当前位置:文档之家› 电磁辐射在自然环境中的传输要点

电磁辐射在自然环境中的传输要点

电磁辐射在自然环境中的传输要点
电磁辐射在自然环境中的传输要点

§4 电磁辐射在自然环境中的传输

远距离探测是信息获取与处理技术的基本功能或主要应用。这必然会遇到电磁辐射在自然环境中的传输问题。不论是对地观测还是空间监视,辐射必然要穿越地球大气。显然,大气传输既是系统的组成部分,也是技术的基本内容。

辐射传输的基本问题是辐射同大气的相互作用。地球表面(陆地和水面)被大气包围着,大气分布在高度300km以下的空间。共分三层。对流层(0~10)km;同温层(10~60)km;电离层60km以上。大气密度随高度增加而减少。到30km高度已经下降二个数量级。大部分气体分布在10km以下高度。大气成份包括气体分子和悬浮粒子(气溶胶)。前者由氮(N2,78%)、氧(O2,21%)、臭氧(O3)、氩(Ar)和二氧化碳(CO2)等十几种分子组成。后者为烟尘、灰尘等微粒子。

电磁辐射在大气中传输,与大气中分子和粒子发生相互作用,主要是散射或吸收。其结果会使辐射中所携带的信息损失或畸变。传输特性的知识给出这种作用的详情。一方面可以校正畸变,另一方面也帮助系统设计者选择优良的辐射波段(窗口),保证信息传送。有许多情形,辐射同大气物质相互作用本身也是一种信息媒介。特别是主动式敏感过程,通过源(自然的或人工的)辐射同目标相互作用的结果来推断目标的相关性质。研究这种传输过程的本身就是获取目标信息的过程。例如,光雷达的光束穿过大气后,根据其变化测量大气成份。

4.1 反射、吸收、透射

4.2 大气的透射窗口

4.3 太阳辐射与地面反射

4.4 大气中的吸收和散射

4.4.1吸收

4.4.2散射

4.1 反射、吸收、透射

照理,电磁辐射同物体相互相互作用,会发生三种可能的情况。部分能量被反射和散射(反射率ρ),即改变了原来的传播方向而未进入物体;其它的能量则进入了物体。在进入物体的能量中,一部分被物体吸收(吸收率α),而另一部分则因物体透明而使其发生折射,然后从物体的另一端透射出去(透射率τ)。根据能量守恒原理,这三部分的比例因子之和应当等于1,即

α+ρ+τ=1 (1-7)

如前所述,物质吸收辐射的能力越强,则它的发射本领越大。比辐射率(ε)~吸收率(α)0对于不透明物体(τ=0),则反射率ρ和比辐射率ε两值之和等于1。在辐射传输中,反射、透射和吸收这三部分的比例关系是与许多因素有关的。包括入射辐射的光谱分布、入射角、物体的光学性质以及物体的厚度等。

4.2 大气的透射窗口

在对地观测和空间监视系统中,利用电磁辐射在大气中的透射性能把载有信息的电磁辐射传输到敏感仪器。人们把全部或大部分穿透大气的辐射波段(或频率)叫作大气窗口。表(1-3)列出了在整个电磁波谱上所有的大气窗口的波长位置。地球大气强烈地吸收太阳的γ射线,使其无法到达地面。仅有低飞的飞机才有可能探测到地面放射材料的γ射线。X射线在大气路径中仅能穿透几十米,太阳X射线在低层大气完全会被吸收。紫外辐射在上层大气就被完全吸收。因此,大气对于短波辐射(λ<0.3μm)是不透明的。窗口都分布在可见、红外、微波和无线电频段。

表1-3穿透大气的主要电磁辐射窗口

可见光和近红外辐射(0.3μm~1.4μm)是电磁辐射最重要的窗口。可见光波段透明度很高,但它受到大气中汽溶胶和气体分子散射的影响。特别,水汽经常阻挡这个窗口。

在短波红外波段(1μm~3μm),也存在几个较好的大气窗口。(1.19~1.34)μm,(1.55~1.75)μm,(2.05~2.40)μm。实际上,在这些波段避开水汽的吸收带,透射率都比较高。

中段红外(3μm~5μm)是重要大气红外窗口。自然环境温度物体在这个波段热辐射比较强,使用价值比较高。但在白天,太阳辐射也较强。

长波红外(也称为热红外)波段(8μm~14μm)是优良的大气窗口。除了在9.6μm 附近臭氧吸收带之外,一般透射性能都比较好。由于该波段位置正好与自然环境物体热辐射的主要能量波段相重,为传输地球环境信息提供优良条件。14μm~16μm正好是CO2的吸收带,为传送大气信息提供可能性。22μm~1000μm辐射能量与分子转动跃迁相对应。大气透射性能很差。

在微波,除了2.22mm~3.00mm,3.75mm~7.50mm波长范围因大气吸收透射性能不好,其他辐射均为透明窗口。特别长波微波(cm波),穿透云雾的能力很强,是传递信息最重要媒介之一。

4.3 太阳辐射与地面反射

太阳是地球自然环境中最重要的天然辐射源。在白天,它照亮地球,使我们能够摄下地面环境的图像。在可见光与近红外波段(0.3μm~3μm),太阳是地球自然环境最强的辐射源。月光仅为它的十万分之一(10-5)。在地球大气层外,太阳常数(即辐射强度)为135.3mW/cm2,相当于1.35KW/m2。太阳相当于温度为5900K的黑体。图1-6 示出它的辐射分谱曲线。辐射强度峰值在0.47μm处。短波波长的能量(λ<0.47μm)为22%。可见光(0.4μm~0.76μm)能量44%。太阳辐射照射到地面之前受到大气的衰减作用。在图1-6 中还示出在大气层外和海平面处太阳辐射分谱曲线。曲线上有几个大气中气体分子的吸收峰,它们相当于窗口之间的不透明波段。

图1-6太阳光谱曲线

太阳照射地球表面之后根据地面的具体情况,发生反射。地面反射辐射的总量用一个小于1的(反射率)比值来表征。反射率是电磁辐射反射能量与入射能量之比。它由以下四个因素所决定:随波长而变化的入射能量、入射角、观测角以及地面物理性质。对于太阳照射地面的具体情形,前三个因素都是可以预知的。通过太阳反射测得地面反射率,实际上是获得了有关地面物理性质的信息。

辐射的反射过程有两类,镜面反射和漫反射。它们是相对于两类不同的反射表面发生的。如果反射面是镜面(平滑度在波长的1/10之内),则发生镜面反射,入射角等于反射角。许多"镜面"情形,例如平静的海面和光滑的岩石面,会出现太阳闪烁。如果反射面是粗糙的表面,它们可以在各个不同的方向上均匀地反射电磁辐射能量。漫反射的反射率与观测角无关,仅是波长的函数。地球上许多自然表面,如土壤、沙地、植被等均属于漫反射表面。大多数天然物体的表面,具有双重的反射性质。

物体的反射率在各个波长上并不相同。用分谱反射率表征。其定义是特定波长上反射能量和入射能量的比值。物体的反射特性曲线是在特定的波长范围分谱反射率的变化曲线。曲线形状取决于特定的物质性质。图1-7示出雪地、沙漠、小麦和湿地等四种地面的分谱反射曲线。可以根据曲线的形状或特点将四种地面区分开来。因此,测量分谱反射曲线,也是获取目标信息的重要途径。

图1-7地面物体光反射曲线

4.4 大气中的吸收和散射

仔细分析图1-6中的两条曲线发现,太阳辐射虽然穿过大气到达地面,但强度减弱了。这种现象叫消光。由于大气中分子和汽溶胶粒子的作用。辐射一部分被吸收和散射。同时,大部分(或一部分)透过了大气。辐射强度衰减的比例系数称为消光系数。大气作用所引起的吸收和散射常用光学厚度表示。大气的光学厚度是把各个高度的大气消光系数对其大气层厚度积分。

辐射在介质(大气)中传输遵守比尔(Beer)定律。强度按指数下降。

I(ν)=I0(ν)exp[-μl](1-8)

式中μ(ν)为消光系数。即单位长度辐射衰减的比例。l为辐射传输路径长度。根据透射率定义τ=I/I0,则上式为

τ=exp(-μl) (1-9)

实际上,τ与μ均为辐射波长的函数。μl为光学厚度。光学厚度小,称为光学薄介质。反之称为光学厚介质。

4. 4.1吸收

大气对电磁辐射的吸收是由气体分子的能级结构所决定。因此,吸收不仅取决于分子种类,而且强烈地依赖波长。吸收谱线有位置、形状和强度等三个要素。前面已经提到,由于大气分子严重吸收,在吸收波长上不透明。即使在大气窗口里也不完全透明。一般采用透射率来表示这种作用的综合结果。在红外波段,对应于气体分子振动的能量,含有丰富的吸收谱线,这里试举大气主要成份的强吸收带。水分子(H2O)的吸收中心波长:0.72、1.87、2.70、3.20、3.70、6.27μm。二氧化碳(CO2)的吸收中心波长:1.40、1.60、2.00、4.30、4.80、5.20、15.00μm。臭氧(O3)有0.19、0.60、4.80、9.60、14.00μm。氧分子(O2)有0.20、0.69、0.76μm。二氧化氮(NO2)有4.70、7.80μm。各吸收峰强弱不同。

4.4.2散射

大气中的一切粒子,包括原子、分子和汽溶胶等,都会散射辐射能量。散射作用取决于粒子的尺寸。当粒子直径比辐射波长小很多(1:10)时,发生瑞利散射。散射强度与辐射波长的四次方成反比。波长越小,则散射强度越大。大气中原子和分子等粒子对于短波辐射的散射作用较强。利用这一原理可以解释象天空是蓝色和日落是红色等许多自然现象。大气分子随季节和纬度变化,散射在大气厚度中的贡献也随之改变。大气中还存在颗粒更大的粒子,如云、雾、汽溶胶。它们的半径(r)可达数微米,r/λ=0.1~0.3。此时发生米氏(Mie)散射。这种散射的主要特征是散射强度与辐射波长几乎无关。云和雾实际是大气中的水滴,它们对辐射产生米氏散射。这也可以解释为什么云雾呈白色。

应当强调,必须综合考虑吸收和散射作用的总的结果。这正如公式1-8所表示的。由于大气成份并非不变量,而且无法准确描述其变化规律,它们对辐射的作用很难准确计算或预测。现场测量的结果益显重要。

大气辐射传输模型

[转载]大气辐射传输模型 已有 968 次阅读2010-11-6 14:31|个人分类:未分类|系统分类:科普集锦|关键词:辐射传输 转自https://www.doczj.com/doc/3f13041742.html,/s/blog_4b700c4c0100jgl7.html 相对辐射校正和绝对辐射校正 基于物理模型的绝对辐射校是利用一系列参数(例如,卫星过境时的地物反射率,大气的能见度,太阳天顶角和卫星传感器的标定参数等)将遥感图像进行校正的方法。仪器引起的误差畸变一般在数据生产过程中由生产单位根据传感器参数进行了校正。对于用户来所,绝对辐射校正的方法主要是辐射传输模型法,该方法校正精度较高,它是利用电磁波在大气中的辐射传输原理建立起来的模型对遥感图像进行大气校正的方法。由于有不同的不同的假设条件和适用的范围,因此产生很多可选择的大气较正模型,例如 6S模型、LOWTRAN模型、MODTRAN模型、ATCOR模型等。 基于统计模型的相对辐射校正,主要包括不变目标法、黑暗像元法与直方图匹配法等等。不变目标法假定图像上存在具有较稳定反射辐射特性的像元,并且可确定这些像元的地理意义,那么就称这些像元为不变目标,这些不变目标在不同时相的遥感图像上的反射率将存在一种线性关系。当确定了不变目标以及它们在不同时相遥感图像中反射率的这种线性关系,就可以对遥感图像进行大气校正。黑暗像元法的基本原理就是在假定待校正的遥感图像上存在黑暗像元区域、地表朗伯面反射、大气性质均一,忽略大气多次散射辐照作用和邻近像元漫反射作用的前提下,反射率很小的黑暗像元由于大气的影响,而使得这些像元的反射率相对增加,可以认为这部分增加的反射率是由于大气程辐射的影响产生的。利用黑暗像元值计算出程辐射,并代入适当的大气校正模型,获得相应的参数后,通过计算就得到了地物真实的反射率。直方图匹配法是指如果确定某个没有受到大气影响的区域和受到大气影响的区域的反射率是相同的,并且可以确定出不受影响的区域,就可以利用它的直方图对受影响地区的直方图进行匹配处理。此外,还有很多基于统计模型的方法,如有人提出利用小波变换的遥感图像相对辐射校正方法。该方法对源图像小波变换域的低频成分实施辐射变换,并保持高频成分不变,重构的图像具有保持高频信息的特性,因而能够较好地保留原图像中由于地物变化引起的辐射差异;也有人利用主成分分析法把遥感图像中有用的信息和大气影响噪音区分开来。 大气辐射传输模型6S 1986年,法国Université des Sciences et Technologies de Lille(里尔科技大学)大气光学实验室Tanré等人为了简化大气辐射传输方程,开发了太阳光谱波段卫星信号模拟程序5S(SIMULATION OF THE SATELLITE SIGNAL IN THE SOLAR SPECTRUM),用来模拟地气系统中太阳辐射的传输过程并计算卫星入瞳处辐射亮度。1997年,Eric Vemote对5S进行了改进,发展到6S(SECOND SIMULATION OF THE SATELLITE SIGNAL IN THE SOLAR SPECTRUM),6S吸收了最新的散射计算方法,使太阳光谱波段的散射计算精度比5S有所提高。 这种模式是在假定无云大气的情况下,考虑了水汽、CO2、O3和O2的吸收、分子和气溶胶的散射以及非均一地面和双向反射率的问题。6S是对5S的改进,光谱积分的步长从5nm 改进到2.5nm,同5S 相比,它可以模拟机载观测、设置目标高程、解释BRDF作用和临近效应,增加了两种吸收气体的计

电磁辐射的危害及防治

电磁辐射的危害及防治 摘要:随着科技的高速发展,电磁技术运用越来越广泛,它给人们的生活带来了便利,同时也促进了生产生活的快速发展,但是由此产生的电磁辐射问题也随之越来越引发人们的关注。那么,什么是电磁辐射污染?它对人体的危害有哪些?如何防范电磁辐射污染? 20世纪中叶以后,由于科学技术的进步和经济的快速发展,当今的电磁技术已经成为推动社会发展的一支重要力量。像广播、电视、通信、导航、环境监测、气象预报、交通运输、家用电器、办公用品以及工农业、国防领域等均已广泛应用电磁技术,这无疑给人们带来极大的利益,但同时也不可避免地产生了电磁辐射的威胁,环境中人工电磁辐射水平急剧上升,现在在人们的生活环境中,人工电磁辐射的影响已经成了不可忽视的一种污染。而电磁污染又是一种看不见、摸不着、闻不到,不易被人察觉的污染。现在人们就是生活在浩瀚的电磁海洋之中,几乎每个人都很难离开它。在这个包括静电场、感应电磁场、辐射电磁场以及电压、电流、电功率的集合空间的电磁环境中,有各种各样的电磁辐射体,它们产生具有一定强度的电磁波信号,对有用的信号的接收或传输造成干扰,造成电气和电子设备不能正常运转,以致导致信息失误,自控系统失灵,通信混乱或中断,人造卫星失控等重大事故,造成经济、军事上重大损失已屡见不鲜。 一、电磁辐射污染 电磁辐射是指以电磁波形式通过空间传播的能量流,且限于非电离辐射,包括信息传递中的电磁波发射,工业、科学、医疗应用中的电磁辐射,高压送变电中产生的电磁辐射。电磁辐射主要通过热效应和非热效应作用于人体。电磁辐射的热效应,引起人体热平衡的失调;造成白内障;破坏睾丸的生精能力,导致不育等等。电磁辐射的非热效应主要影响人体的神经系统,感觉系统,免疫系统,内分泌系统。 电磁辐射的来源有自然和人工两大类。人们日常生活已离不开的人工设备,也都产生电磁辐射。这些产生电磁辐射的设备主要分为五大类:广播电视电磁设备类,包括广播、电视、调频等设备;通信、雷达及导航发射设备类,包括通信、基站设备、雷达及导航发射设备等;工、科、医电磁设备,如高频冶炼炉、塑料热合机、大型医疗电磁设备等;交通系统设备,如磁悬浮列车、地铁等;输电线路系统设备,如高压交流直流输电系统、变电站、换流站等。人们日常生活和工作已离不开的输变电设施、输电线路、动力与电热设备或家用电器如电脑、手机、微波炉、电磁炉、冰箱、空调、电视机、音响、电热毯等都或多或少地产生着电磁辐射。电磁辐射会造成所谓的“电磁污染”,人们也叫它电子“烟雾”或电子垃圾,即电磁辐射的强度超过人体或环境所能承受的限度所产生的危害现象。它无色、无味、无形、无踪,无任何感觉,可穿透包括人体在内的多种物质,无处不在,被科学家称为“电子垃圾”或“电子辐射污染”,有专家称这是继大气污染,水污染和噪音污染后的第四种污染。

电磁辐射及原理

电磁辐射及原理 1.位函数的方程也称作非齐次的()方程或者达郎贝尔方程 2.空间各点的标量位和矢量位随时间的变化总是落后于源,因此位函数 及通常称为() 3.()是一种基本的辐射单元,它是一个载有时变电流的电流元,其长度远远小于波长,电流近似等值分布 4.近区场是感应场,是()波,场量与或成反比,场结构与静态场相同 5.远区场是辐射场,是()波,是球面波,场量与r成反比 6.一个做正弦振荡的电流元可以辐射电磁波,故该电流元又称为() 7.在离开天线的一定距离处,场量随角度变化的函数称为天线的() 8.():辐射功率与输入功率的比值 9.天线增益:在产生相等电场强度下,点源天线需要的输入功率与实际天线需要的输入功率的比值,它等于天线的方向性系数与其效率的() 10.麦克斯韦方程组:()() 11.动态场中引入的标量位和矢量位是滞后位,即它们的值是由此时刻以前的()决定的,滞后的时间是电磁波传播从源点到场点所需的时间 12.利用滞后位可计算电流元的(),由此可作出它的方向图并计算其辐射功率,辐射电阻和方向性系数,增益等参量

13.利用电与磁的对偶性和互换原则可以由电偶极子的辐射场直接求出磁偶极子的辐射场。根据电磁学上的()原理,理想导电金属板上开槽天线的辐射场,可利用它的互补天线求解 14线天线是由许许多多()组成的. 15.由各段电流元产生的场的叠加,可求得线天线的()场,许多付天线放置在一起组成天线阵,同样可以利用()原理求得天线阵的方向图 16.时变场中的矢量位方程和标量位方程为()和()。 17.给定标量位及矢量位,式中。 (1)试证明:; (2)求、和; (3)证明上述结果满足自由空间中的麦克斯韦方程。 18.设元天线的轴线沿东西方向放置,在远方有一移动接受台停在正南方而收到最大电场强度,当电台以元天线为中心的圆周在地面上移动时,电场强度逐渐减 小,问当电场强度减少到最大值的时,电台的位置偏离正南方多少度? 19.上题如果接收台不动,将元天线在水平面内绕中心旋转,结果如何?如果接收台天线也是元天线,讨论收发两天线的相对位置对测量结果的影响。 20.一半波天线,某上电流分布为 ()

电磁辐射的危害和预防

电磁辐射的危害和预防 电磁辐射的危害 随着大规模的城市改造和房地产开发,一些原来建于城市周边的传输发射中心和高压线等设施周围也开始进行开发建设,小区环境和室内环境中的电磁辐射污染问题也就随之而来。电磁辐射到底对人体有什么危害?据有关专家介绍,其危害主要有6个方面。 危害之一 它极可能是造成儿童患白血病的原因之一。医学研究证明,长期处于高电磁辐射的环境中,会使血液、淋巴液和细胞原生质发生改变。意大利专家研究后认为,该国每年有400多名儿童患白血病,其主要原因是距离高压电线太近,因而受到了严重的电磁污染。 危害之二 能够诱发癌症并加速人体的癌细胞增殖。电磁辐射污染会影响人体的循环系统、免疫、生殖和代谢功能,严重的还会诱发癌症,并会加速人体的癌细胞增殖。瑞士的研究资料指出,周围有高压线经过的住户居民,患乳腺癌的概率比常人高7.4倍。美国得克萨斯州癌症医疗基金会针对一些遭受电磁辐射损伤的病人所做的抽样化验结果表明,在高压线附近工作的工人,其癌细胞生长速度比一般人要快24倍。 危害之三 影响人的生殖系统,主要表现为男子精子质量降低,孕妇发生自然流产和胎儿畸形等。

危害之四 可导致儿童智力残缺。据最新调查显示,我国每年出生的2000万儿童中,有35万为缺陷儿,其中25万为智力残缺,有专家认为电磁辐射也是影响因素之一。世界卫生组织认为,计算机、电视机、移动电话的电磁辐射对胎儿有不良影响。 危害之五 影响人们的心血管系统,表现为心悸,失眠,部分女性经期紊乱,心动过缓,心搏血量减少,窦性心率不齐,白细胞减少,免疫功能下降等。如果装有心脏起搏器的病人处于高电磁辐射的环境中,会影响心脏起搏器的正常使用。 危害之六 对人们的视觉系统有不良影响。由于眼睛属于人体对电磁辐射的敏感器官,过高的电磁辐射污染会引起视力下降,白内障等。高剂量的电磁辐射还会影响及破坏人体原有的生物电流和生物磁场,使人体内原有的电磁场发生异常。值得注意的是,不同的人或同一个人在不同年龄阶段对电磁辐射的承受能力是不一样的,老人、儿童、孕妇属于对电磁辐射的敏感人群。 学会防辐射 有5种人特别要注意电磁辐射污染:生活和工作在高压线、变电站、电台、电视台、雷达站、电磁波发射塔附近的人员;经常使用电脑、电视电子仪器、医疗设备、办公自动化设备的人员;生活在现代电器自动化环境中的工作人员;佩戴心脏起搏器的患者;生活在以上

遥感辐射传输模型

遥感辐射传输模型 姓名:张超 学院:地球科学与环境工程学院 专业:遥感科学与技术 班级:遥感一班 提交时间:2015年5月10日 大气订正是遥感技术的重要组成部分,主要包括大气参数估计和地表反射率反演两个方面。如果获得了大气特性参数,进行大气订正就变得相对容易,但是

获得准确的大气特性参数通常比较困难。通常有两类方法用辐射传输方程计算大气订正函数:一种是直接的方法,对于大气透过率函数和反射率函数,通过对模型的积分来得到;另一种是间接的方法,他不是直接计算所需要的大气订正函数,而是通过辐射传输模型输出的表观反射率,结合模型输入的参数来求解。大气订正方法有很多,比如:基于图像特征的相对订正法、基于地面线形回归模型法、大气辐射传输模型法和复合模型法等。它是利用电磁波在大气中的 辐射传输原理建立起来的模型对遥感图像进行大气订正的方法。 其中,大气辐射传输模型(Atmospheric Radiative Transfer Model)法是较常用的大气订正方法,它用于模拟大气与地表信息之间耦合作用的结果,其过程可以描述为地表光谱信息与大气耦合以后,在遥感器上所获得的信息,其中考虑了光子与大气相互作用机理,物理意义明确,具有很高的反演精度。 大气辐射传输原理 电磁辐射在介质中传输时,通常因其与物质的相互作用而减弱。辐射强度的减弱主要是由物质对辐射的吸收和物质散射所造成的,有时也会因相同波长上物质的发射以及多次散射而增强,多次散射使所有其它方向的一部分辐射进入所研究的辐射方向。当电磁辐射为太阳辐射,而且忽略多次散射产生的漫射辐射时,光谱辐射强度的变化规律可以表述为[1] (1)式中,IΛ是辐射强度, s是辐射通过物质的厚度,ρ是物质密度,KΛ表示对波长λ辐射的质量消光截面。令在s=0 处的入射强度为Iλ(0),则在经过一定距离s1后,其出射强度可由式(1)积分得到 (2)假定介质是均匀的,则kλ与距离s无关,因此定义路径长度 (3)则式(2)可表示为 (4)上式就是比尔定律,也称朗伯定律。它指出,通过均匀消光介质传输的辐射强度按简单的指数函数减 弱,该指数函数的自变量是质量消光截面和路径长度的乘积。它不仅适用于强度

电磁辐射强度用什么单位表示

电磁辐射强度用什么单 位表示 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

电磁辐射强度用什么单位表示? 2010-06-1015:13:11来源:南方网 通过对电磁辐射概念的了解,我们知道电磁辐射其实是一种能量,它对环境的影响大小主要取决于能量的强弱,用来表量其强度大小的单位主要有: (1)功率辐射功率越大,辐射出来的电、磁场强度越高,反之则小。功率的单位是瓦(W)。 (2)功率密度指单位时间、单位面积内所接收或发射的高频电磁能量。功率密度的单位是瓦/米2(W/m2)。例如,“40瓦/米2”可以简单理解为1平方米面积上接受到40瓦的电磁能量。在高频电磁辐射环境评估时功率密度常用MW/cm2表示。 (3)电场强度是用来表示空间各处电场的强弱和方向的物理量。距离带电体近的地方电场强,远的地方电场弱。电场强度的单位是伏/米(V/m),在输电线和高压电器设备附近的工频电场强度通常用kV/m表示。 (4)磁场强度是用来表示空间各处磁场的强弱与方向的物理量,它的单位是安/米(A/m)。 (5)磁感应强度表示单位体积、面积里的磁通量,用于描述磁场的能量的强度,单位是特斯拉或高斯(T或Gs)。 1GS=10^(-4)T=0.1mT=100μT 10mGs=1μT,0.4μT=4mGs 1T=1Wb/m2=1N/(A·m)=1Kg/(A·s2) 国家制定的<<电磁辐射防护规定>>(GB8702-88)规定我国电磁辐射防护标准比一些发达国家更严格:美国和日本的标准是功率密度3000微瓦每平方厘米,欧盟的标准是450微瓦每平方厘米。我国的标准是40微瓦每平方厘米。 如梦剑客测的读数都很低,在2至4微瓦每平方厘米,远远低于国家标准40微瓦每平方厘米。 1特斯拉=1000000微特斯拉=1韦伯/平方米=10000高斯 瑞典规定磁辐射安全标准为0.2微特斯拉,英国规定为0.4微特斯拉 但是:微瓦每平方厘米和微特斯拉如何换算?请指点 不同频率的电磁场表达方式也不尽相同,不知瑞典规定磁辐射安全标准是指的哪个频率范围? 楼主所说40微瓦每平方厘米是频率在30-3000MHz之间的标准,对应的磁场强度为0.032A/m,即为0.4微特斯拉 预防建议 -极低频电磁场(、核磁共振、电气化铁路、电焊、电动缝纫等极低频电磁场的预防建议) WHO国际癌症研究机构(IARC)及WHO专题工作组经评估认为极低频(>0Hz-100kHz)磁场与儿童白血病及脑癌有关,当工频(50/60Hz)磁场暴露强度超过0.3μT或0.4μT时儿童白血病的患病风险增加2倍,据WHO统计显示约1%~4%的儿童长期暴露于强度大于0.3μT的工频磁场环境。虽然人群流行病学资料及实验室研究资料尚不能证明工频磁场与儿童白血病存在因果关系,WHO在其新出版(2007)的环境极低频电磁场专论中强调,尽管低强度环境电磁辐射生物学效应机制尚未阐明,但不能就此排除低强度环境电磁辐射能够产生有害的健康影响。同时

大气辐射传输理论 第一章..

大气辐射传输理论 引言 学科定义: 1、大气辐射学研究辐射能在地球-大气系统内传输和转换的规律及其应用,属大气物理学的一个分支。大气辐射学是天气学、气候学、动力气象学、应用气象学、大气化学和大气遥感等学科的理论基础之一。 2、地球-大气系统的辐射差额是天气变化和气候形成及其演变的基本因素,可以说辐射过程与动力过程的作用共同决定了地球的气候环境。 学习、研究的意义 辐射是地气系统与宇宙空间能量交换的唯一方式 数值天气预报中需要定量化考察大气辐射过程 辐射传输规律是大气遥感的理论基础 气候问题——辐射强迫 近年来人类活动造成的地球大气气候变迁成为大气科学研究热点,其原因也在于人类活动所排放的某些物质会改变地球大气中的辐射过程所致。 大气辐射学主要研究内容: 一、地-气系统辐射传输的基本物理过程和规律,包括 1、太阳的辐射(97%E在0.3~3μm波段内,λ m=0.5μm附近); 2、地-气系统辐射(绝大部分E在4~80μm波段内,λ m=10μm附近); 3、不同地表状态云、气溶胶、水汽、臭氧、二氧化碳等对辐射传输的影响。 二、大气辐射学还要研究辐射传输方程的求解。 辐射传输方程:是描述辐射传播通过介质时与介质发生相互作用(吸收、散射、发射等)而使辐射能按一定规律传输的方程,在地球大气条件下,求解非常复杂,只能在一些假定下求得解析解,因此辐射传输方程的求解,一直是大气辐射学研究的重要内容。 三、另外,对辐射与天气、气候关系的研究也是大气辐射学的重要内容,它是从地-气系统辐射收支的角度,来研究天气和气候的形成以及气候变迁问题的。 相关内容: 许多复杂的物理动力气候学问题中,涉及到海洋、极冰、陆地表面的辐射和热状况,大气中的云、气溶胶、二氧化碳等因子在辐射过程中对气候所造成的影响,以及这些过程和大气辐射过程之间复杂的相互作用和反馈关系。 第一章用于大气辐射的基本知识 第一节辐射的基本概念 太阳辐射和地球大气辐射虽具有不同的特性,其本质是相同的,它们都是电磁辐射。电磁辐射是以波动和粒子形式表现出的一种能量传送形式。 1.1.1电磁波及其特性 一、波:波是振动在空间的传播。有横波和纵波的形式之分。 二、机械波:机械振动在媒质中的传播,如声波、水波和地震波。 三、电磁波(ElectroMagnetic Spectrum):变化电场和变化磁场在空间的传播。 四、电磁辐射: 电磁能量的传递过程(包括辐射、吸收、反射和投射)称为电磁辐射。 五、电磁波的特性: 1、电磁波是横波 2、在真空中以光速传播 3、电磁波具有波粒二相性: 波动性:表现在电磁辐射以波动方式在大气中传播,并发生反射、折射、衍射和偏振等效应。也就是说电

电磁辐射的危害与预防论文

电磁辐射(论文) 题目:电磁辐的研究学生:毛圣杰 指导老师:楚君 学号:2015550605 专业:电子信息工程学院:信息工程学院

目录 一、引言 (4) 二、电磁辐射的产生 (5) 三、电磁辐射的危害 (6) 四、电磁辐射的相关法律法规 (8) 五、安全作业与电磁辐射污染的防范 (9) 六、结语 (11)

摘要:本文介绍了电磁辐射的定义以及常见的电磁辐射源,阐述了电磁辐射的类别以及它们的分类,同时从几个方面介绍了电磁辐射对人类活动带来的影响、产生影响的因素及辐射大小的衡量,探讨了电磁辐射的防护以及国家的有关规定。 关键字:电磁辐射电磁波电磁危害电磁防护

引言 电磁辐射是以一种看不见、摸不着的特殊形态存在的物质,是电场和磁场的交互变化产生的电磁波向空中发射或泄露的现象,过量的电磁辐射会造成电磁辐射污染。电磁辐射又叫电磁波,包括有无线电波、微波、红外线、可见光、紫外线、X射线和伽马射线等等。人类生存的地球本身就是一个大磁场,它表面的热辐射和雷电都可产生电磁辐射,太阳及其他星球也从外层空间原原不断地产生电磁辐射。围绕在人类身边的天然磁场、太阳光、家用电器等都会发出强度不同的电磁辐射。

一、电磁辐射是指能量以电磁波的形式通过空间传播的现象。任何交流电在其周围都要形成交变的电场,交变的电场又产生交变的磁场,交变的磁场又产生交变的电场,这种交变的电场与交变的磁场相互垂直,以源为中心向周围空间交替地产生并以一定的速度传播,即为电磁波。 二、电磁辐射源一般分为天然电磁辐射和人为电磁辐射两类。天然电磁辐射,如雷电、火山喷发、地震和太阳黑子引起的磁暴等;人为电磁辐射,有电波发射设施(如广播、电视发射塔等),通信设施(如人造卫星通信系统的地面站、雷达系统的雷达站、移动通讯塔等),各种高频设备(如高频热和机、高频焊接机、高频烘干机、家用微波炉等),交通设备(如电气化铁道、电车等),电力设备(如高压电线路、变电站等)。

我国电磁辐射污染防治相关法律法规

我国电磁辐射污染防治相关法律法规、标准有哪些 发布时间:2011年08月22日来源: 对于电磁辐射环境管理,国家有较系统的法规与标准,这是我们实施辐射环境管理的法律依据和评价伴有电磁辐射建设项目的科学标准。主要有: (1)《中华人民共和国环境保护法》,1989年12月26日起施行 (2)《中华人民共和国环境影响评价法》,2003年9月1日起施行 (3)《建设项目环境保护管理条例》(国务院253号令),1998年11月29日起施行 (4)《电磁辐射防护规定》(GB8702-88),1988年6月1日起施行 (5)《电磁辐射监测仪器和方法》(HJ/T10.2-1996),1996年5月10日实施行 (6)《电磁辐射环境影响评价方法与标准》(HJ/T10.3-1996),1996年5月10日起施行 (7)《电磁辐射环境保护管理办法》(国家环保总局18号令),1997年1月27日起施行 (8)《500KV超高压送变电工程电磁辐射环境影响评价技术规范》(HJ/T24-1998),1999年2月1日起施行 (9)《城市电力规划规范》(GB/50293-1999),1999年10月1日起施行 (10)《建设项目环境保护分类管理名录》(国家环境保护总局14号令),2003年1月1日起施行

记住,永远不要对父母说这十句话! 1.好了,好了,知道,真啰嗦!(可怜天下父母心,父母的“啰嗦”其实是一种幸福。) 2.有事吗,没事?那挂了啊。(父母打电话,也许只想说说话,我们能否明白他们的用意,不要匆忙挂了电话!) 3.说了你也不懂,别问了!(他们只是想和我们说说话。) 4.跟你说了多少次不要你做,做又做不好。(一些他们已经力不能及的事,我们因为关心而制止,但不要这样让他们觉得自己很无用。) 5.你们那一套,早就过时了。(父母的建议,也许不能起到作用,可我们是否能换一种回应的方式?) 6.叫你别收拾我的房间,你看,东西找都找不到!(自己的房间还是自己收拾好,不收拾,也不要拂了老人的好意。) 7.我要吃什么我知道,别夹了!(盼着我们回家的父母总想把所有关心融在特意做的菜里,我们默默领情就好。) 8.说了别吃这些剩菜了,怎么老不听啊!(他们一辈子的节约习惯,很难改,让他们每次尽量少做点菜就好。) 9.我自己有分寸,不要老说了,烦不烦。(他们只是担心你吃亏。) 10.这些东西说了不要了,堆在这里做什么啊!(人老了都会念旧……) 当你还在襁褓时,她便天天抱着你,哄你入睡;当你到少年时代,她便天天念叨着你,夜夜帮你捻着棉被;当你终于离开家,远行他方,她便天天牵挂着你。 有时候,我们总是在抱怨母亲的唠叨、念叨,总是在心烦她那些说了无数遍的关心话语。都说儿女是父母前辈子欠下的债,这句话不假。让我们感恩于心,让我们感恩父母那些点滴的关怀。 如果有一天,你发现母亲煮的菜太咸太难吃,如果有一天,你发现父母经常忘记关电器; 如果有一天,你发现父亲的花草树木已渐荒废,如果有一天,你发现家中的地板衣柜经常沾满灰尘; 如果有一天,你发现父母不再爱吃青脆的蔬果,如果有一天,你发现父母爱吃煮得烂烂的菜;

大气辐射传输校正模型(5S,modtran,acorn)

在遥感的实际应用中,常用很多简化的手段,如假设地面为朗伯面,排除云的存在,采用有关标准大气模式及大气气溶胶模式等,一次产生了许多不同类型的大气辐射传输模型,主要分为两类, 1)采用大气的光学参数 2)直接采用大气物理参数如lowtran、modtran等大气辐射近似计算模型,而且还增加了多次散射计算 1. 5s模型 该模型的代码模拟计算海平面上的均匀朗伯体目标的反射率,并假定大气吸收作用与散射作用可以耦合,就像吸收粒子位于散射层的上面一样,则大气上层测 量的目标反射率可以表示为, 海平面处朗伯体的反射率 大气透过率 分子、气溶胶层的内在反射率 有太阳到地表再到传感器的大气透过率 S为大气的反射率 大气传输辐射校正模型-3 modtran 该模型是由美国空军地球物理实验室研制的大气辐射模拟计算程序,在遥感领域被广泛应用于图像的大气校正。

lowtran7是一个光谱分辨率20cm-1,的大气辐射传输实用软件,它提供了6种参考大气模式的温度、气压、密度的垂直廓线,水汽、臭氧、甲烷、一氧化碳、一氧化二氮的混合比垂直廓线,其他13种微量气体的垂直廓线,城乡大气气溶胶、雾、沙尘、火山喷发物、云、雨的廓线,辐射参量(如消光系数、吸收系数、非对称因子的光谱分布),以及地外太阳光谱。 lowtran7可以根据用户的需要,设置水平、倾斜、及垂直路径,地对空、空对地等各种探测几何形式,适用对象广泛。lowtran7的基本算法包括透过率计算方法,多次散射处理和几何路径计算。 1)多次散射处理 lowtran 采用改进的累加法,自海平面开始向上直至大气的上界,全面考虑整层大气和地表、云层的反射贡献,逐层确定大气分层每一界面上的综合透过率、吸收率、反射率和辐射通量。再用得到的通量计算散射源函数,用二流近似解求辐射传输方程。 2)透过率计算 该模型在单纯计算透过率或仅考虑单次散射时,采用参数化经验方法计算带平均透过率,在计算多次散射时,采用k-分布法 3)光线几何路径计算 考虑了地球曲率和大气折射效应,将大气看作球面分层,逐层考虑大气折射效应 由于lowtran直接使用大气物理参数,因而需要按照下列方法计算出与 lowtran使用的大气物理参数相对应的大气光学参数179页 4.modtran辐射传输模型 modtran可以计算0到50000cm-1的大气透过率和辐射亮度,它在440nm到无限大的波长范围精度是2cm-1,在22680到50000cm-1紫外波(200-440nm)范围的精度是20cm-1,在给定辐射传输驱动、气溶胶和云参数、光源与遥感器的几何立体对和地面光谱信息的基础上,根据辐射传输方程来计算大气的透过率以及辐射亮度。

电磁辐射的危害及防护(正式)

编订:__________________ 单位:__________________ 时间:__________________ 电磁辐射的危害及防护 (正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-5299-73 电磁辐射的危害及防护(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 随着电子工业的飞速发展,微波炉、手机等家电和通讯工具不断普及,为改善我们的生活质量带来了福音。另一方面这些电子产品又产生了各种有害电磁辐射,成了我们生活中一个新的污染源,即通常所称的“电磁污染”。 这些有害的电磁辐射不仅影响了其它电子设备的正常工作,更重要的是它还污染我们赖以生存的环境,威胁着人们的健康。为此,各国政府采取了一系列措施来防治它。进入90年代以来,美国、欧盟、日本、澳大利亚、新西兰、韩国等国家和地区还相继采取法律形式宣布禁止产生电磁污染的产品(即电磁兼容不合格产品)进入市场。在德国,德国电气工程师协会(VDE)在VDE/0876标准中还把电子设备的辐射划为4个等级。其中N区为适用于居住区,规定在30~

遥感导论-习题及参考答案第二章 电磁辐射与地物光谱特征答案

第二章电磁辐射与地物光谱特征 ·名词解释 辐射亮度:由辐射表面一点处的单位面积在给定方向上的辐射强度称为辐射亮度。 普朗克热辐射定律:在一定温度下,单位面积的黑体在单位时间、单位立体角内和单位波长间隔内辐射出的能量为B(λ,T)=2hc2 /λ5 ·1/exp(hc/λRT)-1 灰度波谱:用该类型在该波段上的灰度值反应的波谱曲线 黑体辐射:任何物体都具有不断辐射、吸收、发射电磁波的本领,为了研究不依赖于物质具体物性的热辐射规律,物理学家们定义了一种理想物体——黑体(black body),以此作为热辐射研究的标准物体。 电磁波谱:将电磁波按大小排列制成图表。 太阳辐射:太阳射出的辐射射线 瑞利散射:大气中粒子的直径比波长小得多时发生的散射 米氏散射:当大气中粒子的直径与辐射的波长相当时发生的散射 地球辐射:地面吸收太阳辐射能后,向外辐射的射线。 地物波谱特性:各种地物因种类和环境条件不同,都有不同的电磁波辐射或反射特性 反射率:地物反射能量与入射总能量之比。 比辐射率:某一物体在一特定波长和温度下的发射辐射强度与理想黑体在相同波长和温度下所发射的辐射强度之比。 后向散射 ·问答题 地球辐射的分段特性是什么? 当太阳辐射到达地表后,就短波而言,地表反射的太阳辐射成为地表的主要辐射来源,而来自地球本身的辐射,几乎可以忽略不计。地球自身的辐射主要集中在长波,即6um以上的热红外区段,该区段太阳辐射的影响几乎可以忽略不计,因此只考虑地表物体自身的热辐射。两峰交叉之处是两种辐射共同其作用的部分,在2.5~6um,即中红外波段,地球对太阳辐照的反射和地表物体自身的热辐射均不能忽略。 什么是大气窗口?试写出对地遥感的主要大气窗口 答:大气窗口的定义:通常把电磁波通过大气层时较少被反射、吸收或散射的,透过率较高 的波段成为大气窗口。 包括:部分紫外波段,0.30 m μ~0.40m μ,70%透过。 全部可见光波段,0.40 m μ~0.76m μ,95%透过。 部分近红外波段,0.76 m μ~1.3m μ,80%透过。 近红外窗口:1.5 m μ~2.4m μ,90%透过,可区分蚀变岩石。 包括两个小窗口:1.5 m μ~1.75m μ 2.1 m μ~2.4m μ。 中红外窗口:3.5 m μ~5.5m μ,反射和发射并存。 包括两个小窗口(反射和发射混合光谱):3.5 m μ~4.2m μ 4.6 m μ~5m μ 远红外窗口:8 m μ~14m μ,发射电磁波,热辐射。 微波窗口:0.5cm~300cm

现代仪器分析第二章习题及答案

第二章光学分析法导论 一、选择题 1.电磁辐射的粒子性主要表现在哪些方面() A.能量 B.频率 C.波长 D.波数 2.当辐射从一种介质传播到另一种介质时,下列哪种参量不变() A.波长B.速度C.频率D.方向 3.电磁辐射的二象性是指() A.电磁辐射是由电矢量和磁矢量组成 B.电磁辐射具有波动性和电磁性 C.电磁辐射具有微粒性和光电效应 D.电磁辐射具有波动性和粒子性 4.可见光区、紫外区、红外光区、无线电波四个电磁波区域中,能量最大和最小的区域分别为() A.紫外区和无线电波区 B.可见光区和无线电波区C.紫外区和红外区 D.波数越大 5.有机化合物成键电子的能级间隔越小,受激跃迁时吸收 GAGGAGAGGAFFFFAFAF

电磁辐射的() A.能量越大 B.频率越高 C.波长越长 D.波数越大 6.波长为0.0100nm的电磁辐射的能量是() A.0.124 B.12.4eV C.124eV D.1240 eV 7.受激物质从高能态回到低能态时,如果以光辐射形式辐射多余的能量,这种现象称为() A.光的吸收 B.光的发射 C.光的散射 D.光的衍射 8.利用光栅的()作用,可以进行色散分光。 A.散射 B.衍射和干涉 C.折射 D.发射 9.棱镜是利用其()来分光的。 A.散射作用 B.衍射作用 C.折射作用 D.旋光作用 10.光谱分析仪通常由以下()四个基本部分组成。A.光源、样品池、检测器、计算机 B.信息发生系统、色散系统、检测系统、信息处理系统 C.激发源、样品池、光电二级管、显示系统 GAGGAGAGGAFFFFAFAF

D.光源、棱镜、光栅、光电池 GAGGAGAGGAFFFFAFAF

手机电磁辐射对人体的影响探究

手机电磁辐射对人体影响的探究及预防 【摘要】随着电子行业的不断发展,各种手机大行其道,手机已成为人们生活中不可或缺的工具,其甚至每天二十四小时伴随着我们。因此,关于手机辐射带来的健康问题,也成了大众较为关心的一个问题,本论文通过分析各种手机及其电磁辐射危害人体的机理,来论证手机辐射对人体健康的影响程度,同时提出相关预防措施,以期对手机用户起到引导作用。 【关键词】手机电磁辐射危害预防措施 1前言 随着我国电子行业的快速发展壮大,电子产品正在以前所未有的速度改变着人们的生活,其中手机自然是电子产品中的佼佼者,据相关网站数据显示,截止2012 年7月底,我国正在使用的手机用户数量达 13.45亿,位居世界之首,几乎人均一部。 【1】但是,随着手机的普及,其带来的健康问题也日益受到人们的关注。据 2001年2月 15日香港文汇报报道:尽管学术界对手机电磁生物效应的某些机理尚有争议,但不可否认,在一定条件下电磁辐射会对人体产生危害。瑞典的一家科研机构对一万多名使用手机的瑞典人作了一项调查,其结果表明:使用手机越频繁的人,其身体不舒服的感觉就越明显。科技工作者已研究证明:人体持续受一定强度的电磁辐射会产生致热效应和非致热效应,可能会引起皮肤发热、眼球白内障、睾丸退化、身体疲倦、头疼、免疫功能下降等症状,此外该家媒体还详细报道了手机微波易入大脑、英国科学家也弃用手机、多用手机容易衰老、微波老鼠丧失记忆、患癌机会增多和手机插腰易生畸胎等方面的实验和相关的结论。 那么,手机的电磁辐射有多大?对人体有没有伤害?如何预防或减少电磁辐射对人体的伤害?为了解决这些问题,笔者特意撰文,介绍手机产生的电磁辐射的机理以及电磁辐射对人体的伤害,给出降低手机对人体造成伤害的有关预防措施,帮助使用者学会保护自己。【1】2:手机通信技术种类简介; 第一代手机(1G)是指模拟的移动电话,这种手机有多种制式,如NMT, AMPS,TACS,但是基本上是以频分多址(FDMA: Frequency Division Mult iple Address)方式工作,通话期间,用户被分配一个频道,说话的信息以调频(FM)信息方式传递出去。此种手机的工作频率随国家的不同而不同。一般为450 MHz或 800~ 900 MHz。目前模拟手机已逐步淘汰,很少见了。 第二代手机(2G)采用全球通系统(GSM: Globe System for Mobile Communication)的数字式手机。它以时分多址(T DMA: TimeDivision Mult iple Address)方式工作。用户的通话信息以数字编码信号的形式传输。GSM的工作中

电磁波辐射原理

电磁波辐射的基本原理及对人体的危害与并发症 科学地讲,电磁波是能量释放的一种形式,是电场与磁场在空间的振动。凡是能释放能量的物质都是电磁波原体。电磁波的频率越高,能量就越高。当高能量的电磁波把能量传递给其他物质时,可能撞出该物质内的原子、分子的电子,使该物质内充满带电离子,这种现象称为游离化,而造成游离化现象的电磁波就叫游离辐射。 电磁波辐射通常分为游离辐射,有热效应非游离辐射和无热效应非游离辐射三种。无热效应非游离辐射对人体健康没有影响,有热效应非游离辐射对人体健康影响也较小。各种可见光和红外线都属于非游离辐射,游离辐射对人体健康损害比较大,它常常会损害人体细胞和组织。游离辐射包括紫外线、r射线、X射线等各种不可见光。常见的游离辐射主要有:核辐射、雷达波、无线通信电波、太阳黑子、电脑等家用电器的电磁波辐射等。对我们的日常影响较大的主要有:手机、电脑、微波炉等日常用品的长期游离辐射。 游离辐射对人体的伤害主要表现为电磁离子与身体内物质抢夺电荷产生新的电离子,从而破坏、损害人体组织和细胞。长期被游离辐射作用下,会对人体的基因、神经系统、心脑血管、分泌系统、视听觉系统和性功能造成严重的损伤,严重的可能导致各种癌症。游离辐射对人体六大系统的损害和并发症主要包括: 一、破坏人体DNA和雄性染色体。 其危害和并发症主要包括:(1)、男性丧失X染色体(2)、新生胎儿智力残障(3)新生胎儿肢体残障(4)新生胎儿丧失免疫功能,并由此引发白血病和坏血病。 二、破坏神经系统。 主要危害和并发症包括:(1)智力、记忆力衰退,(2)神经性衰弱,(3)脑神经瘤体(即脑瘤),(4)神经管畸形,(5)无脑儿,(6)其他病理性神经损伤。 三、心脑血管损伤。 主要后果和并发症包括:(1)高血压,(2)冠心病,(3)引发机械性窒息(心肌梗塞),(4)脑溢血,(5)心脑血管梗塞,(6)使用心脏起勃器的患者受强辐射时起勃器功效丧失。 四、性功能损伤。 主要后果和并发症包括:(1)男性阳痿(2)性功能过早衰退(3)丧失性功能(4)月经紊乱。

大气辐射传输模型6S简介

大气辐射传输模型6S简介 1986年,法国Université des Sciences et Technologies de Lille(里尔科技大学)大气光学实验室Tanré等人为了简化大气辐射传输方程,开发了太阳光谱波段卫星信号模拟程序5S(SIMULATION OF THE SATELLITE SIGNAL IN THE SOLAR SPECTRUM),用来模拟地气系统中太阳辐射的传输过程并计算卫星入瞳处辐射亮度。1997年,Eric Vemote对5S进行了改进,发展到6S(SECOND SIMULATION OF THE SATELLITE SIGNAL IN THE SOLAR SPECTRUM),6S吸收了最新的散射计算方法,使太阳光谱波段的散射计算精度比5S有所提高。 这种模式是在假定无云大气的情况下,考虑了水汽、CO2、O3和O2的吸收、分子和气溶胶的散射以及非均一地面和双向反射率的问题。6S是对5S的改进,光谱积分的步长从5nm改进到2.5nm,同5S相比,它可以模拟机载观测、设置目标高程、解释BRDF作用和临近效应,增加了两种吸收气体的计算(CO、N2O)。采用SOS (successive order of scattering) 方法计算散射作用以提高精度。缺点是不能处理球形大气和limb (临边)观测。 它其中主要包括以下几个部分: (1)太阳、地物与传感器之间的几何关系:用太阳天顶角、太阳方位角、观测天顶角、观测方位角四个变量来描述; (2)大气模式:定义了大气的基本成分以及温湿度廓线,包括7种模式,还可以通过自定义的方式来输入由实测的探空数据,生成局地更为精确、实时的大气模式,此外,还可以改变水汽和臭氧含量的模式; (3)气溶胶模式:定义了全球主要的气溶胶参数,如气溶胶相函数、非对称因子和单次散射反照率等,6S中定义了7种缺省的标准气溶胶模式和一些自定义模式; (4)传感器的光谱特性:定义了传感器的通道的光谱响应函数,6S中自带了大部分主要传感器的可见光近红外波段的通道相应光谱响应函数,如TM,MSS,POLDER和MODIS等; (5)地表反射率:定义了地表的反射率模型,包括均一地表与非均一地表两种情况,在均一地表中又考虑了有无方向性反射问题,在考虑方向性时用了9种不同模型)。 这5个部分便构成了辐射传输模型,考虑了大气顶的太阳辐射能量通过大气传递到地表,以及地表的反射辐射通过大气到达传感器的整个辐射传输过程。 6S的输入参数主要有9个部分组成:

第二章 电磁辐射与材料的相互作用

第二章电磁辐射与材料的相互作用 教学目的:1、掌握电磁辐射与材料结构的一些基本概念; 2、掌握电磁辐射与材料之间的相互作用; 3、掌握电磁与材料之间相互作用而派生出来的测试方法。 教学重点:1、电磁辐射与材料之间的相互作用; 2、电磁与材料之间相互作用而派生出来的测试方法的测试信号的理解; 3、X射线的与材料之间的相互作用。 教学难点:1、电子衍射与俄歇电子的产生; 2、光谱项与能级分裂的关系及相应的测试方法。 第一节概述 电磁辐射与物质相互作用产生的主要现象 图2-1 电磁辐射与材料相互作用产生的主要信号 不同谱域的电磁辐射与物质相互作用产生的现象有很大的差别。 光学分析法:基于测量物质所发射或吸收的电磁波的波长和强度的分析方法。光谱法:测量的信号是物质内部能级跃迁所产生的发射、吸收或散射光谱的波长和强度。 非光谱法:不是测量光谱,不包含能级跃迁。它是基于电磁波和物质相互作用时,电磁波只改变了方向和物理性质,如折射、反射、散射、干涉、衍射和偏振等现象。非光谱技术包括折射法、干涉法,旋光测定法,浊度法,X-射线衍射等。 一、辐射的吸收与发射 1. 辐射的吸收与吸收光谱

辐射的吸收:辐射通过物质时,其中某些频率的辐射被组成物质的粒子(原子、离子或分子等)选择性地吸收,从而使辐射强度减弱的现象。辐射吸收的实质:辐射使物质粒子发生由低能级(一般为基态)向高能级(激发态)的能级跃迁。吸收条件:被选择性吸收的辐射光子能量应为跃迁后与跃迁前两个能级间的能量差,即 12E E E hv -=?= 2-1 E 2与E 1——高能级与低能级能量。辐射(能量)被吸收的程度(一般用吸光度)与ν或λ的关系(曲线),即辐射被吸收程度对ν或λ的分布称为吸收光谱。 2. 辐射的发射与发射光谱 辐射的发射:物质吸收能量后产生电磁辐射的现象。辐射发射的前提:使物质吸收能量,即激发。 辐射发射的实质:辐射跃迁,即当物质的粒子吸收能量被激发至高能态(E 2)后,瞬间返回基态或低能态(E 1),多余的能量以电磁辐射的形式释放出来。发射的电磁辐射频率取决于辐射前后两个能级的能量(E 2与E 1)之差,即 h E E h E v 12-=?= 2-2 物质的激发方式: (1)非电磁辐射激发(非光激发) 热激发:电弧、火花等放电光源和火焰等通过热运动的粒子碰撞而使物质激发; 电(子)激发:通过被电场加速的电子轰击使物质激发。 (2)电磁辐射激发(光致发光) 作为激发源的辐射光子称一次光子,而物质微粒受激后辐射跃迁发射的光子(二次光子)称为荧光或磷光。吸收一次光子与发射二次光子之间延误时间很短 (10-8~10-4s)则称为荧光; 延误时间较长(10-4~10s)则称为磷光。 3. 光谱的分类 按辐射与物质相互作用的性质,光谱分为吸收光谱、发射光谱与散射光谱(拉

电磁辐射在自然环境中的传输要点

§4 电磁辐射在自然环境中的传输 远距离探测是信息获取与处理技术的基本功能或主要应用。这必然会遇到电磁辐射在自然环境中的传输问题。不论是对地观测还是空间监视,辐射必然要穿越地球大气。显然,大气传输既是系统的组成部分,也是技术的基本内容。 辐射传输的基本问题是辐射同大气的相互作用。地球表面(陆地和水面)被大气包围着,大气分布在高度300km以下的空间。共分三层。对流层(0~10)km;同温层(10~60)km;电离层60km以上。大气密度随高度增加而减少。到30km高度已经下降二个数量级。大部分气体分布在10km以下高度。大气成份包括气体分子和悬浮粒子(气溶胶)。前者由氮(N2,78%)、氧(O2,21%)、臭氧(O3)、氩(Ar)和二氧化碳(CO2)等十几种分子组成。后者为烟尘、灰尘等微粒子。 电磁辐射在大气中传输,与大气中分子和粒子发生相互作用,主要是散射或吸收。其结果会使辐射中所携带的信息损失或畸变。传输特性的知识给出这种作用的详情。一方面可以校正畸变,另一方面也帮助系统设计者选择优良的辐射波段(窗口),保证信息传送。有许多情形,辐射同大气物质相互作用本身也是一种信息媒介。特别是主动式敏感过程,通过源(自然的或人工的)辐射同目标相互作用的结果来推断目标的相关性质。研究这种传输过程的本身就是获取目标信息的过程。例如,光雷达的光束穿过大气后,根据其变化测量大气成份。 4.1 反射、吸收、透射 4.2 大气的透射窗口 4.3 太阳辐射与地面反射 4.4 大气中的吸收和散射 4.4.1吸收 4.4.2散射 4.1 反射、吸收、透射 照理,电磁辐射同物体相互相互作用,会发生三种可能的情况。部分能量被反射和散射(反射率ρ),即改变了原来的传播方向而未进入物体;其它的能量则进入了物体。在进入物体的能量中,一部分被物体吸收(吸收率α),而另一部分则因物体透明而使其发生折射,然后从物体的另一端透射出去(透射率τ)。根据能量守恒原理,这三部分的比例因子之和应当等于1,即 α+ρ+τ=1 (1-7)

相关主题
文本预览
相关文档 最新文档