当前位置:文档之家› 中英文文献翻译—汽车车身焊装夹具的设计要点

中英文文献翻译—汽车车身焊装夹具的设计要点

中英文文献翻译—汽车车身焊装夹具的设计要点
中英文文献翻译—汽车车身焊装夹具的设计要点

附录

(英文文献及中英文对照)

The designing features of automobile body

welding fixture

Auto body clamp is required for the amorphous body stamping required to locate and clamp, to form the body components, combined parts, sub-assembly and assembly, While taking advantage of suitable welding method to form their own welding pieces of the whole. Welding fixture welding process is a secondary device, but in the process of mass production car body, the device is essential. It not only can improve welding productivity, but also to ensure the dimensional accuracy of welding products and appearance requirements of the important devices. The assembly and welding fixtures there is no uniform specifications and standardization, are non-standard equipment. Design.and manufacturing process according to the structural characteristcs of the specific models, production conditions and the actual demand from the line of design and manufacturing.

1. asonable decomposition of auto body parts welded together to determine the type of fixture required. Two or more of the stamping process by the assembly and welding of components is obtained by welding together pieces of several related small welding welding large pieces of formed pieces, then welded together to form the following four parts: Around before welding parts, welding parts around the back, floor and roof welding parts welding parts, welding together four pieces of the final welding into vehicle cab assembly. Therefore, according to the cab assembly formation process of the correct welding pieces of reasonably divided, and on this basis, the corresponding pieces of welding fixture design. This will not only help ensure product quality, also can increase welding productivity.

2. Determine the level of automation of assembly and welding fixtures. Annual output depends on the level of automation and assembly and welding fixtures welders bit configuration. Production cycle time mainly by clamping action, the assembly time, welding

time and handling time and other components. Among them, the jig fixture operating time depends on the degree of automation. To improve productivity, consider clamping fixture and release time to complete the action by the cylinder, and between station and station automation transport. But this increases the manufacturing cost of fixtures. Therefore, the design of fixtures to be able to reasonably balance the level of automation and welding fixtures contradiction between the manufacturing cost.

3. For large welding jigs, fixtures must first determine the design basis, with the same car body design basis. Fixture n the location of all the components are determined directly from the design basis, the ultimate guarantee to create a qualified welding tooling structure. According to a preliminary decision height operations fixture floor height, the height of the clamped position; Second, draw the assembly and welding parts diagram, it is included in the station in need of assembly and welding of stamping the solder joint shape and location requirements as the basis for setting fixture; The next step is a reasonable arrangement of fixture position, this must be clearly grasp the stamping of the space shape, composition relationships, assembly and welding sequence and the solder joint layout, rational design of fixture placement and general structure; overall design of the final draw sketches.

4. Rational choice of fixture position. As the car body shape complexity, poor rigidity, deformation, fixture positioning has been introduced on a large number of ways to enhance the rigidity of welded parts, reduce the welding deformation. Positioning of welding fixtures generally include positioning and side positioning of two kinds of holes. Positioning hole punching process to give priority to consider the positioning hole, the size and location of these holes is relatively accurate and reliable; Try to use under the procedures of mounting holes, as these holes the size of the margin of error will affect the next process of the assembly. Therefore, the design of fixtures with positioning holes not only to understand the stamping process, assembly process must also consider the key under the channel size. Large lection of positioning holes as the holes, so that pins can have sufficient strength, or easily broken pins. Stamping on the preferred shape to a reliable, stable surface as a positioning surface, positioned to do as much as possible the use of flat surfaces, but most of the space body stamping surface, which requires the fixture components of the work surface must be positioned with the corresponding surface of the car body consistent shape, so as to ensure the body in the process of assembly and welding shape. Positioning of parts with surface to guarantee a certain accuracy, adjust the position of positioning blocks are coarse

to fine-tune more complex, this block can be added to fine-tune the positioning function, that is positioned to add a thin spacer block, and gasket thickness is that you can adjust the accuracy. In addition, the set should also be considered when positio ning the welding position and the use of welding equipment, welding can not affect the final piece out, but also allows welding clamp or welding torch to reach the location. For the really influential to consider the use of pins and other pins can be active.

5. Properly designed clamping mechanism. When the stamping on the correct positioning of the fixture, in order to maintain the welding process in the assembly of the workpiece position and overcome the elastic deformation of the workpiece, usually requires a certain clamping body. With this device, you can make the workpiece and the bearing surface, workpiece and positioning the workpiece and the workpiece surface and tight fit between. For thickness below 1.2mm steel plate, each clamping point of the clamping force is generally in the range of 300 ~ 750N; For the 1.5 ~ 2.5mm between the stampings, each clamping point of the clamping force in the range of 500 ~ 3000N. To reduce the auxiliary time loading and unloading the workpiece, the clamping device should be fast and efficient installations and multi-point linkage institutions. For sheet metal parts, the clamping force acting on the bearing surface point should be only a good piece of rigid role allowed a few points of support in the plane formed in order to avoid bending or clamping force from the workpiece positioning reference. Also designed to prevent the clamping mechanism to open the clamping grip hand.

6. Other design elements. As the stamping quality checks are sampling, prone to problems. If possible, add in some welding fixture on some auxiliary devices, check the stamping play the role of critical dimensions. In addition, assembly and welding fixture structure should be easy to operate, saving, security and easy handling characteristics of the workpiece.

汽车车身焊装夹具的设计要点

汽车车身夹具是用来把所需车身冲压件按要求定形、定位并夹紧,组合成车身组件、合件、分总成及总成,同时利用合适的焊接方法使其形成各自焊合件整体。焊接夹具属于焊接工艺过程的辅助装置,但在汽车车身大批量生产过程中,该装置是必不可少的。它不仅可以提高焊接生产率,而且也是保证焊接产品的尺寸精度及外观要求的重要装置。而装焊夹具没有统一规格和标准化,属于非标准设计和制造的工艺装备,要根据具体车型的结构特点、生产条件和实际需求来自行设计与制造。

1、合理分解汽车车身焊合件,确定所需夹具的种类。两种或两种以上的冲压件经装焊工序后得到的部件即为焊合件,几种相关的小焊合件组成大的焊合件,再形成以下四种焊合件:前围焊合件、后侧围焊合件、地板焊合件以及顶盖焊合件,这四种焊合件最终组焊成了汽车驾驶室总成。因此,要根据上述驾驶室总成形成过程进行各种焊合件正确合理地分割,并在此基础上进行相应焊合件夹具的设计。这样,不仅有利于保证产品质量,还可以提高焊接生产率。

2、确定装焊夹具自动化程度的高低。年产量决定于装焊夹具的自动化水平及焊接工位的配置。生产节拍主要由夹具动作时间、装配时间、焊接时间以及搬运时间等组成。其中,夹具动作时间主要取决于夹具的自动化程度。为提高生产率,可以考虑夹具的夹紧和松开动作由汽缸一次性完成,且工位和工位之间采用自动化运输。但这就提高了夹具的制造成本。因此,设计夹具要能合理地平衡焊接夹具的自动化水平及制造成本之间的矛盾。

3、对于大型焊装夹具,首先必须确定夹具的设计基准,它与汽车车身的设计基准一致。夹具上全部元件的位置都是直接根据设计基准确定的,最终保证制造出合格的焊接工装结构。根据作业高度可初步决定夹具底板的高度,即夹具固定位置的高度;其次绘制出装焊工件图,它包括在此工位上需要装焊的冲压件外形以及要求的焊点位置,以此作为夹具设置的基础;下一步是夹具位置的合理布置,为此必须清楚地把握冲压件的空间形状、组合关系、装焊顺序以及焊点布置,合理设计夹具的安放位置和大致结构;最后绘出总体方案设计草图。

4、合理地选择夹具的定位。由于汽车车身形状复杂、刚性差、易变形,夹具定位上大量采用过定位方式,以增强焊接件刚性,减少焊接变形。焊接夹具的定位一般包括孔定位和面定位两种。孔定位时要优先考虑用冲压工序的定位孔,这些孔的尺寸和位置相对准确可靠;尽量用下道工序的装配孔,因为这些孔的尺寸有误差会影响下道

工序的装配。因此,设计夹具用孔定位时不仅要了解冲压工序,还要考虑下道装配工序的关键尺寸。定位孔尽可能选用较大的孔,这样定位销可以有足够的强度,否则定位销容易折断。要优选冲压件上形状可靠、稳定的面作为定位面,尽可能地采用平面做定位面,但车身冲压件大多为空间曲面,这就要求夹具定位元件的工作表面必须与车身上相应的定位表面形状保持一致,这样才能在装焊过程中保证车身的形状。用面定位的部件要保证一定精度,调整定位块的位置属于粗调,要精确调节较为复杂,为此可以在定位块上增加细调功能,即在定位块上增加很薄的垫片,而垫片的厚度就是可以调整的精度。另外,设置定位时还要考虑焊接位置和所用焊接设备,既不能影响最终焊合件的取出,也可以让焊钳或者焊枪到达焊接位置。对于确实有影响的定位销等要考虑采用可以活动的定位销。

5、正确设计夹紧机构。当冲压件在夹具上正确定位后,为保持焊接过程中各工件的装配位置以及克服工件的弹性变形,通常需要一定的夹紧机构。利用该装置,可以使工件和支承面、工件和定位面以及工件和工件之间紧密贴合。对于1.2mm厚度以下的钢板,每个夹紧点的夹紧力一般在300~750N范围内;对于1.5~2.5mm之间的冲压件,每个夹紧点的夹紧力在500~3000N范围内。为减少装卸工件的辅助时间,夹紧装置应采用高效快速装置和多点联动机构。对于薄板冲压件,夹紧力作用点应作用在支承面上,只有对刚性很好的工件才允许作用在几个支承点所组成的平面内,以免夹紧力使工件弯曲或脱离定位基准。另外设计时要防止在夹紧机构由夹紧到打开时夹住手。

6、其它设计要点。由于冲压件质量检查属于抽检,容易出现问题。如果可能,可以在有些焊接夹具上增加一些辅助装置,起到检查冲压件关键尺寸的作用。另外,装焊夹具结构应具有操作方便、省力、安全以及工件装卸方便等特点。

文献翻译英文原文

https://www.doczj.com/doc/3e18805042.html,/finance/company/consumer.html Consumer finance company The consumer finance division of the SG group of France has become highly active within India. They plan to offer finance for vehicles and two-wheelers to consumers, aiming to provide close to Rs. 400 billion in India in the next few years of its operations. The SG group is also dealing in stock broking, asset management, investment banking, private banking, information technology and business processing. SG group has ventured into the rapidly growing consumer credit market in India, and have plans to construct a headquarters at Kolkata. The AIG Group has been approved by the RBI to set up a non-banking finance company (NBFC). AIG seeks to introduce its consumer finance and asset management businesses in India. AIG Capital India plans to emphasize credit cards, mortgage financing, consumer durable financing and personal loans. Leading Indian and international concerns like the HSBC, Deutsche Bank, Goldman Sachs, Barclays and HDFC Bank are also waiting to be approved by the Reserve Bank of India to initiate similar operations. AIG is presently involved in insurance and financial services in more than one hundred countries. The affiliates of the AIG Group also provide retirement and asset management services all over the world. Many international companies have been looking at NBFC business because of the growing consumer finance market. Unlike foreign banks, there are no strictures on branch openings for the NBFCs. GE Consumer Finance is a section of General Electric. It is responsible for looking after the retail finance operations. GE Consumer Finance also governs the GE Capital Asia. Outside the United States, GE Consumer Finance performs its operations under the GE Money brand. GE Consumer Finance currently offers financial services in more than fifty countries. The company deals in credit cards, personal finance, mortgages and automobile solutions. It has a client base of more than 118 million customers throughout the world

机械毕业设计英文外文翻译71车床夹具设计分析

附录A Lathe fixture design and analysis Ma Feiyue (School of Mechanical Engineering, Hefei, Anhui Hefei 230022, China) Abstract: From the start the main types of lathe fixture, fixture on the flower disc and angle iron clamp lathe was introduced, and on the basis of analysis of a lathe fixture design points. Keywords: lathe fixture; design; points Lathe for machining parts on the rotating surface, such as the outer cylinder, inner cylinder and so on. Parts in the processing, the fixture can be installed in the lathe with rotary machine with main primary uranium movement. However, in order to expand the use of lathe, the work piece can also be installed in the lathe of the pallet, tool mounted on the spindle. THE MAIN TYPES OF LATHE FIXTURE Installed on the lathe spindle on the lathe fixture

汽车车身焊接工艺设计教案

浅析汽车车身的焊接工艺设计 在汽车厂中,焊接生产线相对于涂装线和总装线来说,刚性强,多品种车型的通用性差,每更新换代一种车型,均需要更新车间大量专用设备和生产工艺。焊接工艺设计可以称得上是焊接生产线的“灵魂”,涉及的专业知识较多,如机械化、电控、非标设备、建筑、结构、水道、暖通、动力、电气、计算机、环保和通讯等,从宏观上决定车间的工艺水平、物流、投资和预留发展,具体决定着生产线的工艺设备种类和数量、夹具形式、物流工位器具形式、机械化输送方式及控制模式等。因此,焊接工艺设计在焊接生产线的开发中占有举足轻重的地位,是产生高性价比焊接生产线 的关键。 1、车身焊接工艺设计的前提条件 1.1产品资料 a.产品的数学模型(简称数模)。在汽车制造行业中,一般情况下用 UG,Catia,ProE等三维软件均能打开数模(如图1),并在其中获取数据或进行深人的工作。在工艺设计过程中,将所有数模装配在一起就构成了一个整车数模,从数模中可以获得零部件的结构尺寸、位置关系。由数模还可以生成整车、分总成、冲压件的各种视图(包括轴测图),以及可以输出剖面图。 b.全套产品图纸。 c.样车、样件(包括整车车身总成、各大总成、分总成和冲压件)。

d.产品零部件明细表(包括各部件的名称、编号,冲压件的名称、编号、数量,标准件的规格、数量)。 工艺设计时,业主必须提供上述a、b、c中至少1项,d项可以从前3项中分析出来,正常状态下d项(如图2)早在汽车设计结束时就已经确定了。如果仅提供b 项,那么需要增加大量的车身拆解、分析工作。

1.2工厂设计的参数 工厂设计的参数包括以下几方面: a.生产纲领即年产量; b.年时基数即生产班次、生产线的利用率等; c.生产线的自动化程度(机器人+自动焊钳焊点数/全车身焊点数x 100%=自动化率); d.生产线的工艺水平要求(如主要设备选用原则、生产线的输送方式,电气控制水平等); e.各种材料、外购件的选用原则(如型材、控制元件、气动元件、电机、减速器); f.各种公用动力介质的供应方式、能力、品质等参数,建厂所在地的环境状况如温度、湿度等; g.当生产线布置在原有厂房内时,应收集原有房的土建、公用有关资料,如厂房柱顶标高、屋架承载能力、电力和动力介质的余富程度等。 2、工艺分析 2.1工艺线路分析 根据业主提供的产品资料进行产品工艺线路分析(如业主仅提供样车及样件则需经过样车分析→样车拆解→样车测量→样车再装配过程),完成装焊工艺线路图或爆炸图设计。 2.1.1产品分块 同类型车身的分块基本相同(一般车身均由地板、侧围、前/后围、门、顶盖等大总成组成),但各总成之间的连接方式及顺序往往有较大区别,合理的分块才能保

中英文文献翻译

毕业设计(论文)外文参考文献及译文 英文题目Component-based Safety Computer of Railway Signal Interlocking System 中文题目模块化安全铁路信号计算机联锁系统 学院自动化与电气工程学院 专业自动控制 姓名葛彦宁 学号 200808746 指导教师贺清 2012年5月30日

Component-based Safety Computer of Railway Signal Interlocking System 1 Introduction Signal Interlocking System is the critical equipment which can guarantee traffic safety and enhance operational efficiency in railway transportation. For a long time, the core control computer adopts in interlocking system is the special customized high-grade safety computer, for example, the SIMIS of Siemens, the EI32 of Nippon Signal, and so on. Along with the rapid development of electronic technology, the customized safety computer is facing severe challenges, for instance, the high development costs, poor usability, weak expansibility and slow technology update. To overcome the flaws of the high-grade special customized computer, the U.S. Department of Defense has put forward the concept:we should adopt commercial standards to replace military norms and standards for meeting consumers’demand [1]. In the meantime, there are several explorations and practices about adopting open system architecture in avionics. The United Stated and Europe have do much research about utilizing cost-effective fault-tolerant computer to replace the dedicated computer in aerospace and other safety-critical fields. In recent years, it is gradually becoming a new trend that the utilization of standardized components in aerospace, industry, transportation and other safety-critical fields. 2 Railways signal interlocking system 2.1 Functions of signal interlocking system The basic function of signal interlocking system is to protect train safety by controlling signal equipments, such as switch points, signals and track units in a station, and it handles routes via a certain interlocking regulation. Since the birth of the railway transportation, signal interlocking system has gone through manual signal, mechanical signal, relay-based interlocking, and the modern computer-based Interlocking System. 2.2 Architecture of signal interlocking system Generally, the Interlocking System has a hierarchical structure. According to the function of equipments, the system can be divided to the function of equipments; the system

焊装夹具调试及验收技术要求

焊装夹具调试及验收技 术要求 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

+8AT项目焊装夹具 招标要求 项目名称:+8AT项目夹具新增/改造重庆力帆乘用车有限公司 目录

+8AT项目焊装夹具招标要求 1.简述 该项目承担重庆力帆乘用车有限公司(甲方)+8AT项目夹具新增/改造(详见附件一清单,但不限于清单内容)。乙方对以上工程负全面责任,以满足工艺、安全、可靠等方面要求。本项目为“交钥匙”工程。双方共同确认技术方案、工艺装备要求、供货范围及施工工程等,乙方须在该方案基础上进行完善并满足纲领和焊车需求;若后续发生工艺变更,双方协商解决或交付商务处理。本招标要求书主要针对该设备技术要求、功能描述、责任范围等进行明确,作为甲、乙双方履行合同的技术依据。 2.生产线设计及建设基本条件 电源:电压380V±10%、220V±10%、频率50Hz±2%; 冷却水压力: mpa;设备正常工作; 压缩空气压力:;设备正常工作; 820焊装生产线使用寿命为8年或总产量50万台。 3.生产线信息 生产节拍:288秒/台; 生产纲领:5万/年;251天。 生产班次:双班; 设备开动率:85%。 4.+8AT项目夹具新增/改造管理要求 乙方负责+8AT焊装SE分析(输出:时序图、焊接流程图,MCP/MCS,焊点分析及优化,焊接通过性分析,搭接性分析,焊接避让,干涉性审查等)、文件输出、工艺方案及布局图的详细设计,并反应出乙方的工艺规划及流程的合理性及可行性。

项目总计划时间大纲要求 该项目的管理流程中。 ⑴焊接总成的组成件; ⑵装入件名称、数量、零部件号; ⑶装件顺序; ⑷定位点、辅助定位、支撑点、压紧点的坐标位置; ⑸定位及压紧形式; ⑹操作高度700mm~800mm; ⑺焊接形式(是电阻焊还是二氧化碳焊); ⑻所用设备的规格、型号及数量; ⑼前后工序,定位基准应统一; ⑽所装件的名称及件数; 未特殊说明部分按照行业通用规则进行提供。所有焊装夹具设计任务书的内容都必须经过甲方的认可。 5.+8AT项目焊装夹具主要技术总则 +8AT项目焊装夹具由乙方方案规划、设计、制作、改造、安装、调试、陪产等,主要包括: 820焊接生产线、吊具、输送机构、电气控制等。 焊装线/产品输送要求平稳、安全、可靠、准确。重复定位精度±。

曲轴的加工工艺及夹具设计外文翻译

毕业设计 外文翻译 题目曲轴的加工工艺及夹具设计学院航海学院 专业轮机工程 学生佟宝诚 学号 10960123 指导教师彭中波 重庆交通大学 2014年

Proceedings of IMECE2008 2008 ASME International Mechanical Engineering Congress and Exposition October 31-November 6, 2008, Boston, Massachusetts, USA IMECE2008-67447 MULTI-OBJECTIVE SYSTEM OPTIMIZATION OF ENGINE CRANKSHAFTS USING AN INTEGRATION APPROACH Albert Albers/IPEK Institute of Product Development University of Karlsruhe Germany Noel Leon/CIDyT Center for Innovation andDesign Monterrey Institute of Technology,Mexico Humberto Aguayo/CIDyT Center forInnovation and Design, Monterrey Institute ofTechnology, Mexico Thomas Maier/IPEK Institute of Product Development University of Karlsruhe Germany ABSTRACT The ever increasing computer capabilities allow faster analysis in the field of Computer Aided Design and Engineering (CAD & CAE). CAD and CAE systems are currently used in Parametric and Structural Optimization to find optimal topologies and shapes of given parts under certain conditions. This paper describes a general strategy to optimize the balance of a crankshaft, using CAD and CAE software integrated with Genetic Algorithms (GAs) via programming in Java. An introduction to the groundings of this strategy is made among different tools used for its implementation. The analyzed crankshaft is modeled in commercial parametric 3D CAD software. CAD is used for evaluating the fitness function (the balance) and to make geometric modifications. CAE is used for evaluating dynamic restrictions (the eigenfrequencies). A Java interface is programmed to link the CAD model to the CAE software and to the genetic algorithms. In order to make geometry modifications to

仪表板外文文献翻译、中英文翻译、外文翻译

Dashboard From Wikipedia, the free encyclopedia This article is about a control panel placed in the front of the car. For other uses, see Dashboard (disambiguation). The dashboard of a Bentley Continental GTC car A dashboard (also called dash, instrument panel (IP), or fascia) is a control panel located directly ahead of a vehicle's driver, displaying instrumentation and controls for the vehicle's operation. Contents 1.Etymology 2.Dashboard features 3.Padding and safety 4.Fashion in instrumentation 5.See also 6.References Etymology Horse-drawn carriage dashboard Originally, the word dashboard applied to a barrier of wood or leather fixed at the front of a horse-drawn carriage or sleigh to protect the driver from mud or other debris "dashed up" (thrown up) by the horses' hooves.[1] Commonly these boards did not perform any additional function other than providing a convenient handhold for ascending into the driver's seat, or a small clip with which to secure the reins when not in use. When the first "horseless carriages" were constructed in the late 19th century, with engines mounted beneath the driver such as the Daimler Stahlradwagen, the simple dashboard was retained to protect occupants from debris thrown up by the cars' front wheels. However, as car design evolved to position the motor in front of the driver, the dashboard became a panel that protected vehicle occupants from the heat and oil of the engine. With gradually increasing mechanical complexity, this panel formed a convenient location for the placement of gauges and minor controls, and from this evolved the modern instrument panel,

汽车车轮轮罩焊装夹具设计

摘要 焊装作为汽车生产过程的四大工艺之一,焊接质量的高低对轿车车身尺寸的影响至关重要,可以说,在车身制造过程中,焊装是关键工序,是整个车身制造的核心,白车身焊接质量的优劣决定了整车的制造质量。焊接夹具是保证车身焊接质量的最重要因素,焊接夹具的主要作用就是保证所有焊接冲压件之间的相对位置以及焊接件的尺寸精度,合理的夹具设计、焊点规划、焊钳选择,可以确保焊接质量,降低生产成本,提高生产效率。 本文首先分析了汽车车轮轮罩焊装夹具设计的必要性和可行性;然后围绕车轮轮罩焊装夹具设计这一核心,通过对汽车焊装生产线、汽车焊装夹具的结构特点进行分析,归纳了焊装夹具的设计步骤和要点;重点对汽车车轮轮罩进行焊装工艺分析,研究了汽车车轮轮罩焊装夹具正确的夹紧位置及定位设计方式;最终完成汽车车轮轮罩焊装夹具的结构设计。 关键词:汽车;轮罩;焊接;夹具;设计

ABSTRACT Welding production process as a vehicle one of the four processes, the level of welding quality on body size of car is essential, can be said that the manufacturing process in the body, welding is the key process is the core of the whole body manufacturing, white body determines the merits of quality welding vehicle manufacturing quality.Welding fixture is guarantee body welding quality most important factor, the main role of welding fixture to ensure that all welding is the relative position between the stamping and welding parts for dimensional accuracy, and reasonable fixture design, solder joint planning, welding clamp selection, to ensure weld quality, reduce production costs and increase productivity. Firstly, this paper analyzes the automobile wheel cover design of welding fixture necessity and feasibility; Then around the wheel cover on the core welding fixture design, welding production line of automobile, car welding fixture to analyze the structural characteristics, summarizes the steps and welding fixture design elements; Focus on the car hood for welding wheel analysis of the technology of automobile wheel cover clamp welding fixture correct location and orientation design approach; Finally completed the car wheel covers the structural design of welding fixture. Key words: Automobile; Wheel Casing; Welding ; Jig; Design

SSM英文文献翻译

中南大学CentralSouthUniversity 本科毕业设计英文文献翻译题目 学生姓名 学号 指导教师 学院 专业班级 二○一六年一月八日

Spring 的web MVC 构架模式 Juergen Hoeller 1、介绍:Spring 的应用构架 当你第一次看到并接触Spring框架的时候,你一定会在心里想到;“哦哦,不不,这又是另一种Web构架”。这篇文章将会指出Spring框架不是什么特殊的web框架,而是一个通用的轻量级的应用程序框架,在专用网络支持下的应用程序框架。并且它会告诉你Spring框架明显区别于其他轻量级application framework,它将专注于web的支持,与struts和webwork有着明显的区别。 在和struts和webwork的对比上之中,Spring框架是一个服务于所有层面上的application framework:提供了bean的配置基础,AOP的支持,JDBC的提取框架,抽象事务支持,等等诸如此类。它有一个非常显著的特点:在某个层面上如果你不需要Spring的支持,它有一个非常显著的特点:在某个层面上如果你不需要Spring的支持,你就可以不使用Spring框架的class(类),只使用它的某一部分的功能。从它的设计理念,你可以看到Spring框架帮助你实现了真正的逻辑层和web层的成功分离:例如:一个校验应用将不用依靠controllers,就可以实现。这样的目标是更好的重用和易测:过分依靠不必要的容器和框架将不能实现这一点。 当然,Spring的自己本身的web支持和通常框架模式的细致完整。然而,Spring替换struts,webwork或者其他的web方案非常的容易。这个对于Spring 的web支持或者不同的地方,Spring允许你在web容器里面建立一个中间层,在测试环境或者标准独立的应用里面来设置重用你的商务逻辑。 还有就是在J2EE环境里面,可以让你你的商务逻辑不必依靠容器提供的服务,就比如像JTA,EJB的支持。良好的框架的一个web应用是可以运行在任何

基于solidworks机床夹具设计外文翻译详解

2604130359 CNC Cutting Technology Review Numerical control high speed cutting technology (High Speed Machining, HSM, or High Speed Cutting, HSC), is one of the advanced manufacturing technology to improve the machining efficiency and quality, the study of related technology has become an important research direction of advanced manufacturing technology at home and abroad. China is a big manufacturing country, in the world of industry transfer to accept the front instead of back-end of the transfer, to master the core technology of advanced manufacturing, or in a new round of international industrial structure adjustment, our country manufacturing industry will further behind. Imminent research on the theory and application of advanced technology. 1, high-speed CNC machining meaning High speed cutting theory put forward by the German physicist Carl.J.Salomon in the last century and early thirty's. He concluded by a lot of experiments: in the normal range of cutting speed, cutting speed if the increase, will cause the cutting temperature rise, exacerbating the wear of cutting tool; however, when the cutting speed is increased to a certain value, as long as more than the inflection point, with the increase of the cutting speed, cutting temperature can not rise, but will decline, so as long as the cutting speed is high enough, it can be solved very well in high cutting temperature caused by tool wear is not conducive to the cutting problem, obtained good processing efficiency. With the development of manufacturing industry, this theory is gradually paid more attention to, and attracted a lot of attention, on the basis of this theory has gradually formed the field of high-speed cutting technology of NC, relatively early research on NC High-speed Machining Technology in developed countries, through the theoretical basis of the research, basic research and applied research and development application, at present applications have entered the substantive stage in some areas. The high-speed cutting processing category, generally have the following several kinds of classification methods, one is to see that cutting speed, cutting speed over conventional cutting speed is 5-10 times of high speed cutting. Also has the scholar to spindle speed as the definition of high-speed processing standards, that the spindle speed is higher than that of 8000r\/min for high speed machining. And from the machine tool spindle design point of view, with the product of DN diameter of spindle and spindle speed, if the value of DN to (5~2000) * 105mm.r\/min, is considered to be of high speed machining. In practice, different processing methods, different materials, high speed cutting speed corresponding to different. Is generally believed that the turning speed of (700~7000) m\/min, milling speed reaches m\/min (300~6000), that is in the high-speed cutting. In addition, from the practical considerations, high-speed machining concept not only contains the high speed cutting process, integration and optimization also contains the process of cutting, is a

英文文献翻译

中等分辨率制备分离的 快速色谱技术 W. Clark Still,* Michael K a h n , and Abhijit Mitra Departm(7nt o/ Chemistry, Columbia Uniuersity,1Veu York, Neu; York 10027 ReceiLied January 26, 1978 我们希望找到一种简单的吸附色谱技术用于有机化合物的常规净化。这种技术是适于传统的有机物大规模制备分离,该技术需使用长柱色谱法。尽管这种技术得到的效果非常好,但是其需要消耗大量的时间,并且由于频带拖尾经常出现低复原率。当分离的样本剂量大于1或者2g时,这些问题显得更加突出。近年来,几种制备系统已经进行了改进,能将分离时间减少到1-3h,并允许各成分的分辨率ΔR f≥(使用薄层色谱分析进行分析)。在这些方法中,在我们的实验室中,媒介压力色谱法1和短柱色谱法2是最成功的。最近,我们发现一种可以将分离速度大幅度提升的技术,可用于反应产物的常规提纯,我们将这种技术称为急骤色谱法。虽然这种技术的分辨率只是中等(ΔR f≥),而且构建这个系统花费非常低,并且能在10-15min内分离重量在的样本。4 急骤色谱法是以空气压力驱动的混合介质压力以及短柱色谱法为基础,专门针对快速分离,介质压力以及短柱色谱已经进行了优化。优化实验是在一组标准条件5下进行的,优化实验使用苯甲醇作为样本,放在一个20mm*5in.的硅胶柱60内,使用Tracor 970紫外检测器监测圆柱的输出。分辨率通过持续时间(r)和峰宽(w,w/2)的比率进行测定的(Figure 1),结果如图2-4所示,图2-4分别放映分辨率随着硅胶颗粒大小、洗脱液流速和样本大小的变化。

夹具设计英文文献

A review and analysis of current computer-aided fixture design approaches Iain Boyle, Yiming Rong, David C. Brown Keywords: Computer-aided fixture design Fixture design Fixture planning Fixture verification Setup planning Unit design ABSTRACT A key characteristic of the modern market place is the consumer demand for variety. To respond effectively to this demand, manufacturers need to ensure that their manufacturing practices are sufficiently flexible to allow them to achieve rapid product development. Fixturing, which involves using fixtures to secure work pieces during machining so that they can be transformed into parts that meet required design specifications, is a significant contributing factor towards achieving manufacturing flexibility. To enable flexible fixturing, considerable levels of research effort have been devoted to supporting the process of fixture design through the development of computer-aided fixture design (CAFD) tools and approaches. This paper contains a review of these research efforts. Over seventy-five CAFD tools and approaches are reviewed in terms of the fixture design phases they support and the underlying technology upon which they are based. The primary conclusion of the review is that while significant advances have been made in supporting fixture design, there are primarily two research issues that require further effort. The first of these is that current CAFD research is segmented in nature and there remains a need to provide more cohesive fixture design support. Secondly, a greater focus is required on supporting the detailed design of a fixture’s physical structure. 2010 Elsevier Ltd. All rights reserved. Contents 1. Introduction (2) 2. Fixture design (2) 3. Current CAFD approaches (4) 3.1 Setup planning (4) 3.1.1 Approaches to setup planning (4) 3.2 Fixture planning (4) 3.2.1 Approaches to defining the fixturing requirement (6) 3.2.2 Approaches to non-optimized layout planning (6) 3.2.3 Approaches to layout planning optimization (6) 3.3 Unit design (7) 3.3.1 Approaches to conceptual unit design (7)

相关主题
文本预览
相关文档 最新文档