当前位置:文档之家› 08讲 钢在加热、冷却时组织的转变

08讲 钢在加热、冷却时组织的转变

08讲 钢在加热、冷却时组织的转变
08讲 钢在加热、冷却时组织的转变

《机械制造技术基础》教案

教学内容:钢在加热和冷却时的组织转变

教学方式:结合实际,由浅如深讲解

教学目的:

1.掌握钢在加热时组织转变——钢的奥氏体化;

2.明确过冷奥氏体的等温转变;

3.掌握冷奥氏体连续冷却转变。

重点、难点:钢的奥氏体化过冷奥氏体的等温转变冷奥氏体连续冷却转变教学过程:

1.3 钢的热处理

热处理:采用适当的方式对金属材料或工件进行加热、保温和冷却以获得预期的组织结构与性能的工艺。

热处理的分类:

1.整体热处理:对工件整体进行穿透加热的热处理,如退火、正火、淬火、回火等。2.表面热处理:仅对表面进行热处理的工艺,如火焰淬火、感应淬火等。

3.化学热处理:将工件置于适当的活性介质中加热、保温,使一种或几种元素渗入它的表层,以改变其化学成分、组织和性能的热处理,如渗碳等。

钢的热处理过程包括加热、保温和冷却三个阶段。其主要工艺参数是加热温度、保温时间和冷却速度。

1.3.1 钢在加热和冷却时的组织转变

1.3.1.1钢在加热时组织转变

Fe-Fe3C相图相变点A1、A3、A cm是碳钢在极缓慢地加热或冷却情况下测定的。但在实际生产中,加热和冷却并不是极其缓慢的,因此,钢的实际相变点都会偏离平衡相变点。即:加热转变相变点在平衡相变点以上,而冷却转变相变点在平衡相变点以下。通常把实际加热温度标为Ac1、Ac3、Ac cm、Ar1、Ar3、Ar cm。如图6-1所示。

图6-1 钢在加热、冷却时的相变温度

钢加热到Ac1点以上时会发生珠光体向奥氏体的转变,加热到Ac3和Ac cm以上时,便全

部转变为奥氏体,这种加热转变过程称为钢的奥氏体化。

1.奥氏体的形成

珠光体转变为奥氏体是一个从新结晶的过程。由于珠光体是铁素体和渗碳体的机械混合物,铁素体与渗碳体的晶包类型不同,含碳量差别很大,转变为奥氏体必须进行晶包的改组和铁碳原子的扩散。下面以共析钢为例说明奥氏体化大致可分为四个过程,如图4-2所示。1)奥氏体形核

奥氏体的晶核上首先在铁素体和渗碳体的相界面上形成的。由于界面上的碳浓度处于中间值,原子排列也不规则,原子由于偏离平衡位置处于畸变状态而具有较高的能量。同时位错和空间密度较高铁素体和渗碳体的交接处在浓度结构和能量上为奥氏体形核提供了有利条件。

图6-2 奥氏体的形成过程

2)奥氏体长大

奥氏体一旦形成,便通过原子扩散不断张大在于铁素体接触的方向上,铁素体逐渐通过改组晶胞向奥氏提转化;在与渗碳体接触的方向上,渗碳体不断溶入奥氏体。

3)残余渗碳体溶解

由于铁素体的晶格类型和含碳量的差别都不大,因而铁素体向奥氏体的转变总是先完成。当珠光体中的铁素体全部转变为奥氏体后,仍有少量的渗碳体尚未溶解。随着保温时间的延长,这部分渗碳体不断溶入奥氏体,直至完全消失。

4)奥氏体均匀化

刚形成的奥氏体晶粒中,碳浓度是不均匀的。原先渗碳体的位置,碳浓度较高;原先属于铁素体的位置,碳浓度较低。因此,必须保温一段时间,通过碳原子的扩散获得成分均匀的奥氏体。这就是热处理应该有一个保温阶段的原因。

对于亚共析钢与过共析钢,若加热温度没有超过Ac3或Ac cm,而在稍高于Ac1停留,只能使原始组织中的珠光体转变为奥氏体,而共析铁素体或二次渗碳体仍将保留。只有进一步加热至Ac3或Ac cm以上并保温足够时间,才能得到单相的奥氏体。

2.奥氏体的晶粒度及其控制

如果加热温度过高,或者保温时间过长,将会促使奥氏体晶粒粗化。奥氏体晶粒粗化后,热处理后钢的晶粒就粗大,会降低钢的力学性能。

1)奥氏体的晶粒度及其控制

奥氏体晶粒度是指将钢加热到相变点以上某一温度,保温一段时间后,所得到的奥氏体晶粒的大小。若所获得的奥氏体晶粒细小,则冷却后转变产物的组织也细小,其强度、韧性都较高。国家标准将晶粒度级别分为12级。

不同的钢在规定的加热条件下,奥氏体晶粒长大的倾向性不同。刚形成的奥氏体晶粒都很细小,若继续升温或保温,奥氏体的晶粒便会长大。长大有良种情况:一种是随着加热温度的升高晶粒长大较快,具有这种特性的钢称为粗晶粒钢;另一种是随着加热温度的升高经理不容易长大,但加热到930℃以上时,经理将迅速长大,具有这种特性的钢称为细晶粒钢。

炼钢时,用锰铁脱氧的钢多属于粗晶粒钢,用铝脱氧的钢多属于细晶粒钢。沸腾钢是粗

晶粒钢,镇静钢是细晶粒钢。

2)奥氏体晶粒度的控制

欲使钢在热处理加热时奥氏体晶粒不粗化,必须考虑以下几个方面的因素:

(1)加热温度与保温时间:

加热温度愈高,晶粒长大速度愈快,奥氏体的晶粒也就越粗大。随着保温时间的延长,晶粒不断长大。在保证工件完全热透并获得均匀奥氏体的前提下,应尽量降低加热温度和保温时间。一般都是将钢加热到相变点以上某一适当的温度。

(2)加热速度:

加热速度愈快,过热度愈大,奥氏体形核率大于长大速度,易获得细小的起始晶粒。但需严格控制保温时间,若保温时间过长,晶粒反而更粗大。因此,生产上采用快速加热和短时间保温的方法来细化晶粒。

(3)钢的原始组织及成分:

钢的原始组织愈细,则相晶界愈多,使奥氏体晶核数量增加,有利于获得细晶粒组织。

随着奥氏体中碳的质量分数的增加,奥氏体晶粒长大的倾向性也增加。当奥氏体晶界上存在未溶化的残余渗碳体时,未溶的渗碳体有阻碍奥氏体晶粒长大的作用。

1.3.1.2 钢在冷却时的组织转变

冷却是钢热处理的三个工序中影响性能的

最重要环节,所以冷却转变是热处理的关键。

热处理冷却方式通常有两种,即等温冷却

和连续冷却。

所谓等温转变是指将奥氏体化的钢件迅速

冷却至Ar1以下某一温度并保温,使其在该温

度下发生组织转变,然后再冷却至室温,见图

6-3所示。连续冷却则是将奥氏体化的钢件连

续冷却至室温,并在连续冷却过程中发生组织

转变。图6-3 奥氏体的冷却曲线

1.过冷奥氏体的等温转变

所谓“过冷奥氏体”是指在相变温度A1以下,未发生转变而处于不稳定状态的奥氏体(A’)。在不同的过冷度下,反映过冷奥氏体转变产物与时间关系的曲线称为过冷奥氏体等温转变的曲线。由于曲线形状像字母C,故又称为C曲线。如图4-4所示。

共析钢过冷奥氏体在Ar1线以下不同温度会发生三种不同的转变,即珠光体转变、贝氏体转变和马氏体转变。

1)珠光体转变共析成分的奥氏体过冷到Ar1~550℃高温区等温停留时,将发生共析转变,转变产物为珠光体型组织,都是由铁素体和渗碳体的层片组成的机械混合物。由于过冷奥氏体向珠光体转变温度不同,珠光体中铁素体和渗碳体片厚度也不同。在Ar1~650℃范围内,片间距较大,称为珠光体(P);在650℃~600℃范围内,片间距较小,称为索氏体(S);在600℃~550℃范围内,片间距很小,称为托氏体(T)。

珠光体组织中的片间距愈小,相界面愈多,强度和硬度愈高;同时由于渗碳体变薄,使得塑性和韧性也有所改善。

2)贝氏体转变共析成分的奥氏体过冷到550℃~Ms的中温区停留时,将发生过冷奥氏体向贝氏体的转变,形成贝氏体(B)。由于过冷度较大,转变温度较低,贝氏体转变时只发生碳原子的扩散而不发生铁原子的扩散。因而,贝氏体是由于含过饱和碳的铁素体和碳化物组成的两相混合物。

按组织形态和转变温度,可将贝氏体组织分为上贝氏体(B 上)和下贝氏体(B 下)两种。上贝氏体是在550~350℃温度范围内形成的。由于脆性较高,基本无实用价值,这里不予讨论;下贝氏体是在350℃~Ms 点温度范围内形成的。它由含过饱和的细小针片状铁素体和铁素体片内弥散

分布的碳化物组成,因而,它具有较高的强度和硬度、塑性和韧性。在实际生产中常采用等温淬火来获得下贝氏体。

3)马氏体转变 当过冷奥氏体被快速冷却到Ms 点以下时,便发生马氏体转变,形成马氏体(M ),

它是奥氏体冷却转变最重要的产物。奥氏体为面心立方晶体结构。当过冷至Ms 以下时,其晶体结构将转变为体心立方晶体结构。由于转变温度较低,原奥氏体中溶解的过多碳原子没有能力进行

扩散,致使所有溶解在原奥氏体中的碳原子难以

析出,从而使晶格发生畸变,含碳量越高,畸变越大,内应力也越大。马氏体实质上就是碳溶于α-Fe 中过饱和间隙固溶体。 图6-4 共析钢过冷奥氏体等温转变曲线

马氏体的强度和硬度主要取决于马氏体的碳含量。当Wc 低于0.2%时,可获得呈一束束尺寸大体相同的平行条状马氏体,称为板条状马氏体,如图6-5a 所示。

图6-5 马氏体的显微组织示意图

当钢的组织为板条状马氏体时,具有较高的硬度和强度、较好的塑性和韧性。当马氏体中Wc 大于0.6%时,得到针片状马氏体,如图6-5b 所示。片状马氏体具有很高的硬度,但塑性和韧性很差,脆性大。当Wc 在0.2%~0.6%之间时,低温转变得到板条状马氏体与针状马氏体混合组织。随着碳含量的增加,板条状马氏体量减少而针片状马氏体量增加。

与前两种转变不同的是,马氏体转变不是等温转变,而是在一定温度范围内(Ms ~Mf )快速连续冷却完成的转变。随温度降低,马氏体量不断增加。而实际进行马氏体转变的淬火处理时,冷却只进行到室温,这时奥氏体不能全部转变为马氏体,还有少量的奥氏体未发生转变而残余下来,称为残余奥氏体。过多的残余奥氏体会降低钢的强度、硬度和耐磨性,而且因残余奥氏体为不稳定组织,在钢件使用过程中易发生转变而导致工件产生内应力,引起变形、尺寸变化,从而降低工件精度。因此,生产中常对硬度要求高或精度要求高的工件,淬火后迅速将其置于接近Mf 的温度下,促使残余奥氏体进一步转变成马氏体,这一工艺过程称为“冷处理”。

亚共析钢和过共析钢过冷奥氏体的等温转变曲线与共析钢的奥氏体等温转变曲线相比,

时间/s 温度/?C

图4-4 共析钢过冷A'等温转变图300-1000100200

400500600700800

它们的C 曲线分别多出一条先析铁素体析出线或先析渗碳体析出线。

影响过冷奥氏体等温转变的因素:

碳的影响:亚共析钢的C 曲线随着含碳量的增加而向右移,过共析钢的C 曲线随着含碳量的增加而向左移。故在碳钢中,共析钢的C 曲线最靠右,其过冷奥氏体最稳定。

合金元素的影响:所有合金元素如入奥氏体后会增加过冷奥氏体的稳定性, 使C 曲线右移。

2.过冷奥氏体连续冷却转变

在实际生产中,奥氏体的转变大多是在连续冷却过程中进行,故有必要对过冷奥氏体的连续冷却转变曲线有所了解。

它也是由实验方法测定的,它与等温转

变曲线的区别在于连续冷却转变曲线位于曲线的右下侧,且没有C 曲线的下部分,即

共析钢在连续冷却转变时,得不到贝氏体组

织。这是因为共析钢贝氏体转变的孕育期很长,当过冷奥氏体连续冷却通过贝氏体转变区内尚未发生转变时就已过冷到Ms 点而发

生马氏体转变,所以不出现贝氏体转变。 连续冷却转变曲线又称CCT 图,如图

6-6所示。图中Ps 和P f 表示A →P 的开始线和终了线,K 线表示A →P 的终止线,若冷却

曲线碰到K 线,这时A →P 转变停止,继续

冷却时奥氏体一直保持到Ms 点温度以下转变为马氏体。 图6-6 共析钢的连续冷却转变曲线

K v 称为临界冷却速度,也称为上临界冷却速度,它是获得全部马氏体组织的最小冷却速度。K v 愈小,钢在淬火时越容易获得马氏体组织,即钢接受淬火的能力愈大。

'K v 为下临界冷却速度,是保证奥氏体全部转变为珠光体的最大冷却速度。'K v 越小,则退火速度所需时间越长。

过冷奥氏体转变图的应用:

过冷奥氏体转变图是选择钢种及制订热处理工艺的基本依据之一。

(1)不同成分的钢具有不同的转变图,设计时可根据要求合理选择适用而廉价的材料。

(2)制定热处理工艺规程,选择冷却介质。

(3)估计零件在热处理条件下各部位可能得到的组织。

小结:略

作业: 1.何谓钢的热处理,常用的热处理方法有哪些?

2.以共析钢为例说明钢加热的目的及组织转变过程。

Mf 图4-6 共析钢的CCT 曲线T

S

钢连续冷却转变图CCT曲线的测定

材料加工测定

实验一钢连续冷却转变图(CCT曲线)的测定 一.实验目的 1.了解钢的连续冷却转变图的概念及其应用; 2.了解钢的连续冷却转变图的测量方法特别是热膨胀法的原理与步骤; 3.利用热模拟仪观察钢在加热及冷却中的相变并测量临界点; 4.建立钢的连续冷却转变图(CCT曲线)。 二.实验原理 当材料在加热或冷却过程中发生相变时,若高温组织及其转变产物具有不同的比容和膨胀系数,则由于相变引起的体积效应叠加在膨胀曲线上,破坏了膨胀量与温度间的线性关系,从而可以根据热膨胀曲线上所显示的变化点来确定相变温度。这种根据试样长度的变化研究材料内部组织的变化规律的称为热膨胀法(膨胀分析)。长期以来,热膨胀法已成为材料研究中常用的方法之一。通过膨胀曲线分析,可以测定相变温度和相变动力学曲线。 钢的密度与热处理所得到的显微组织有关。 钢中膨胀系数由大到小的顺序为:奥氏体〉铁素体〉珠光体〉上、下贝氏体〉马氏体;比容则相反,其顺序是:马氏体〉铁素体〉珠光体〉奥氏体〉碳化物(但铬和钒的碳化物比容大于奥氏体。从钢的热膨胀特性可知,当碳钢加热或冷却过程中发生一级相变时,钢的体积将发生突变。过冷奥氏体转变为铁素体、珠光体或马氏体时,钢的体积将膨胀;反之,钢的体积将收缩。冷却速度不同,相变温度不同。图1-1为40CrMoA钢冷却时的膨胀曲线。不同的钢有不同的热膨胀曲线。

图1-140CrMoA钢冷却时的膨胀曲线 连续钢连续冷却转变(Continuous Cooling Transformation)曲线图,简称CCT 曲线,系统地表示冷却速度对钢的相变开始点、相变进行速度和组织的影响情况。钢的一般热处理、形变热处理、热轧以及焊接等生产工艺,均是在连续冷却的状态下发生相变的。因此CCT曲线与实际生产条件相当近似,所以它是制定工艺时的有用参考资料。根据连续冷却转变曲线,可以选择最适当的工艺规范,从而得到恰好的组织,达到提高强度和塑性以及防止焊接裂纹的产生等。连续冷却转变曲线测定方法有多种,有金相法、膨胀法、磁性法、热分析法、末端淬火法等。除了最基本的金相法外,其他方法均需要用金相法进行验证。 用热模拟机可以测出不同冷速下试样的膨胀曲线。发生组织转变时,冷却曲线偏离纯冷线性收缩,曲线出现拐折,拐折的起点和终点所对应转变的温度分别是相变开始点及终止点。将各个冷速下的开始温度、结束温度和相转变量等数据综合绘在“温度-时间对数”的坐标中,即得到钢的连续冷却曲线图(如图2)。 动态热-力学模拟试验机Gleeble3500测定材料高温性能的原理如下:用主机中的变压器对被测定试样通电流,通过试样本身的电阻热加热试样,使其按设定的加热速度加热到测试温度。保温一定时间后,以一定的冷却速度进行冷却。在加热、保温和冷却过程中用径向膨胀仪测量均温区的径向位移量(即膨胀量),绘制膨胀量-温度曲线如图1-1所示,测试不同冷却速度下试样的膨胀量-温度曲线。根据膨胀量-温度曲线确定不同冷却速度下的相转变开始点和结束点,即可 绘制CCT曲线。

钢在热处理冷却时的组织转变

钢在热处理冷却时的组织转变 https://www.doczj.com/doc/408704704.html,发布:2008-6-5 16:55:08来自:模具网浏览:44 次相图只适用于缓慢冷却,而实际热处理则是以一定的冷却速度来进行的,所以出现C曲线。 一、A冷却C曲线转变温度与转变时间之间关系的曲线。 1. 等温冷却C曲线将钢急冷到临界温度以下某一温度,在此温度等温转变,在冷却过程中测绘出过冷A 等温转变图。 2.连续冷却C曲线将钢在连续冷却的条件下转变,此时测绘出的冷却 二、等温冷却C曲线 过冷A等温转变图可综合反映过冷A在不同过冷度下的等温转变过程,转变开始和终了时间,转变产物类型以及转变量与温度和时间的关系等,由于等温转变图通常呈“C”形状,所以也称C曲线,另外还称TTT 图,现以共析钢为例来说明TTT图的建立. 1.相图的建立

①把钢材制成Φ10×1.5mm的圆片试样,分成若干组 ②取一组试样,在盐炉内加热使之A化. ③将A化后的试样快速投入A1 以下某一温度的浴炉中进行等温转变 ④每隔一定时间取出一个试样急速淬入水中,而后将各试样取出制样,进行组织观察.当在显微镜下观察发现某一试样刚出现灰黑色产物时,所对应的等温时间就是A开始转变时间,到某一试样未有M出现时,所对 应的时间为转变终了时间。 共析碳钢等温转变图(C曲线) 将其余各组试样,用上述方法,分别测出不同等温条件下A转变开始和终了时间,最后将所有转变开始时间点和终了时间点标在温度、时间(对数)坐标上,并分别连接起来,即得C曲线. 2. 图形分析 3. 等T转变特点 ①过冷到A1以下的A处于不稳定状态,但不立即转变,而要经过一段时间才开始转变,称为孕育期。孕育期 越长,过冷A越稳定,反之,则越不稳定。 ②鼻点:550℃最不稳定,转变速度最快 ③C形状原因过冷度和原子扩散为两个制约因素

钢连续冷却转变图CCT曲线的测定

材料加工测定 实验一钢连续冷却转变图(CCT曲线的测定 一. 实验目的 1.了解钢的连续冷却转变图的概念及其应用; 2.了解钢的连续冷却转变图的测量方法特别是热膨胀法的原理与步骤; 3.利用热模拟仪观察钢在加热及冷却中的相变并测量临界点; 4.建立钢的连续冷却转变图(CCT曲线。 二. 实验原理 当材料在加热或冷却过程中发生相变时, 若高温组织及其转变产物具有不同的比容和膨胀系数, 则由于相变引起的体积效应叠加在膨胀曲线上, 破坏了膨胀量与温度间的线性关系, 从而可以根据热膨胀曲线上所显示的变化点来确定相变温度。这种根据试样长度的变化研究材料内部组织的变化规律的称为热膨胀法(膨胀分析。长期以来,热膨胀法已成为材料研究中常用的方法之一。通过膨 胀曲线分析,可以测定相变温度和相变动力学曲线。 钢的密度与热处理所得到的显微组织有关。 钢中膨胀系数由大到小的顺序为:奥氏体〉铁素体〉珠光体〉上、下贝氏体〉 马氏体; 比容则相反, 其顺序是:马氏体〉铁素体〉珠光体〉奥氏体〉碳化物(但铬和钒的碳化物比容大于奥氏体。从钢的热膨胀特性可知, 当碳钢加热或冷却过程中发生一级相变时, 钢的体积将发生突变。过冷奥氏体转变为铁素体、珠光体或马氏体时,钢的体积将膨胀;反之,钢的体积将收缩。冷却速度不同,相变温度不同。图1-1为40CrMoA 钢冷却时的膨胀曲线。不同的钢有不同的热膨胀曲线。 图1-140CrMoA 钢冷却时的膨胀曲线

连续钢连续冷却转变(ContinuousCooling Transformation 曲线图,简称CCT 曲线, 系统地表示冷却速度对钢的相变开始点、相变进行速度和组织的影响情况。钢的一般热处理、形变热处理、热轧以及焊接等生产工艺,均是在连续冷却的状态 下发生相变的。因此CCT 曲线与实际生产条件相当近似,所以它是制定工艺时的 有用参考资料。根据连续冷却转变曲线, 可以选择最适当的工艺规范,从而得到恰 好的组织, 达到提高强度和塑性以及防止焊接裂纹的产生等。连续冷却转变曲线 测定方法有多种, 有金相法、膨胀法、磁性法、热分析法、末端淬火法等。除了最 基本的金相法外,其他方法均需要用金相法进行验证。 用热模拟机可以测出不同冷速下试样的膨胀曲线。发生组织转变时,冷却曲线偏离纯冷线性收缩, 曲线出现拐折, 拐折的起点和终点所对应转变的温度分别是相变开始点及终止点。将各个冷速下的开始温度、结束温度和相转变量等数据综合绘在“温度-时间对数”的坐标中,即得到钢的连续冷却曲线图(如图2 。动态热- 力学模拟试验机Gleeble3500测定材料高温性能的原理如下:用主机 中的变压器对被测定试样通电流, 通过试样本身的电阻热加热试样, 使其按设定的加热速度加热到测试温度。保温一定时间后, 以一定的冷却速度进行冷却。在加热、保温和冷却过程中用径向膨胀仪测量均温区的径向位移量(即膨胀量,绘制膨胀量-温度曲线如图1-1所示,测试不同冷却速度下试样的膨胀量-温度曲线。根据膨胀量-温度曲线确定不同冷却速度下的相转变开始点和结束点,即可绘制CCT曲线。

08讲 钢在加热、冷却时组织的转变

《机械制造技术基础》教案 教学内容:钢在加热和冷却时的组织转变 教学方式:结合实际,由浅如深讲解 教学目的: 1.掌握钢在加热时组织转变——钢的奥氏体化; 2.明确过冷奥氏体的等温转变; 3.掌握冷奥氏体连续冷却转变。 重点、难点:钢的奥氏体化过冷奥氏体的等温转变冷奥氏体连续冷却转变教学过程: 1.3 钢的热处理 热处理:采用适当的方式对金属材料或工件进行加热、保温和冷却以获得预期的组织结构与性能的工艺。 热处理的分类: 1.整体热处理:对工件整体进行穿透加热的热处理,如退火、正火、淬火、回火等。2.表面热处理:仅对表面进行热处理的工艺,如火焰淬火、感应淬火等。 3.化学热处理:将工件置于适当的活性介质中加热、保温,使一种或几种元素渗入它的表层,以改变其化学成分、组织和性能的热处理,如渗碳等。 钢的热处理过程包括加热、保温和冷却三个阶段。其主要工艺参数是加热温度、保温时间和冷却速度。 1.3.1 钢在加热和冷却时的组织转变 1.3.1.1钢在加热时组织转变 Fe-Fe3C相图相变点A1、A3、A cm是碳钢在极缓慢地加热或冷却情况下测定的。但在实际生产中,加热和冷却并不是极其缓慢的,因此,钢的实际相变点都会偏离平衡相变点。即:加热转变相变点在平衡相变点以上,而冷却转变相变点在平衡相变点以下。通常把实际加热温度标为Ac1、Ac3、Ac cm、Ar1、Ar3、Ar cm。如图6-1所示。 图6-1 钢在加热、冷却时的相变温度 钢加热到Ac1点以上时会发生珠光体向奥氏体的转变,加热到Ac3和Ac cm以上时,便全

部转变为奥氏体,这种加热转变过程称为钢的奥氏体化。 1.奥氏体的形成 珠光体转变为奥氏体是一个从新结晶的过程。由于珠光体是铁素体和渗碳体的机械混合物,铁素体与渗碳体的晶包类型不同,含碳量差别很大,转变为奥氏体必须进行晶包的改组和铁碳原子的扩散。下面以共析钢为例说明奥氏体化大致可分为四个过程,如图4-2所示。1)奥氏体形核 奥氏体的晶核上首先在铁素体和渗碳体的相界面上形成的。由于界面上的碳浓度处于中间值,原子排列也不规则,原子由于偏离平衡位置处于畸变状态而具有较高的能量。同时位错和空间密度较高铁素体和渗碳体的交接处在浓度结构和能量上为奥氏体形核提供了有利条件。 图6-2 奥氏体的形成过程 2)奥氏体长大 奥氏体一旦形成,便通过原子扩散不断张大在于铁素体接触的方向上,铁素体逐渐通过改组晶胞向奥氏提转化;在与渗碳体接触的方向上,渗碳体不断溶入奥氏体。 3)残余渗碳体溶解 由于铁素体的晶格类型和含碳量的差别都不大,因而铁素体向奥氏体的转变总是先完成。当珠光体中的铁素体全部转变为奥氏体后,仍有少量的渗碳体尚未溶解。随着保温时间的延长,这部分渗碳体不断溶入奥氏体,直至完全消失。 4)奥氏体均匀化 刚形成的奥氏体晶粒中,碳浓度是不均匀的。原先渗碳体的位置,碳浓度较高;原先属于铁素体的位置,碳浓度较低。因此,必须保温一段时间,通过碳原子的扩散获得成分均匀的奥氏体。这就是热处理应该有一个保温阶段的原因。 对于亚共析钢与过共析钢,若加热温度没有超过Ac3或Ac cm,而在稍高于Ac1停留,只能使原始组织中的珠光体转变为奥氏体,而共析铁素体或二次渗碳体仍将保留。只有进一步加热至Ac3或Ac cm以上并保温足够时间,才能得到单相的奥氏体。 2.奥氏体的晶粒度及其控制 如果加热温度过高,或者保温时间过长,将会促使奥氏体晶粒粗化。奥氏体晶粒粗化后,热处理后钢的晶粒就粗大,会降低钢的力学性能。 1)奥氏体的晶粒度及其控制 奥氏体晶粒度是指将钢加热到相变点以上某一温度,保温一段时间后,所得到的奥氏体晶粒的大小。若所获得的奥氏体晶粒细小,则冷却后转变产物的组织也细小,其强度、韧性都较高。国家标准将晶粒度级别分为12级。 不同的钢在规定的加热条件下,奥氏体晶粒长大的倾向性不同。刚形成的奥氏体晶粒都很细小,若继续升温或保温,奥氏体的晶粒便会长大。长大有良种情况:一种是随着加热温度的升高晶粒长大较快,具有这种特性的钢称为粗晶粒钢;另一种是随着加热温度的升高经理不容易长大,但加热到930℃以上时,经理将迅速长大,具有这种特性的钢称为细晶粒钢。 炼钢时,用锰铁脱氧的钢多属于粗晶粒钢,用铝脱氧的钢多属于细晶粒钢。沸腾钢是粗

淬火钢在回火时的组织转变

§6淬火钢在回火时的组织转变 概述: 一、回火定义:经淬火硬化的钢被加热至A1以下的某一温度,保温一段时间,然后以适当 的冷速冷却至室温,这一工艺过程称回火 二、回火的目的 1.消除淬火应力,淬火应力(组织应力、热应力)>ζs变形,>ζb时引起裂纹,残余应 力使钢的脆性上升 2.改善钢的韧性和塑性,使片状M中的Sv↓,使M正方度下降,内应力↓(晶格间)↓ 3.调整钢的力性指标 4.稳定组织,稳定尺寸,使A R→k;A R→M→M回→B下 §6-1碳钢的淬火组织在回火时发生的转变 钢中含碳量不同时,钢在淬火后的组织也不尽相同 当<0.2﹪C,获得板条M+少量A R 0.2-0.5﹪C 大部分为板条,少量为片状 0.6-1.0﹪C 混合M 错误!未找到引用源。0.77﹪C M板+M片+A R错误!未找到引用源。>0.8﹪C 75﹪M片+M板+A R >1.0﹪C 100M片+A R 淬火组织为亚稳定组织,及相对稳定状态 亚稳状态,一个系统内除可以出现一个稳定状态外,其他任何事件还可能发生,这种状态称之为亚稳状态,它是系统本身强制作用形成的,在一定条件下可转变为稳定状态 淬火钢被重新加热(回火)时,随加热温度升高,其比容和体积均发生变化,说明系统有组织转变发生,而且不同温度阶段有不同变化发生,这是钢从亚温状态向稳定状态变化的过程一、碳原子的偏聚 淬火时M的C、N原子被强制溶入α相中,位于体心立方点阵(或体心正方点阵)的扁八面体间隙中心位置,使α点阵畸变,使系统的能量上升,而处于不稳定状态 另一方面淬火M中存在大量的缺陷,也使其处于不稳定状态 在室温附近,Me和Fe原子已经不能扩散,但C、N原子尚可以做短距离扩散,计算表明在0℃时,在一分钟内C、N可以迁移2埃的距离 由于间隙造成的应力场与晶体缺陷造成的应力场相互作用,C、N原子扩散到这些微观晶体缺陷处,可是系统的能量降低——C、N原子发生偏聚 偏聚,M中的C、N原子在一定的温度下向点阵缺陷处聚积的过程,成为C、N原子的偏聚,偏聚过程是一个自发过程,可以表示为C+⊥<=>C⊥它是可逆过程,过程的方向取决于当时的系统能量状态 1.板条M中碳原子的偏聚 错误!未找到引用源。发生温度范围,室温——250℃,约在250℃基本完成,碳原子有相

第六章钢的热处理钢在冷却时的组织转变

第六章钢的热处理 第二节钢在冷却时的组织转变 等温冷却是奥氏体至高温快速冷至临界点________以下某一温度,保温后再冷至室温。 A.A3 B.A m C.A1 D.A cm 临界温度以上的奥氏体是稳定相,临界温度以下的则为不稳定相,所以把暂存于临界点以下的奥氏体称为________。 A.奥氏体 B.实际奥氏体 C.残余奥氏体 D.过冷奥氏体 共析钢加热到奥氏体化后,以不同的冷却方式冷却,可以获得________。A.三种组织 B.四种组织 C.五种组织 D.六种组织 过冷奥氏体的等温冷却转变过程中,转变起始线与转变终了线之间的产物均含有________。 A.过冷奥氏体 B.P C.S D.M 在过冷奥氏体向马氏体的转变过程中,下列说法正确的是________。 A.铁、碳原子均不发生扩散 B.是典型的扩散型相变 C.铁原子发生一定短距离的扩散,而碳原子则完全不能扩散 D.碳原子发生一定短距离的扩散,而铁原子则完全不能扩散 在过冷奥氏体向贝氏体的转变过程中,下列说法正确的是________。 A.铁、碳原子均不发生扩散 B.是典型的扩散型相变 C.铁原子发生一定短距离的扩散,而碳原子则不能扩散 D.碳原子发生一定短距离的扩散,而铁原子则不能扩散 在过冷奥氏体向珠光体的转变过程中,下列说法正确的是________。 A.铁、碳原子均不发生扩散 B.是典型的扩散型相变

C.铁原子发生一定短距离的扩散,而碳原子则完全不能扩散 D.碳原子发生一定短距离的扩散,而铁原子则完全不能扩散 在共析钢的珠光体等温转变区,________,则形成的________。 A.等温转变温度越低/珠光体组织片层越粗 B.等温转变温度越低/珠光体组织片层越细 C.等温转变温度越高/珠光体组织片层越薄 D.等温转变温度越高/珠光体组织片层越细 共析钢等温转变曲线上,当过冷度较小时,奥氏体将转变成________。A.珠光体组织 B.索氏体组织 C.屈氏体组织 D.贝氏体组织 在等温冷却转变曲线上,过冷奥氏体在高温区的转变产物是________。A.F B.A C.P D.M 索氏体是铁素体与渗碳体的________状的机械混合物。 A.粗片 B.细片 C.极细片 D.蠕虫 珠光体类型组织有________。 Ⅰ.P;Ⅱ.S;Ⅲ.T;Ⅳ.B;Ⅴ.M。 A.Ⅰ+Ⅱ+Ⅴ B.Ⅰ+Ⅲ+Ⅳ C.Ⅱ+Ⅲ+Ⅴ D.Ⅰ+Ⅱ+Ⅲ 屈氏体是铁素体与渗碳体的________状的机械混合物。 A.粗片 B.细片 C.极细片 D.蠕虫 珠光体是铁素体与渗碳体的________状的机械混合物。 A.粗片 B.细片 C.极细片

钢的热处理要点

1.3钢的热处理 钢的热处理是指将钢在固态下进行加热、保温和冷却,以改变其内部组织,从而获得所需要性能的一种工艺方法。 热处理的目的是提高工件的使用性能和寿命。还可以作为消除毛坯(如铸件、锻件等)中缺陷,改善其工艺性能,为后续工序作组织准备。 钢的热处理种类很多,根据加热和冷却方法不同,大致分类如下: 1.3.1 钢在加热时的组织转变 在Fe-Fe3C相图中,共析钢加热超过PSK线(A1)时,其组织完全转变为奥氏体。亚共析钢和过共析钢必须加热到GS线(A3)和ES线(Acm)以上才能全部转变为奥氏体。相图中的平衡临界点A1、A3、Acm是碳钢在极缓慢地加热或冷却情况下测定的。但在实际生产中,加热和冷却并不是极其缓慢的。加热转变在平衡临界点以上进行,冷却转变在平衡临界点以下进行。加热和冷却速度越大,其偏离平衡临界点也越大。为了区别于平衡临界点,通常将实际加热时各临界点标为Ac1、Ac3、Accm;实际冷却时各临界点标为Ar1、Ar3、Arcm, 任何成分的碳钢加热到相变点Ac1以上都会发生珠光体向奥氏体转变,通常把这种转变过程称为奥氏体化。 1.奥氏体的形成 共析钢加热到Ac1以上由珠光体全部转变为奥氏体 第一阶段是奥氏体的形核与长大,第二阶段是剩余渗碳体的溶解,第三阶段是奥氏体成分均匀化。 亚共析钢和过共析钢的奥氏体形成过程与共析钢基本相同,不同处在于亚共析钢、过共析钢在Ac1稍上温度时,还分别有铁素体、二次渗碳体未变化。所以,它们的完全奥氏体化温度应分别为Ac3、Accm以上。 2.奥氏体晶粒的长大及影响因素 钢在加热时,奥氏体的晶粒大小直接影响到热处理后钢的性能。加热时奥氏体晶粒细小,冷却后组织也细小;反之,组织则粗大。钢材晶粒细化,既能有效地提高强度,又能明显提高塑性和韧性,这是其它强化方法所不及的。 (1)奥氏体晶粒度 晶粒度是表示晶粒大小的一种量度。 (2)、影响奥氏体晶粒度的因素 1)加热温度和保温时间:

钢在加热及冷却时的组织转变

一、钢在加热时的组织转变 1.钢在加热和冷却时的相变温度 钢在固态下进行加热、保温和冷却时将发生组织转变,转变临界点根据Fe-Fe 3 C 相图确定。 平衡状态下:当钢在缓慢加热或冷却时,其固态下的临界点分别用Fe-Fe 3 C相图 中的平衡线A 1(PSK线)、A 3 (GS线)、A cm (ES线)表示。 实际加热和冷却时:发生组织转变的临界点都要偏离平衡临界点,并且加热和冷却速度越快,其偏离的程度越大。 实际加热时——临界点分别用Ac 1、Ac 3 、Ac cm 表示 实际冷却时——临界点分别用Ar 1、Ar 3 、Ar cm 表示 钢热处理加热的目的是获得部分或全部奥氏体,组织向奥氏体转变的过程称奥氏体化。 加热至Ac 1 以上时:首先由珠光体转变成奥氏体(P → A); 加热至Ac 3 以上时:亚共析钢中的铁素体将转变为奥体(F → A); 加热至Ac cm 以上时:过共析钢中的二次渗碳体将转变成奥氏体(Fe 3 C I → A)

2.奥氏体的形成 钢在加热时的组织转变,主要包括奥氏体的形成和晶粒长大两个过程。

共析钢奥氏体化:热处理加热至Ac1以上时,将全部奥氏体化 亚共析钢奥氏体化:原始组织为F+P,加热至Ac1以上时,P先奥氏体化,组织部分奥氏体化;加热至Ac3以上时,F奥氏体化,组织全部奥氏体化过共析钢奥氏体化:原始组织为P+Fe3C,加热至Ac1以上时,P先奥氏体化,组织部分奥氏体化;加热至Acm以上时,Fe3C奥氏体化,组织全部奥氏体化 2、奥氏体的晶粒大小 奥氏体晶粒对性能影响:奥氏体的晶粒越细小、均匀,冷却后的室温组织越细密,其强度、塑性和韧性比较高。 [奥氏体的晶粒度]:晶粒度是指多晶体内晶粒的大小,可以用晶粒号、晶粒平均直径、单位面积或单位体积内晶粒的数目来表示。GB/T8493-1987将奥氏体晶粒分为8个等级,其中1~4级为粗晶粒;5~8级为细晶粒。 [本质粗晶粒钢]:热处理时随加热温度的升高,奥氏体晶粒迅速长大的钢。 [本质细晶粒钢]:热处理时随加热温度的升高,奥氏体晶粒不易长大的钢。一般完全脱氧的镇静钢、含碳化物元素和氮化物元素的合金钢为本质细晶粒钢。 3、影响奥氏体晶粒大小的主要因素 热处理工艺参数:加热速度、加热温度、保温时间,其中加热温度对奥氏体晶粒大小的影响最为显著。 钢的化学成分:大多数合金元素(锰和磷除外)均能不同程度地阻止奥氏体晶粒的长大,特别是与碳结合能力较强的碳化物形成元素(如铬、钼、钨、钒等)及氮化

钢在冷却时的转变

1/1 钢在冷却时的组织转变常识钢进行热处理冷却的目的是获得所需要的组织和性能,这需要通过采用不同冷却方式来实现。冷却方式不同转变的组织也不同,性能差异较大。奥氏体冷却至A1以下温度时将发生组织转变(A1温度以下还存在的不稳定奥氏体通常称过冷奥氏体)。钢的冷却方式分为等温冷却和连续冷却。 等温冷却的组织转变形式 1.奥氏体的等温转变对过冷奥氏体(即:奥氏体在A1线以上是稳定相,当冷却到A1线以下还未转变 的奥氏体)经过一段时间的等温保持后转变为稳定的新相。这种转变过程就称为奥氏体的等温转变。 2.等温冷却转变钢经奥氏体化后迅速冷却至临界点Ar1或Ar3)线以下,等温保持时过冷奥氏体发生的转 变。 等温冷却的组织转变产物与性能 1.A1~550℃也称高温转变,获片状珠光体型(F+P)组织,按转变温度由高到低的顺序,转变产物分别 为珠光体、索氏体、托氏体;片层间距由粗到细,趋势是:片层间距越小,塑性变形阻力越大,强度和硬度越高 1)A1~650℃获粗片状珠光体金相组织 2)650~600℃获细片状索氏体金相组织 3)600~550℃获极其细片状的托氏体金相组织 2.550℃~M S 也称中温转变,获贝氏体型组织(过饱和的铁素体和碳化物组成,有上贝氏体和下贝氏体之 分。) 1)550~350℃获羽毛状上贝氏体金相组织 2)550℃~M S获黑色针状下贝氏体金相组织(这种组织强度和韧性都较高) 3.M S线温度以下连续冷却时,过冷奥氏体发生转变获得马氏体组织,马氏体内的含碳量决定着马氏体的强 度和硬度,总的趋势是随着马氏体含碳量的提高,强度与硬度也随之提高;高碳马氏体硬度高、脆性大,而低碳马氏体具有良好的强度和韧性。 连续冷却的组织转变过冷奥氏体在一个温度范围内,随温度连续下降发生组织转变。连续冷却有炉冷、空冷、油冷、水冷四种最为常用的连续冷却方式 1)炉冷冷速约10℃/min,产生新相为珠光体,如退火的冷却 2)空冷冷速约10℃/s,产生新相为索氏体,如正火的冷却 3)油冷冷速约150℃/s,产生新相为托氏体+马氏体,如油淬 4)水冷冷速约600℃/s,产生新相为残余奥氏体+马氏体,如水淬(残余奥氏体的存在降低了淬火 钢的硬度和耐磨性,也会因零件在使用过程中残余奥氏体会继续转变为马氏体,从而使工件变形; 一些重要精密的零件通常会通过把淬火后的工件冷却到室温以下并继续冷却到-80~-50℃来减少残余奥氏体含量的存在)。

第二节 钢在热处理加热和冷却时的组织转变

第二节钢在热处理加热和冷却时的组织转变 在热处理过程中,由于加热、保温和冷却方式的不同,可以使钢发生不同的组织转变,从而可根据实际需要获得不同的性能。 加热转变、冷却转变(等温冷却转变、连续冷却转变) 一、钢在热处理加热与保温时的组织转变 ——钢热处理加热的目的是获得部分或全部奥氏体,组织向奥氏体转变的过程称奥氏体化。 加热至Ac1以上时:首先由珠光体转变成奥氏体(P→A); 加热至Ac3以上时:亚共析钢中的铁素体将转变为奥体(F→A); 加热至Ac cm以上时:过共析钢中的二次渗碳体将转变成奥氏体(Fe3C I→A) 1、奥氏体的形成过程 共析钢奥氏体化:热处理加热至Ac1以上时,将全部奥氏体化,过程如下图。 亚共析钢奥氏体化:原始组织为F+P,加热至Ac1以上时,P先奥氏体化,组织部分奥氏体化;加热至Ac3以上时,F奥氏体化,组织全部奥氏体化 过共析钢奥氏体化:原始组织为P+Fe3C,加热至Ac1以上时,P先奥氏体化,组织部分奥氏体化;加热至Ac m以上时,Fe3C奥氏体化,组织全部奥氏体化

2、奥氏体的晶粒大小 奥氏体晶粒对性能影响:奥氏体的晶粒越细小、均匀,冷却后的室温组织越细密,其强度、塑性和韧性比较高。 [奥氏体的晶粒度]:晶粒度是指多晶体内晶粒的大小,可以用晶粒号、晶粒平均直径、单位面积或单位体积内晶粒的数目来表示。GB/T8493-1987将奥氏体晶粒分为8个等级,其中1~4级为粗晶粒;5~8级为细晶粒。 [本质粗晶粒钢]:热处理时随加热温度的升高,奥氏体晶粒迅速长大的钢。 [本质细晶粒钢]:热处理时随加热温度的升高,奥氏体晶粒不易长大的钢。一般完全脱氧的镇静钢、含碳化物元素和氮化物元素的合金钢为本质细晶粒钢。 3、影响奥氏体晶粒大小的主要因素 热处理工艺参数:加热速度、加热温度越、保温时间,其中加热温度对奥氏体晶粒大小的影响最为显著。 钢的化学成分:大多数合金元素(锰和磷除外)均能不同程度地阻止奥氏体晶粒的长大,特别是与碳结合能力较强的碳化物形成元素(如铬、钼、钨、钒等)及氮化物元素(如铌、钒、钛等),会形成难熔的碳化物和氮化物颗粒,弥散分布于奥氏体晶界上,阻碍奥氏体晶粒的长大。因此,大多数合金钢、本质细晶粒钢加热时奥氏体的晶粒一般较细。 原始组织:钢的原始晶粒越细,热处理加热后的奥氏体的晶粒越细。

第五章钢在冷却时的转变 2

编号:QMSD/JWC-13-10 江苏省技工学校教案首页 课题§5-2钢在冷却时的转变 教学目的、要求: 了解钢在冷却时的组织转变 教学重点、难点: 过冷奥氏体的等温转变。 授课方法:讲解、练习 教学参考及教具(含电教设备):挂图、配套教参、电子教案 授课执行情况及分析:2教时 本节内容学生不易理解,还需讲解得更浅显、形象 板书设计或授课提纲

【导入】 复习1、热处理概念2、钢的热处理方法 3、热处理工艺 【新授】§5-2 钢在冷却时的转变 钢经加热获得奥氏体组织后,在不同的冷却条件下冷却,可使钢获得不同的力学性能。 在热处理工艺中,常采用等温转变和连续冷 却转变两种冷却方式。其工艺曲线如图6-5所示。 等温转变是将奥氏体化的钢迅速冷却到A l以下某一 温度保温,使奥氏体在此温度发生组织转变,如图 6-5曲线2。连续冷却转变是将奥氏体化的钢从高温 冷却到室温,让奥氏体在连续冷却条件下发生组织 转变,如图6-5曲线1。 一、过冷奥氏体的等温转变 在共析温度以下存在的奥氏体称为过冷奥氏体。 表示过冷奥氏体的转变温度、转变时间与转 变产物之间的关系曲线图称为等温转变图。 等温转变图的建立 奥氏体等温转变图是用实验方法建立的。 下面以共析钢为例来说明等温转变图的建立。 测出过冷奥氏体等温转变开始和终了的时间,把它们记在时间-温度的坐标图上,然后分别连接各开始转变点(a点)和转变终了点(b点),得到如图6-6所示的曲线图,这一曲线图称为奥氏体等温转变图。亦称为C曲线。 在等温转变图的下方有两条水平线,Ms线为过冷奥氏体向马氏体转变的开始线,约230℃;M f线为过冷奥氏体向马氏体转变终了线,约-5O℃。在C曲线拐弯处(约550℃,俗称“鼻尖”)孕育期最短,此时奥氏体最不稳定,最容易分解。 过冷奥氏体等温转变产物的组织和性能 在Ms点以上,可发生以下两种类型的转变: 珠光体型转变

钢在加热时的组织转变

科目金属材料与热处理备课教师王春青 课题钢在加热时的组织转变授课时间2012.9.12 教学目标1、了解钢在加热及冷却时的组织转变 2、了解过奥氏体不同温度转变产物的组织和性能 学生问题 预测 讲述,视频演示 教学手段 与方法 无 教学重点 与难点 视频资料教材 教具、材 料准备 板书设计热处理 原理 分类 方法 课堂小结温度,含碳量的不同在钢的加热和冷却过程中有着很重要的作用 课后作业习题册习题 教学反思本节内容比较简单,通过举例,激发学生的学习兴趣,教学效果显著,学生学习热情高涨。收到了良好的教学效果。

教学过程说明及时间安排在热处理工艺中,钢加热的目的是为了获得奥氏体。 一、钢的奥氏体化 1、奥氏体晶核的形成及长大 奥氏体的晶核易于在渗碳体相界面上形成。这是因为在 两相的相界上为形核提供了良好的条件 2、残余渗碳件的溶解 在奥氏体形成过程中,铁素体比渗碳体先消失,因此奥氏体形成之 后,还残存未溶渗碳体。这部分未溶的残余渗碳体将随着时间 的延长,继续不断地融入奥氏体,直至全部消失。; 3、奥氏体的均匀化 渗碳体完全溶解后奥氏体中碳的浓度分布并不均匀,原先是渗碳 体地方碳浓度高,原先铁素体的地方碳浓度低。必须继续保温,通过 碳的扩散,使奥氏体成分均匀化。 在热处理工艺中,钢保温的目的是: ①、为了使工件热透;②、使组织转变完全;③、使奥氏体成分 均匀。 二、奥氏体晶粒的长大: 加热温度越高,保温时间越长,奥氏体晶粒越大 钢在冷却时的转变影响奥氏体转变的因素 1.加热温度和加热速度的影响 提高加热温度,将加速A的形成。 随着加热速度的增加,奥氏体形成温度升高(A C1 越高),形成 所需的时间缩短。 2.化学成分的影响 随着钢中含碳量增加,铁素体核渗碳体相界面总量增多,有利 于奥氏体的形成。 3.原始组织的影响 由于奥氏体的晶核是在铁素体和渗碳体的相界面上形 成,所以原始组织越细,相界面越多,形成奥氏体晶核的"基地"越 多,奥氏体转变就越快。

钢铁加热组织转变

加热时奥氏体的形成过程 钢的热处理多数需要先加热得到奥氏体,然后以不同速度冷却使奥氏体转变为不同的组织,得到钢的不同性能。因此掌握热处理规律,首先要研究钢在加热时的变化。一、加热时奥氏体的形成过程1.共析钢的加热转变 从铁碳相图中看到,钢加热到 727℃(状态图的PSK线,又称A1温度)以上的温度珠光体转变为奥氏体。这个加热速度十分缓慢,实际热处理的加热速度均高于这个缓慢加热速度,实际珠光体转变为奥氏体的温度高于A1,定义实际转变温度为Ac1。Ac1 高于A1,表明出现热滞后,加热速度愈快,Ac1愈高,同时完成珠光体向奥氏体转变的时间亦愈短。 共析碳钢(含0.77%C)加热前为珠光体组织,一般为铁素体相与渗碳体相相间排列 层片状组织,加热过程中奥氏体转变过程可分为四步进行,如图6-2示。 第一阶段:奥氏体晶核的形成。由Fe-Fe3C状态图知:在A1温度铁素体含约0.0218%C,渗碳体含6.69%C,奥氏体含0.77%C。在珠光体转变为奥氏体过程中,原铁素体由体心立方晶格改组为奥氏体的面心立方晶格,原渗碳体由复杂斜方晶格转变为面心立方晶格。所以,钢的加热转变既有碳原子的扩散,也有晶体结构的变化。基于能量与成分条件,奥氏体晶核在珠光体的铁素体与渗碳体两相交界处产生(见图6-2(a)), 这两相交界面越多,奥氏体晶核越多。第二阶段:奥氏体的长大。奥氏体晶核形成后, 它的一侧与渗碳体相接,另一侧与铁素体相接。随着铁素体的转变(铁素体区域的缩小),以及渗碳体的溶解(渗碳体区域缩小),奥氏体不断向其两侧的原铁素体区域 及渗碳体区域扩展长大,直至铁素体完全消失,奥氏体彼此相遇,形成一个个的奥氏体晶粒。

相关主题
文本预览
相关文档 最新文档