当前位置:文档之家› 实验:典型信号频谱分析报告

实验:典型信号频谱分析报告

实验:典型信号频谱分析报告
实验:典型信号频谱分析报告

实验3.2 典型信号频谱分析

一、 实验目的

1. 在理论学习的基础上,通过本实验熟悉典型信号的波形和频谱特征,并

能够从信号频谱中读取所需的信息。

2. 了解信号频谱分析的基本方法及仪器设备。

二、 实验原理

1. 典型信号及其频谱分析的作用

正弦波、方波、三角波和白噪声信号是实际工程测试中常见的典型信号,这些信号时域、频域之间的关系很明确,并且都具有一定的特性,通过对这些典型信号的频谱进行分析,对掌握信号的特性,熟悉信号的分析方法大有益处,并且这些典型信号也可以作为实际工程信号分析时的参照资料。本次实验利用DRVI 快速可重组虚拟仪器平台可以很方便的对上述典型信号作频谱分析。

2. 频谱分析的方法及设备

信号的频谱可分为幅值谱、相位谱、功率谱、对数谱等等。对信号作频谱分析的设备主要是频谱分析仪,它把信号按数学关系作为频率的函数显示出来,其工作方式有模拟式和数字式二种。模拟式频谱分析仪以模拟滤波器为基础,从信号中选出各个频率成分的量值;数字式频谱分析仪以数字滤波器或快速傅立叶变换为基础,实现信号的时—频关系转换分析。

傅立叶变换是信号频谱分析中常用的一个工具,它把一些复杂的信号分解为无穷多个相互之间具有一定关系的正弦信号之和,并通过对各个正弦信号的研究来了解复杂信号的频率成分和幅值。

信号频谱分析是采用傅立叶变换将时域信号x(t)变换为频域信号X(f),从而帮助人们从另一个角度来了解信号的特征。时域信号x(t)的傅氏变换为:

式中X(f)为信号的频域表示,x(t)为信号的时域表示,f 为频率。

3. 周期信号的频谱分析

周期信号是经过一定时间可以重复出现的信号,满足条件:

dt e t x f X ft j ?+∞

∞--=π2)()(

x ( t ) = x ( t + nT )

从数学分析已知,任何周期函数在满足狄利克利(Dirichlet )条件下,可以展开成正交函数线性组合的无穷级数,如正交函数集是三角函数集(sinn ω0t,cosn ω0t )或复指数函数集(t jn e 0ω),则可展开成为傅里叶级数,通常有实数

形式表达式:

直流分量幅值为:

各余弦分量幅值为:

各正弦分量幅值为:

利用三角函数的和差化积公式,周期信号的三角函数展开式还可写如下形式: 直流分量幅值为: A 0 = a 0

各频率分量幅值为: 各频率分量的相位为:

式中,T —周期,T=2π/ω0;ω0—基波圆频率;f 0—基波频率;n=0,±1, ……。

n n n n A b a ?,,,为信号的傅立叶系数,表示信号在频率f n 处的成分大小。

工程上习惯将计算结果用图形方式表示,以f n 为横坐标,n n b a ,为纵坐标画图,则称为时频-虚频谱图;以f n 为横坐标,n n A ?,为纵坐标画图,则称为幅值-相位谱;以f n 为横坐标,A n 2为纵坐标画图,则称为功率谱,如图7所示。

∑∞=++=+++++=1000020201010sin cos sin cos sin cos )(n n n t n b t n a a t b t a t b t a a x x ωωωωωω

?-=2/2/0)(1T T dt t x T a ??--==2/2/02/2/02sin )(2sin )(2T T T T n tdt nf t x T tdt n t x T b πω??--==2/2/02/2/02cos )(2cos )(2T T T T n tdt nf t x T tdt n t x T a πω∑∞=-+=100)

cos()(n n n t n A A x x ?ωn n

n a b arctg =?2

2n

n n b a A +=

图7 周期信号的频谱表示方法

频谱是构成信号的各频率分量的集合,它完整地表示了信号的频率结构,即信号由哪些谐波组成,各谐波分量的幅值大小及初始相位,从而揭示了信号的频率信息。

4. 非周期信号的频谱分析

非周期信号是在时间上不会重复出现的信号,一般为时域有限信号,具有收敛可积条件,其能量为有限值。这种信号的频域分析手段是傅立叶变换。其表达式为:

与周期信号相似,非周期信号也可以分解为许多不同频率分量的谐波和,所不同的是,由于非周期信号的周期,基频,它包含了从零到无穷大的所有频率分量,各频率分量的幅值为,这是无穷小量,所以频谱不能再用幅值表示,而必须用幅值密度函数描述。

非周期信号x(t)的傅立叶变换X(f)是复数,所以有:

式中|X(f)|为信号在频率f 处的幅值谱密度,为信号在频率f 处的相位差。 工程上习惯将计算结果用图形方式表示,以f 为横坐标,Re[X(f)]、Im[X(f)]为纵坐标画图,则称为时频-虚频密度谱图;以f 为横坐标,|X(f)|、)(f ?为????∞∞--∞∞--∞∞-∞∞-====dt e t x f X dt e t x X df e f X t x d e X t x ft j t j ft j t j πωπωωωωπ22)()()()()()()(21)(或[][])](Re[)](Im[)()(Im )(Re )()()(22)(f X f X arctg f f X f X f X e f X f X f j =+==??

纵坐标画图,则称为幅值-相位密度谱;以f为横坐标,|X(f)|2为纵坐标画图,则称为功率密度谱,如图8所示。

图8 非周期信号的频谱表示方法

的各连续频率值上,与周期信号不同的是,非周期信号的谱线出现在0,f

max

这种频谱称为连续谱。

5. 频谱分析的应用

频谱分析主要用于识别信号中的周期分量,是信号分析中最常用的一种手段。例如,在机床齿轮箱故障诊断中,可以通过测量齿轮箱上的振动信号,进行频谱分析,确定最大频率分量,然后根据机床转速和传动链,找出故障齿轮。再例如,在螺旋浆设计中,可以通过频谱分析确定螺旋浆的固有频率和临界转速,确定螺旋浆转速工作围。

本实验利用在DRVI上搭建的频谱分析仪来对信号进行频谱分析。由虚拟信号发生器产生多种典型波形的电压信号,用频谱分析芯片对该信号进行频谱分析,得到信号的频谱特性数据。分析结果用图形在计算机上显示出来,也可通过打印机打印出来。

三、实验仪器和设备

1. 计算机 n台

2. DRVI快速可重组虚拟仪器平台 1套

3. 打印机 1台

四、实验步骤及容

1.启动服务器,运行DRVI主程序,开启DRVI数据采集仪电源,然后点击

DRVI快捷工具条上的“联机注册”图标,选择其中的“DRVI采集仪主卡

检测”进行服务器和数据采集仪之间的注册。联机注册成功后,分别从

DRVI工具栏和快捷工具条中启动“DRVI微型Web服务器”和“置的Web

服务器”,开始监听8600和8500端口。

2.打开客户端计算机,启动计算机上的DRVI客户端程序,然后点击DRVI

快捷工具条上的"联机注册"图标,选择其中的“DRVI局域网服务器检测”,在弹出的对话框中输入服务器IP地址(例如:192.168.0.1),点击“发

送”按钮,进行客户端和服务器之间的认证,认证完毕后即可正常运行

客户端所有功能。

3.在DRVI软件平台的地址信息栏中输入如下信息“服务器IP地

址:8600/SensorLAB/index.htm”,打开WEB版实验指导书,在实验目录

中选择“典型信号频谱分析”实验,根据实验原理和要求搭建一个典型

信号频谱分析实验。

4.该实验首先需要设计一个典型信号发生器,来产生白噪声、正弦波、方

波、扫频信号等各种典型信号,DRVI中提供了一个“数字信号发生器”

芯片可以直接生成上述信号,可以用一片“多联开关”芯片与之联动来

控制“数字信号发生器”芯片的输出信号类型;对于整个实验的启动,

用一片“开/关按钮”芯片来进行控制;为计算信号幅值谱,选择一片“频

谱计算”芯片;为计算信号的强度,选择一片“时域参数计算”芯片;

另外选择二片“波形/频谱显示”芯片,用于显示信号的波形和频谱;选

择一片“方型仪表”芯片,用于显示信号的有效值;为实现频谱的放大、展宽等操作,插入一片“波形/频谱曲线操作”芯片;最后根据连接这些

芯片所需的数组型数据线数量,插入4片“存条”芯片,扩展4条数组

型数据线,用于存储动态数据;再加上一些文字显示芯片和装饰芯片,

就可以搭建出一个典型信号的频谱分析实验。所需的虚拟仪器软件芯片数量、种类、与软件总线之间的信号流动和连接关系如图9所示,根据实验原理设计图在DRVI软面包板上插入上述软件芯片,然后修改其芯片属性窗中相应的连线参数就可以完成该实验的设计和搭建过程。

图9 典型信号频谱分析实验原理设计图

5.例如,从软件芯片列表中依次插入四片“软存条”芯片,其对应的软件

芯片编号分别为6000,6001,6002,6003,然后插入“多联开关”芯片、“数字信号发生器”芯片和“开关”芯片,利用“移动工具”在软面包板上完成软件芯片的布局。然后在“数字信号发生器”芯片上用鼠标右键点击,在弹出的芯片属性对话框中修改“波形存储芯片号”为6000,将其与数组型数据总线6000即“软存条”芯片6000连接;修改“类型线号”为2将其与多联开关连接,控制信号的输出类型;修改“开关线号”为1,将其与“开关”芯片连接,由“开关”芯片来控制信号发生器的启/停;其它参数无需修改,即可完成本实验中“数字信号发生器”

芯片的设置过程,如图10所示。相应的,设置“开关”芯片中的“开关线号”为1;“多联开关”芯片中的“开关线号”为2 (与“数字信号发生器”类型线号相联),“开关数量”为10(如图11所示),完成这组软件芯片的设置过程。其它软件芯片的设置可参照以上芯片设置方法及实验原理设计图完成。

图10 “数字信号发生器”芯片参数设置样列图11 “多联开关”芯片参数设置样列

6.也可以直接点击附录中“实验脚本文件”的,将本实验的脚本文件贴入

并运行,实验截屏效果图如图12所示。

图12 典型信号频谱分析实验

7.点击DRVI“典型信号频谱分析”实验中的“白噪声”按钮,产生白噪声

信号,分析和观察白噪声信号波形和幅值谱特性。

8.点击DRVI“典型信号频谱分析”实验中的“正弦波”按钮,产生正弦波

信号,分析和观察正弦波信号波形和幅值谱特性。

习题1 绘制典型信号及其频谱图(参考模板)

习题一绘制典型信号及其频谱图 电子工程学院 202班一、单边指数信号 单边指数信号的理论表达式为 对提供的MATLAB程序作了一些说明性的补充,MATLAB程序为

figure(3); plot(w,20*log10(abs(F)));xlabel('\omega');ylabel('|F(\omega)| in dB');title(' 幅频特性/dB'); figure(4); plot(w,angle(F)*57.29577951);xlabel('\omega');ylabel('\phi(\omega)/(°) ');title('相频特性'); 调整,将a分别等于1、5、10等值,观察时域波形和频域波形。由于波形 较多,现不失代表性地将a=1和a=5时的各个波形图列表如下进行对比,其 他a值的情况类似可推知。 a15 时 域 图 像

幅频特性 幅频特性/d B 相频特性

分析: 由上表中a=1和a=5的单边指数信号的波形图和频谱图的对比可以发现,当a值增大时,信号的时域波形减小得很快,而其幅频特性的尖峰变宽,相频特性的曲线趋向平缓。 二、矩形脉冲信号 矩形脉冲信号的理论表达式为 MATLAB程序为:

clear all; E=1;%矩形脉冲幅度 width=2;%对应了时域表达式中的tao t=-4:0.01:4; w=-5:0.01:5; f=E*rectpuls(t,width); %MATLAB中的矩形脉冲函数,width即是tao,t为时间 F=E*width*sinc(w.*width/2); figure(1); plot(t,f);xlabel('t');ylabel('f(t)');title('信号时域图像'); figure(2); plot(w,abs(F));xlabel('\omega');ylabel('|F(\omega)|');title('幅频特性'); figure(3); plot(w,20*log10(abs(F)));xlabel('\omega');ylabel('|F(\omega)| in dB');title(' 幅频特性/dB'); figure(4); plot(w,angle(F));xlabel('\omega');ylabel('\phi(\omega)');title('相频特性'); 调整,将分别等于1、4等值,观察时域波形和频域波形。由于波形较多,现不失代表性地将a=1和a=4时的各个波形图列表如下进行对比,其他值的情况类似可推知。 14

09典型信号的频谱分析

实验九 典型信号的频谱分析 一. 实验目的 1. 在理论学习的基础上,通过本实验熟悉典型信号的频谱特征,并能够从信号频谱中读取 所需的信息。 2. 了解信号频谱分析的基本原理和方法,掌握用频谱分析提取测量信号特征的方法。 二. 实验原理 信号频谱分析是采用傅里叶变换将时域信号x(t)变换为频域信号X(f),从而帮助人们从另一个角度来了解信号的特征。 图1、时域分析与频域分析的关系 信号频谱X(f)代表了信号在不同频率分量成分的大小,能够提供比时域信号波形更直观,丰富的信息。时域信号x(t)的傅氏变换为: dt e t x f X ft j ?+∞ ∞--=π2)()( (1) 式中X(f)为信号的频域表示,x(t)为信号的时域表示,f 为频率。 工程上习惯将计算结果用图形方式表示, 以频率f 为横坐标,X(f)的实部)(f a 和虚部 )(f b 为纵坐标画图,称为时频-虚频谱图; 以频率f 为横坐标,X(f)的幅值)(f A 和相位 )(f ?为纵坐标画图,则称为幅值-相位谱; 以f 为横坐标,A(f) 2为纵坐标画图,则称为 功率谱,如图所示。 频谱是构成信号的各频率分量的集合,它 完整地表示了信号的频率结构,即信号由哪些 谐波组成,各谐波分量的幅值大小及初始相 位,揭示了信号的频率信息。 图2、信号的频谱表示方法

三. 实验内容 1. 白噪声信号幅值谱特性 2. 正弦波信号幅值谱特性 3. 方波信号幅值谱特性 4. 三角波信号幅值谱特性 5. 正弦波信号+白噪声信号幅值谱特性 四. 实验仪器和设备 1. 计算机1台 2. DRVI快速可重组虚拟仪器平台1套 3. 打印机1台 五. 实验步骤 1.运行DRVI主程序,点击DRVI快捷工具条上的"联机注册"图标,选择其中的“DRVI 采集仪主卡检测”或“网络在线注册”进行软件注册。 2.在DRVI软件平台的地址信息栏中输入WEB版实验指导书的地址,在实验目录中选择 “典型信号频谱分析”,建立实验环境。 图5 典型信号的频谱分析实验环境 下面是该实验的装配图和信号流图,图中的线上的数字为连接软件芯片的软件总线数据线号,6017、6018为两个被驱动的信号发生器的名字。 图6 典型信号的频谱分析实验装配图

声速的测量实验报告.doc

声速的测量实验报告 不会写声速的测量实验报告的朋友,下面请看我给大家整理收集的声速的测量实验报告,仅供参考。 声速的测量实验报告1 实验目的:测量声音在空气中的传播速度。 实验器材:温度计、卷尺、秒表。 实验地点:平遥县状元桥东。 实验人员:爱物学理小组 实验分工:张灏、成立敬——测量时间 张海涛——发声 贾兴藩——测温 实验过程: 1 测量一段开阔地长; 2 测量人在两端准备; 3 计时员挥手致意,发声人准备发声; 4 发生人向上举手,同时发声,计时员计时(看到举手始,听到声音止) 5 多测几次,记录数据。 实验结果: 时间17∶30 温度21℃

发声时间 0.26″ 发声距离 93m 实验结论:在21℃空气中,声音传播速度为357.69m/s. 实验反思:有一定误差,卡表不够准确。 声速的测量实验报告2 实验目的: 1)探究影响声速的因素,超声波产生和接收的原理。 2)学习、掌握空气中声速的测量方法 3)了解、实践液体、固体中的声速测量方法。 4)三种声速测量方法作初步的比较研究。 实验仪器: 1)超声波发射器 2)超声波探测器 3)平移与位置显示部件。 4)信号发生器: 5)示波器 实验原理: 1)空气中: a.在理想气体中声波的传播速度为 v88 (式中8088cp cV (1) 称为质量热容比,也称"比热[容]比",它是气体的质 量定压热容cp与质量定容热容cV的比值;M 是气体的摩尔质量,T 是绝对温度,R=8.314472(1±1.7×10-6)Jmol-1K-1为摩尔气体常量。)

标准干燥空气的平均摩尔质量为Mst =28.966�8�710-3kg/mol b.在标准状态下 (T0�8�8273.15 K,p�8�8101.3�8�8kPa),干燥空气中的声速 为v0=331.5m/s。在室温t℃下,干燥空气中的声速为 v88v0 (2) (T0=273.15K) c.然而实际空气总会有一些水蒸气。当空气中的相对湿度为r时,若气温为t℃时饱和蒸气压为pS,则水汽分压为rps。经过对空气平均摩尔质量 M 和质量热容比8�0 的修正,在温度为t、相对湿度为r 的空气中,声速为 (在北京大气压可近似取p�8�4 101kPa;相对湿度r 可从干湿温度计上读出。温度t℃时的饱和水汽压ps可用 lgps�8�810.286�8�2 d.式(3)的计算结果与实际的超声声速真值可能有一定偏差。 引起偏差的原因有: ~状态参量的测量误差 ~理想气体理论公式的近似性 实验方法: A. 脉冲法:利用声波传播时间与传播距离计算声速 实验中用脉冲法测量,具体测量从脉冲声源(声发射器)到声探测器

最新四年级上册科学实验报告单(声音是怎样产生的)

清镇市中小学实验报告单 实验科目:科学 真题:您是市政府的工作人员,需要调查大学生村官的工作情况,面对基层群众(农民)、基层工作人员分别作一个开场白。

【题型分析】情景模拟 【参考答案】 1.面对基层群众(农民):大叔大婶,你们好!我是咱们市政府的小王。眼看着一年又快到头了,今年的天儿不错,家里收成还好吧?……听说咱们这儿来了些大学生,到咱这儿当村官,不知道干的咋样啊?…… 2.面对基层工作人员:XX,你好!我是市政府的工作人员王XX(同时出示工作证),这次来到这里,主要是想调查一下大学生村官的工作情况,希望得到你们的配合和协助。你们长期在基层工作,比较辛苦,对于大学生们在村里的工作情况也比较了解。知道你工作很忙,所以我会尽量抓紧时间…… 真题:金无足赤,人无完人,您有什么缺点和不足?假如您被录用,您将怎么克服您的缺点和不足? 【题型分析】认识自己 【参考答案】每一个人都有自己的缺点和不足,我也一样。我认为我的缺点是有时候有点追求完美,这样一来有可能会拖慢办事的效率,偶尔也会给合作伙伴带来压力。有缺点和不足并不可怕,重要的是能够改正缺点,弥补不足。我将从以下几个方面加强学习,进行改正。 第一,摆正心态正确认识。在遇到每一项工作的时候,我都应该准确地把握工作实质、明确目标,在思想上做好充分准备。不能因为自己的喜好而偏离工作应有的方向和要求。 第二,制定工作计划表。在开始每一项工作的时候,我都要制定好详细的工作进度控制表,将每个阶段的工作目标、内容以及时间详细列好。在开展工作的时候严格按照计划表进行,以免拖慢工作的进程。借此来养成好的工作习惯,以提高办事效率。 第三,加强与同事合作。每一项工作都不可能是自己独立一个人能够做好的,都是需要和同事一起合作才能将其做到真正的完美。这就要求我要在以后的工作中,多多与同事交流,虚心向同事学习。 假如有幸我能够通过此次考试,在以后的工作岗位上,我将严格要求自己,加强学习,发扬优点,改正缺点,竭尽所能做好领导交办的每一项任务,做一名合格的公务员。 真题:您作为单位的新进工作人员,领导让您制定一份单位的规章制度,您对单位不熟悉,您将怎么办? 【题型分析】如何做事 【参考答案】俗话说:“无规矩不成方圆”,好的规章制度能够在保证单位良好工作秩序方面发挥积极的作用。领导将这项任务交予我完成,我一定会努力做好,我将从以下几个方面入手,开展此项工作。 首先,我要请示领导,明白领导制定此规章制度的宗旨和意图。鉴于我作为新进员工对工作单位还不熟悉,我会向同事进行询问,翻查单位档案,加深对单位的人员环境、工作环境的了解。另外,要广泛收集单位同事的意见。我将采取问卷调查的方式进行意见收集,可以使用相关软件来对收回的有效问卷进行信息处理和分析,切实了解员工的意见。此外我还要刻苦学习相关管理学知识,了解国家相关法律法规,为制定一份合理的单位规章制度做好充分的理论准备。 其次,在书写规章制度时,要遵守国家法律法规的规定,制定出合法有效的规章制度。与此同时,我还要根据之前所整理的员工意见,兼顾单位的实际情况,制定一份合乎人情的规章制度。在规章制度雏形完成之后,还要让单位同事对此发表自己的意见,在充分了解意见之后对其进行反复修改。与此同时,规章制度还要做到简洁凝练,通俗易懂。在修订好初

实验:典型信号频谱分析报告

实验3.2 典型信号频谱分析 一、 实验目的 1. 在理论学习的基础上,通过本实验熟悉典型信号的波形和频谱特征,并 能够从信号频谱中读取所需的信息。 2. 了解信号频谱分析的基本方法及仪器设备。 二、 实验原理 1. 典型信号及其频谱分析的作用 正弦波、方波、三角波和白噪声信号是实际工程测试中常见的典型信号,这些信号时域、频域之间的关系很明确,并且都具有一定的特性,通过对这些典型信号的频谱进行分析,对掌握信号的特性,熟悉信号的分析方法大有益处,并且这些典型信号也可以作为实际工程信号分析时的参照资料。本次实验利用DRVI 快速可重组虚拟仪器平台可以很方便的对上述典型信号作频谱分析。 2. 频谱分析的方法及设备 信号的频谱可分为幅值谱、相位谱、功率谱、对数谱等等。对信号作频谱分析的设备主要是频谱分析仪,它把信号按数学关系作为频率的函数显示出来,其工作方式有模拟式和数字式二种。模拟式频谱分析仪以模拟滤波器为基础,从信号中选出各个频率成分的量值;数字式频谱分析仪以数字滤波器或快速傅立叶变换为基础,实现信号的时—频关系转换分析。 傅立叶变换是信号频谱分析中常用的一个工具,它把一些复杂的信号分解为无穷多个相互之间具有一定关系的正弦信号之和,并通过对各个正弦信号的研究来了解复杂信号的频率成分和幅值。 信号频谱分析是采用傅立叶变换将时域信号x(t)变换为频域信号X(f),从而帮助人们从另一个角度来了解信号的特征。时域信号x(t)的傅氏变换为: 式中X(f)为信号的频域表示,x(t)为信号的时域表示,f 为频率。 3. 周期信号的频谱分析 周期信号是经过一定时间可以重复出现的信号,满足条件: dt e t x f X ft j ?+∞ ∞--=π2)()(

典型函数的频谱

典型函数的频谱(矩形窗函数, 汉宁窗函数,直线,阶跃函数,δ函数,方波,三角波等),如图13~18所示。 050100150200250 0.511.52矩形窗函数的时域波形图 050 100150 100 200 300 矩形窗函数频域波形图 频率 幅值 图13 50 100 150 200 250 300 00.20.40.60.81δ函数的时域波形图 050 100150 0.511.5 2δ函数的频域波形图 频率 幅值 图 14

00.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 00.5 1 方波的时域波形图 050 100150 50 100 150 方波的频域波形图 频率 幅值 图 15 50 100 150 200 250 300 00.20.40.60.81汉宁窗函数的时域波形图 050 100150 50 100 150 汉宁窗函数频域波形图 频率 幅值 图 16

050100150200250300 0.511.52阶跃函数的时域波形图 050 100150 100 200 300 阶跃函数的频域波形图 频率 幅值 图 17 00.020.040.060.080.10.120.140.160.180.2 -1 -0.500.51三角波的时域波形图 050 100150 204060 80三角波的频域波形图 频率 幅值 图18 此部分MA TLAB 代码如下: t=0:0.001:0.2; N=256; FS=300; w=boxcar(N); %产生信号 figure; plot(w);title('矩形窗函数的时域波形图'); axis([0,260,0,2]);grid on;

习题1绘制典型信号及其频谱图

习题一 绘制典型信号及其频谱图 电子工程学院202班 单边指数信号的理论表达式为 figure(4); 调整,将a 分别等于1、5、10等值,观察时域波形和频域波形。由于波形 较多,现不失代表性地将a=1和a=5时的各个波形图列表如下进行对比, 其 他a 值的情况类似可推知。 单边指数信号 信号 名称 单边 时间函数f t 频谱函数F ■ 指数 脉冲 Ee% t a 对提供的MATLAB 程序作了一些说明性的补充, MATLAB 程序为 %单边指数信号 clc; close all ; clear all ; E=1; a=1; %调整a 的值,观察不同a 的值对信号波形和频谱的影响 t=0:0.01:4; w=-30:0.01:30; f=E*exp(-a*t); F=1./(a+j*w); figure(1); plot(t,f);xlabel( 't' );ylabel( 'f(t)' );title( '信号时域图像’); figure(2); plot(w,abs(F));xlabel( '\omega' 特性'); figure (3); plot(w,20*log10(abs(F)));xlabel( );ylabel( '|F(\omega)|' ); ti tle( '幅频 '\omega' );ylabel( '|F(\omega)| in dB' );title( 幅频特性/dB'); plot(w,a ngle(F)*57.29577951);xlabel( )/ (°)' );title( '相频特性’); '\omega' );ylabel( '\phi(\omega

噪声中正弦信号的经典法频谱分析

实验报告 一、实验名称 噪声中正弦信号的经典法频谱分析 二、实验目的 通过对噪声中正弦信号的经典法频谱分析,来理解和掌握经典谱估计的知识,以及学会应用经典谱估计的方法。 三、基本原理 1.周期图法:又称直接法。把随机信号)(n x 的N 点观察数据)(n x N 视为一能量有限信号,直接取)(n x N 的傅里叶变换,得)(jw N e X ,然后再取其幅值的平方,并除以N ,作为对)(n x 真 实的功率谱)(jw e P 的估计,以)(?jw PER e P 表示用周期图法估计出的功率谱,则2)(1)(?w X N w P n PER =。 2.自相关法:又称为间接法功BT 法。先由)(n x N 估计出自相关函数)(?m r ,然后对)(?m r 求傅里叶变换得到)(n x N 的功率谱,记之为)(?w P BT ,并以此作为对)(w P 的估计,即1,)(?)(?-≤=--=∑N M e m r w P jwm M M m BT 。 3.Bartlett 法:对L 个具有相同的均值μ和方差2σ的独立随机变量1X ,2X ,…,L X ,新随机变量L X X X X L /)(21+++= 的均值也是μ,但方差是L /2σ,减小了L 倍。由此得 到改善)(?w P PER 方差特性的一个有效方法。它将采样数据)(n x N 分成L 段,每段的长度都是M ,即N=LM ,第i 段数据加矩形窗后,变为L i e n x M w x M n jwn i N I PER ≤≤=∑-=-1,)(1)(?2 10 。把)(?w P PER 对应相加,再取平均,得到平均周期图2 1110 )(1)(?1)(∑∑∑==-=-==L i L i M n jwn i N i PER PER e n x ML w P L w P 。 4.Welch 法:它是对Bartlett 法的改进。改进之一是,在对)(n x N 分段时,可允许每一段的数据有部分的交叠。改进之二是,每一段的数据窗口可以不是矩形窗口,例如使用汉宁窗或汉明窗,记之为)(2n d 。这样可以改善由于矩形窗边瓣较大所产生的谱失真。然后按Bartlett

实验四声音传感器实验

信息工程学院实验报告 课程名称: 传感器原理及应用 实验项目名称: 实验四 声音传感器实验 实验时间: 班级: 姓名: 学号: 一、实 验 目 的 1. 学习 CC2530 单片机 GPIO 的使用。 2. 学习声音传感器的使用 二、实 验 原 理 1. CC2530 节点与三轴加速度传感器的硬件接口

(1). 声音传感器模块(MIC)引脚 GND:外接GND DO:数字量输出接口(0 和1) +5V:外接5V 电源 (2). 传感器模块与CC2530 模块之间的连接 2. GPIO (1). 简介 CC2530单片机具有21个数字输入/输出引脚,可以配置为通用数字I/O或外设I/O信号,配置为连接到ADC、定时器或USART外设。这些I/O口的用途可以通过一系列寄存器配置,由用户软件加以实现。 I/O端口具备如下特性: ●21个数字I/O引脚 ●可以配置为通用I/O或外部设备I/O ●输入口具备上拉或下拉能力 ●具有外部中断能力。 这21个I/O引脚都可以用作于外部中断源输入口。因此如果需要外部设备可以产生中断。外部中断功能也可以从睡眠模式唤醒设备。 (2). 寄存器简介 本次实验中主要涉及到GPIO的寄存器如下:

3. MIC 声音传感器 (1). 概述 声音传感器的作用相当于一个话筒(麦克风)。它用来接收声波,显示声音的振动图象。但不能对噪声的强度进行测量。 该传感器内置一个对声音敏感的电容式驻极体话筒。声波使话筒内的驻极体薄膜振动,导致电容的变化,而产生与之对应变化的微小电压。这一电压随后被转化成0-5V 的电压,经过比较器转换数字信号后,被数据采集器接受,并传送给计算机。 传感器特点: ●具有信号输出指示。 ●输出有效信号为低电平。 ●当有声音时输出低电平,信号灯亮。 应用范围: ●可以用于声控灯,配合光敏传感器做声光报警,以及声音控制,声音检测的场合。 (2). 使用方法 本实验利用CC2530 的GPIO 读取声音传感器模块的检测结果输出端,当检测到一定的声音时,此输出端为低电平;未检测到一定的声音时,此输出端为高电平。因此在实际应用中可以根据这种情况判断是否有声音在传感器附近产生。 4.程序流程

典型信号的频谱

典型非周期信号的频谱分析 任何一个信号都可以用余弦信号叠加而成,cos(w)=0.5(e^-jw+e^jw),可以知道,频谱必须是关于虚周对称,根据频谱还原信号的时候,可以只看正半实轴,幅值加倍即可。 1,窗信号 t 解答:频谱为:(j )Sa()2 F A ωτ ωτ=?,式中:Sa(x)=sinx/x 是采样函数,其幅值频谱图如右 上图所示: 窗口信号的尺度伸缩情况: 2,滞后窗信号 t 0ω τ A 2) 2(2ωF τ π τπ-0 ω τ A ) (ωF τ π 2τπ 2- )2(t f t A 4τ4 τ- )(21t f t τ-τ0 )(t f t 2τ 2τ-0 ω τA 2 1 )2 1(21ωF τ π 4τ π 4- ω ω F (j ω)

解析:根据滞后定理:j 1(j )(j )e T F F ωωω-=j Sa()e 2 T A ωωτ τ-=?,其幅值频谱图右上图所 示。显然和窗口信号的是一样的,但是相位频谱图存在滞后 3,Sa 信号 根据对称性,可以直接得到Sa 信号的频谱,为窗形频谱 4.三角信号 解答:根据频域卷积性质:2 (j )4Sa ()F ωω= ,频谱如如右图所示。 4,冲击信号 解答:()()1j t F j t e dt ωωδ∞ --∞ = =? ,也就是说,δ(t )中包含了所有的频率分量, 而各频率 分量的频谱密度都相等。显然, 信号δ(t )实际上是无法实现的。 5,直流信号 解答:这个直接积分是积不出来的,需要用逆变换 t 2 2 t

()1f t =---->2()πδω 6,单边指数信号 解答: ()()j t F j f t e dt ωω∞ --∞ =? t j t e e dt αω∞-- =?? ()0()j t e j αωαω∞ -+=-+1j αω = +arctan j e ωα -= 因此频谱为: 7,符号信号 分析:双边指数信号0α→当时: ()()f t Sgn t →,因为双边指数信号的频谱为22 2()F j j ωωαω-=+因此得到符号信号的频谱为2 (0)0(0) j ωωω-??→≠??=? ) (ω?ω 2 π-2 π() F j ωω o 1 α

苏教版小学科学四年级声音的产生教学设计

《声音的产生》教学案 【学习目标】 过程与方法: 1、观察、比较发声物体时的状态,并对这一现象进行积极思考,经历感觉声音、制造声音、探究声音产生原因的过程。 2、在观察、描述的活动中,积极思考交流。 知识与技能: 3、会动手制造声音、对发声物体进行观察,知道磨擦、弹拨、敲击、吹气等可使物体产生振动而发出声音。 情感、态度与价值观: △养成在实验过程中既动手又动脑的好习惯。 △学会与人合作,学会交流与倾听。 △养成尊重事实的科学态度。 【重点难点】 教学重点:通过观察、比较、讨论、交流等活动,认识声音是由振动产生的,并能从体验中归纳总结出结论。 教学难点:通过观察、比较引发思考,并积极地探究、将声音的产生与物体振动建立起联系。 【课前准备】 实验记录单、实验报告单、保鲜袋、尺子、小军队鼓(米粒、鼓槌)、音钹。 【教学活动】 一、创设情境、提出问题

师:同学们,刚才我们听到了什么?(铃声)铃声是上、下课的什么(信号),答得很好,请给他掌声,那掌声代表一种什么呢?(鼓励)。 二、课前活动、激发兴趣 同学们,想做游戏吗,我们一起来做一个“猜猜我是谁”,抽一位学生到讲台来,蒙上他的眼睛,叫六个同学叫他猜出六位同学的名字。你是怎么猜出来的,好了,就让我们一起来走进这声音的神秘世界吧,这节课就让我们共同来探究声音是怎样产生的?板书课题:声音的产生 三、制造声音、观察现象 师:请同学们拿出保鲜袋。试着用不同的方法,让它发出声音来?同学们做得真好! (学生实验,请学生把方法演示出来) 师:同学们用了许多的方法让保鲜袋发出了声音。那么,我们现在不借助其他任何物体,只利用自己的身体。你能用多少种方法让身体发出声音来? (学生思考,请学生演示方法)好,同学们都能动脑思考,积极回答问题。 1、通过实验作出猜想 师:那么同学们,我们用了许多方法让保鲜袋、身体等这些物体发出了声音。 问:那么声音究竟是怎么产生的呢? 师:请同学们作出你的猜想,并把你的猜想写下来,写在记录本上。 师:好,同学们都作出了自己的猜想,那么你们的猜想对不对呢?下面我们就通过实验去探究。 2、介绍实验材料,讨论发声方法 师:同学们请看,老师准备了一些材料。都有什么?出示(格尺、鼓、米粒、瓶子、盐、音钹)你能想办法让它们发出声音吗?(分组实验、谈论) 师:实验时注意,制造声音时不易用力过猛,损坏器材,还要控制好声音的大小。

典型信号频谱分析

实验一典型信号频谱分析 一.实验要求 1.在理论学习的基础上,通过本实验熟悉典型信号的波形和频谱特征,并能够从信号频谱中读取所需的信息。 2.了解信号频谱分析的基本方法及仪器设备。 二.实验原理提示 1.典型信号及其频谱分析的作用 正弦波、方波、三角波和白噪声信号是实际工程测试中常见的典型信号,这些信号时域、频域之间的关系很明确,并且都具有一定的特性,通过对这些典型信号的频谱进行分析,对掌握信号的特性,熟悉信号的分析方法大有益处,并且这些典型信号也可以作为实际工程信号分析时的参照资料。本实验利用labVIEW虚拟仪器平台可以很方便的对上述典型信号作频谱分析。 2.频谱分析的方法及设备 信号的频谱可分为幅值谱、相位谱、功率谱、对数谱等等。对信号作频谱分析的设备主要是频谱分析仪,它把信号按数学关系作为频率的函数显示出来,其工作方式有模拟式和数字式二种。模拟式频谱分析仪以模拟滤波器为基础,从信号中选出各个频率成分的量值;数字式频谱分析仪以数字滤波器或快速傅立叶变换为基础,实现信号的时-频关系转换分析傅立叶变换是信号频谱分析中常用的一个工具,它把一些复杂的信号分解为无穷多个相互之间具有一定关系的正弦信号之和,并通过对各个正弦信号的研究来了解复杂信号的频率成分和幅值。 信号频谱分析是采用傅立叶变换将时域信号x(t)变换为频域信号X(f),从而帮助人们从另一个角度来了解信号的特征。时域信号x(t)的傅氏变换为: 式中X(f)为信号的频域表示,x(t)为信号的时域表示,f为频率。用傅立叶变换将信号变换到频率域,其数学表达式为: 式中Cn画出信号的幅值谱曲线,从信号幅值谱判断信号特征。 本实验利用labVIEW平台上搭建的频谱分析仪来对信号进行频谱分析。由虚拟信号发生器产生一个典型波形的电压信号,用频谱分析仪对该信号进行频谱分析,得到频谱特性数据。分析结果用图形在计算机上显示出来,也可以通过打印机打印出来。

信号频谱表

典型周期信号的频谱 时间函数 ))((+∞<<-∞t t f 频谱函数)(ωj F t j e 0ω )(20ωωπδ- )cos(0t ω )]()([00ωωδωωδπ-++ )sin(0t ω )] ()([00ωωδωωδπ--+j ∑+∞ -∞ =-= n T nT t t )()(δδ +∞ -∞ =Ω-Ωn n )(ωδ T π 2= Ω 一般周期信号)21)(∑+∞-∞ =Ω=n t jn n e A t f 式中, ?+-Ω-=22 )(2T T t jn n dt e t f T A ∑+∞ -∞ =Ω-n n n A )(ωδπ T π 2=Ω 典型周期信号的频谱 时间函数)(t f 频谱函数)(ωj F )(t δ 1 单位直流信号1 )(2ωπδ )(t u ω ωπδj 1)(+ )sgn(t ωj 2 )(t u e at -)(为大于零的实数a a j +ω1 )(t u te at -)(为大于零的实数a 2 )(1 a j +ω )(t G τ )2 ( ωτ τSa

)(0t Sa ω )(0 20 ωωπ ωG )()sin(0t u t ω 2 2 0000)]()([2ω ωωωωδωωδπ -+ +--j )()cos(0t u t ω 2 200 00)]()([2 ω ωωωωδωωδπ -+ -++j t j e 0ω )(20ωωπδ- )(t tu 2 '1 )(ωωπδ- j )()sin(0t u t e at ω- )0(>a 2 2 00 )(ωωω++a j )()cos(0t u t e at ω- )0(>a 20 2 00)(ωωω+++a j a j | |t a e -双边指数信号 )0(>a 2 22a a +ω t 1 )sgn(ωπj - ||t 2 2 ω-

典型信号的频谱分析实验指导书

X ( f ) = + x (t )e j 2 ft dt 实验九 典型信号的频谱分析 一. 二. 实验目的 1. 在理论学习的基础上,通过本实验熟悉典型信号的频谱特征,并能够从信号频谱中读取 所需的信息。 2. 了解信号频谱分析的基本原理和方法,掌握用频谱分析提取测量信号特征的方法。 实验原理 信号频谱分析是采用傅里叶变换将时域信号 x(t)变换为频域信号 X(f),从而帮助人们从另一 个角度来了解信号的特征。 图 1、时域分析与频域分析的关系 信号频谱 X(f)代表了信号在不同频率分量成分的大小,能够提供比时域信号波形更直观,丰 富的信息。时域信号 x(t)的傅氏变换为: + 式中 X(f)为信号的频域表示,x(t)为信号的时域表示,f 为频率。 工程上习惯将计算结果用图形方式表示, 以频率f 为横坐标,X(f)的实部 a ( f ) 和虚部 b ( f ) 为纵坐标画图,称为时频-虚频谱图; 以频率f 为横坐标,X(f)的幅值 A ( f ) 和相位 ∏ ( f ) 为纵坐标画图,则称为幅值-相位谱; 以f 为横坐标,A(f) 2为纵坐标画图,则称为功 率谱,如图所示。 频谱是构成信号的各频率分量的集合,它 完整地表示了信号的频率结构,即信号由哪些 (1) 谐波组成,各谐波分量的幅值大小及初始相 位,揭示了信号的频率信息。 图 2、信号的频谱表示方法

三. 四. 实验内容 1. 白噪声信号幅值谱特性 2. 正弦波信号幅值谱特性 3. 方波信号幅值谱特性 4. 三角波信号幅值谱特性 5. 正弦波信号+白噪声信号幅值谱特性 实验仪器和设备 1. 计算机 2. DRVI 快速可重组虚拟仪器平台 3. 打印机 1 台 1 套 1 台 五. 实验步骤 1. 运行 DRVI 主程序,点击 DRVI 快捷工具条上的"联机注册"图标,选择其中的“DRVI 采集仪主卡检测”或“网络在线注册”进行软件注册。 2. 在DRVI 软件平台的地址信息栏中输入WEB 版实验指导书的地址,在实验目录中选择“典 型信号频谱分析”,建立实验环境。 图 5 典型信号的频谱分析实验环境 下面是该实验的装配图和信号流图,图中的线上的数字为连接软件芯片的软件总线数据线 号,6017、6018 为两个被驱动的信号发生器的名字。 图 6 典型信号的频谱分析实验装配图

声速测量实验报告

声速测量实验报告 【实验目的】 1.学会测量超声波在空气中的传播速度的方法。 2.理解驻波和振动合成理论。 3.学会用逐差法进行数据处理。 4.了解压电换能器的功能和培养综合使用仪器的能力。 【实验仪器】 信号发生器、双踪示波器、声速测定仪。 【实验原理】 声波的传播速度v与声波频率f和波长的关系为: 可见,只要测出声波的频率f和波长 ,即可求出声速。f可由声源的振动频率得到,因此,实验的关键就是如何测定声波波长。 根据超声波的特点,实验中可以采用驻波法和相位法测出超声波的波长。 1. 驻波法(共振干涉法) 如右图所示,实验时将信号发生器输 出的正弦电压信号接到发射超声换能器 上,超声发射换能器通过电声转换,将电 压信号变为超声波,以超声波形式发射出 去。接收换能器通过声电转换,将声波信号变为电压信号后,送入示波器观察。 由声波传播理论可知,从发射换能器发出一定频率的平面声波,经过空气传播,到达接收换能器。如果接收面和发射面严格平行,即入射波在接收面上垂直反射,入射波与反射波相互干涉形成驻波。此时,两换能器之间的距离恰好等于其声波半波长的整数倍。在声驻波中,波腹处声压(空气中由于声扰动而引起的超出静态大气压强的那部分压强)最小,而波节处声压最大。当接收换能器的反射界面处为波节时,声压效应最大,经接收器转换成电信号后从示波器上观察到的电压信号幅值也是极大值,所以可从接收换能器端面声压的变化来判断超声波驻波是否形成。 移动卡尺游标,改变两只换能器端面的距离,在一系列特定的距离上,媒质中将出现稳定的驻波共振现象,此时,两换能器间的距离等于半波长的整数倍,

只要我们监测接收换能器输出电压幅度的变化,记录下相邻两次出现最大电压数值时(即接收器位于波节处)卡尺的读数(两读数之差的绝对值等于半波长),则根据公式:λf v =就可算出超声波在空气中的传播速度,其中超声波的频率可由信号发生器直接读得。 2.相位比较法 实验接线如下图所示。波是振动状态的传播,也可以说是位相的传播。在声波传播方向上,所有质点的振动位相逐一落后,各点的振动位相又随时间变化。声波波源和接收点存在着位相差,而这位相差则可以通过比较接收换能器输出的电信号与发射换能器输入的正弦交变电压信号的位相关系中得出,并可利用示波器的李萨如图形来观察。 位相差?和角频率ω、传播时间 t 之间有如下关系:t ?=ω? 同时有,t πω2=,v l t =, v T =λ(式中T 为周期) 代入上式得:λ π?l 2= 当 2λn l = (n=1,2,3,...)时,可得π?n =。 由上式可知:当接收点和波源的距离变化等于一个波长时,则接收点和波源的位相差也正好变化一个周期(即Ф=2π)。 实验时,通过改变发射器与接收器之间的距离,观察到相位的变化。当相位差改变π时,相应距离l 的改变量即为半个波长。根据波长和频率即可求出波速。 3.超声波的发射与接收——压电陶瓷换能器 声速测定仪如下图所示,在支架和丝杠上相向安置两个固有频率相同的压电陶瓷换能器,左端支架上固定的是发射换能器,右端可移动底座安装的是接收换能器,当旋转带刻度手轮及借助螺旋测微装置,就可精密地调节并测出两换能器之间的距离。

通信原理各类信号及频谱

第二章 通信基础 一 信号分类 (1) 确定信号和随机信号 确定信号:指的是信号的电压或电流幅值在任意时间的值都是确定的,确定信号的时域波形可以用明确的数学表达式来表达。如某一电压信号t sin )t (u 610=。 随机信号:指的是在信号实际发生之前的值是不确定的,这种信号的时域波形不能用确定性的数学表达式来表达,只能采用一定的数学手段如概率分布函数、概率密度函数、数学期望、方差或自相关函数等来间接描述。 这种随机过程的数学模型,对通信系统中的信号和噪声的分析是非常有用的。 (2)周期信号和非周期信号 周期信号:对于信号)t (f ,若存在某一最小值T ,满足+∞<<∞--=t )T t (f )t (f ,则称该函数为周期函数。 满足条件+∞<<∞--=t )T t (f )t (f 的最小T 值称为信号)t (f 的周期。

非周期函数:如果满足+∞<<∞--=t )T t (f )t (f 的T 值不存在,则称为非周期函数。 (3) 能量信号和功率信号 在通信系统中,电信号的功率用归一化的功率值来表示。 归一化的功率值:是指假设电压或电流信号通过电阻为Ω1时获得的功率。设电压或电流信号为)t (f ,则归一化功率为)t (f )t (P 2 = 取一时间间隔T ,T 时间内的能量为: dt )t (f E T T T ?-=222 在时间间隔T 内对应的平均功率为 dt )t (f T T E P T T T T ?-==2221 能量信号:当)t (f 在无限长时间内能量有限且不为0时,该信号被称为能量信号。 数学描述为: dt )t (f lim E T T T ?-∞→=222 实际应用中发送信号的能量多是有限

物理声学实验报告

实验一混响时间的测量 一、基本情况 1、实验时间:2015年11月16日9:00-9:30 2、实验地点: 3、实验仪器: 设备:精密噪声分析仪 4、实验人员: 执笔: 测量: 数据整理: 分析: 二、实验目的 混响时间测量是建筑声学中最经常的测量。一方面,混响时间是目前用于评价厅堂音质的一个重要指标,对于各种用途不同的房间对应有不同的混响时间,因此在厅堂音质设计中混响时间设计是重要的一个方面,对于音乐厅、影剧院、播音室、多功能厅、会议厅等鉴定其音质质量,混响时间测量则是最主要的手段之一。另一方面,吸声材料和结构的扩散入射吸声系数的测量、围护结构的隔声测量、声源声功率测量等项目都需要进行混响时间的测量。 混响时间测量国内外一般都采用专用的直读式混响计,测量0.3~10秒的混响时间。这里我们采用一般常用的测试方法,即声级计多次测量计算取平均值。 通过实验操作,要求同学们了解测试仪器的组成,测试方法和结果的整理。 三、实验原理 1、混响时间T60的定义 室内声场达到稳态,生源停止发声后,房间内声能密度衰减60dB(即为百万分之一)时所经历的时间(秒)。房间混响时间的测量就是根据这一定义,通过测量声场中声压级的衰减曲线求出混响时间的。由于实测中难以得到高于室内本底噪声60dB的声压级,且从实测中发现,衰减曲线的初始阶段的声场是扩散的,故常取衰减曲线以其声压级5~35dB一段为准,因此测量时稳态声压级必须高于本底噪声40dB以上,最后根据曲线斜率,由电平记录仪的纸速即可算出混响时间。要求每个中心频率测量三次。 2、实验方框图 厅堂混响时间测量的常用仪器分为声源装置和接收装置两大部分,仪器组成及布置方框图见下图。 混响时间测量方框图 3、混响时间测量实验装置

用FFT对信号进行频谱分析报告

西安邮电大学 通信与信息工程学院 科研训练报告 专业班级: 学生姓名: 学号(班内序号): 2014 年 9 月 16 日 ——————————————————————————装 订 线 ———————————————————————————————— 报告份数:

用FFT对信号进行频谱分析 摘要: 快速傅氏变换(FFT),是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。它对傅氏变换的理论并没有新的发现,但是对于在计算机系统或者说数字系统中应用离散傅立叶变换,可以说是进了一大步。傅里叶变换的理论与方法在“数理方程”、“线性系统分析”、“信号处理、仿真”等很多学科领域都有着广泛应用,由于计算机只能处理有限长度的离散的序列,所以真正在计算机上运算的是一 种离散傅里叶变换. 虽然傅里叶运算在各方面计算中有着重要的作用,但是它的计算过于复杂,大量的计算对于系统的运算负担过于庞大,使得一些对于耗电量少,运算速度慢的系统对其敬而远之,然而,快速傅里叶变换的产生,使得傅里叶变换大为简化,在不牺牲耗电量的条件下提高了系统的运算速度,增强了系统的综合能力,提高了运算速度,因此快速傅里叶变换在生产和生活中都有着非常重要的作用,对于学习掌握都有着非常大的意义。 关键词快速傅氏变换;信号频谱分析;离散傅里叶变换 Abstract Fast Fourier Transform (FFT), is a discrete fast Fourier transform algorithm, which is based on the Discrete Fourier Transform of odd and even, false, false, and other characteristics of the Discrete Fourier Transform algorithms improvements obtained. Its Fourier transform theory has not found a new, but in the computer system or the application of digital systems Discrete Fourier Transform can be said to be a big step into. Fourier transform theory and methods in the "mathematical equation" and "linear systems analysis" and "signal processing, simulation," and many other areas have a wide range of applications, as the computer can only handle a limited length of the sequence of discrete, so true On the computer's operation is a discrete Fourier transform. Fourier Although all aspects of computing in the calculation has an important role, but its calculation was too complicated, a lot of computing system for calculating the burden is too large for some Less power consumption, the slow speed of operation of its system at arm's length, however, have the fast Fourier transform, Fourier transform greatly simplifying the making, not in power at the expense of the conditions to increase the speed of computing systems, and enhance the system The comprehensive ability to improve the speed of operation, the Fast Fourier Transform in the production and life have a very important role in learning to master all have great significance. Key words:Fast Fourier Transform; Signal spectrum analysis Discrete Fourier Transform

相关主题
文本预览
相关文档 最新文档