当前位置:文档之家› 化工原理实验预习报告

化工原理实验预习报告

化工原理实验预习报告
化工原理实验预习报告

流动过程综合实验(预习报告)

化工七班

一、 实验任务

(1) 测定流体流经光滑直管时的摩擦系数λ与雷诺数Re 的关系曲线。

要求:将λ与Re 在层流、过渡流和湍流三个流型区的关系标在同一张双对数坐标纸上。 (2) 测定离心泵在一定转速(频率 50HZ)下的特性曲线。

(3)采用变频器调节,测定在改变的转速下离心泵的特性曲线。

二、 实验原理

(1)测定流体流经光滑直管时的摩擦系数λ与雷诺数Re 的关系曲线。 流体在管道内流动时,由于流体的粘性作用和涡轮的影响会产生阻力。流体在直管内流动阻力的大小与管长、管径、流体流速和管道摩擦系数有关。直管摩擦系数λ与雷诺数Re 之间有一定的关系,这个关系一般用曲线来表示。

所用到的公式为:

μ

ρ

du =

Re

在实验装置中,直管段管长L 和管径d 都已固定;若水温一定,则水的密度ρ和粘度μ也是定值;所以本实验实质上是测定直管段流体阻力引起的压强降f P ?与流速u (流量V )之间的关系。压强降f P ?用倒置U 形管和差压传感器来测量,体积流量由转子流量计和涡轮流量计等测量。

(2) 测定离心泵在一定转速(频率 50HZ)下的特性曲线。 泵的扬程He

在离心泵进出口管装设真空表和压力表的管截面列出柏努利方程式,(以单位重量液体为衡算标准)

则:

由于两取压口紧靠离心泵进出口,因此直管段摩擦损失很小,其阻力损失归入离心泵的效率,故

=0。

若离心泵进出口管径相同,则 u1=u2

上式可写成为:

式中:H压强表、H真空表——分别为压强表和真空表所测得的表压和真空度,以(m液柱)表示的数值。

h0——压强表和真空表中心之垂直距离。

泵的轴功率N

离心泵从电机获得的实际功率(即单位时间内电机向离心泵输入的功)称离心泵的轴功率。

泵的轴功率和电机的电功率之间有如下的关系:

N=N电·η电·η传

式中:N电——电动机的电功率,由功率表测得(KW);

η电——电动机效率,取0.9;

η传——传动效率,η传=1.0。

泵的效率η

离心泵的有效功率Ne与轴功率之比称为效率。

(3)采用变频器调节,测定在改变的转速下离心泵的特性曲线。

离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。因此改变频率后,离心泵的转速会发生改变,其特征曲线也会相应地改变。实验原理同实验二。

三、简明实验流程示意图

(1) 测定流体流经光滑直管时的摩擦系数λ与雷诺数Re的关系曲线。如图1所示。

图1 测定流体流经光滑直管时的摩擦系数λ与雷诺数Re的关系曲线实验装置流程图

1-离心泵;2,3-流量调节阀;4-转子流量计;5-光滑管;6-粗糙管;7,8-测压口;9-倒置U形管;10-水箱;11-温度计

(2) 测定离心泵在一定转速(频率50HZ)下的特性曲线。如图2所示

图2 测定离心泵在一定转速下的特性曲线实验装置流程图

1-离心泵;2-流量调节阀;3-真空表;4-压力表;5-转子流量计;6-水箱;7-温度计

(3)采用变频器调节,测定在改变的转速下离心泵的特性曲线。

改变频率后,操作同实验二。

四、原始数据记录表

(1) 测定流体流经直管时的摩擦系数λ与雷诺数Re 的关系曲线。数据表见表1。

表1测定流体流经直管时的摩擦系数λ与雷诺数Re 的关系曲线原始数据表

光滑管

粗糙管

流量V/ 压降f P ?/ 流量V/ 压降f P ?/

备注:流体温度(实验前): (实验后): 光滑管内径: 粗糙管内径: 取压口间距:

(2) 测定离心泵在一定转速(频率 50HZ)下的特性曲线。数据表见表2

表2 测定离心泵的特征曲线原始数据记录表 流量V/ 压力表P1/ 真空表P2/ 功率W/

备注:流体温度(实验前):

(实验后):

管径:

去压口垂直高度差:

(3)采用变频器调节,测定在改变的转速下离心泵的特性曲线。原始数据记录见表3和表4

表3 测定改变转速下离心泵特征曲线原始数据记录表一

频率:

流量V/ 压力表P1/ 真空表P2/ 功率W/

备注:流体温度(实验前):

(实验后):

流动过程综合实验实验报告

(接预习报告)

五、 操作步骤

(1)开启电源。旋开倒置U 形管左右旋钮,检查导压管内是否有气泡存在。若倒置U 形管内液柱高度差为零,表明系统内无气泡存在;若不为零,则表明导压管内存在气泡,需要进行排气操作。

(2)启动离心泵前,检查所谓流量调节阀是否关闭。开启离心泵,慢慢打开调节阀,打开光滑管阻力测定的导向阀。关闭平衡阀。

(3)读取流体温度,通过阀调节流量,从最小流量到最大流量,先后用转子流量计、小涡轮流量计、大涡轮流量计测取12组以上数据(包括流量和压力降)。 (4)在水箱中测取水温。

(5)全开回流阀,打开离心泵特征曲线测定实验的导向阀。

(6)从流量为零至最大或流量从最大到零测取12组以上数据(包括流量、功率、真空表和压力表读数),并记录水温。

(7)将离心泵功率调节到45Hz ,重复第(6)步。 (8)实验结束,关闭流量调节阀,切断电源

六、 数据处理

实验原始数据见表1,表2,表3。 数据整理见表4,表5,表6。

(1)测定流体流经直管时的摩擦系数λ与雷诺数Re 的关系曲线实验:

表4测定流体流经直管时的摩擦系数λ与雷诺数Re 的关系曲线数据整理表 流量V/(L/h ) 压降f P /kPa 流速u/(m/s ) 摩擦系数λ×102

雷诺数Re ×10-

3

10.0 0.117 0.0564 14.60 0.4934 18.0 0.166 0.1015 6.394 0.8881 28.0 0.259 0.1580 4.123 1.382 40.0 0.369 0.2257 2.878 1.974

498 7.7 2.809 0.3875 24.57 688

8.7

3.881 0.2294 33.95 835 9.7

4.710 0.1736 41.20 1076 12.7 6.070 0.1369 53.09 1683 16.7 9.494 0.07359 83.04 2665 3

5.7 15.03 0.06274 131.5 3647 58.1 20.57 0.05452 179.9 4676 87.0

26.38

0.04966

230.7

备注:流体平均温度:25.6℃ 光滑管内径:7.92mm 取压口间距:40000mm

摩擦系数λ与雷诺数Re 的关系图见图1

将实验时流体的平均温度确定为:

6.252

7

.254.25=+℃

查表得ρ=997.0kg/m 3,μ=9.028×10-4Pa ·s 取第一组数据,V=10L/h u=

2

4

d

V

π

=

1000

00792

.014.336004

102

????=0.0564m/s

Re=

μ

ρ

du =

028

.910000

0.9970564.000792.0???=4934

ΔP f =ρgh=997.0×9.81×12/1000=0.117kPa λ=

L d ρ22

u

P f

?=

2

0564

.040.9971000

117.000792.02?????=0.1460

对于涡轮流量计流量的转换: 小涡轮流量计仪表系数为1495.3/L

取第五组数据,V=207×3600/1495.3=498L/h 大涡轮流量计仪表系数为76.986/L

取第九组数据,V=23×3600/76.986=1076L/h 对于用电子仪表测出的压降值,需要进行校正。 仪表初始值-0.2kPa

取第五组数据ΔP f =7.5-(-0.5)=7.7 kPa

(2)测定离心泵在一定转速(频率 50HZ)下的特性曲线 数据处理见表5

表5 测定离心泵的特征曲线原始数据记录表 流量V/(m 3/h ) 扬程H/m

轴功率N/kW

效率/η

0 19.40 0.260 0.0000 0.156 19.20 0.266 0.0306 0.568 18.89 0.280 0.1040 0.935 18.60 0.292 0.1617 2.34 17.67 0.344 0.3264 3.60 16.33 0.390 0.4093 4.35 16.26 0.410 0.4684 5.33 14.11

0.429 0.4760 6.27

12.83 0.448 0.4875 7.11

11.76 0.468 0.4851 9.16

7.849 0.500 0.3904 11.22

3.890 0.494

0.2399

备注:流体温度(实验前):26.9℃(实验后):27.3℃ 入口管径:41.2mm 电动机效率:0.65 出口管径:41.2mm

去压口垂直高度差:0.289m

对于涡轮流量计读数的转换见上一个实验。将实验时流体的平均温度定为:

2

3

.279.26+=27.1℃,查得ρ=996.4 kg/m 3

扬程H=Δz+

g

p

ρ?+g

u u 22

1

2

2-,由于装置离心泵入口管径和出口管径一样,所以第三项等于零

取第一组数据计算,H=Δz+

g

p

ρ?+

g

u u 22

1

22-=0.289+

81

.94.9961000

)2.110.198(??-+0=19.40m

N=0.65×0.4=0.26kW

η=N

g HQ 1000ρ=3600

26.0100081.94.996040.19?????=0

离心泵特征曲线见图2

型号:WB70,转速:2800/r/min

图2 离心泵的特征曲线

(3)测定改变转速后离心泵的特征曲线,数据处理间表6

表6 改变转速后离心泵的特征曲线数据处理

流量V/(m3/h)扬程H/m 轴功率N/kW 效率/η

0 15.7880.21450.0000 0.337 15.6650.22750.0630

0.826 15.3790.24050.1434

1.076 15.0520.25350.1735

1.917 14.6010.27300.2784

2.993 1

3.6290.30550.3625

4.302 12.2690.33150.4323

5.424 10.9080.35100.4577

6.266 9.80300.36400.4582

7.342 8.23800.37700.4356

8.090 7.04100.38350.4033

8.885 5.78280.39000.3577

9.493 4.77000.39000.3153

10.24 3.24560.39000.2314 备注:流体温度(实验前):27.3℃(实验后):28.0℃

入口管径:41.2mm 电动机效率:0.65

出口管径:41.2mm

去压口垂直高度差:0.289m

改变转速后离心泵的特征曲线如图3所示

型号:WB70,改变频率到45Hz

图3 改变转速后离心泵的特征曲线

数据处理间实验(2)

七、实验结果分析与讨论

(1)求取层流λ-Re的经验公式。

当Re<2000时,可将流型视为层流,已知λ-1/Re成线性关系,取表4的前四组数据处理得表7

摩擦系数λ×

1/Re

102

14.60 0.00203

6.394 0.00113

4.123 7.23589E-4

2.878 5.06586E-4

表7 层流时λ-1/Re关系

对其作图,线性拟合得图4

图4 层流区中λ-1/Re关系图

拟合结果如下:

λ=77.92/Re

相关系数为r=0.9904,可认为该拟合关系有意义。

与理论公式λ=64/Re相比误差较大,可解释为实验条件和环境的差异造成,还有数据的不稳定和其他因素造成的系统误差。个人认为是由于装置的原因,开始测量压降时流体未充分

发展为层流边界层,所以压力降会比理论值大。

(2)实验(1)结果分析

在实验(1)中,λ-Re关系的变化基本与书本上的关系图相吻合,在层流区,λ-Re关系与管路特征无关,实验里求得的经验公式与理论公式有偏差,估计是由于所测段不完全是层流造成的。而湍流区中,实验测得的摩擦系数比光滑管在相同雷诺数下的摩擦系数大,估计是由于所测管路不是完全光滑所致,可惜的是由于实验过程中的失误未将过渡区的点测出来。

(3)实验(2)结果分析

在实验(2)中,H,N,η与Q的关系基本符合理论关系,H随Q增大下降,N逐渐增大,η先增大后减小。泵的效率较低。

(4)实验(3)结果分析

在实验(3)中,H,N,η与Q的关系基本符合理论关系,相对于实验(2)的结果,降低转速后H减小了,减小速率降低,N减少了,增加速率降低,η的曲线更加平滑,最大值降低了。泵的效率变得更低。

(5)思考题1

由于Re与物质的种类无关,只取决于流体的形态,所以,当流体流动时满足该关系式的使用条件时,λ-Re的关系曲线具有普遍性。改变管路特征,如相对粗糙度,可以改变关系曲线的位置,但当流体为非牛顿流体或者不是稳态流动时,λ-Re关系曲线会有较大变化。(6)思考题2

相同,作此改动时只改变Δz,对压力降并没有影响,在同一装置测量同一种流体的实验中,压力降只收流速和摩擦系数的影响。

(7)思考题3

由于,测小流量时压力降较小,适宜用倒置U形管来测量压差,流量变大后超出U形管的测量范围,此时应该用压差变送器来测量,操作时注意阀门要慢慢打开,倒置U形管不能让液体越过最高点超出量程。

(8)思考题4

随着流量的增加,真空表的读数增加,压力表的读数减少。原因是由于流体的速度增加,在其他条件不改变的条件下,对周围的压力会减小。

(9)思考题5

为了保证曲线的完整,使效率出现最大值和高效区。

(10)思考题6

改变出口阀的开度,相当于增加了管路的阻力,改变了管路的特征曲线,于是离心泵的工作点也会相应地改变,流量发生改变。对于往复泵次方法无效,可以通过旁路调节改变流量。

(11)思考题7

气泡会占有体积,使流体不连续和更易发生湍动,影响测量。

传热综合实验(预习报告)

何宇轩 3008207191

化工七班

一、实验任务

⒈使用空气—水蒸气对流套管换热器实验装置,分别测定两个套管换热器的对流传热系数

α。

i

2.应用线性回归分析方法,确定实验装置中两个套管换热器的关联式Nu=ARe m Pr0.4中常数A、m的值。

3.分别测定不同流速下两个套管换热器的管内压降p

?,分别研究套管换热器的管内压降p

?和Nu之间的关系。

4.综合分析上述实验结果,判定两个套管换热器类型(普通光滑内管或强化内管)。

5.根据实验数据和结果分析,选择适宜类型的一个套管换热器,调整实验参数满足实时任务要求,完成实验报告。

二、 实验原理

(1)对流传热系数的测定 对流传热系数

可以根据牛顿冷却定律,用实验来测定:

因为i α<

i α=V s ρc p (t 2-t 1)/S Δt m

式中:

V s 为空气流速 ρ为空气密度 c p 为空气定压比热

t 1 、t 2为空气进、出口温度 S 为换热面积

Δt m 为平均温度差

(2)确定实验装置中两个套管换热器的关联式Nu=ARe m Pr 0.4中常数A 、m 的值。

努塞尔准数

雷诺准数 Re=

普兰特准数

物理数据、、、可根据定性温度查得。经过计算可知,对于管内被加热的空气,普兰特准数变化不大,可视为常数,则关联式的形式简化为:

N u =ARe m Pr 0.4

在双对数坐标纸上画出Re ~的关联图,并用线性回归的方法即可求得A 、m 的值。

三、 简明实验流程示意图

实验流程图如图1所示

图1 传热综合实验实验装置流程图

1-蒸汽发生器;2,3-蒸汽支路控制阀;4,5-套管换热器;6,7-蒸汽放空表;8,9-内管测压口;10,11-空气支路控制阀;12-孔板流量器;13-漩涡气泵

四、实验操作步骤简述

五、 原始数据记录表

(1) 第一号套管换热器数据见表1

表1 第一号套管换热器原始数据记录表 进口温度t1/ 出口温度t2/ 管壁温度tm/ 空气流量V/ 压力降f P /

调节流量

换另外一组套管换热器进行实验

检查蒸汽加热釜中的水位是否在正常范围内、必须保证蒸汽上升管线的畅通必须保证空气管线的畅通。

5到8分钟后,读取实验数据,包括进口温度、出口温度、管壁温度、空气流量、压力降

备注:传热管内径: 传热管外径:

(2) 第2号套管换热器数据见表2

表2 第二号套管换热器原始数据记录表 进口温度t1/ 出口温度t2/ 管壁温度tm/ 空气流量V/ 压力降f P /

备注:传热管内径: 传热管外径:

传热综合实验实验报告六、实验数据处理

1号管和2号管的传热数据处理结果见表3和表4

表3 1号管传热数据处理表

表4 2号管传热数据处理表

管径管长

Nu 和Re 的关系图见图

2

图2 套管换热器实验准数关联图

10.00

100.00

1000.00

10000

100000

Re

N u /P r ^0.4

1号管和2号管的ΔP 和Nu 关系图分别见图3和图4

图3 1号管中ΔP 和Nu 关系图

图4 2号管中ΔP和Nu关系图

七、任务的完成情况和分析计算

即时实验任务:冷热流体温差为44℃。

查表可知,1号管在实验过程中的温差范围为35.3-42.8℃,2号管为46.5-56.8℃,可通过降低一号管的流量完成实验。

参照1号管的第一组数据,将冷流体的平均温度定为61℃,

化工原理实验报告

化工原理实验报告 Prepared on 22 November 2020

实验一 伯努利实验 一、实验目的 1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利方程式的理解。 2、观察各项能量(或压头)随流速的变化规律。 二、实验原理 1、不可压缩流体在管内作稳定流动时,由于管路条件(如位置高低、管径大小等)的变化,会引起流动过程中三种机械能——位能、动能、静压能的相应改变及相互转换。对理想流体,在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒的(机械能守恒定律)。 2、对于实际流体,由于存在内磨擦,流体在流动中总有一部分机械能随磨擦和碰撞转化为热能而损失。故而对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械损失。 3、以上几种机械能均可用U 型压差计中的液位差来表示,分别称为位压头、动压头、静压头。当测压直管中的小孔(即测压孔)与水流方向垂直时,测压管内液柱高度(位压头)则为静压头与动压头之和。任意两截面间位压头、静压头、动压头总和的差值,则为损失压头。 4、柏努利方程式 式中: 1Z 、2Z ——各截面间距基准面的距离 (m ) 1u 、2u ——各截面中心点处的平均速度(可通过流量与其截面积求得) (m/s)

1P 、2p ——各截面中心点处的静压力(可由U 型压差计的液位差可 知) (Pa ) 对于没有能量损失且无外加功的理想流体,上式可简化为 ρ ρ2 222121122p u gz p u gz + +=++ 测出通过管路的流量,即可计算出截面平均流速ν及动压g 22 ν,从而可得到各截面测管水头和总水头。 三、实验流程图 泵额定流量为10L/min,扬程为8m,输入功率为80W. 实验管:内径15mm 。 四、实验操作步骤与注意事项 1、熟悉实验设备,分清各测压管与各测压点,毕托管测点的对应关系。 2、打开开关供水,使水箱充水,待水箱溢流后,检查泄水阀关闭时所有测压管水面是否齐平,若不平则进行排气调平(开关几次)。 3、打开阀5,观察测压管水头和总水头的变化趋势及位置水头、压强水头之间的相互关系,观察当流量增加或减少时测压管水头的变化情况。 4、将流量控制阀开到一定大小,观察并记录各测压点平行与垂直流体流动方向的液位差△h 1…△h 4。要注意其变化情况。继续开大流量调节阀,测压孔正对水流方向,观察并记录各测压管中液位差△h 1…△h 4。 5、实验完毕停泵,将原始数据整理。 实验二 离心泵性能曲线测定 一、实验目的 1. 了解离心泵的构造和操作方法 2. 学习和掌握离心泵特性曲线的测定方法

数字逻辑个性课实验报告

学生学号0121410870432实验成绩 学生实验报告书 实验课程名称逻辑与计算机设计基础 开课学院计算机科学与技术学院 指导教师姓名肖敏 学生姓名付天纯 学生专业班级物联网1403 2015--2016学年第一学期

译码器的设计与实现 【实验要求】: (1)理解译码器的工作原理,设计并实现n-2n译码器,要求能够正确地根据输入信号译码成输出信号。(2)要求实现2-4译码器、3-8译码器、4-16译码器、8-28译码器、16-216译码器、32-232译码器。 【实验目的】 (1)掌握译码器的工作原理; (2)掌握n-2n译码器的实现。 【实验环境】 ◆Basys3 FPGA开发板,69套。 ◆Vivado2014 集成开发环境。 ◆Verilog编程语言。 【实验步骤】 一·功能描述 输入由五个拨码开关控制,利用led灯输出32种显示 二·真值表

三·电路图和表达式

四·源代码 module decoder_5( input [4:0] a, output [15:0] d0 ); reg [15:0] d0; reg [15:0] d1; always @(a) begin case(a) 5'b00000 :{d1,d0}=32'b1000_0000_0000_0000_0000_0000_0000_0000; 5'b00001 :{d1,d0}=32'b0100_0000_0000_0000_0000_0000_0000_0000; 5'b00010 :{d1,d0}=32'b0010_0000_0000_0000_0000_0000_0000_0000; 5'b00011 :{d1,d0}=32'b0001_0000_0000_0000_0000_0000_0000_0000; 5'b00100 :{d1,d0}=32'b0000_1000_0000_0000_0000_0000_0000_0000; 5'b00101 :{d1,d0}=32'b0000_0100_0000_0000_0000_0000_0000_0000; 5'b00110 :{d1,d0}=32'b0000_0010_0000_0000_0000_0000_0000_0000; 5'b00111 :{d1,d0}=32'b0000_0001_0000_0000_0000_0000_0000_0000; 5'b01000 :{d1,d0}=32'b0000_0000_1000_0000_0000_0000_0000_0000; 5'b01001 :{d1,d0}=32'b0000_0000_0100_0000_0000_0000_0000_0000; 5'b01010 :{d1,d0}=32'b0000_0000_0010_0000_0000_0000_0000_0000; 5'b01011 :{d1,d0}=32'b0000_0000_0001_0000_0000_0000_0000_0000; 5'b01100 :{d1,d0}=32'b0000_0000_0000_1000_0000_0000_0000_0000; 5'b01101 :{d1,d0}=32'b0000_0000_0000_0100_0000_0000_0000_0000; 5'b01110 :{d1,d0}=32'b0000_0000_0000_0010_0000_0000_0000_0000; 5'b01111 :{d1,d0}=32'b0000_0000_0000_0001_0000_0000_0000_0000; 5'b10000 :{d1,d0}=32'b0000_0000_0000_0000_1000_0000_0000_0000; 5'b10001 :{d1,d0}=32'b0000_0000_0000_0000_0100_0000_0000_0000; 5'b10010 :{d1,d0}=32'b0000_0000_0000_0000_0010_0000_0000_0000; 5'b10011 :{d1,d0}=32'b0000_0000_0000_0000_0001_0000_0000_0000; 5'b10100 :{d1,d0}=32'b0000_0000_0000_0000_0000_1000_0000_0000; 5'b10101 :{d1,d0}=32'b0000_0000_0000_0000_0000_0100_0000_0000; 5'b10110 :{d1,d0}=32'b0000_0000_0000_0000_0000_0010_0000_0000; 5'b10111 :{d1,d0}=32'b0000_0000_0000_0000_0000_0001_0000_0000; 5'b11000 :{d1,d0}=32'b0000_0000_0000_0000_0000_0000_1000_0000; 5'b11001 :{d1,d0}=32'b0000_0000_0000_0000_0000_0000_0100_0000; 5'b11010 :{d1,d0}=32'b0000_0000_0000_0000_0000_0000_0010_0000;

2017化工课程设计心得体会范文

2017化工课程设计心得体会范文 2017化工课程设计心得体会范文一 化工原理课程设计是综合运用化工原理及相关基础知识的实践性教学环节。设计过程中指导教师指引学生在设计过程中既要考虑理论上的可行性,还要考虑生产上的安全性和经济合理性。通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法。 本次化工原理课程设计历时两周,是上大学以来第一次独立的工业化设计。从老师以及学长那里了解到化工原理课程设计是培养我们化工设计能力的重要教学环节,通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画出工艺流程、塔板结构等图形;在设计过程中不仅要考虑理论上的可行性,还要考虑生产上的安全性和经济合理性。由于第一次接触课程设计,起初心里充满了新鲜感和期待,因为自我认为在大学里学到的东西终于可以加以实践了。可是当老师把任务书发到手里是却是一头雾水,完全不知所措。可是在这短短的三周里,从开始的一无所知,到同学讨论,再进行整个流程的计算,再到对工业材料上的选取论证和后期的程序的编写以及流程图的绘制等过程的培养,我真切感受到了理论与实践相结合中的种种困难,也体会到了利用所学的有限的理论知识去解决实际中各种问题的不易。我的课程设计题目是苯――氯苯筛板式精馏塔设计图。在开始时,我们不知道如何下手,虽然有课程设计书作为参

考,但其书上的计算步骤与我们自己的计算步骤有少许差异,在这些差异面前,我们显得有些不知所措,通过查阅《化工原理》,《化工工艺设计手册》,《物理化学》,《化工原理课程设计》等书籍,以及在网上搜索到的理论和经验数据。我们慢慢地找到了符合自己的实验数据。并逐渐建立了自己的模版和计算过程。在这三周中给我印象最深的是我们这些“非泡点一族”在计算进料热状况参数q时,没有任何参考模板,完全靠自己捉摸思考。起初大家都是不知所措,待冷静下来,我们仔细结合上课老师讲的内容,一步一步的讨论演算,经大家一下午的不懈努力,终于把q算出来了。还有就是我们在设计换热器部分,在试差的过程中,我们大部分人都是经历了几乎一天多的时间才选出了合适的换热器型号,现在还清楚的记得我试差成功后那激动的心情,因为我尝到了自己在付出很多后那种成功的喜悦,因为这些都是我们的“血泪史”的见证哈。 在此感谢我们的杜治平老师.,老师严谨细致、一丝不苟的作风一直是我工作、学习中的榜样;老师循循善诱的教导和不拘一格的思路给予我无尽的启迪;这次课程设计的细节和每个数据,都离不开老师您的细心指导。而您开朗的个性和宽容的态度,帮助我能够很顺利的完成了这次课程设计。同时感谢同组的同学们,谢谢你们对我的帮助和支持,让我感受到同学的友谊。由于本人的设计能力有限,在设计过程中难免出现错误,恳请老师们多多指教,我十分乐意接受你们的批评与指正,本人将万分感谢。 2017化工课程设计心得体会范文二

化工原理精馏实验报告

北 京 化 工 大 学 实 验 报 告 课程名称: 化工原理实验 实验日期: 2011.04.24 班 级: 化工0801 姓 名: 王晓 同 组 人:丁大鹏,王平,王海玮 装置型号: 精馏实验 一、摘要 精馏是实现液相混合物液液分离的重要方法,而精馏塔是化工生产中进行分离过程的主要单元,板式精馏塔为其主要形式。本实验用工程模拟的方法模拟精馏塔在全回流的状态下及部分回流状态下的操作情况,从而计算单板效率和总板效率,并分析影响单板效率的主要因素,最终得以提高塔板效率。 关键词:精馏、板式塔、理论板数、总板效率、单板效率 二、实验目的 1、熟悉精馏的工艺流程,掌握精馏实验的操作方法。 2、了解板式塔的结构,观察塔板上气-液接触状况。 3、测测定全回流时的全塔效率及单板效率。 4、测定部分回流时的全塔效率。 5、测定全塔的浓度或温度分布。 6、测定塔釜再沸器的沸腾给热系数。 三、实验原理 在板式精馏塔中,由塔釜产生的蒸汽沿塔逐板上升与来自塔顶逐板下降的回流液,在塔板上实现多次接触,进行传热和传质,使混合液达到一定程度的分离。 回流是精馏操作得以实现的基础。塔顶的回流量和采出量之比,称为回流比。回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。 回流比存在两种极限情况:最小回流比和全回流。若塔在最小回流比下操作,要完成分离任务,则需要有无穷多块塔板的精馏塔。当然,这不符合工业实际,所以最小回流比只是一个操作限度。若操作处于全回流时,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔中,这在生产中无实验意义。但是,由于此时所需理论板数最少,又易于达到稳定,故常在工业装置开停车、排除故障及科学研究时采用。 实际回流比常取用最小回流比的1.2-2.0倍。在精馏操作中,若回流系统出现故障,操作情况会急剧恶化,分离效果也将变坏。 板效率是体现塔板性能及操作状况的主要参数,有以下两种定义方法。 (1)总板效率E e N E N 式中 E —总板效率; N —理论板数(不包括塔釜); Ne —实际板数。

华中科技大学计算机学院数字逻辑实验报告2(共四次)

数字逻辑实验报告(2) 姓名: 学号: 班级: 指导教师: 计算机科学与技术学院 20 年月日

数字逻辑实验报告(2)无符号数的乘法器设计

一、无符号数的乘法器设计 1、实验名称 无符号数的乘法器的设计。 2、实验目的 要求使用合适的逻辑电路的设计方法,通过工具软件logisim进行无符号数的乘法器的设计和验证,记录实验结果,验证设计是否达到要求。 通过无符号数的乘法器的设计、仿真、验证3个训练过程,使同学们掌握数字逻辑电路的设计、仿真、调试的方法。 3、实验所用设备 Logisim2.7.1软件一套。 4、实验内容 (1)四位乘法器设计 四位乘法器Mul4 4实现两个无符号的4位二进制数的乘法运算,其结构框图如图3-1所示。设被乘数为b(3:0),乘数为a(3:0),乘积需要8位二进制数表示,乘积为p(7:0)。 图3-1 四位乘法器结构框图 四位乘法器运算可以用4个相同的模块串接而成,其内部结构如图3-2所示。每个模块均包含一个加法器、一个2选1多路选择器和一个移位器shl。 图3-2中数据通路上的数据位宽都为8,确保两个4位二进制数的乘积不会发生溢出。shl是左移一位的操作,在这里可以不用逻辑器件来实现,而仅通过数据连线的改变(两个分线器错位相连接)就可实现。

a(0)a(1)a(2)a(3) 图3-2 四位乘法器内部结构 (2)32 4乘法器设计 32 4乘法器Mul32 4实现一个无符号的32位二进制数和一个无符号的4位二进制数的乘法运算,其结构框图如图3-3所示。设被乘数为b(31:0),乘数为a(3:0),乘积也用32位二进制数表示,乘积为p(31:0)。这里,要求乘积p能用32位二进制数表示,且不会发生溢出。 图3-3 32 4乘法器结构框图 在四位乘法器Mul4 4上进行改进,将数据通路上的数据位宽都改为32位,即可实现Mul32 4。 (3)32 32乘法器设计 32 32乘法器Mul32 32实现两个无符号的32位二进制数的乘法运算,其结构框图如图3-4所示。设被乘数为b(31:0),乘数为a(31:0),乘积也用32位二进制数表示,乘积为p(31:0)。这里,要求乘积p能用32位二进制数表示,且不会发生溢出。 图3-4 32 32乘法器结构框图 用32 4乘法器Mul32 4作为基本部件,实现32 32乘法器Mul32 32。 设被乘数为b(31:0)=(b31b30b29b28···b15b14b13b12···b4b3b2b1b0)2 乘数为a(31:0)=(a31a30a29a28···a15a14a13a12···a3a2a1a0)2 =(a31a30a29a28)2 228+···+ ( a15a14a13a12)2 212+···+ (a3a2a1a0)2 20

物理化学实验报告.

《大学化学基础实验2》实验报告 课程:物理化学实验 专业:环境科学 班级: 学号: 学生姓名:邓丁 指导教师:谭蕾 实验日期:5月24日

实验一、溶解焓的测定 一、实验名称:溶解焓的测定。 二、目的要求:(1)学会用量热法测定盐类的积分溶解焓。 (2)掌握作图外推法求真实温差的方法。 三、基本原理: 盐类的溶解通常包含两个同时进行的过程:一是晶格的破坏,为吸热过程;二是离子的溶剂化,即离子的水合作用,为放热过程。溶解焓则是这两个过程热效应的总和,因此,盐类的溶解过程最终是吸热还是放热,是由这两个热效应的相应大小所决定的。影响溶解焓的主要因素有温度、压力、溶质的性质以及用量等。热平衡式: △sol H m=-[(m1C1+m2C2)+C]△TM/m2 式中, sol H m 为盐在溶液温度及浓度下的积分溶解焓, J·mol , m1 , m2 分别为水和溶质的质量, M 为溶质的摩尔质量,kg·mol -1 ;C1 ,C 2 分别为溶剂水, kg; 溶质的比热容,J·kg -1;T 为溶解过程中的真实温差,K;C 为量热计的热容, J·K- 1 ,也称热量计常数.本实验通过测定已知积分溶解焓的标准物质 KCl 的 T ,标定出量热计热容 C 的值. 四、实验主要仪器名称: NDRH-2S型溶解焓测定实验装置1套(包括数字式温度温差测量仪1台、300mL简单量热计1只、电磁搅拌器1台);250mL容量瓶1个;秒表1快;电子 ;蒸馏水 天平1台;KCl;KNO 3 五、实验步骤: (1)量热计热容 C 的测定 ( 1 ) 将仪器打开 , 预热 . 准确称量 5.147g 研磨好的 KCl , 待用 . n KCl : n水 = 1: 200 (2)在干净并干燥的量热计中准确放入 250mL 温室下的蒸馏水,然后将温度传感器的探头插入量热计的液体中.打开搅拌器开关,保持一定的搅拌速度,待温差变化基本稳定后,读取水的温度 T1 ,作为基温. (3)同时, 每隔30s就记录一次温差值,连续记录8 次后, 将称量好的 5.174g KCl 经漏斗全部迅速倒入量热计中,盖好.10s记录一次温度值,至温度基本稳定不变,再每隔 30s记录一次温度的数值,记录 8 次即可停止. (4)测出量热计中溶液的温度,记作 T2 .计算 T1 , T2 平均值,作为体系的温度.倒出溶液,取出搅拌子,用蒸馏水洗净量热计. KNO3 熔解热的测定:标准称量 3.513g KNO3 ,代替 KCl 重复上述操作.

化工原理实验报告

化工原理实验报告

————————————————————————————————作者:————————————————————————————————日期: ?

实验一 伯努利实验 一、实验目的 1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利方程式的理解。 2、观察各项能量(或压头)随流速的变化规律。 二、实验原理 1、不可压缩流体在管内作稳定流动时,由于管路条件(如位置高低、管径大小等)的变化,会引起流动过程中三种机械能——位能、动能、静压能的相应改变及相互转换。对理想流体,在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒的(机械能守恒定律)。 2、对于实际流体,由于存在内磨擦,流体在流动中总有一部分机械能随磨擦和碰撞转化为热能而损失。故而对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械损失。 3、以上几种机械能均可用U 型压差计中的液位差来表示,分别称为位压头、动压头、静压头。当测压直管中的小孔(即测压孔)与水流方向垂直时,测压管内液柱高度(位压头)则为静压头与动压头之和。任意两截面间位压头、静压头、动压头总和的差值,则为损失压头。 4、柏努利方程式 ∑+++=+++f h p u gz We p u gz ρ ρ2222121122 式中: 1Z 、2Z ——各截面间距基准面的距离 (m) 1u 、2u ——各截面中心点处的平均速度(可通过流量与其截 面积求得) (m/s) 1P 、2p ——各截面中心点处的静压力(可由U型压差计的液位 差可知) (Pa ) 对于没有能量损失且无外加功的理想流体,上式可简化为 ρ ρ2 2 22121122p u gz p u gz + +=++ 测出通过管路的流量,即可计算出截面平均流速ν及动压g 22 ν,从而可得到各截面测管水头和总水头。 三、实验流程图

化工原理实验传热实验报告

传热膜系数测定实验(第四组) 一、实验目的 1、了解套管换热器的结构和壁温的测量方法 2、了解影响给热系数的因素和强化传热的途径 3、体会计算机采集与控制软件对提高实验效率的作用 4、学会给热系数的实验测定和数据处理方法 二、实验内容 1、测定空气在圆管内作强制湍流时的给热系数α1 2、测定加入静态混合器后空气的强制湍流给热系数α1’ 3、回归α1和α1’联式4.0Pr Re ??=a A Nu 中的参数A 、a * 4、测定两个条件下铜管内空气的能量损失 二、实验原理 间壁式传热过程是由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热三个传热过程所组成。由于过程复杂,影响因素多,机理不清楚,所以采用量纲分析法来确定给热系数。 1)寻找影响因素 物性:ρ,μ ,λ,c p 设备特征尺寸:l 操作:u ,βg ΔT 则:α=f (ρ,μ,λ,c p ,l ,u ,βg ΔT ) 2)量纲分析 ρ[ML -3],μ[ML -1 T -1],λ[ML T -3 Q -1],c p [L 2 T -2 Q -1],l [L] ,u [LT -1], βg ΔT [L T -2], α[MT -3 Q -1]] 3)选基本变量(独立,含M ,L ,T ,Q-热力学温度) ρ,l ,μ, λ 4)无量纲化非基本变量 α:Nu =αl/λ u: Re =ρlu/μ c p : Pr =c p μ/λ βg ΔT : Gr =βg ΔT l 3ρ2/μ2 5)原函数无量纲化 6)实验 Nu =ARe a Pr b Gr c 强制对流圆管内表面加热:Nu =ARe a Pr 0.4 圆管传热基本方程: 热量衡算方程: 圆管传热牛顿冷却定律: 圆筒壁传导热流量:)] /()ln[)()()/ln(11221122121 2w w w w w w w w t T t T t T t T A A A A Q -----?-?=δλ 空气流量由孔板流量测量:54.02.26P q v ??= [m 3h -1,kPa] 空气的定性温度:t=(t 1+t 2)/2 [℃]

数字逻辑实验报告

. 武汉理工大学

2017 年月日 实验一:一位全加器 实验目的: 1. 掌握组合逻辑电路的设计方法; 2. 熟悉Vivado2014 集成开发环境和Verilog 编程语言; 3. 掌握1 位全加器电路的设计与实现。 试验工具: 1.Basys3 FPGA 开发板 2.Vivado2014 集成开发环境和Verilog 编程语言。 实验原理: Ci+A+B={Co,S} 全加器真表

全加器逻辑表达式 S=A○+B○+Ci Co=A.B+ (A○+B).Ci 全加器电路图 实验步骤: (一)新建工程: 1、打开 Vivado 2014.2 开发工具,可通过桌面快捷方式或开始菜单中 Xilinx Design Tools->Vivado 2014.2 下的 Vivado 2014.2 打开软件; 2、单击上述界面中 Create New Project 图标,弹出新建工程向导。 3、输入工程名称、选择工程存储路径,并勾选Create project subdirectory选项,为工程在指 定存储路径下建立独立的文件夹。设置完成后,点击Next。注意:工程名称和存储路径中不能出现中文和空格,建议工程名称以字母、数字、下划线来组成 4、选择RTL Project一项,并勾选Do not specify sources at this time,为了跳过在新建工 程的过程中添加设计源文件。 5、根据使用的FPGA开发平台,选择对应的FPGA目标器件。(在本手册中,以Xilinx大学计 划开发板Digilent Basys3 为例,FPGA 采用Artix-7 XC7A35T-1CPG236-C 的器件,即Family 和Subfamily 均为Artix-7,封装形式(Package)为CPG236,速度等级(Speed grade)为-1,温度等级(Temp Grade)为C)。点击Next。 6、确认相关信息与设计所用的的FPGA 器件信息是否一致,一致请点击Finish,不一致,请返 回上一步修改。 7、得到如下的空白Vivado 工程界面,完成空白工程新建。

物理化学实验报告册(安全)

物理化学实验报告 姓名 学号 专业班级 二级学院 重庆交通大学理学院化学教研室 (牟元华编制) 2014年3月

实验一恒温槽的装配与性能测试 一、实验目的:室温 日期 成绩 指导教师二、实验原理(含实验装置图) 三、实验步骤 四、数据记录与处理 (1)将实验数据记录于下表中 恒温温度为

时间/min 0 2 4 6 8 10 12 14 16 18 20 贝克曼温度 计读数 时间/min 22 24 26 28 30 32 34 36 38 40 42 贝克曼温度 计读数 时间/min 44 46 48 50 52 54 56 58 60 贝克曼温度 计读数 (2)计算恒温槽的灵敏度并计算平均值 五、思考题 对于提高恒温槽的灵敏度,可从那些方面进行改进?

实验二燃烧热的测定 一、实验目的室温 日期 成绩 指导教师二、实验原理(含实验装置图) 三、实验步骤 四、数据记录与处理 (1) 将实验数据记录于下表中 表1 称重 质量/g 变量萘 样品m1 引火丝m 2 残余引火丝m 3 (2)将不同时间测得的温度记于表2中 内容代号萘 前期 (间隔0.5min,约8组)1 2 3 4

6 7 8 主期 (间隔0.5min,约20组)1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 后期 (间隔0.5min,约11组)1 2 3

5 6 7 8 9 10 11 12 13 (若表格不够,可在旁边按顺序补加) (3)根据表1和表2测得的萘的数据求萘的燃烧热经验公式法计算△t,最后求算Qp。 (b)△t的计算 其中: (b)Qp的计算 C总=14500J.g-1。

化工原理实验实验报告

篇一:化工原理实验报告吸收实验 姓名 专业月实验内容吸收实验指导教师 一、实验名称: 吸收实验 二、实验目的: 1.学习填料塔的操作; 2. 测定填料塔体积吸收系数kya. 三、实验原理: 对填料吸收塔的要求,既希望它的传质效率高,又希望它的压降低以省能耗。但两者往往是矛盾的,故面对一台吸收塔应摸索它的适宜操作条件。 (一)、空塔气速与填料层压降关系 气体通过填料层压降△p与填料特性及气、液流量大小等有关,常通过实验测定。 若以空塔气速uo[m/s]为横坐标,单位填料层压降?p[mmh20/m]为纵坐标,在z ?p~uo关系z双对数坐标纸上标绘如图2-2-7-1所示。当液体喷淋量l0=0时,可知 为一直线,其斜率约1.0—2,当喷淋量为l1时,?p~uo为一折线,若喷淋量越大,z ?p值较小时为恒持z折线位置越向左移动,图中l2>l1。每条折线分为三个区段, 液区,?p?p?p~uo关系曲线斜率与干塔的相同。值为中间时叫截液区,~uo曲zzz ?p值较大时叫液泛区,z线斜率大于2,持液区与截液区之间的转折点叫截点a。 姓名 专业月实验内容指导教师?p~uo曲线斜率大于10,截液区与液泛区之间的转折点叫泛点b。在液泛区塔已z 无法操作。塔的最适宜操作条件是在截点与泛点之间,此时塔效率最高。 图2-2-7-1 填料塔层的?p~uo关系图 z 图2-2-7-2 吸收塔物料衡算 (二)、吸收系数与吸收效率 本实验用水吸收空气与氨混合气体中的氨,氨易溶于水,故此操作属气膜控制。若气相中氨的浓度较小,则氨溶于水后的气液平衡关系可认为符合亨利定律,吸收姓名 专业月实验内容指导教师平均推动力可用对数平均浓度差法进行计算。其吸收速率方程可用下式表示: na?kya???h??ym(1)式中:na——被吸收的氨量[kmolnh3/h];?——塔的截面积[m2] h——填料层高度[m] ?ym——气相对数平均推动力 kya——气相体积吸收系数[kmolnh3/m3·h] 被吸收氨量的计算,对全塔进行物料衡算(见图2-2-7-2): na?v(y1?y2)?l(x1?x2) (2)式中:v——空气的流量[kmol空气/h] l——吸收剂(水)的流量[kmolh20/h] y1——塔底气相浓度[kmolnh3/kmol空气] y2——塔顶气相浓度[kmolnh3/kmol空气] x1,x2——分别为塔底、塔顶液相浓度[kmolnh3/kmolh20] 由式(1)和式(2)联解得: kya?v(y1?y2)(3) ??h??ym 为求得kya必须先求出y1、y2和?ym之值。 1、y1值的计算:

数字逻辑实验报告。编码器

数字逻辑实验实验报告 脚分配、1)分析输入、输出,列出方程。根据方程和IP 核库判断需要使用的门电路以及个数。 2)创建新的工程,加载需要使用的IP 核。 3)创建BD 设计文件,添加你所需要的IP 核,进行端口设置和连线操作。 4)完成原理图设计后,生成顶层文件(Generate Output Products)和HDL 代码文件(Create HDL Wrapper)。 5)配置管脚约束(I/O PLANNING),为输入指定相应的拨码开关,为输出指定相应的led 灯显示。

6)综合、实现、生成bitstream。 7)仿真验证,依据真值表,在实验板验证试验结果。

实验报告说明 数字逻辑课程组 实验名称列入实验指导书相应的实验题目。 实验目的目的要明确,要抓住重点,可以从理论和实践两个方面考虑。可参考实验指导书的内容。在理论上,验证所学章节相关的真值表、逻辑表达式或逻辑图的实际应用,以使实验者获得深刻和系统的理解,在实践上,掌握使用软件平台及设计的技能技巧。一般需说明是验证型实验还是设计型实验,是创新型实验还是综合型实验。 实验环境实验用的软硬件环境(配置)。 实验内容(含电路原理图/Verilog程序、管脚分配、仿真结果等;扩展内容也列入本栏)这是实验报告极其重要的内容。这部分要写明经过哪几个步骤。可画出流程图,再配以相应的文字说明,这样既可以节省许多文字说明,又能使实验报告简明扼要,清楚明白。 实验结果分析数字逻辑的设计与实验结果的显示是否吻合,如出现异常,如何修正并得到正确的结果。 实验方案的缺陷及改进意见在实验过程中发现的问题,个人对问题的改进意见。 心得体会、问题讨论对本次实验的体会、思考和建议。

化工原理实验心得体会

化工原理实验心得体会 这个学期我们学习了《化工原理》这门课,在学习了部分理论知识后,我们进入了实验室,开始学习《化工原理实验》并分组进行了实验。和前几个学期类似,大家先要进行实验的预习,在了解和熟悉实验的要求和操作的基础上,然后在老师提问检查每一组各位组员对实验过程的预习程度后,对各位组员的预习情况进行点评,并指出其中的不足和缺漏。然后在指导老师的悉心讲解后,对实验有一个新的、更全面的认识后进行实验。通过动手实验,我更加深刻的理解了化工原理课上老师讲解的知识,增强了动手能力,对理论知识有了形象化的认识。 本学期我们共学习了五个实验,分别是: 实验一、离心泵的特性曲线实验; 实验二、流体流动阻力的测定; 实验三、空气—蒸汽对流传热系数的测定; 实验四、恒压过滤常数的测定; 实验五、填料塔的精馏实验, 通过对实验的学习并亲手操作,我掌握了许多知识。 这几个实验中我印象最深刻的是恒压过滤常数的测定,实验以生活中常见的碳酸钙的水浆液位测定原料。这个实验和空气—蒸汽对流传热系数的测定实验一起分组进行。老师讲解完实验原

理并强调了注意事项后,我们开始实验。我们小组先进行了恒压 过滤常数测定实验,首先我们对两个小组的成员进行了各项职责 的分配分别是:两位同学负责碳酸钙水浆液的搅拌和回收,由一 位同学负责数据的采集和记录的工作。每个三分钟记录床层温度 一次,取样一次,并由同组同学进行含水量的测定,由两位同学 负责装好板框,最后分别由其他两位同学负责压力阀的控制和滤 液进口阀、滤液出口阀的控制。这样一来整个实验的分工工作就 已经完成了。实验过程中,我们互相配合,进行的很顺利。但是 在第一次实验时由于我们的粗心大意,我们将四块滤板中的一块 方向装反了,使得我们第一次采集的数据无效了,因此指导老师 还对我们实验时的粗心大意进行了严厉的批评教育,这些批评教 育使我们牢记在这是一个教训,实验中细心认真完成每一步,我 们的动手能力才会在这个过程中得到提升。 在这一个学期短暂的实验学习过程中,使我们重新认识了在 大学学习生活中,在实验过程中一个实验者的认真预习和摈弃粗 心大意,认真、谨慎的进行好每一步的操作、合理的分工协同工 作对于一个实验的成败与否是至关重要的。或许在将来生活工作 中也一样,俗话说得好,所谓“细节决定成败”。一个做事粗心 大意,做事前从不做准备的人不管他将来从事什么样的工作都无 法取得好的成绩,因为在他的心理或许压根就没有重视过自己所 从事的事情或者是行业。俗话说“机遇永远是给有准备的人的”。 化工原理实验的任务主要是了解一些典型化工设备的原理和

最新浙江大学化工原理实验---填料塔吸收实验报告分析解析

实验报告 课程名称:过程工程原理实验(乙) 指导老师: 叶向群 成绩:__________________ 实验名称:吸收实验 实验类型:工程实验 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 填料塔吸收操作及体积吸收系数测定 1 实验目的: 1.1 了解填料吸收塔的构造并熟悉吸收塔的操作; 1.2 观察填料塔的液泛现象,测定泛点空气塔气速; 1.3 测定填料层压降ΔP 与空塔气速u 的关系曲线; 1.4 测定含氨空气—水系统的体积吸收系数K y a 。 2 实验装置: 2.1 本实验的装置流程图如图1: 专业: 姓名: 学号: 日期:2015.12.26 地点:教十2109

2.2物系:水—空气—氨气。惰性气体由漩涡气泵提供,氨气由液氮钢瓶提供,吸收剂水采用自来水,他们的流量分别通过转子流量计。水从塔顶喷淋至调料层与自下而上的含氮空气进行吸收过程,溶液由塔底经过液封管流出塔外,塔底有液相取样口,经吸收后的尾气由塔顶排至室外,自塔顶引出适量尾气,用化学分析法对其进行组成分析。 3 基本原理: 实验中气体流量由转子流量计测量。但由于实验测量条件与转子流量计标定条件不一定相同,故转子流量计的读数值必须进行校正。校正方法如下:

3.2 体积吸收系数的测定 3.2.1相平衡常数m 对相平衡关系遵循亨利定律的物系(一般指低浓度气体),气液平衡关系为: 相平衡常数m与系统总压P和亨利系数E的关系如下: 式中:E—亨利系数,Pa P—系统总压(实验中取塔内平均压力),Pa 亨利系数E与温度T的关系为: lg E= 11.468-1922 / T 式中:T—液相温度(实验中取塔底液相温度),K。 根据实验中所测的塔顶表压及塔顶塔底压差△p,即可求得塔内平均压力P。根据实验中所测的塔底液相温度T,利用式(4)、(5)便可求得相平衡常数m。 3.2.2 体积吸收常数 体积吸收常数是反映填料塔性能的主要参数之一,其值也是设计填料塔的重要依据。本实验属于低浓气体吸收,近似取Y≈y、X≈x。 3.2.3被吸收的氨气量,可由物料衡算 (X1-X2) 式中:V—惰性气体空气的流量,kmol/h;

华中科技大学数字逻辑实验报告

华中科技大学数字逻辑实验报告 姓名: 专业班级: 学号: 指导老师: 完成时间:

实验一:组合逻辑电路的设计 一、实验目的: 1.掌握组合逻辑电路的功能测试。 2.验证半加器和全加器的逻辑功能 3.学会二进制的运算规律。 二、实验所用组件: 二输入四与门74LS08,二输入四与非门74LS00,二输入四异或门74LS86,六门反向器74LS04芯片,三输入三与非门74L10,电线若干。 三、实验内容: 内容A:全加全减器。 实验要求: 一位全加/全减法器,如图所示: 电路做加法还是做减法运算是由M决定的,当M=0做加法,M=1做减法。当作为全加法起时输入A.B和Cin分别为加数,被加数和低位来的进位,S和数,Co位向上位的进位。当作为全减法器时输入信号A,B和Cin分别为被减数,减数和低位来的借位,S为差,Co为向上的借位。 实验步骤: 1.根据功能写出输入/输出观察表:

2. 3.做出卡诺图,确定输出和激励的函数表达式:

4.根据逻辑表达式作出电路的平面图: 5.检查导线以及芯片是否完好无损坏,根据平面图和逻辑表达式连接电路。 实验结果: 电路连接好后,经检测成功实现了一位全加/全减法器的功能。 内容B:舍入与检测电路的设计: 试验要求: 用所给定的集合电路组件设计一个多输出逻辑电路,该电路的输入为8421码,F1为“四

舍五入”输出信号,F2为奇偶检测输出信号。当电路检测到输入的代码大宇或等于(5)10时,电路的输出F1=1;其他情况F1=0。当输入代码中含1的个数为奇数时,电路的输出F2=1,其他情况F2=0。该电路的框图如下所示: (1)按照所设计的电路图接线,注意将电路的输入端接试验台的开关,通过拨动开关输入8421代码,电路输入按至试验台显示灯。 (2)每输入一个代码后观察显示灯,并将结果记录在输入/输出观察表中。 实验步骤 1.按照所给定的实验要求填写出F1,F2理论上的真值表。 2.根据真值表给出F1和F2的卡诺图。

物理化学实验报告-溶液中的吸附作用和表面张力的测定实验报告

实验十二溶液中的吸附作用和表面张力的测定 摘要:本实验采用最大气泡压力法测定了液体表面张力,通过对不同浓度下正丙醇溶液的表面张力研究其和浓度之间的关系。初步探讨了表面张力的性质、表面能的意义以及表面张力和吸附作用的关系。 关键词:吸附作用、表面张力、最大气泡法 The measurement of the adsorption effect and surface tension Abstract:In this experiment, according to Gibbs formula and Langmuir equal-temperature equation, we apply the biggest bladder pressure method to research the relationship between the amount of absorption and the consistency of a substance in the solution besides the surface tension. The phenomenon show that the consistency of a substance in the surface of the solution is different from that inside is called absorption. Keyword:Surface tension, The biggest bubble pressure method, Absorption effect

1. 序言 物体表面的分子和内部的分子所处的境况不同,因此能量也不同,表面张力就是内部分子对表面分子的作用力,它是液体的重要属性之一,与所处的温度、压力、液体的组成共存的另一面的组成等因素都有关。对于溶液,由于溶质会影响表面张力,因此可以调节溶质在表面层的浓度来降低表面自由能。 根据能量最低原理,溶质能降低溶液的表面张力时,表面层中溶质的浓度应比溶液内部大,反之,溶质使溶液的表面张力升高时,它在表面层中的浓度比在内部的浓度低,这种表面浓度与溶液里面浓度不同的现象叫“吸附”。在指定温度和压力下,吸附与溶液的表面张力及溶液的浓度有关。 溶液的表面张力是溶液的一个重要物理参数。要计算溶液的表面自由能、最大吸附量等都必须精确测定其溶液的表面张力。测定它的方法较多,如毛细管上升法、滴重法、吊环法和最大气泡法,但最简单、实用、普遍的方法是最大气泡法。本实验正是采用该法测定液体不同浓度条件下的表面张力,探究表面张力、表面能与吸附作用的关系,并验证了表面化学的相关基础理论。 2. 实验部分 2.1 实验仪器与试剂 CS501型超级恒温水浴1台重庆试验设备厂 DMP-2B型数字式微压差测量仪南京大学应用物理研究所 恒温套管,250ml分液漏斗,毛细管(半径为0.15—0.2mm); 100ml容量瓶(7只),2ml移液管(1支); 正丁醇溶液(分析纯) 2.2 实验步骤 1)按实验装置图装好仪器,打开恒温水浴,使其温度稳定于35℃。取一支浸泡在洗液中的毛细管依次用自来水、蒸馏水反复清洗若干次,同样把玻璃套管也清洗干净,加上蒸馏水,插上毛细管,用套管下端的开关调节液面恰好与毛细管端面相切,使样品在其中恒温10分钟。在分液漏斗中加入适量的自来水,注意切勿使体系漏气。然后调节分液漏斗下的活塞使水慢慢滴下,这时体系压力逐渐减小,直至气泡由毛细管口冒出,细心调节出泡速度,使之在5-10秒钟内出一个。注意气泡爆破前数字式微压差测量仪的读数,并用电脑采集数据得到最大的压差值,取连续6个数据取平均值; 2)用2mL移液管分别移取0.40ml、0.80ml、1.20ml、1.60ml、2.00ml、2.40ml、2.80ml正丁醇到100ml容量瓶中,然后稀释到刻度。重复上述实验步骤,按照由稀至浓的顺序依次进行测量。 2.3 注意事项 1)测定用的毛细管一定要先洗干净,否则气泡可能不能连续稳定地通过,而使压力计的读数不稳定;

数字逻辑实验报告

数字逻辑实验报告:加法器

安徽师范大学 学院实验报告 专业名称软件工程 实验室 实验课程数字逻辑 实验名称加法器实验姓名 学号 同组人员 实验日期 2013.3.26

注:实验报告应包含(实验目的,实验原理,主要仪器设备和材料,实验过程 和步骤,实验原始数据记录和处理,实验结果和分析,成绩评定)等七项内容。具体内容可根据专业特点和实验性质略作调整,页面不够可附页。 实验目的:学会使用实验箱搭建基本组合逻辑电路。 实验原理:全加器是中规模组合逻辑器件,它实现二进制数码的加法运算,是计算机中最基本的运算单元电路。一位加法器有三个输入端Ai 、B i 、C i -1,即被加数,有两个输出端S i 和B i 即相加及向高一位的进位输出。 (全加真值表) Si=A i B i C i -1+A i B i C i -1+A i B i C i -1+A i B i C i -1 C i =A i B i +A i C i -1+B i C i -1 全加器主要用于数值运算;另外,全加器还可以实现组合逻辑函数。 主要仪器设备和材料:数字逻辑电路实验装置、芯片 74LS32、芯片 74LS08、 芯片74LS86,导线 实验过程和步骤: ①关闭实验箱的电源开关,将三个芯片正确地安装在实验箱装置上; ②分别用三根导线将三个芯片的第14号引脚与实验箱左下角的+5V 连接起来,,再分别用三根导线将三个芯片的第7号引脚与实验箱左下角的GND 连接 Ai B i C i -1 S i B i 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 1 1 1 1

相关主题
文本预览
相关文档 最新文档