线行列式的值等于副对角线元素的乘积乘 6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则 7、n阶(n≥2)范德蒙德行列式

数学归纳法证明 ★8、对角线的元素为a,其余元素为b的行列式的值: (三)按行(列)展开 9、按行展开定理: (1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0 (四)行列式公式 10、行列式七大公式: (1)|kA|=k n|A| (2)|AB|=|A|·|B| (3)|A T|=|A| (4)|A-1|=|A|-1 (5)|A*|=|A|n-1 (6)若A的特征值λ1、λ2、……λn,则 (7)若A与B相似,则|A|=|B| (五)克莱姆法则 11、克莱姆法则: (1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解

(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0 (3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。 2 矩阵 (一)矩阵的运算 1、矩阵乘法注意事项: (1)矩阵乘法要求前列后行一致; (2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律) (3)AB=O不能推出A=O或B=O。 2、转置的性质(5条) (1)(A+B)T=A T+B T (2)(kA)T=kA T (3)(AB)T=B T A T (4)|A|T=|A| (5)(A T)T=A (二)矩阵的逆 3、逆的定义: AB=E或BA=E成立,称A可逆,B是A的逆矩阵,记为B=A-1 注:A可逆的充要条件是|A|≠0 4、逆的性质:(5条) (1)(kA)-1=1/k·A-1 (k≠0) (2)(AB)-1=B-1·A-1 (3)|A-1|=|A|-1 (4)(A T)-1=(A-1)T (5)(A-1)-1=A

线性代数总结归纳

行列式 1.为何要学习《线性代数》?学习《线性代数》的重要性和意义。 答:《线性代数》是理、工、医各专业的基础课程,它是初等代数理论的继续和发展, 它的理论和方法在各个学科中得到了广泛的应用。 2.《线性代数》的前导课程。 答:初等代数。 3.《线性代数》的后继课程。 答:高等代数,线性规划,运筹学,经济学等。 4.如何学习《线性代数》? 答:掌握各章节的基本概念和解决问题的基本方法,多多体会例子的方法和技巧,多做 练习,在练习中要紧扣问题涉及的概念,不要随意扩大概念的范围,练习要自己做才能理解所学的知识。在学完一章后自己要做一个小结,理清该章内容及前后概念之间的联 系。在学完本课程后,将各章的内容做一个总结,想想各章内容之间的联系,易混淆的 概念要着重加深理解及区分它们之间的差异。 第一章行列式 5.什么是一个n阶全排列?【知识点】:n阶全排列。 答:由n个数1,2,…,n组成的一个有序数组。 6.什么是标准排列?【知识点】:n阶全排列。 答:按数字由小到大的自然顺序排列的n阶排列123, n。 7.什么是n阶全排列的逆序?【知识点】:n阶全排列的逆序。 答:在一个n阶排列中,若某个较大的数排在某个较小的数前面,则称这两个数构成一个逆序。例如:排列45312中,数4与3 ,数4与1,数4与2 ,数5与3,数5与1 ,数5与2, 数3与1,数3与2都构成逆序。数4与5,数1与2不构成逆序。 & 什么是n阶排列的逆序数?【知识点】:n阶排列的逆序数。 答:在一个n阶排列中,所有逆序的总数就是排列的逆序数。例如:上问中的排列45312 的逆序数为8。 9.什么是奇排列和偶排列?【知识点】:排列的奇偶性。

线性代数知识点归纳

线性代数复习要点 第一部分 行列式 1. 排列的逆序数 2. 行列式按行(列)展开法则 3. 行列式的性质及行列式的计算 1.行列式的计算: ① (定义法)1212121112121222() 1212()n n n n n j j j n j j nj j j j n n nn a a a a a a D a a a a a a τ= = -∑ L L L L L M M M L 1 ②(降阶法)行列式按行(列)展开定理: 行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零. ③ (化为三角型行列式)上三角、下三角、主对角行列式等于主对角线上元素的乘积. ④ 若A B 与都是方阵(不必同阶),则 ==()mn A O A A O A B O B O B B O A A A B B O B O *==* *=-1 ⑤ 关 于 副 对角线: (1)2 1121 21 1211 1 () n n n n n n n n n n n a O a a a a a a a O a O ---* ==-K N N 1

⑥ 范德蒙德行列式:()1 22 22 12111112 n i j n j i n n n n n x x x x x x x x x x x ≤<≤---=-∏L L L M M M L 111 ⑦ a b -型公式:1 [(1)]()n a b b b b a b b a n b a b b b a b b b b a -=+--L L L M M M O M L ⑧ (升阶法)在原行列式中增加一行一列,保持原行列式不变的方法. ⑨ (递推公式法) 对n 阶行列式n D 找出n D 与1n D -或1n D -,2n D -之间的一种关系——称为递推公式,其中 n D ,1n D -,2n D -等结构相同,再由递推公式求出n D 的方法称为递推公式法. (拆分法) 把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和, 使问题简化以例计算. ⑩ (数学归纳法) 2. 对于n 阶行列式A ,恒有:1 (1)n n k n k k k E A S λλ λ-=-=+-∑,其中k S 为k 阶主子式; 3. 证明 0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值. 4. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 第二部分 矩阵 1.矩阵的运算性质 2.矩阵求逆

线性代数第二章答案

第二章 矩阵及其运算 1 已知线性变换 ?????++=++=++=3 21332123 2113235322y y y x y y y x y y y x , 求从变量x 1 x 2 x 3到变量y 1 y 2 y 3的线性变换 解 由已知 ? ??? ?????? ? ?=???? ??22 1321323513122y y y x x x 故 ???? ?????? ? ?=???? ??-3211 221323513122x x x y y y ? ??? ?????? ??----=321423736 947y y y ?????-+=-+=+--=3 21332123 211423736947x x x y x x x y x x x y 2 已知两个线性变换 ?????++=++-=+=3 2133 2123 11542322y y y x y y y x y y x ?????+-=+=+-=3 233122 11323z z y z z y z z y 求从z 1 z 2 z 3到x 1 x 2 x 3的线性变换 解 由已知 ???? ?????? ? ?-=???? ??221321514232102y y y x x x ??? ? ?????? ??--???? ??-=32131 010 2013514232102z z z ??? ? ?????? ??----=32 1161109412316z z z

所以有?????+--=+-=++-=3 2133 2123 2111610941236z z z x z z z x z z z x 3 设???? ??--=111111111A ??? ? ??--=150421321B 求3AB 2A 及A T B 解 ??? ? ??---???? ??--???? ??--=-1111111112150421321111111111323A AB ???? ??----=???? ??---???? ??-=2294201722213211111111120926508503 ??? ? ??-=???? ??--???? ??--=092650850150421321111111111B A T 4 计算下列乘积 (1)??? ? ?????? ??-127075321134 解 ???? ?????? ??-127075321134???? ???+?+??+?-+??+?+?=102775132)2(71112374?? ? ? ??=49635 (2)???? ??123)321( 解 ??? ? ??123)321((132231)(10)

线性代数知识点总结

线性代数知识点总结 第一章行列式 (一)要点 1、 二阶、三阶行列式 2、 全排列和逆序数,奇偶排列(可以不介绍对换及有关定理) ,n 阶行列式的定义 3、 行列式的性质 4、 n 阶行列式 ^a i j ,元素a j 的余子式和代数余子式,行列式按行(列)展开定理 5、 克莱姆法则 (二)基本要求 1 、理解n 阶行列式的定义 2、掌握n 阶行列式的性质 3 、会用定义判定行列式中项的符号 4、理解和掌握行列式按行(列)展开的计算方法,即 a 1i A Ij ' a 2i A 2 j ' a ni A nj ^ 5、会用行列式的性质简化行列式的计算,并掌握几个基本方法: 归化为上三角或下三角行列式, 各行(列)元素之和等于同一个常数的行列式, 利用展开式计算 6、 掌握应用克莱姆法则的条件及结论 会用克莱姆法则解低阶的线性方程组 7、 了解n 个方程n 个未知量的齐次线性方程组有非零解的充要条件 第二章矩阵 (一)要点 1、 矩阵的概念 m n 矩阵A =(a j )mn 是一个矩阵表。当 m =n 时,称A 为n 阶矩阵,此时由 A 的 元素按原来排列的形式构成的 n 阶行列式,称为矩阵 A 的行列式,记为 A . 注:矩阵和行列式是两个完全不同的两个概念。 2、 几种特殊的矩阵:对角阵;数量阵;单位阵;三角形矩阵;对称矩阵 a i 1A j 1 ■ a i2A j 2 ? a in A jn = 〔 D '

3、矩阵的运算;矩阵的加减法;数与矩阵的乘法;矩阵的转置;矩阵的乘法 (1矩阵的乘法不满足交换律和消去律,两个非零矩阵相乘可能是零矩阵。如果两矩阵A与B相乘,有AB = BA ,则称矩阵A与B可换。注:矩阵乘积不一定符合交换 (2)方阵的幕:对于n阶矩阵A及自然数k, A k=A A A , 1 k个 规定A° = I ,其中I为单位阵. (3) 设多项式函数(J^a^ k?a1?k^l Z-心律??a k,A为方阵,矩阵A的 多项式(A) = a0A k?a1A k' …-?-a k jA ■ a k I ,其中I 为单位阵。 (4)n阶矩阵A和B ,贝U AB=IAB . (5)n 阶矩阵A ,则∣∕Λ =λn A 4、分块矩阵及其运算 5、逆矩阵:可逆矩阵(若矩阵A可逆,则其逆矩阵是唯一的);矩阵A的伴随矩阵记 * 为A , AA* = A*A = AE 矩阵可逆的充要条件;逆矩阵的性质。 6、矩阵的初等变换:初等变换与初等矩阵;初等变换和初等矩阵的关系;矩阵在等价 意义下的标准形;矩阵A可逆的又一充分必要条件:A可以表示成一些初等矩阵的乘积; 用初等变换求逆矩阵。 7、矩阵的秩:矩阵的k阶子式;矩阵秩的概念;用初等变换求矩阵的秩 8、矩阵的等价 (二)要求 1、理解矩阵的概念;矩阵的元素;矩阵的相等;矩阵的记号等 2、了解几种特殊的矩阵及其性质 3、掌握矩阵的乘法;数与矩阵的乘法;矩阵的加减法;矩阵的转置等运算及性质 4、理解和掌握逆矩阵的概念;矩阵可逆的充分条件;伴随矩阵和逆矩阵的关系;当A 可逆时,会用伴随矩阵求逆矩阵 5、了解分块矩阵及其运算的方法 (1)在对矩阵的分法符合分块矩阵运算规则的条件下,其分块矩阵的运算在形式上与不分块矩阵的运算是一致的。 (2)特殊分法的分块矩阵的乘法,例如A m n, B nl,将矩

最新东北大学线性代数课件第一章_行列式

东北大学线性代数课件第一章_行列式

第一章 行列式 教学基本要求: 1. 1. 了解行列式的定义. 2. 掌握行列式的性质和计算行列式的方法. 3. 会计算简单的n 阶行列式. 4. 了解Cramer 法则. 一、行列式的定义 1. 定义 nn n n n n a a a a a a a a a 212222111211称为n 阶行列式,记作D (或n D 或||ij n a ),它是n 2个数 (1,2, ,;1,2, ,)ij a i n j n ==的一个运算结果: 11 12121222111112121112 n n n n n n nn a a a a a a D a A a A a A a a a = =+++,(1.1) 其中,(1,2,,;1,2,,)ij a i n j n ==为行列式位于第i 行且第j 列的元素, 111(1)j j j A M +=-(1,2,,)j n =,而1j M 为划掉行列式第1行和第j 列的全部元素后余下的元素组成的1n -阶行列式,即 21 212122231 21 311 11 j j n j j n j n n j n j nn a a a a a a a a M a a a a -+-+-+= 1j M 称为元素1j a 的余子式,1j A 称为元素1 j a 的代数余子式. 2. 基本行列式: (1)一阶行列式 a a =||. 例如,|106|106=, 2121-=-.

1112112212212122 a a a a a a a a =-. 112233122331132132a a a a a a a a a ++ 132231122133112332a a a a a a a a a ---. (4)三角形行列式 ①对角行列式 11 1122 nn nn a a a a a =. ②下三角行列式 11 1122 1nn n nn a a a a a a =. ③上三角行列式 11 11122 n nn nn a a a a a a =. ④ 1(1)2 121 11 (1) n n n n n n n a a a a a --=-. ⑤ 1(1)2 121 11(1) n n n n n n n nn a a a a a a --=-. ⑥ 11 1(1)2 121 11 (1) n n n n n n n a a a a a a --=-. 3. 行列式的性质 nn n n n n a a a a a a a a a D 2122221 11211 = ,nn n n n n T a a a a a a a a a D 212 2212 12111= 性质1.1 D D T =. (1.2)

线性代数第二章习题答案

习 题 2-1 1.由6名选手参加乒乓球比赛,成绩如下:选手1胜选手2、4、5、6而负于选手3;选手2胜选手4、5、6而负于选手1、3;选手3胜选手1、2、4而负于选手5、6;选手4胜选手5、6而负于选手1、2、3;选手5胜选手3、6而负于选手1、2、4;选手6胜选手2而负于选手1、3、4、5.若胜一场得1分,负一场得0分,使用矩阵表示输赢状况,并排序. 解: ????? ?? ? ? ? ??000010 100100110000001011 1110001110106543216 54321,选手按胜多负少排序为:6,5,4,3,2,1. 2.设矩阵???? ??-=???? ?? +-=2521 ,03231 z x y x B A ,已知B A =,求z y x ,,. 解:由于B A =得?????=-=+=-0253223z x y x ,解得:?? ? ??===211 z y x 。 习 题 2-2 1.设???? ??=0112A ,??? ? ??-=4021B ,求 (1)B A 52-; (2)BA AB -; (3)2 2B A -. 解:(1)??? ? ??--=???? ??--???? ??=???? ??--???? ??=-202892001050224402150112252B A ; (2)???? ??--=???? ??--???? ??--=???? ?????? ??--???? ??-???? ??=-2592041021820112402140210112BA AB ; (3)??? ? ??--=???? ??-???? ??=???? ??-???? ??--???? ?????? ??=-152441606112254021402101120112B A 22. 2.已知????? ??--=230412301321A ,??? ? ? ??---=052110 35123 4B ,求B A 23-. 解:??? ? ? ??----????? ??--=052110351234223041230 13 21 323B -A ??? ? ? ??----=????? ??----????? ??--=61941016151055011010422061024686901236903963 3.设??? ? ? ??----=????? ??=101012121234,432112 122121B A ,求

线性代数知识点归纳,超详细

线性代数复习要点 第一部分行列式 1. 排列的逆序数 2. 行列式按行(列)展开法则 3. 行列式的性质及行列式的计算 行列式的定义 1.行列式的计算: ①(定义法) ②(降阶法)行列式按行(列)展开定理: 行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.

③(化为三角型行列式)上三角、下三角、主对角行列式等于主对角线上元素的乘积. ④若都是方阵(不必同阶),则 ⑤关于副对角线: ⑥范德蒙德行列式: 证明用从第n行开始,自下而上依次的由下一行减去它上一行的倍,按第一列展开,重复上述操作即可。 ⑦型公式: ⑧(升阶法)在原行列式中增加一行一列,保持原行列式不变的方法. ⑨(递推公式法) 对阶行列式找出与或,之间的一种关系——称为递推公式,其中 ,,等结构相同,再由递推公式求出的方法称为递推公式法. (拆分法) 把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和,使问题简化以例计算. ⑩(数学归纳法) 2. 对于阶行列式,恒有:,其中为阶主子式;

3. 证明的方法: ①、; ②、反证法; ③、构造齐次方程组,证明其有非零解; ④、利用秩,证明; ⑤、证明0是其特征值. 4. 代数余子式和余子式的关系: 第二部分矩阵 1.矩阵的运算性质 2.矩阵求逆 3.矩阵的秩的性质 4.矩阵方程的求解 1.矩阵的定义由个数排成的行列的表称为矩阵. 记作:或 ①同型矩阵:两个矩阵的行数相等、列数也相等. ②矩阵相等: 两个矩阵同型,且对应元素相等. ③矩阵运算 a. 矩阵加(减)法:两个同型矩阵,对应元素相加(减). b. 数与矩阵相乘:数与矩阵的乘积记作或,规定为. c. 矩阵与矩阵相乘:设, ,则, 其中 注:矩阵乘法不满足:交换律、消去律, 即公式不成立.

线性代数知识点总结

大学线性代数知识点总结 第一章 行列式 二三阶行列式 N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n n n nj j j j j j j j j n ij a a a a ...)1(21212121) ..(∑-= τ (奇偶)排列、逆序数、对换 行列式的性质:①行列式行列互换,其值不变。(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。 推论:若行列式中某两行(列)对应元素相等,则行列式等于零。 ③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。 ④行列式具有分行(列)可加性 ⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。 克莱姆法则: 非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j D D x j j ??== 、 齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D等于零 特殊行列式: ①转置行列式:33 23 13 3222123121113332 31 232221 131211 a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a = ③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零 ④三线性行列式:33 31 2221 13 1211 0a a a a a a a 方法:用221a k 把21a 化为零,。。化为三角形行列式

线性代数第二章矩阵(答案解析)

线性代数练习题 第二章 矩 阵 系 专业 班 姓名 学号 第一节 矩阵及其运算 一.选择题 1.有矩阵23?A ,32?B ,33?C ,下列运算正确的是 [ B ] (A )AC (B )ABC (C )AB -BC (D )AC +BC 2.设)2 1 ,0,0,21( =C ,C C E A T -=,C C E B T 2+=,则=AB [ B ] (A )C C E T + (B )E (C )E - (D )0 3.设A 为任意n 阶矩阵,下列为反对称矩阵的是 [ B ] (A )T A A + (B )T A A - (C )T AA (D )A A T 二、填空题: 1.? ?? ? ??---=???? ??--+???? ??-1212561432102824461 2.设????? ??=432112122121A ,????? ??----=101012121234B ,则=+B A 32??? ?? ??--56125252781314 3.=????? ??????? ??-127075321134???? ? ??49635 4.=????? ? ? ??---???? ??-20413121013 143110412???? ? ?---6520876 三、计算题: 设???? ? ? ?--=11 1111 111 A ,4

??? ? ? ??--=150421321B ,求A AB 23-及B A T ;2294201722213 2222222222092650850311111111 1215042 132111111111 1323???? ? ??----=???? ? ? ?---????? ??-=?? ??? ??---????? ? ?--????? ??--=-A AB .09265085015042132111111111 1???? ? ??-=????? ??--????? ??--===AB B A A A A T T ,则对称,由 线性代数练习题 第二章 矩 阵 系 专业 班 姓名 学号 第二节 逆 矩 阵 一.选择题 1.设* A 是n 阶矩阵A 的伴随矩阵,则 [ B ] (A )1 -* =A A A (B )1 -* =n A A (C )* * =A A n λλ)( (D )0)(=* *A 2.设A ,B 都是n 阶可逆矩阵,则 [ C ] (A )A +B 是n 阶可逆矩阵 (B )A +B 是n 阶不可逆矩阵 (C )AB 是n 阶可逆矩阵 (D )|A +B | = |A |+|B | 3.设A 是n 阶方阵,λ为实数,下列各式成立的是 [ C ] (A ) A A λλ= ( B )A A λλ= ( C )A A n λλ= ( D )A A n λλ= 4.设A ,B ,C 是n 阶矩阵,且ABC = E ,则必有 [ B ] (A )CBA = E (B )BCA = E (C )BAC = E (D )ACB = E 5.设n 阶矩阵A ,B ,C ,满足ABAC = E ,则 [ A ]

线性代数知识点全归纳

线性代数知识点 1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90o ,所得行列式为2D ,则(1)2 2(1)n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、 (1)m n C A O A A B B O B C ==-g ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;

线性代数课后习题答案 1.3

习题1.3 1. 设11 1213 21 22233132330a a a D a a a a a a a ==≠, 据此计算下列行列式(要求写出计算过程): (1) 31 3233 21 2223111231a a a a a a a a a ; (2) 11 1312 1221232222313332 32 235235235a a a a a a a a a a a a ---. 分析 利用行列式得性质找出所求行列式与已知行列式的关系. 解 (1) 31 323321 222311 12 31 a a a a a a a a a 13 R 111213 21 222331 3233 a a a a a a a a a -=a -. (4) 方法一 11 13121221 23222231 333232 235235235a a a a a a a a a a a a ---23 5C C +111312212322313332 232323a a a a a a a a a 提取公因子 11 13122123223133 32 6a a a a a a a a a 23 C 111213 21 222331 32 33 6a a a a a a a a a -=6a -. 方法二 注意到该行列式的第二列均为2个数的和, 可用行列式的性质5将该行列式分成2个行求和, 结果与方法一相同. 2. 用行列式性质计算下列行列式(要求写出计算过程): (1) 19981999 20002001 20022003200420052006; (2) 1 11 a b c b c a c a b +++; (3) 11121321 22233132 33 x y x y x y x y x y x y x y x y x y ; (4) 10 010220 033040 04 --; (5) 111112341410204004; (6) 111011 01101101 11 ; (7) 2 11 4 1 120110299 ---; (8) 222222a b c a a b b c a b c c c a b ------. 分析 第(1)至第(4)小题可利用行列式性质求解; 第(5)至第(9)小题是采用归结化简为上 (下)三角行列式求解.

相关主题
文本预览
相关文档 最新文档