当前位置:文档之家› 实验一 二极管特性的研究

实验一 二极管特性的研究

实验一  二极管特性的研究
实验一  二极管特性的研究

实验一二极管特性的研究

一.题目

研究二极管对直流量和交流量表现的不同特点。

二.仿真电路

仿真电路如图所示。

因为只有在低频小信号下二极管才能等效成一个电阻,所以图中交流信号的频率为1kHz,数值为10Mv(有效值)。由于交流信号很小,输出电压不失真,故可以认为直流电压表(测平均值)的读数是电阻上直流电压值。

三.仿真内容

(1)在直流电流不同时二极管管压降的变化。利用直流电压表测电阻上电压,从而得到二极管管压降。

(2)在直流电流不同时二极管交流等效电阻的变化。利用示波器测得电阻上交流电压的峰值,从而得到二极管交流电压的峰值。

四.仿真结果

仿真结果如图所示,表中交流电压均为峰值。

仿真数据

五.结论

(1)比较直流电源在1V和4V两种情况下二极管的直流管压降可知,二极管的直流电流越大,管压降越大,直流管压降不是常量。

(2)比较直流电源在1V和4V两种情况下二极管的交流管压降可知,二极管的直流电流越

大,其交流管压降越小,说明随着静态电流的增大,动态电阻将减小;两种情况下电阻的交

流压降均接近输入交流压降均接近输入交流电压值,说明二极管的动态电阻很小。

光敏二极管和光敏三极管区别

光敏二极管和光敏三极管简介及应用 光敏二极管和光敏三极管是光电转换半导体器件,与光敏电阻器相比具有灵敏度高、高频性能好,可靠性好、体积小、使用方便等优。 一、光敏二极管 1.结构特点与符号 光敏二极管和普通二极管相比虽然都属于单向导电的非线 性半导体器件,但在结构上有其特殊的地方。 光敏二极管在电路中的符号如图Z0129 所示。光敏二极管 使用时要反向接入电路中,即正极接电源负极,负极接电 源正极。 2.光电转换原理 根据PN结反向特性可知,在一定反向电压范围内,反向电 流很小且处于饱和状态。此时,如果无光照射PN结,则因 本征激发产生的电子-空穴对数量有限,反向饱和电流保持不变,在光敏二极管中称为暗电流。当有光照射PN结时,结内将产生附加的大量电子空穴对(称之为光生载流子),使流过PN结的电流随着光照强度的增加而剧增,此时的反向电流称为光电流。不同波长的光(兰光、红光、红外光)在光敏二极管的不同区域被吸收形成光电流。被表面P型扩散层所吸收的主要是波长较短的兰光,在这一区域,因光照产生的光生载流子(电子),一旦漂移到耗尽层界面, 就会在结电场作用下,被拉向N区,形成部分光电流;彼长较长的红光,将透过P型层在耗尽层激发出电子一空穴对,这些新生的电子和空穴载流子也会在结电场作用下,分别到达N区和P 区,形成光电流。波长更长的红外光,将透过P型层和耗尽层,直接被N区吸收。在N区内因光照产生的光生载流子(空穴)一旦漂移到耗尽区界面,就会在结电场作用下被拉向P区,形成光电流。因此,光照射时,流过PN结的光电流应是三部分光电流之和。 二、光敏三极管 光敏三极管和普通三极管的结构相 类似。不同之处是光敏三极管必须 有一个对光敏感的PN结作为感光 面,一般用集电结作为受光结,因 此,光敏二极管实质上是一种相当 于在基极和集电极之间接有光敏二 极管的普通二极管。其结构及符号 如图Z0130所示。 三、光敏二极管的两种工作状态 光敏二极管又称光电二极管,它是 一种光电转换器件,其基本原理是 光照到P-N结上时,吸收光能并转变为电能。它具有两种工作状态:

二极管特性

二极管伏安特性曲线的研究 一、实验目的 通过对二极管伏安特性的测试,掌握锗二极管和硅二极管的非线性特点,从而为以后正确设计使用这些器件打下技术基础。 二、伏安特性描述 对二极管施加正向偏置电压时,则二极管中就有正向电流通过(多数载流子导电),随着正向偏置电压的增加,开始时,电流随电压变化很缓慢,而当正向偏置电压增至接近二极管导通电压时(锗管为0.2V左右,硅管为0.7V左右),电流急剧增加,二极管导通后,电压的少许变化,电流的变化都很大。 对上述二种器件施加反向偏置电压时,二极管处于截止状态,其反向电压增加至该二极管的击穿电压时,电流猛增,二极管被击穿,在二极管使用中应竭力避免出现击穿观察,这很容易造成二极管的永久性损坏。所以在做二极管反向特性时,应串入限流电阻,以防因反向电流过大而损坏二极管。 二极管伏安特性示意图1-1,1-2 图1-1锗二极管伏安特性图1-2硅二极管伏安特性 三、实验设计 图1-3 二极管反向特性测试电路 1、反向特性测试电路 二极管的反向电阻值很大,采用电流表内接测试电路可以减少测量误差。测试电路如图1-3,电阻选择510Ω

2、正向特性测试电路 二极管在正向导道时,呈现的电阻值较小,拟采用电流表外接测试电路。电源电压在0~10V内调节,变阻器开始设置470Ω,调节电源电压,以得到所需电流值。 图1-4 二极管正向特性测试电路 四、数据记录 见表1-1、1-2 表1-1 反向伏安曲线测试数据表 表1-2 正向伏安曲线测试数据表 注意:实验时二极管正向电流不得超过20mA。 五、实验讨论 1、二极管反向电阻和正向电阻差异如此大,其物理原理是什么? 2、在制定表1-2时,考虑到二极管正向特性严重非线性,电阻值变化范围很大,在表1-2中加一项“电阻修正值”栏,与电阻直算值比较,讨论其误差产生过程。

APD光电二极管特性测试实验

APD光电二极管特性测试实验 一、实验目的 1、学习掌握APD光电二极管的工作原理 2、学习掌握APD光电二极管的基本特性 3、掌握APD光电二极管特性测试方法 4、了解APD光电二极管的基本应用 二、实验内容 1、APD光电二极管暗电流测试实验 2、APD光电二极管光电流测试实验 3、APD光电二极管伏安特性测试实验 4、APD光电二极管雪崩电压测试实验 5、APD光电二极管光电特性测试实验 6、APD光电二极管时间响应特性测试实验 7、APD光电二极管光谱特性测试实验 三、实验仪器 1、光电探测综合实验仪 1个 2、光通路组件 1套 3、光照度计 1台 4、光敏电阻及封装组件 1套 5、2#迭插头对(红色,50cm) 10根 6、2#迭插头对(黑色,50cm) 10根 7、三相电源线 1根 8、实验指导书 1本 9、示波器 1台 四、实验原理 雪崩光电二极管APD—Avalanche Photodiode是具有内部增益的光检测器,它可以用来检测微弱光信号并获得较大的输出光电流。 雪崩光电二极管能够获得内部增益是基于碰撞电离效应。当PN结上加高的反偏压时,耗尽层的电场很强,光生载流子经过时就会被电场加速,当电场强度足够高(约3x105V/cm)时,光生载流子获得很大的动能,它们在高速运动中与半导体晶格碰撞,使晶体中的原子电离,从而激发出新的电子一空穴对,这种现象称为碰撞电离。碰撞电离产生的电子一空穴对在强电场作用下同样又被加速,重复前一过程,这样多次碰撞电离的结果使载流子迅速增加,电流也迅速增大,这个物理过程称为雪崩倍增效应。 图6-1为APD的一种结构。外侧与电极接触的P区和N区都进行了重掺杂,分别以P+和N+表示;在I区和N+区中间是宽度较窄的另一层P区。APD工作在大的反偏压下,当反偏压加大到某一值后,耗尽层从N+-P结区一直扩展(或称拉通)到P+区,包括了中间的P层区和I区。图4的结构为拉通型APD的结构。从图中可以看到,电场在I区分布较弱,而在N+-P区分布较强,碰撞电离区即雪崩区就在N+-P区。尽管I区的电场比N+-P区低得多,但也足够高(可达2x104V/cm),可以保证载流子达到饱和漂移速度。当入射光照射时,由于雪

光敏二极管

光敏二极管(光电二极管)基础知识 什么光敏二极管光敏二极管工作原理 光电二极管是将光信号变成电信号的半导体器件。它的核心部分也是一个PN结,和普通二极管相比,在结构上不同的是,为了便于接受入射光照,PN结面积尽量做的大一些,电极面积尽量小些,而且PN结的结深很浅,一般小于1微米。 光电二极管(也称光敏二极管)是在反向电压作用之下工作的。没有光照时,反向电流很小(一般小于微安),称为暗电流。当有光照时,携带能量的光子进入PN结后,把能量传给共价键上的束缚电子,使部分电子挣脱共价键,从而产生电子---空穴对,称为光生载流子。 它们在反向电压作用下参加漂移运动,使反向电流明显变大,光的强度越大,反向电流也越大。这种特性称为“光电导”。光电二极管在一般照度的光线照射下,所产生的电流叫光电流。如果在外电路上接上负载,负载上就获得了电信号,而且这个电信号随着光的变化而相应变化。 光敏二极管特性曲线

光电流---正电压特性 短路电流---照度特性

波长分布特性光敏二极管的特点 应用时反向偏置连接 没光照射,呈现极高阻值 有光照射时,电阻减小 可作光控关关 光敏二极管的符号及接线图 光敏二极管符号

光敏二极管接线图 光电二极管与光电三极管的联系与区别 光电二极管、光电三极管是电子电路中广泛采用的光敏器件。光电二极管和普通二极管一样具有一个PN结,不同之处是在光电二极管的外壳上有一个透明的窗口以接收光线照射,实现光电转换,在电路图中文字符号一般为VD。光电三极管除具有光电转换的功能外,还具有放大功能,在电路图中文字符号一般为VT。光电三极管因输入信号为光信号,所以通常只有集电极和发射极两个引脚线。同光电二极管一样,光电三极管外壳也有一个透明窗口,以接收光线照射。

IGBT的动态特性与静态特性的研究

IGBT的动态特性与静态特性的研究 IGBT动态参数 IGBT模块动态参数是评估IGBT模块开关性能如开关频率、开关损耗、死区时间、驱动功率等的重要依据,本文重点讨论以下动态参数:模块内部栅极电阻、外部栅极电阻、外部栅极电容、IGBT寄生电容参数、栅极充电电荷、IGBT开关时间参数,结合IGBT模块静态参数可全面评估IGBT芯片的性能。RGint:模块内部栅极电阻: 为了实现模块内部芯片均流,模块内部集成有栅极电阻。该电阻值应该被当成总的栅极电阻的一部分来计算IGBT驱动器的峰值电流能力。 RGext:外部栅极电阻: 外部栅极电阻由用户设置,电阻值会影响IGBT的开关性能。 上图中开关测试条件中的栅极电阻为Rgext的最小推荐值。 用户可通过加装一个退耦合二极管设置不同的Rgon和Rgoff。

已知栅极电阻和驱动电压条件下,IGBT驱动理论峰值电流可由下式计算得到,其中栅极电阻值为内部及外部之和。 实际上,受限于驱动线路杂散电感及实际栅极驱动电路非理想开关特性,计算出的峰值电流无法达到。 如果驱动器的驱动能力不够,IGBT的开关性能将会受到严重的影响。 最小的Rgon由开通di/dt限制,最小的Rgoff由关断dv/dt限制,栅极电阻太小容易导致震荡甚至造成IGBT及二极管的损坏。Cge:外部栅极电容: 高压IGBT一般推荐外置Cge以降低栅极导通速度,开通的di/dt及dv/dt被减小,有利于降低受di/dt影响的开通损耗。 IGBT寄生电容参数: IGBT寄生电容是其芯片的内部结构固有的特性,芯片结构及简单的原理图如下图所示。输入电容Cies及反馈电容Cres是衡量栅极驱动电路的根本要素,输出电容Coss限制开关转换过程的dv/dt,Coss造成的损耗一般可以被忽略。

光敏二极管的检测方法

1.电阻测量法用黑纸或黑布遮住光敏二极管的光信号接收窗口,然后用万用表R×1k档测量光敏二极管的正、反向电阻值。正常时,正向电阻值在10~20kΩ之间,反向电阻值为∞(无穷大)。若测得正、反向电阻值均很小或均为无穷大,则是该光敏二极管漏电或开路损坏。 再去掉黑纸或黑布,使光敏二极管的光信号接收窗口对准光源,然后观察其正、反向电阻值的变化。正常时,正、反向电阻值均应变小,阻值变化越大,说明该光敏二极管的灵敏度越高。 2.电压测量法将万用表置于1V直流电压档,黑表笔接光敏二极管的负极,红表笔接光敏二极管的正极、将光敏二极管的光信号接收窗口对准光源。正常时应有0.2~0.4V电压(其电压与光照强度成正比)。 3.电流测量法将万用表置于50μA或500μA电流档,红表笔接正极,黑表笔接负极,正常的光敏二极管在白炽灯光下,随着光照强度的增加,其电流从几微安增大至几百微安。 1.光敏二极管的简易判别方法 (1)电阻测量法 用万用表1k档,测正向电阻约10kΩ左右。在无光照情况下,反向电阻应为∞,反向电阻不是∞,说明漏电流大;有光照时,反向电阻应随光照增强而减小,阻值小至几kΩ或1kΩ以下。 (2)电压测量法 用万用表1V档(无1V档可用1.5V或3V档),红表笔接光敏二极管的“十”极,黑表笔接“-”极,在光照情况下,其电压应与光照度成比例,一般可达0.2~0.4V。 (3)短路电流测量法 用万用表50mA或500mA电流档,红表笔接光敏二极管的“十”极,黑表笔接“-”极,在白炽灯下(不能用日光灯),应随光照的增强,其电流随之增加。短路电流,可达数十mA~数百mA。 光敏二极管的主要特性参数 ①最高反向工作电压VRM:是指光敏二极管在无光照的条件下,反向漏电流不大于0.1μA时所能承受的最高反向电压值。 ②暗电流ID:是指光敏二极管在无光照及最高反向工作电压条件下的漏电流。暗电流越小,光

半导体二极管伏安特性的研究(可编辑修改word版)

半导体二极管伏安特性的研究 P101 【实验原理】 1.电学元件的伏安特性 在某一电学元件两端加上直流电压,在元件内就会有电流通过,通过元件的电流与其两端电压之间的关系称为电学元件的伏安特性。一般以电压为横坐标,电流为纵坐标作出元件的电压-电流关系曲线,称为该元件的伏安特性曲线。 对于碳膜电阻、金属膜电阻、线绕电阻等电学元件,在通常情况下,通过元件的电流与加在元件两端的电压成正比,即其伏安特性曲线为一通过原点的直线,这类元件称为线性元件,如图3-1 的直线a。至于半导体二极管、稳压管、三极管、光敏电阻、热敏电阻等元件,通过元件的电流与加在元件两端的电压不成线性关系变化,其伏安特性为一曲线,这类元件称为非线性元件,如图3-1 的曲线b、c。伏安法的主要用途是测量研究非线性元件的特性。一些传感器的伏安特性随着某一物理量的变化呈现规律性变化,如温敏二极管、磁敏二极管等。因此分析了解传感器特性时,常需要测量其伏安特性。 图 3–1 电学元件的伏安特性 在设计测量电学元件伏安特性的线路时,必须了解待测元件的规格,使加在它上面的电 压和通过的电流均不超过元件允许的额定值。此外,还必须了解测量时所需其他仪器的规格(如电源、电压表、电流表、滑线变阻器、电位器等的规格),也不得超过仪器的量程或使用范围。同时还要考虑,根据这些条件所设计的线路,应尽可能将测量误差减到最小。 测量伏安特性时,电表连接方法有两种:电流表外接和电流表内接,如图3-2 所示。 (a)电流表内接;(b)电流表外接 图 3–2 电流表的接法 电压表和电流表都有一定的内阻(分别设为R v和R A)。简化处理时可直接用电压表读

模拟电路实验报告,实验三二极管的伏安特性

电子实验报告 实验名称二极管的伏安特性日期 2014/3/30 一、实验目的 1、了解二极管的相关特性 2、学会在面包板上搭接测量电路。 3、学会正确使用示波器测量二极管的输入输出波形 4、学习使用excel画出二极管的伏安特性曲线 5、学会正确使用函数信号发生器、数字交流毫伏表。 6、学习使用Multisim电子电路仿真软件。 二.实验仪器设备 示波器、函数发生器、面包板、二极管、电阻、万用表,实验箱等。 三、实验内容 1、准备一个测量二极管伏安特性的电路。 2、在面包板上搭接二极管伏安特性的测量电路,给电路加入可调的正向和反向的输入电压,分别测量不同电压下流经二极管的电流,记录数据,用excel 画出二极管的伏安特性曲线。 正向输入测量8组数据,反向测量6组。 3、给二极管的测量电路加入正弦波,用示波器分别测量二极管的输入输出波形,解释输出波形的特征。 4,利用二极管和电阻画出或门和与门,并连接电路,测量检验。 四、实验原理 示波器工作原理是利用显示在示波器上的波形幅度的相对大小来反映加在示波器Y偏转极板上的电压最大值的相对大小, 二极管是最常用的电子元件之一,它最大的特性就是单向导电,也就是电流只可以从二极管的一个方向流过 电路图: 其伏安特性图为:

电路图为: 动态电路: 正向,二极管两端: 电阻两端:

反向:二极管两端 电阻两端

2)与门,或门可以通过二极管和电阻来实现。五、实验数据 上述实验图分别对应的波形图及实验数据如下:正向,二极管两端:

信号类型Vpp:V Vmax:V Vmin:V T:ms 输入信号 5.1 2.43 -2.71 1.9986 输出信号 3.4 0.7 -2.67 1.9997 电阻两端: 信号类型Vpp:V Vmax:V Vmin:V T:ms 输入信号 5.1 2.43 -2.71 2.0013 输出信号 1.85 1.8 -0.05 2.0013 反向:二极管两端

光敏电阻伏安特性光敏二极管光照特性

光敏电阻伏安特性、光敏二极管光照特性(FB815型光敏传感器光电特性实验仪 ) 凡是将光信号转换为电信号的传感器称为光敏传感器,也称为光电式传感器,它可用于检测直接由光照明度变化引起的非电量,如光强、光照度等;也可间接用来检测能转换成光量变化的其它非电量,如零件直径、表面粗糙度、位移、速度、加速度及物体形状、工作状态识别等。光敏传感器具有非接触、响应快、性能可靠等特点,因而在工业自动控制及智能机器人中得到广泛应用。 光敏传感器的物理基础是光电效应,通常分为外光电效应和内光电效应两大类,在光辐射作用下电子逸出材料的表面,产生光电子发射现象,则称为外光电效应或光电子发射效应。基于这种效应的光电器件有光电管、光电倍增管等。另一种现象是电子并不逸出材料表面的,则称为是内光电效应。光电导效应、光生伏特效应都是属于内光电效应。好多半导体材料的很多电学特性都因受到光的照射而发生变化。因此也是属于内光电效应范畴,本实验所涉及的光敏电阻、光敏二极管等均是内光电效应传感器。 通过本设计性实验可以帮助学生了解光敏电阻、光敏二极管、光敏三极管、硅光电池与光学纤维的光电传感特性及在某些领域中的应用。 【实验原理】 1(光电效应: (1)光电导效应: 当光照射到某些半导体材料上时,透过到材料内部的光子能量足够大,某些电子吸收光子的能量,从原来的束缚态变成导电的自由态,这时在外电场的作用下,流过半导体的电流会增大,即半导体的电导会增大,这种现象叫光电导效应。它是一种内光电效应。

光电导效应可分为本征型和杂质型两类。前者是指能量足够大的光子使电子离开价带跃入导带,价带中由于电子离开而产生空穴,在外电场作用下,电子和空穴参与电导,使电导增加。杂质型光电导效应则是能量足够大的光子使施主能级中的电子或受主能级中的空穴跃迁到导带或价带,从而使电导增加。杂质型光电导的长波限比本征型光电导的要长的多。 (2)光生伏特效应: 在无光照时,半导体结内部有自建电场。当光照射在结及其附近时,在能量PNPN 足够大的光子作用下,在结区及其附近就产生少数载流子(电子、空穴对)。载流子在结区外时,靠扩散进入结区;在结区中时,则因电场的作用,电子漂移到区,空穴漂移EN到区。结果使区带负电荷,区带正电荷,产生附加电动势,此电动势称为光生电动PPN 势,此现象称为光生伏特效应。 2(光敏传感器的基本特性: 光敏传感器的基本特性则包括:伏安特性、光照特性等。 伏安特性: 光敏传感器在一定的入射光照度下,光敏元件的电流与所加电压之间的关系称为IU光敏器件的伏安特性。改变照度则可以得到一族伏安特性曲线。它是传感器应用设计时的重要依据。 光照特性: 光敏传感器的光谱灵敏度与入射光强之间的关系称为光照特性,有时光敏传感器的输出电压或电流与入射光强之间的关系也称为光照特性,它也是光敏传感器应用设计时选择参数的重要依据之一。

光敏二极管特性实验

光敏二极管特性实验 一、实验目的 通过实验掌握光敏二极管的工作原理及相关特性,了解光敏二极管特性曲线及其测试电路的设计。 二、基本原理 1、光敏二极管工作原理(详见红外功率可调光源曲线标定实验)。 2、光敏二极管特性实验原理 光敏二极管在应用中一般加反向偏压,使得其产生的光电流只与光照度有关。图1-9中,当光照为零时,光敏二极管不会产生广生载流子,也没有其他电流流过,整个电路处于截止状态;当有光照时,光敏二极管产生光电流,由于放大器的正负输入端虚短,放大器输出负电压。再二级放大,然后用跟随器输出。并且光照越强,输出电压越大。 R2680 总线模块 光电检测综合试验台的总 线模块 +5V -5V AGND +12V -12V 222426 40 PIN1 光敏二极管 PIN2 电流流向 A V GND VCC Vin ADJ R11K LED C9013R2680 +5V 0~5V GND 实验台 R V A AGND

2_+ 3+5V -5V 74 2_+ 3+5V -5V 74 2_+ 3+5V -5V 74 -5V +5V 2224AGND 40 图1-9 光敏二极管特性测试图 三、实验仪器 1、光电检测与信息处理实验台(一套) 2、红外功率可调光源探头 3、红外接收探头 4、光电信息转换器件参数测试实验板 5、万用表 6、光学支架 7、导线若干 四、实验步骤 1、按图1-9连接实验线路。 (1)把光电信息转换器件参数测试实验板插在光电检测综合试验台的总线模块PLUG64-1、PLUG64-2、PLUG64-3的任意位置上; (2)由光敏二极管探头的两个输出接线端PIN1、PIN2分别引出导线连接到试验台的总线模块的22(负极)和24

光敏电阻伏安特性、光敏二极管光照特性

光敏传感器的光电特性研究 (FB815型光敏传感器光电特性实验仪) 凡是将光信号转换为电信号的传感器称为光敏传感器,也称为光电式传感器,它可用于检测直接由光照明度变化引起的非电量,如光强、光照度等;也可间接用来检测能转换成光量变化的其它非电量,如零件直径、表面粗糙度、位移、速度、加速度及物体形状、工作状态识别等。光敏传感器具有非接触、响应快、性能可靠等特点,因而在工业自动控制及智能机器人中得到广泛应用。 光敏传感器的物理基础是光电效应,通常分为外光电效应和内光电效应两大类,在光辐射作用下电子逸出材料的表面,产生光电子发射现象,则称为外光电效应或光电子发射效应。基于这种效应的光电器件有光电管、光电倍增管等。另一种现象是电子并不逸出材料表面的,则称为是内光电效应。光电导效应、光生伏特效应都是属于内光电效应。好多半导体材料的很多电学特性都因受到光的照射而发生变化。因此也是属于内光电效应范畴,本实验所涉及的光敏电阻、光敏二极管等均是内光电效应传感器。 通过本设计性实验可以帮助学生了解光敏电阻、光敏二极管的光电传感特性及在某些领域中的应用。 【实验原理】 1.光电效应: (1)光电导效应: 当光照射到某些半导体材料上时,透过到材料内部的光子能量足够大,某些电子吸收光子的能量,从原来的束缚态变成导电的自由态,这时在外电场的作用下,流过半导体的电流会增大,即半导体的电导会增大,这种现象叫光电导效应。它是一种内光电效应。 光电导效应可分为本征型和杂质型两类。前者是指能量足够大的光子使电子离开价带跃入导带,价带中由于电子离开而产生空穴,在外电场作用下,电子和空穴参与电导,使电导增加。杂质型光电导效应则是能量足够大的光子使施主能级中的电子或受主能级中的空穴跃迁到导带或价带,从而使电导增加。杂质型光电导的长波限比本征型光电导的要长的多。 (2)光生伏特效应: 在无光照时,半导体PN结内部有自建电场。当光照射在PN结及其附近时,在能量足够大的光子作用下,在结区及其附近就产生少数载流子(电子、空穴对)。载流子在结区外时,靠扩散进入结区;在结区中时,则因电场E的作用,电子漂移到N区,空穴漂移到P 区。结果使N区带负电荷,P区带正电荷,产生附加电动势,此电动势称为光生电动势,此现象称为光生伏特效应。 2.光敏传感器的基本特性: 光敏传感器的基本特性则包括:伏安特性、光照特性等。

电路实验四实验报告_二极管伏安特性曲线测量

电路实验四实验报告 实验题目:二极管伏安特性曲线测量 实验内容: 1.先搭接一个调压电路,实现电压1-5V连续可调; 2.在面包板上搭接一个测量二极管伏安特性曲线的电路; 3.测量二极管正向和反向的伏安特性,将所测的电流和电压列表记录好; 4.给二极管测试电路的输入端加Vp-p=3V、f=100Hz的正弦波,用示波器观察该电路的输 入输出波形; 5.用excel或matlab画二极管的伏安特性曲线。 实验环境: 数字万用表、学生实验箱(直流稳压电源)、电位器、整流二极管、色环电阻、示波器DS1052E,函数发生器EE1641D、面包板。 实验原理: 对二极管施加正向偏置电压时,则二极管中就有正向电流通过(多数载流子导电),随着正向偏置电压的增加,开始时,电流随电压变化很缓慢,而当正向偏置电压增至接近二极管导通电压时,电流急剧增加,二极管导通后,电压的少许变化,电流的变化都很大。 为了测量二极管的伏安特性曲线,我们用直流电源和电位器搭接一个调压电路,实现电压1-5V连续可调。调节电位器的阻值,可使二极管两端的电压变化,用万用表测出若干组二极管的电压和电流值,最后绘制出伏安特性曲线。电路图如下所示: 用函数发生器EE1641D给二极管施加Vp-p=3V、f=100Hz的交流电源,再用示波器观察二极管的输入信号波形和输出信号波形。电路图如下:

实验记录及结果分析: 得到二极管的伏安特性曲线如下: 结论:符合二极管的特性,即开始时,电流随电压变化很缓慢,而当正向偏置电压增至接近二极管导通电压时,电流急剧增加,二极管导通后,电压的少许变化,电流的变化都很大。 2. 示波器显示二极管的输入输出波形如下图(通道1为输入波形,通道2为输出波形):

二极管特性的研究——桥式整流电路的设计

二极管特性的研究——桥式整流电路的设计 实验目的 1. 运用伏安法测绘二极管的特性曲线。 2. 借助示波器观察绘制桥式整流电路的特性曲线。 实验原理 晶体二极管是由两种具有不同导电性能的n 型半导体和p 型半导体结合形成的pn 结 构成的,如图一(a )所示,pn 结具有单向导电的特性,常用符号表示如图一(b )。 图 一 二极管pn 结构 图 二 二极管特性曲线 当pn 结加上正向电压(p 区接正、n 区接负)时,外电场使pn 结的阻挡层变薄,形 成比较大的电流,二极管的正向电阻很小;当pn 结加上反向电压时,外电场使pn 结的阻 挡层变厚,形成极小的反向电流,表现为反向电阻非常大。晶体二极管的正反向特性曲线 如图二所示,即二极管具有单向导电性。 利用二极管的单向导电性,可将交流电变成脉冲直流电,其过程称为整流。如图三是 桥式整流滤波电路,其整流过程如下:当交流电为正半周时,M 点电压高于N 点电压, D 2、D 4截止,而D 1、D 3导通,电流将从交流电源依次通过D 1、R 、D 3回到电源;当交流电为 负半周时,N 点电压高于M 点电压,D 1、D 3截止,而D 2、D 4导通,电流将从交流电源依 图 三 桥式整流、滤波电路 图 四 交流、整流及滤波波形 次通过D 2、R 、D 4回到电源。这样通过R 的电流方向是固定的,U A 始终大于U B ,且U AB 随交流电的起伏而波动。如果将R 两端接入示波器会观察到如图四的整流波形②。 如在负载R 两端并接上电容值较大的电解电容,见图三的虚线部分,可将脉冲直流电 过滤成较平稳的直流电,称为滤波。波形②将会变得较为平滑或成一条直线③。(滤波的 基本原理:电容C 两端的初始电压为0。接入交流电源U 后,当U 为正半周时,D 1、D 3 导通,U 通过D 1、D 3对电容充电;当U 为负半周时,D 2、D 4导通,U 通过D 2、D 4对电 容充电。由于充电回路等效电阻很小,所以充电很快,电容C 迅速被充到交流电压的最大 t A C V (a) (b)

光敏二极管和光敏三极管

光敏二极管和光敏三极管 光敏二极管和光敏三极管是光电转换半导体器件,与光敏电阻器相比具有灵敏度高、高频性能好,可靠性好、体积小、使用方便等优。 一、光敏二极管 1.结构特点与符号 光敏二极管和普通二极管相比虽然都属于单向导电的非线性半导体器件,但在结构上有 其特殊的地方。 光敏二极管在电路中的符号如图Z0129 所示。光敏二极管使用时要反向接入电路中,即正极接电源负极,负极接电源正极。 2.光电转换原理 根据PN结反向特性可知,在一定反向电压范围内,反向电流很小且处于饱和状态。此时,如果无光照射PN结,则因本征激发产生的电子-空穴对数量有限,反向饱和电流保持不变,在光敏二极管中称为暗电流。当有光照射PN结时,结内将产生附加的大量电子空穴对(称之为光生载流子),使流过PN结的电流随着光照强度的增加而剧增,此时的反向电流称为光电流。 不同波长的光(兰光、红光、红外光)在光敏二极管的不同区域被吸收形成光电流。被表面P型扩散层所吸收的主要是波长较短的兰光,在这一区域,因光照产生的光生载流子(电子),一旦漂移到耗尽层界面,就会在结电场作用下,被拉向N区,形成部分光电流;彼长较长的红光,将透过P型层在耗尽层激发出电子一空穴对,这些新生的电子和空穴载流子也会在结电场作用下,分别到达N区和P区,形成光电流。波长更长的红外光,将透过P型层和耗尽层,直接被N区吸收。在N区内因光照产生的光生载流子(空穴)一旦漂移到耗尽区界面,就会在结电场作用下被拉向P区,形成光电流。因此,光照射时,流过P N结的光电流应是三部分光电流之和。 二、光敏三极管 光敏三极管和普通三极管的结构相类似。不同之处是光敏三极管必须有一个对光敏感的PN结作为感光面,一般用集电结作为受光结,因此,光敏二极管实质上是一种相当于在基极和集电极之间接有光敏二极管的普通二极管。其结构及符号如图Z0130所示。 当人射光子在基区及集电区被吸收而产生电子一空穴对时,便形成光生电压。由此产生的光生电流由基极进入发射极,从而在集电极回路中得到一个放大了β倍的信号电流。因此,光敏三极管是一种相当干将基极、集电极光敏二极管的电流加以放大的普通晶体管放大。 1、判断光敏三极管C、E极性,方法是用万用表20M电阻测试档,测得管阻小的时候红表棒端触脚为C极,黑表棒为E极。 2、暗电流测试: 按图(11)接线,稳压电源用±12V,调整负载电阻RL阻值,使光敏器件模板被遮光罩盖住时微安表显示有电流,这即是光敏三极管的暗电流,或是测得负载电阻RL上的压降V暗,暗电流LCEO=V暗/RL。(如是硅光敏三极管,则暗电流可能要小于10-9A,一般不易测出。 3、光电流测试: 缓慢地取开遮光罩,观察随光照度变化测得的光电流I光的变化情况,并将所测数据填入下表:

发光二极管及热敏电阻的伏安特性研究

非线性电阻特性研究(一) 【实验目的】 (1)了解并掌握基本电学仪器的使用。 (2)学习电学实验规程,掌握回路接线方法。 (3)学习测量条件的选择及系统误差的修正。 (4)探究发光二极管和热敏电阻在常温下的伏安特性曲线。 【实验仪器】 发光二极管(BT102)热敏电阻(根据实验室情况选择)滑动变阻器(0~100 Ω)定值电阻(400Ω)毫安表(0~50mA)微安表(0~50μA) 电压表(0~3v 0~6v)电源(10v)导线等 【实验原理】 (1)当一个元件两端加上电压,元件内有电流通过时,电压与电流之比称为该元件的电阻R(R=U/I)。若一个元件两端的电压与通过它的电流成比例,则伏安特性曲线为一条直线,这类元件称为线性元件。若元件两端的电压与通过它的电流不成比例,则伏安特性曲线不再是直线,而是一条曲线,这类元件称为非线性元件。 一般金属导体的电阻是线性电阻,它与外加电压的大小和方向无关,其伏安特性是一条直线(见图b)。从图上看出,直线通过一、三象限。它表明,当调换电阻两端电压的极性时,电流也换向,而电阻始终为一定值,等于直线斜率的倒数。 常用的晶体二极管是非线性电阻,其电阻值不仅与外加电压的大小有关,而且还与方向有关。 LED是英文light emitting diode(发光二极管)的缩写,它属于固态光源,其基本结构是一块电致发光的半导体材料,置于一个有引线的架子上,然后四周用环氧树脂密封,起到保护内部芯线的作用(如图一)。 常规的发光二极管芯片的结构如图二所示,主要分为衬底,外延层(图2中的N型氮化镓,铝镓铟磷有源区和P型氮化镓),透明接触层,P型与N型电极、钝化层几部分。 图3 发光二极管的工作原理 ) ) )电 子 的 电 势 能 电 子 的 电 势 能

二极管特性及应用实验

姓名班级________学号____ 实验日期__节次教师签字成绩 二极管的特性研究及其应用一.实验目的 1.通过二极管的伏安特性的绘制,加强对二极管单向导通特性的理解; 2.了解二极管在电路中的一些应用; 3,学习自主设计并分析实验 二.实验内容: 1.二极管伏安特性曲线绘制; 2.交流条件下二极管电压波形仿真; 3.二极管应用电路 三.实验仪器 稳压电源RIGOL DS5102CA FLUKE190型测试仪;1N4001二极管若干; 函数信号发生器 TFG2020G ;电阻若干; 四.实验步骤 1.二极管伏安特性曲线绘制; 二极管测试电路

(1)创建电路二极管测试电路; (2)调整V1电源的电压值,记录二极管的电流与电压并填入表1; (3)调整V2电源的电压值,记录二极管的电流与电压并填入表2; (4)根据实验结果,绘制二极管的伏安特性。 表一 V1 200mv 300mv 400mv 500mv 600mv 700mv 800mv 1v 2v 3v ID VD 表二 V1 I D V D 绘制U—I图: 2.交流条件下二极管电压波形仿真;

D1 1N4001GP R1 100Ω V16 Vpk 100 Hz 0° XSC1 A B C D G T 2 1 仿真电路图 仿真结果

3.二极管应用电路 (1)桥式整流电路 D1 1N4001 D2 1N4001 D3 1N4001 D4 1N4001 V115 Vpk 60 Hz 0° R1100Ω 1 3 45 用示波器测量R1两端波形,并记录

桥式整流电路仿真 D1 1N4001 D21N4001 D3 1N4001 D41N4001 V115 Vpk 60 Hz 0° R12kΩ 4 XSC1 A B Ext Trig + + _ _ + _ 3 2 仿真结果

光敏二极管的分光灵敏度特性

光敏二极管的分光灵敏度特性 在使用光敏二极管的时候,无论如何都应当知道其分光灵敏度特性。所谓分光灵敏度特性,如图 1.7 所示,它表示的是光敏二极管对于不同波长的光具有多高的灵敏度。 如果对光敏二极管照射波长为λ的光,那么该二极管每吸收一个光子,都会产生一对能够形成光电流的载流子。但是,每个光子能否被该二极管吸收,取决于该光子的能量是否超过制作该光敏二极管的半导体材料的禁带能级宽度Eg。 波长为λ的光的光子能量 Eph 可以表示为: 式中,h 是普朗克常数(6.626×10 -34J·s);c 是光速(3×108m/s);λ是光的波长(m)。 当 Eph>Eg 时,产生光电流;当 Eph<Eg 时,没有光电流产生。当光敏二极管的材料为 Si(硅)的时候,Eg =1.1eV,从式(1.1)可知,该光敏二极管对于波长λ>1100mm 的光照射没有感知灵敏度.光敏二极管的波长感知灵敏度特性如图 1.8 所示。

图1.7中的 BS120 与 PH302B 所用的材料都是 Si,所以他们呢本身的特性都应当如图1.8 所示;然而由于它们各自对应的用途不同。而配置了不同的滤光片,BS120 配置的是视觉校正滤光片,PH302B 配置的是遮挡可见光的滤光片,于是它们就有了图 1.7 所示的不同的特性。 与 Si 材料相比,GaAsP 的禁带宽度 Eg 更大一些,因此用 GaAsP 制作而成的光敏二极管的分光灵敏度会往波长更短的方向移动。有关这一点,从图 1.8 中可以看得比较清楚。不过,通过改变 GaAsP 中 GaAs 与 GaP 结晶比的方法,可以改变 Eg 的大小。 图 1.7 中的 G3614 就是用 GaAsP 制作而成的,它在紫外线领域具有灵敏度,因此可以用作紫外线的检测。

光电二三极管特性测试实验报告分解

光敏二极管特性测试实验 一、实验目的 1.学习光电器件的光电特性、伏安特性的测试方法; 2.掌握光电器件的工作原理、适用范围和应用基础。 二、实验内容 1、光电二极管暗电流测试实验 2、光电二极管光电流测试实验 3、光电二极管伏安特性测试实验 4、光电二极管光电特性测试实验 5、光电二极管时间特性测试实验 6、光电二极管光谱特性测试实验 7、光电三极管光电流测试实验 8、光电三极管伏安特性测试实验 9、光电三极管光电特性测试实验 10、光电三极管时间特性测试实验 11、光电三极管光谱特性测试实验 三、实验仪器 1、光电二三极管综合实验仪 1个 2、光通路组件 1套 3、光照度计 1个 4、电源线 1根 5、2#迭插头对(红色,50cm) 10根 6、2#迭插头对(黑色,50cm) 10根 7、三相电源线 1根 8、实验指导书 1本 四、实验原理 1、概述

随着光电子技术的发发展,光电检测在灵敏度、光谱响应范围及频率我等技术方面要求越来越高,为此,近年来出现了许多性能优良的光伏检测器,如硅锗光电二极管、PIN光电二极管和雪崩光电二极管(APD)等。光敏晶体管通常指光电二极管和光电三极管,通常又称光敏二极管和三敏三极管。 光敏二极管的种类很多,就材料来分,有锗、硅制作的光敏二极管,也有III-V族化合物及其他化合物制作的二极管。从结构我来分,有PN结、PIN结、异质结、肖特基势垒及点接触型等。从对光的响应来分,有用于紫外光、红外光等种类。不同种类的光敏二极管,具胡不同的光电特性和检测性能。例如,锗光敏二极管与硅光敏二极管相比,它在红外光区域有很大的灵敏度,如图所示。这是由于锗材料的禁带宽度较硅小,它的本征吸收限处于红外区域,因此在近红外光区域应用;再一方面,锗光敏二极管有较大的电流输出,但它比硅光敏二极管有较大的反向暗电流,因此,它的噪声较大。又如,PIN型或雪崩型光敏二极管与扩散型PN结光敏二极管相比具有很短的时间响应。因此,在使用光敏二极管进要了解其类型及性能是非常重要的。 光敏二极管和光电池一样,其基本结构也是一个PN结。与光电池相比,它的突出特点是结面积小,因此它的频率特性非常好。光生电动势与光电池相同,但输出电流普遍比光电池小,一般为数微安到数十微安。按材料分,光敏二极管有硅、砷化铅光敏二极管等许多种,由于硅材料的暗电流温度系数较小,工艺较成熟,因此在实验际中使用最为广泛。 光敏三极管与光敏二极管的工作原理基本相同,工作原理都是基于内光电效应,和光敏电阻的差别仅在于光线照射在半导体PN结上,PN结参与了光电转换过程。 2、光电二三极管的工作原理 光生伏特效应:光生伏特效应是一种内光电效应。光生伏特效应是光照使不均匀半导体或均匀半导体中光生电子和空穴在空间分开而产生电位差的现象。对于不均匀半导体,由于同质的半导体不同的掺杂形成的PN结、不同质的半导体组成的异质结或金属与半导体接触形成的肖特基势垒都存在内建电场,当光照射这种半导体时,由于半导体对光的吸收而产生了光生电子和空穴,它们在内建电场的作用下就会向相反的方向移动和聚集而产生电位差。这种现象是最重要的一类光生伏特效应。均匀半导体体内没有内建电场,当光照射时,因眼光生载流子浓度梯度不同而引起载流子的扩散运动,且电子和空穴的迁移率不相等,使两种载流

(完整版)实验一二极管特性实验

实验一二极管特性实验 一、实验目的: 1、验证晶体二极管的单向导电特性。 2、学会测量晶体二极管的伏安特性曲线。 3、掌握几种常用特种功能二极管的性能和使用方法。 二、实验前准备: 1、复习晶体二极管结构和伏安特性。 2、阅读光电二极管、发光二极管和稳压管的特性和使用范围。 3、复习用万用表测量晶体二极管的方法。阅读用图示仪测试晶体二极管及用示波 器测量输出电压的方法。 三、实验设备: KJ120学习机一台 数字式万用表一块 指针式万用表一块(20KΩ/V DC) 四、实验原理: 晶体二极管由一个PN结构成,具有单向导电作用。几种常用二极管的符号如图1.1所示。 (a) (b) (c) 图1.1几种常见二极管的符号 图1.1(a)为普通二极管,如In4001;In4148;2AP等。 图1.1(b)~(c)为稳压管、发光二极管等。 如稳压管,它工作在反向击穿区。使用时,利用反向电流在击穿区很大范围内变化而电压基本恒定的特性来进行稳压。 发光二极管是一种把电能变成光能的半导体器件。发光二极管有各种颜色,例如有发红光的,发黄光的,发绿光的等等。 发光二极管工作电压较低(1.6~3V),正向工作电流只需几毫安到几十毫安,故常作线路通断指示和数字显示。 若将万用表黑表笔接二极管正极,红表笔接二极管负极,则二极管处于正向偏置,呈现低阻,表针偏转大;反之,二极管处于反向偏置,呈现高阻,表针偏转小。根据

两次测得的阻值,就可以辨别二极管的极性。 注意万用表不同的电阻挡的等效内阻各不相同测得的阻值有差异。一般不宜采用RX10K 挡来测二极管,因该挡的电源电压较高(一般为9V ),有可能损坏管子. 五、实验步骤: 1、二极管的一般测试。 (1)按实验报告表1.1要求多用万用表测量二极管(IN4001、IN4148、2AP 、LED ) 的正、反向阻值。将数据填入表1-1中。 (2)二极管正向电压测量:调电位器,使I=5mA 分别测量五种二极管的正向电 压,将数据填入表1-1中。 图1.2 二极管正反向电压测量电路 (a )正向电压测量电路 (b )反向电压测量电路 2、测量2AP 的伏安特性。 (1)测量2AP 正、反向伏安特性的线路见图1.2(a )、(b )。按图接好线路图1.2 测量2AP 伏安特性的线路。 (2)将电位器R w 中心滑臂旋至地端,接通电源。调节R w 阻值使输出电压逐渐增 大。按实验报告表1-2要求测量2AP 或2CK 的正向伏安特性,并将数据填入该表,在直角坐标上绘成曲线。 (3)按实验报告表1-2要求,测量2AP 或2CK 的反向伏安特性。注意2AP 型管 反向电流不要超过400uA 。数据填入表中,在直角坐标上绘成反向特性曲线。 3、交流电路中二极管(IN4001)作用实验 (a )正向接法 (b )反向接法 图1.3 二极管单向导电试验线路 (1)实验线路如图1.3所示。按图(a )接线 (2)调好示波器,用示波器分别观察图1.3(a )线路中A 、B 两点的输出波形。 (3)将D 反接,线路如图1.3(b )所示,用示波器观察输出波形。将波形绘入实 验报告表1-3中。 V V 18 V

第一章 半导体二极管及其应用典型例题

第一章半导体二极管及其应用 【例1-1】分析图所示电路的工作情况,图中I为电流源,I=2mA。设20℃时二极管的正向电压降U D=660mV,求在50℃时二极管的正向电压降。该电路有何用途?电路中为什么要使用电流源? 【相关知识】 二极管的伏安特性、温度特性,恒流源。 【解题思路】 推导二极管的正向电压降,说明影响正压降的因素及该电路的用途。 【解题过程】 该电路利用二极管的负温度系数,可以用于温度的测量。其温度系数–2mV/℃。 20℃时二极管的正向电压降 U D=660mV 50℃时二极管的正向电压降 U D=660 –(2′30)=600 mV 因为二极管的正向电压降U D是温度和正向电流的函数,所以应使用电流源以稳定电流,使二极管的正向电压降U D仅仅是温度一个变量的函数。

【例1-2】电路如图(a)所示,已知,二极管导通电压。试画出u I与u O的波形,并标出幅值。 图(a) 【相关知识】 二极管的伏安特性及其工作状态的判定。 【解题思路】 首先根据电路中直流电源与交流信号的幅值关系判断二极管工作状态;当二极管的截止时,u O=u I;当二极管的导通时,。 【解题过程】 由已知条件可知二极管的伏安特性如图所示,即开启电压U on和导通电压均为0.7V。 由于二极管D1的阴极电位为+3V,而输入动态电压u I作用于D1的阳极,故只有当u I高于+3.7V时 D1才导通,且一旦D1导通,其阳极电位为3.7V,输出电压u O=+3.7V。由于D2的阳极电位为-3V,而u I作用于二极管D2的阴极,故只有当u I低于-3.7V时D2才导通,且一旦D2导通,其阴极电位即为 -3.7V,输出电压u O=-3.7V。当u I在-3.7V到+3.7V之间时,两只管子均截止,故u O=u I。 u I和u O的波形如图(b)所示。

相关主题
文本预览
相关文档 最新文档