当前位置:文档之家› 傅里叶变换红外光谱仪的测试原理解读

傅里叶变换红外光谱仪的测试原理解读

傅里叶变换红外光谱仪的测试原理解读
傅里叶变换红外光谱仪的测试原理解读

傅里叶变换红外光谱仪的测试原理

傅里叶变换红外光谱仪由迈克耳逊干涉仪和数据处理系统组合而成,它的工作原理就是迈克耳逊干涉仪的原理。

迈克耳逊干涉仪的光路如图所示,图中已调到M2与M1垂直。∑是面光源(由被单色光或白光照亮的一块毛玻璃充当,面上每一点都向各个方向射出光线,又称扩展光源,图中只画出由S点射出光线中的一条来说明光路。这条光线进入分束板G1后,在半透膜上被分成两条光线,反射光线①和透射光线②,分别射向M1和M2又被反射回来。反射后,光线①再次进入G1并穿出,光线②再次穿过补偿板G2并被G1上的半透膜反射,最后两条光线平行射向探测器的透镜E,会聚于焦平面上的一点,探测器也可以是观测者的眼睛。由于光线①和光线②是用分振幅法获得的相干光,故可产生干涉。光路中加补偿板G2的作用是使分束后的光线①和光线②都以相等的光程分别通过G1、G2两次,补偿了只有G1而产生的附加光程差。M2′是M2被G1上半透膜反射所成的虚象,在观测者看来好象M2位于M2′的位置并与M1平行,在它

们之间形成了一个空气薄膜。移动M1即可改变空气膜的厚度,当M1接近M2′时厚度减小,直至二者重合时厚度为零,继续同向移动,M1还可穿越M2′的另一测形成空气膜。最后通过观测干涉条纹的分布情况就可以获得我们所要的信息。

如果是傅里叶变换红外光谱仪,那还要加上对干涉信息的数据处理系统而最终获得我们的数据图表。

二.紫外—可见分光光度计定量分析法的依据是什么?

比耳(Beer确定了吸光度与溶液浓度及液层厚度之间的关系,建立了光吸收的基本定律。

○1. 朗伯定律

当溶液浓度一定时,入射光强度与透射光强度之比的对数,即透光率倒数的对数与液层厚度成正比。人们定义:溶液对单色光的吸收程度为吸光度。公式表示为

A=Lg(I0/It

○2.比耳定律

当一束单色光通过液层厚度一定的均匀溶液时,溶液中的吸光物质的浓度增大dC,则透

射光强度将减弱dI,-dI与入射光光强度I与dc的积成正比。∴?dI ∝I?dc -

dI/I=k3?dc

A=Lg(I0/It=K4 ?C

这是吸光度与浓度的定量关系,是紫外—可见分光光度分析的定量依据,称Beer 定律,

k4——与入射光波长、溶液性质、液层厚度及温度有关,故当上述条件一定时,吸光度与溶

液浓度成正比.

3.朗伯--比耳定律

若同时考虑液层厚度和溶液浓度对吸光度的影响,即把朗伯定律和比耳定律合并起来得:A = k b C

K——与入射光波长、溶液性质及温度有关的常数

当一束波长为λ的单色光通过均匀溶液时,其吸光度与溶液浓度和光线通过的液层厚度的

乘积成正比。即为朗伯——比耳定律。

其中K的取值与C、b的单位不同而不同。若C以g/L表示,b以cm表示。则K 以a表示,,称吸光系数,单位L/g.cm ∴A = a b C

三.红外光谱分析中固体式样的常用制样方法有哪些?

1.压片法。在研钵中研磨成细粉末与干燥的溴化钾粉末混合均匀,装入模具,在压片机上压制成片测试。

2. 糊状法

在研钵中,将干燥的样品研磨成细粉末。然后滴入1~2滴液体石蜡混研成糊状,涂于KBr或NaCl晶片上测试。

四.双光束分光光度计与单光束分光光度计比有哪些优点?

双光束分光光度计比单光束分光光度计结构复杂,可实现吸收光谱的自动扫描,扩大波长的应用范围,消除光源强度波动所带来的影响。具有较高的测量精密度和准确度,而且测量方便快捷,特别适合进行结构分析。

AntarisII傅立叶变换近红外分析仪-ThermoFisherScientific

Antaris II傅立叶变换近红外分析仪 Antaris II是ThermoFisher分子光谱部(Nicolet)推出的最新一代专业傅立叶变换近红外光谱系统,该仪器为制药、高分子、化工化学、烟草、农业食品等领域的样品分析提供了全新、可靠、快速方便的分析工具。 1.新的设计理念和标准 y结构化的模块设计,即一台仪器上可同时集成积分球漫反射、透射、光纤探头、漫透射检测模块,各检测模块采用各自独立的高灵敏度InGaAs检测器; y建立在高可靠性和稳固性基础上的高性能 y强调高重现性,包括系统自身重现性和系统间重现性(模型数据资源共享) y高适应能力,可用于实验室,也可用于工厂车间,灵活的发挥NIR技术的优势 2.优越性 y建立在Nicolet成熟和先进的傅立叶红外制造工艺和严格的认证标准基础上 y采用Nicolet专利的电磁式动态准直干涉仪技术 y精密对针定位的光学部件封装技术,免调整的永久准直 y波长准确性、重现性、系统间重现性等方面具备目前最高性能指标 y Antaris是第一个采用结构化模块设计技术的近红外仪器, Antaris II还具备同时检测药片/凝胶等样品的透射光谱和漫反射光谱的能力 y所有检测模块,包括光纤探头均能自动采集背景 y在仪器维护方面为用户考虑得更为周全,其光源只需用户自己从外部更换,且更换

后无需任何光路调整 y全新工业标准的RESULT操作系统软 件,其管理模式、拓展能力、操作方 便性、规范性均非常规实验室软件能 比 y独立的光谱化学计量学软件TQ Analyst,将复杂的数据处理和分析程 序化,将强大灵活的数据处理技术融 于直观友好的图形化界面和随处可见 的自动优化及帮助信息中 y Antaris II采用的是开放式的数据格 式,能够将各家公司的光谱数据直接 转移到其软件中 3.硬件技术 ①.干涉仪: y采用尼高力最先进的高光通量自动调整和高速动态准直(每秒13万次)技术的DSP 电磁式干涉仪,具有超高检测稳定性、可靠性和精度,是目前作为傅立叶近红外仪 器心脏部件最先进的技术; y采用CaF2分束器,在近红外光谱图的一、二、三倍倍频和合频区域(光谱范围12000-3800cm-1或833-2631nm)具有更高的能量分布。 ②.光学台: y所有光学镜面采用专利的STONEHENCE合金模块化镜面设计,光学镜面在整体合金座上用金刚石精密抛光形成,光路传输效率更高; y所有光学器件精密对针定位,完全不需要任何光路调整,具有极高的重复性、热稳定性和可靠性; y严格的系统间元器件公差限制和工艺精 度要求,是卓越模型转移精度的保证。 ③.检测器:所有采样模块均有自己独立的高 灵敏度InGaAs检测器。 ④.电子控制技术: y仪器与电脑间高速USB接口,更方便可 靠; y可通过OPC或PLC技术与实验室信息管 理系统如LIMS或工业控制系统如DCS 进行数据交换。

FTIR(傅里叶红外光谱简介)

1、简介: 傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,简写为FTIR Spectrometer),简称为傅里叶红外光谱仪。它不同于色散型红外分光的原理,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域。 2、基本原理 光源发出的光被分束器(类似半透半反镜)分为两束,一束经透射到达动镜,另一束经反射到达定镜。两束光分别经定镜和动镜反射再回到分束器,动镜以一恒定速度作直线运动,因而经分束器分束后的两束光形成光程差,产生干涉。干涉光在分束器会合后通过样品池,通过样品后含有样品信息的干涉光到达检测器,然后通过傅里叶变换对信号进行处理,最终得到透过率或吸光度随波数或波长的红外吸收光谱图。 3、主要特点 ①信噪比高 傅里叶变换红外光谱仪所用的光学元件少,没有光栅或棱镜分光器,降低了光的损耗,而且通过干涉进一步增加了光的信号,因此到达检测器的辐射强度大,信噪比高。 ②重现性好 傅里叶变换红外光谱仪采用的傅里叶变换对光的信号进行处理,避免了电机驱动光栅分光时带来的误差,所以重现性比较好。 ③扫描速度快 傅里叶变换红外光谱仪是按照全波段进行数据采集的,得到的光谱是对多次数据采集求平均后的结果,而且完成一次完整的数据采集只需要一至数秒,而色散型仪器则需要在任一瞬间只测试很窄的频率范围,一次完整的数据采集需要十分钟至二十分钟。 4、技术参数 光谱范围:4000--400cm-1 7800--350cm-1(中红外) 125000--350cm-1(近、中红外) 最高分辨率:2.0cm-1 / 1.0cm-1 / 0.5cm-1 信噪比:15000:1(P-P) / 30000:1(P-P) / 40000:1(P-P)

傅立叶变换红外光谱仪操作指导—nicolet6700型

傅立叶变换红外光谱仪操作指导—nicolet6700型 一、 仪器简介 1、型号名称:Nicolet 6700 高级傅里叶变换红外光谱仪 美国 2、适用范围:本方法适用于液体、固体、气体、金属材料表面镀膜等样品。它可以检测样品的分子结构特征,还可对混合物中各组份进行定量分析,本仪器的测量范围为4000~400 cm -1。 3、方法原理:红外光谱是根据物质吸收辐射能量后引起分子振动的能级跃迁,记录跃迁过程而获得该分子的红外吸收光谱。 二、 基本操作 (一)试样制备方法 1、固体样品 (1)压片法:取1~2mg 的样品在玛瑙研钵中研磨成细粉末与干燥的溴化钾(A. R.级)粉末(约100mg ,粒度200目)混合均匀,装入模具内,在压片机上压制成片测试。 玛瑙研钵 压片模具 (2)糊状法:在玛瑙研钵中,将干燥的样品研磨成细粉末。然后滴入1~2滴液体石蜡混研成糊状,涂于KBr 或BaF 2晶片上测试。 (3)溶液法:把样品溶解在适当的溶液中,注入液体池内测试。所选择的溶剂应不腐蚀池窗,在分析波数范围内没有吸收,并对溶质不产生溶剂效应。一般使用0.1mm 的液体池,溶液浓度在10%左右为宜。 a :镜片; b :液体池部件(不含镜片); c: 装配图; d :使用方法 a b c d

2、液体样品 (1)液膜法:油状或粘稠液体,直接涂于KBr晶片上测试。流动性大,沸点低(≤100℃)的液体,可夹在两块KBr晶片之间或直接注入厚度适当的液体池内测试(液体池的安装见说明书)。对极性样品的清洗剂一般用CHCl3,非极性样品清洗剂一般用CCl4。 样品池BaF2镜片KBr镜片(杜绝含水样品)(2)水溶液样品:可用有机溶剂萃取水中的有机物,然后将溶剂挥发干,所留下的液体涂于KBr晶片上测试。 应特别注意含水的样品坚决不能直接接触KBr或NaCl窗片液体池内测试。 3、塑料、高聚物样品 (1)溶液涂膜:把样品溶于适当的溶剂中,然后把溶液一滴一滴的滴加在KBr晶片上,待溶剂挥发后把留在晶片上的液膜进行测试。 (2)溶液制膜:把样品溶于适当的溶剂中,制成稀溶液,然后倒在玻璃片上待溶剂挥发后,形成一薄膜(厚度最好在0.01~0.05mm),用刀片剥离。薄膜不易剥离时,可连同玻璃片一起浸在蒸馏水中,待水把薄膜湿润后便可剥离。这种方法溶剂不易除去,可把制好的薄膜放置1~2天后再进行测试。或用低沸点的溶剂萃取掉残留的溶剂,这种溶剂不能溶解高聚物,但能和原溶剂混溶。 4、磁性膜材料直接固定在磁性膜材料的样品架上测定。 磁性样品架 5、其它样品 对于一些特殊样品,如:金属表面镀膜,无机涂料板的漫反射率和反射率的测试等,则要采用特殊附件,如:A TR,DR,SR等附件。 (二)测量操作

傅里叶变换红外光谱仪

傅里叶红外光谱仪(FTIR) (仅供参考) 一.实验目的: 1.了解FTIR的工作原理以及仪器的操作。 2.通过对多孔硅的测试,初步学会分析方法。 二.实验原理: 1.傅里叶红外光谱仪的工作原理: FTIR光谱仪由3部分组成:红外光学台(光学系统)、计算机和打印机。而红外光学台是红外光谱仪的最主要部分。 红外光学台由红外光源、光阑、干涉仪、样品室、检测器以及各种红外反射镜、氦氖激光器、控制电路和电源组成。下图所示为红外光学台基本光路图。 傅里叶变换红外光谱是将迈克尔逊干涉仪动镜扫描时采集的数据点进行傅立叶变换得到的。动镜在移动过程中,在一定的长度范围内,在大小有限,距离相等的位置采集数据,由这些数据点组成干涉图,然后对它进行傅立叶变换,得到一定范围内的红外光谱图。每一个数据点由两个数组成,对应于X轴和Y轴。对应同一个数据点,X值和Y值决定于光谱图的表示方式。因此,在采集数据之前,需要设定光谱的横纵坐标单位。 红外光谱图的横坐标单位有两种表示法:波数和波长。通常以波数为单位。而对于纵坐标,对于采用透射法测定样品的透射光谱,光谱图的纵坐标只有两种表示方法,即透射率T 和吸光度A。透射率T是由红外光透过样品的光强I和红外光透过背景(通常是空光路)的光强I0的比值,通常采用百分数(%)表示。吸光度A是透射率T倒数的对数。 透射率光谱图虽然能直观地看出样品对红外光的吸收情况,但是透射率光谱的透射率与样品的质量不成正比关系,即透射率光谱不能用于红外光谱的定量分析。而吸光度光谱的吸光度值A在一定范围内与样品的厚度和样品的浓度成正比关系,所以大都以吸光度表示红外光谱图。 本实验运用的仪器是Nicolet 380 智能傅立叶红外光谱仪。 2.傅里叶红外光谱仪的主要特点: ⑴具有很高的分辨能力,在整个光谱范围内分辨能力达到0.1cm-1。 ⑵具有极高的波数准确度,波数准确度可以达到0.01cm-1。 ⑶杂散光的影响度低,通常在全光谱范围杂散光影响低于0.3%。 ⑷扫描时间短,可以用于观测瞬时反应。 ⑸可以研究很宽的光谱范围。本实验仪器波数范围为400cm-1~4000cm-1。

傅里叶变换红外光谱分析基础知识

傅里叶变换红外光谱分析基础知识 傅里叶变换红外光谱分析技术介绍傅里叶变换红外光谱分析技术为大量的学术研究实验室、化学分析实验室、质保/质控实验室和法庭科学实验室提供了重要的分析手段。傅里叶变换红外光谱分析方法的普及已深深植根,从简单的化合物鉴定到质控监测,广泛应用于各种化学分析,尤其是聚合物和有机化合物分析。 什么是傅立叶变换红外光谱? FTIR指的是傅立叶变换红外,是红外光谱分析的优选方法。当连续波长的红外光源照射样品时,样品中的分子会吸收或部分某些波长光,没有被吸收的光会到达检测器(称为透射方法)。将检测器获取透过样品的光模拟信号进行模数转换和傅立叶变换,得到具有样品信息和背景信息的单光束谱,然后用相同的检测方法获取红外光不经过样品的背景单光束谱,将透过样品的单光束谱扣除背景单光束谱,就生成了代表样品分子结构特征的红外指纹的光谱。由于不同化学结构(分子)会产生不同的指纹光谱,这就体现出红外光谱的价值意义。 那么,什么是FTIR(傅立叶变换红外光谱)? 傅立叶变换技术将检测器输出信号转换成可解读红外光谱。傅立叶变换红外生成的光谱以图形的形式提供可解析的样品分子结构的信息。 傅立叶变换红外的工作原理是什么?为何使用它? 傅立叶变换红外利用干涉图记录放置于红外光路中的材料的相关信息。傅立叶变换产生光谱,分析人员利用该光谱鉴定材料或进行定量分析。 一个傅立叶变换红外光谱是从干涉图被译解成为可解读的光谱。光谱图的图形可帮助鉴定样品,因为样品的分子振动吸收会在光谱上显示出特定的红外指纹。 傅立叶变换红外采样介绍 傅立叶变换红外主要有以下四种采样技术: 透射衰减全反射 (ATR)镜面反射漫反射每一项技术有各自特点,这使它们可适用于不同的状态的样品。 傅立叶变换红外光谱仪的采样和应用

傅里叶变换红外光谱仪详细清单及参数

傅里叶变换红外光谱仪详细清单及参数要求 一、设备名称:傅里叶变换红外光谱仪 二、设备数量:1台 三、技术要求: 1、整机 计算机控制的傅里叶变换红外光谱仪,密封干燥光学平台,具有大气背景自动扣除功能。 2、主要指标 分辨率优于0.5 cm-1 光谱范围7500-350cm-1 信噪比40,000:1(峰、峰值, 1min.,DTGS检测器,KBr 分束器) 波数精度优于0.01 cm-1 透光率精度优于0.05%T 3、干涉仪 气密闭结构, 内装自动除湿装置 4、光路系统 光源种类低温(1000K)、高效、空气冷却 分束器KBr(标准)、即插即用式设计 减振装置光学台与底盘隔离,防震性能好 仪器密封干燥光学台、样品室、检测器室有独立干燥密封 检测器快速恢复宽范围DTGS 5、数据处理系统 计算机知名品牌(推荐品牌:联想、DELL、惠普等),至少奔

腾IV 2.8GHz,256M内存,硬盘80GB,17”液晶显示器, CD-RW可擦写光驱,鼠标,键盘,USB2.0通讯接口 打印机激光彩色打印机(推荐品牌:惠普等) 操作系统WINDOWS XP 软件FTIR 软件,通过标准认证 操作软件:数据收集、处理、谱图解释、问题提示及处理 谱图处理软件:分峰软件、漫反射图谱校正软件、CO2及水去除技术 数据库:红外光谱图谱库 软件升级问题免费升级 6、联机功能 可与GC、LC、TGA、显微镜、Raman联用 7、附件 (1)红外光谱制样工具包:国产全套,包括 溴化钾窗片(有孔及无孔)、液体池溴化钾窗片、可拆卸液体池、液体池垫片等;溴化钾粉、荧光剂、石蜡糊等;液体注射器、刮铲及样品勺、玛瑙研钵及研杵、样品架等;压片机、压片夹具、压片模具等。 (2)微电脑除湿干燥箱,80升,2台 8、产品质量质量认证ISO9001 9、工作环境 电源: 220V 10%, 50HZ A.C 室温: 在4-35℃可正常工作 湿度: 90%可正常工作

傅里叶变换红外光谱仪的测试原理解读

傅里叶变换红外光谱仪的测试原理 傅里叶变换红外光谱仪由迈克耳逊干涉仪和数据处理系统组合而成,它的工作原理就是迈克耳逊干涉仪的原理。 迈克耳逊干涉仪的光路如图所示,图中已调到M2与M1垂直。∑是面光源(由被单色光或白光照亮的一块毛玻璃充当,面上每一点都向各个方向射出光线,又称扩展光源,图中只画出由S点射出光线中的一条来说明光路。这条光线进入分束板G1后,在半透膜上被分成两条光线,反射光线①和透射光线②,分别射向M1和M2又被反射回来。反射后,光线①再次进入G1并穿出,光线②再次穿过补偿板G2并被G1上的半透膜反射,最后两条光线平行射向探测器的透镜E,会聚于焦平面上的一点,探测器也可以是观测者的眼睛。由于光线①和光线②是用分振幅法获得的相干光,故可产生干涉。光路中加补偿板G2的作用是使分束后的光线①和光线②都以相等的光程分别通过G1、G2两次,补偿了只有G1而产生的附加光程差。M2′是M2被G1上半透膜反射所成的虚象,在观测者看来好象M2位于M2′的位置并与M1平行,在它 们之间形成了一个空气薄膜。移动M1即可改变空气膜的厚度,当M1接近M2′时厚度减小,直至二者重合时厚度为零,继续同向移动,M1还可穿越M2′的另一测形成空气膜。最后通过观测干涉条纹的分布情况就可以获得我们所要的信息。 如果是傅里叶变换红外光谱仪,那还要加上对干涉信息的数据处理系统而最终获得我们的数据图表。 二.紫外—可见分光光度计定量分析法的依据是什么? 比耳(Beer确定了吸光度与溶液浓度及液层厚度之间的关系,建立了光吸收的基本定律。 ○1. 朗伯定律 当溶液浓度一定时,入射光强度与透射光强度之比的对数,即透光率倒数的对数与液层厚度成正比。人们定义:溶液对单色光的吸收程度为吸光度。公式表示为 A=Lg(I0/It

傅里叶变换红外光谱仪解析

仪器分析综述 系别:生物科学与技术系 班级:09食品2 姓名:欧阳凡学号:091304251 傅里叶变换红外光谱仪 前言 随着计算方法和计算技术的发展,20世纪70年代出现新一代的红外光谱测量技术及仪器--傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,简写为FTIR ,简称为傅里叶红外光谱仪。它不同于色散型红外分光的原理,是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域。 正文 傅里叶变换红外光谱仪分光光度计由光学检测系统、计算机书籍处理系统、计算机接口、电子线路系统组成。 光源发出的光被分束器(类似半透半反镜)分为两束,一束经反射到达动镜,另一束经透射到达定镜。两束光分别经定镜和动镜反射再回到分束器,动镜以一恒定速度作直线运动,因而经分束器分束后的两束光形成光程差,产生干涉。干涉光在分束器会合后通过样品池,通过样品后含有样品信息的干涉光到达检测器,然后通过傅里叶变换对信号进行处理,最终得到透过率或吸光度随波数或波长的红外吸收光谱图。 光学检测系统由迈克逊干涉仪、光源、检测器组成、迈克逊干涉仪内有两个相垂直的平面反射镜M1、M2和一个与两镜成45度角的分束器,M1可沿镜轴方向前后移动。自光源发出的红外光经准直镜M3反射后变为平行光束,照在分束器上

后变成两束光。其中一束被反射到可动镜头M1后又被M1反射回分束器,并在分束器上再次分城反射光和透射光,透射光部分照在举聚光镜M4上,然后到到达探测器,另一束光透过分束器,射在固定镜M2上,并被M2反射回分束器,在分束器上再次发生反射和透射,反射部分照在聚光镜M4上,最后也到达探测器。因而这两束到达探测器的光油了光程差,成了相干光,移动可动镜M1可改变两束光程差。在连续改变光程差的同时,记录下中央干涉条纹的光强变化,及得到干涉图。如果在复合的相干光路中放有样品,就得到样品的干涉图。需要通过计算机进行傅里叶变换后才能得到红外光谱图。 主要特点 1、信噪比高 傅里叶变换红外光谱仪所用的光学元件少,没有光栅或棱镜分光器,降低了光的损耗,而且通过干涉进一步增加了光的信号,因此到达检测器的辐射强度大,信噪比高。 2、重现性好 傅里叶变换红外光谱仪采用的傅里叶变换对光的信号进行处理,避免了电机驱动光栅分光时带来的误差,所以重现性比较好。 3、扫描速度快 傅里叶变换红外光谱仪是按照全波段进行数据采集的,得到的光谱是对多次数据采集平均后的结果,而且完成一次完整的数据采集只需要一至数秒,而色散型仪器则需要在任一瞬间只测试很窄的频率范围,一次完整的数据采集需要十分钟至二十分钟。 FTIR 的吸收强度和表示方法 红外吸收光谱分析对于同一类型的化学键,偶极矩的变化与结构的对称性有关。例如C =

实验-傅立叶变换光谱实验

实验3-3 傅立叶变换光谱实验 ● 实验简介: 利用光的干涉现象,得到干涉图,经过傅立叶变换,在频域中得到光谱,这种方法得到的光谱称为傅立叶变换光谱,所用的仪器称为傅立叶光谱仪。它的优点是: 1. 它以大的圆形入射孔径代替普通光谱仪的窄的入射狭缝,在获得同样分辨本领条件下,它能从较大的立体角接受光源辐射。 2. 在一般分光光度计中,每一瞬间只能测量一个光谱元,而傅立叶光谱仪能在整个工作时间内,同时记录所有待测光谱元,这又进一步使接收器获得更多的辐射能量,提高接收信号的信噪比。所以,它特别适合于光源较弱的红外光谱区,目前它已作为一种新型红外光谱仪广泛应用于红外光谱工作中。 ● 实验目的: 利用傅立叶变换光谱仪,测量常用光源的光谱分布。 ● 实验原理 傅立叶光谱方法利用干涉图和光谱图之间的对应关系。通过测量干涉图和对干涉图进行傅立叶积分变换的方法来测定和研究光谱图。和传统的色散性光谱仪相比较,傅立叶光谱仪可以理解为以某种数学方式对光谱信息进行编码的摄谱仪,它能同时测量、记录所有谱元的信号,并以更高的效率采集来自光源的辐射能量,从而使它具有比传统光谱仪高得多的信噪比和分辨率;同时它的数字化的光谱数据,也便于计算机处理和演绎。正是这些基本优点,使得傅立叶光谱方法发展为目前红外和远红外波段中最有力的光谱工具。它的研究、开发和应用已经形成了光谱学的一个独立分支——傅立叶光谱学,或称干涉光谱学。 傅立叶的变换过程实际上就是调制与解调的过程,通过调制我们将待测光的高频率调制成我们可以掌控、接收的频率。然后将接收器接收到的信号送到调制器中进行分解,得出待测光中的频率成分及各频率对应的强度值。这样我们就得到了待测光的光谱图。 调制和解调方程: 调制方程: ()()cos(2)I B d δνπνδν+∞-∞=? 解调方程: ()()cos(2)B I d νδπνδδ+∞-∞=? I(δ)——随光程变化的干涉图 v ——表示最小波数 B(v)——复原光谱图强度分布 ● 实验内容 1.利用激光调整迈克尔逊干涉仪,调出光的干涉条纹 2.利用钨丝灯调出白光的干涉条纹,目的是找出光程差为零的位置 3.去掉白光灯,放入被测光源,调整干涉条纹的方向和宽度 4.调整参考激光光路,尽量减少两光路之间的相互影响 5.调整电机转速,连接计算机,开始采集数据

傅立叶变换红外光谱仪的基本原理

傅立叶变换红外光谱仪的 基本原理及其应用 红外光谱仪是鉴别物质和分析物质结构的有效手段,其中傅立叶变换红外光谱仪(FT-IR)是七十年代发展起来的第三代红外光谱仪的典型代表。它是根据光的相干性原理设计的,是一种干涉型光谱仪,具有优良的特性,完善的功能,并且应用围极其广泛,同样也有着广泛的发展前景。本文就傅立叶变换红外光谱仪的基本原理作扼要的介绍,总结了傅立叶变换红外光谱法的主要特点,综述了其在各个方面的应用,并对傅立叶变换红外光谱仪的发展方向提出了一些基本观点。 关键词:傅立叶变换红外光谱仪;基本原理;应用;发展

目录 摘要................................................................................... I ABSTRACT......................................................................... II 1 傅里叶红外光谱仪的发展历史 (1) 2 基本原理 (4) 2.1光学系统及工作原理 (4) 2.2傅立叶变换红外光谱测定 (6) 2.3傅立叶变换红外光谱仪的主要特点 (7) 3 样品处理 (8) 3.1气体样品 (8) 3.2液体和溶液样品 (8) 3.3固体样品 (8) 4 傅立叶变换红外光谱仪的应用 (9) 4.1在临床医学和药学方面的应用⑷ (9) 4.2在化学、化工方面的应用 (10) 4.3在环境分析中的应用 (11) 4.4在半导体和超导材料等方面的应用⑼ (11) 5 全文总结 (12) 参考文献 (13)

傅立叶变换红外光谱仪的基本原理及其应用

J I A N G X I N O R M A L U N I V E R S I T Y 2009届本科生毕业论文 课题名称:傅立叶变换红外光谱仪的基本原 理及其应用 Basic principles and application of Fourier transform infrared spectrometer 姓名高立峰 学院理电学院 专业物理学(师范) 学号 06 完成时间 声明

本人郑重声明: 所呈交的毕业设计(论文)是本人在指导教师指导下进行的研究工作及取得的研究成果。其中除加以标注和致谢的地方外,不包含其他人已经发表或撰写并以某种方式公开过的研究成果,也不包含为获得其他教育机构的学位或证书而作的材料。其他同志对本研究所做的任何贡献均已在文中作了明确的说明并表示谢意。 本毕业设计(论文)成果是本人在江西师范大学读书期间在指导教师指导下取得的,成果归江西师范大学所有。 特此声明。 声明人(毕业设计(论文)作者)学号:06 声明人(毕业设计(论文)作者)签名:

摘要 红外光谱仪是鉴别物质和分析物质结构的有效手段,其中傅立叶变换红外光谱仪(FT-IR)是七十年代发展起来的第三代红外光谱仪的典型代表。它是根据光的相干性原理设计的,是一种干涉型光谱仪,具有优良的特性,完善的功能,并且应用范围极其广泛,同样也有着广泛的发展前景。本文就傅立叶变换红外光谱仪的基本原理作扼要的介绍,总结了傅立叶变换红外光谱法的主要特点,综述了其在各个方面的应用,并对傅立叶变换红外光谱仪的发展方向提出了一些基本观点。 关键词:傅立叶变换红外光谱仪;基本原理;应用;发展

傅立叶变换红外光谱仪操作指导―nicolet6700型.

傅立叶变换红外光谱仪操作指导一nicolet6700型 一、仪器简介 1、型号名称:Nicolet 6700高级傅里叶变换红外光谱仪美国 2、适用范围:本方法适用于液体、固体、气体、金属材料表面镀膜等样品。它可以检测样品的分子结构特征,还可对混合物中各组份进行定量分析,本仪器的测量范围为4000?400 cm-1。 3、方法原理:红外光谱是根据物质吸收辐射能量后引起分子振动的能级跃迁,记录跃迁过程而获得该分子的红外吸收光谱。 二、基本操作 (一)试样制备方法 1、固体样品 (1)压片法:取1?2mg的样品在玛瑙研钵中研磨成细粉末与干燥的溴化钾 (A. R.级)粉末(约100mg,粒度200目)混合均匀,装入模具内,在压片机上压制成片测试。 玛瑙研钵压片模具

(2)糊状法:在玛瑙研钵中,将干燥的样品研磨成细粉末。然后滴入1?2滴液体石蜡混研成糊状,涂于KBr或BaF 2晶片上测试。 (3)溶液法:把样品溶解在适当的溶液中,注入液体池内测试。所选择的溶剂应不腐蚀池窗,在分析波数范围内没有吸收,并对溶质不产生溶剂效应。一般使用0.1mm的液体池,溶液浓度在10%左右为宜。 a :镜片; b :液体池部件(不含镜片);c:装配图;d :使用方法 a b c d 2、液体样品

(1)液膜法:油状或粘稠液体,直接涂于KBr晶片上测试。流动性大,沸点 低(W 10@ )的液体,可夹在两块KBr晶片之间或直接注入厚度适当的液体池内测试(液体池的安装见说明书)。对极性样品的清洗剂一般用CHCI 3,非极性样 品清洗剂一般用CCI 4。 样品池BaF 2镜片KBr镜片(杜绝含水样品) (2)水溶液样品:可用有机溶剂萃取水中的有机物,然后将溶剂挥发干,所留下的液体涂于KBr晶片上测试。 应特别注意含水的样品坚决不能直接接触KBr或NaCI窗片液体池内测试。 3、塑料、高聚物样品 (1)溶液涂膜:把样品溶于适当的溶剂中,然后把溶液一滴一滴的滴加在KBr晶片上,待溶剂挥发后把留在晶片上的液膜进行测试。 (2)溶液制膜:把样品溶于适当的溶剂中,制成稀溶液,然后倒在玻璃片上待溶剂挥发后,形成一薄膜(厚度最好在0.01?0.05mm ),用刀片剥离。薄膜不易剥离时,可连同玻璃片一起浸在蒸馏水中,待水把薄膜湿润后便可剥离。这种方法溶剂不易除去,可把制好的薄膜放置1?2天后再进行测试。或用低沸点的溶剂萃取掉残留的溶剂,这种溶剂不能溶解

傅里叶变换光谱

傅立叶变换光谱实验报告 姓名: 学号: 专业:光电子 一、 实验目的 (1) 自组傅里叶变换光谱仪,掌握傅里叶变换光谱的原理; (2) 测量常用光源的光谱分布。 二、 实验原理 傅里叶变换光谱仪是基于迈克尔逊干涉仪结构。使两束相干光的光程差发生连续改变,干涉光强相应发生变化,记录下光强接收器输出中连续的变化部分,得到干涉光强随光程差的变化曲线,即干涉图函数。然后计算出干涉图的傅里叶余弦变换,即可得到光源的光谱分布。这样得到的光谱就被称为傅里叶变换光谱。 1、干涉光强的计算 根据光波叠加原理,若有两束单色光,它们的波数都是σ,具有Δ的光程差,传播方向和偏振方向相同,光强都是I ’,这两束光相互叠加产生干涉,得到光强为: )2cos('2'2)(cos '42 ?+=?=πσπσI I I I 从上式看,单色光的干涉图像包含一个直流分量和一个余弦函数分量,余弦函数分量的周期就是单色光的波长。 若光源不是单色光,光强随波长的分布为I(σ),在光谱间隔d σ内光强是I (σ)d σ将此光源发出的光等强分成两束,相互干涉后光强是: )2cos()(2)(2?+=πσσσσσd I d I dI 在整个光谱范围内的干涉总光强为: I =c ò0 ¥ I (s )d s +c ò0 ¥ I (s )cos(2ps D )d s

其中为常数,上式右侧第一项为常数,与光程差Δ无关;右边第二项是光程差的函数,将第二项单独写出: I (D )=c ò0¥ I (s )cos(2ps D )d s 两束光干涉所得光强是光束光谱分布的傅立叶余弦变换。傅立叶余弦变换是可逆的,则有: ? ???=∞ d I c I )2cos()(')(0 πσσ 只要测出相干光束的干涉光强随光程差变化的干涉图函数曲线I(σ)进行傅立叶变换就可以得到相干光束的光谱分布。 2、实际应用的相关讨论 将上述公式用于实际还需进行一下讨论: 1.公式中要求光程差测量范围为0到∞,但实际中光程差的测量范围有限。理论上,光程差测量范围的大小(最大光程差X )决定了傅里叶变换光谱的光谱分辨率,其波束分辨率为1/(2X),但由实际条件X 只能为有限值; 2.公式中要求干涉光强随光程差连续变化曲线I(Δ)。但实际中采用间隔一定距离离散采样的方法,光程差的采样间隔的大小决定了傅里叶变换光谱的光谱范围。避免光谱线混淆的条件是采样间隔小于或等于最小波长的二分之一。 实验中为了实现高精度的等光程差,采用间接测量的方法:用一个精密电机带动迈克尔逊干涉仪的细调手轮,让其动镜匀速移动,从而以恒定速度改变光程差。用光电接收器接收光强信号,得到干涉光强随时间变化的曲线。再用已知波长的单色光测出动镜移动的速度,就可以得到干涉光

傅里叶变换红外光谱仪(FTIR)分析—科标分析

傅里叶变换红外光谱仪(FTIR)—青岛科标分析中心 傅里叶变换红外光谱仪(FTIR)是鉴别物质和分析物质结构的有效手段。 应用范围:广泛应用于有机化学、高分子化学、无机化学、化工、催化、石油、材料、生物、医药、高分子聚合材料、高聚物薄膜、纸张、油墨、等领域。 中红外光为波长2.5-25um(或4800-400/cm)的辐射光,它照射到样品后,可以被吸收、透射、反射、散射或激发荧光(即拉曼效应)。分子吸收中红外光后产生振动和转动的改变,形成红外吸收光谱图。 产生中红外光照射并记录红外吸收光谱图的仪器成为中红外光谱仪。 产生红外光谱的必要条件: 1.红外辐射光的频率与分子振动的频率相当,才能满足分子振动能级跃迁所需的能量,而产生吸收光谱。 2.振动过程中必须是能引起分子偶极矩变化的分子才能产生红外吸收光谱。 FT-IR光谱仪构造及原理 红外光源(Globr)→干涉仪→样品仓→检测器(HgCdTe)(复合光源) 定镜:反射光束。 动镜:用激光控制扫描器移动速率来调制光束,产生干涉光。 分束器:透射光束。 检测器:干涉信号被放大、过滤、数字化,经数学变换(傅里叶变换)成为光谱图。 1、压片法

将KBr(100-200mg)与固体样品(1-2mg)在玛瑙研钵中研磨成um级的细粉,采用专用的压片设备,压制成直径13mm、厚度约1mm的透明薄片,即可进行分析。 压片法所用的稀释剂除了KBr外,还有NaCl、Csl和聚乙烯粉末。 2.糊状法 由研细的固体样品粉末(10mg)和少量氟化煤油(在4000-1300/cm区域无红外吸收)或液体石蜡(在1300-400/cm区域无红外吸收)研磨成糊状物、再涂在盐片或水不溶性窗片上进行分析。 糊状法可消除水峰(3400/cm、1630/cm)干扰:或在样品中加几滴重水也可消除水峰对样品信号的干扰。 当研究某些样品中含-OH基和-NH2基时,为排除KBr中水汽干扰,可选用聚四氟乙烯粉做压片载体或使用石蜡糊法。 3.涂膜法 将液体样品滴加或涂抹在盐片或窗片上制成液膜,即可进行分析。有些固体聚合物,经熔融涂膜、热压成膜、溶液铸膜的方法,也可得到适于分析的薄膜。 常用盐片:KBr、NaCl 常用水不溶性窗片:CaF2、BaF2、KRS-5(溴碘化铊) 4.液体池法 液体样品诸如不同规格和材料的液体池进行分析。池的厚度在0.01-1mm之间,池材料由KBr、NaCl等构成。样品为水溶液时,可选用对水不溶解的KRS-5、AgCl窗片。由于液体池的拆装不甚方便,只有在使用红外光谱做定量分析方法时才使用。 5.气体样品分析 FT-IR技术可用于气体样品的直接分析。

傅里叶变换光谱 s.

傅里叶变换光谱 傅里叶变换光谱: 利用光的干涉现象,得到干涉图,经过傅立叶变换,在频域中得到光谱,这种方法得到的光谱称 为傅立叶变换光谱,所用的仪器称为傅立叶光谱仪。它的优点是: 1. 它以大的圆形入射孔径代替普通光谱仪的窄的入射狭缝,在获得同样分辨本领条件下,它能从 较大的立体角接受光源辐射。 2. 在一般分光光度计中,每一瞬间只能测量一个光谱元,而傅立叶光谱仪能在整个工作时间内, 同时记录所有待测光谱元,这又进一步使接收器获得更多的辐射能量,提高接收信号的信噪比。所以, 它特别适合于光源较弱的红外光谱区,目前它已作为一种新型红外光谱仪广泛应用于红外光谱工作中。 实验目的: 1. 掌握傅里叶变换光谱的原理 2. 自组傅里叶变换光谱仪 3. 测量常用光源的光谱分布 实验原理: 1. 傅里叶变换光谱实验的应用与特点简介

傅里叶变换光谱技术是光谱学中主要的分光手段之一,具有高精度、多通道、高通量、宽光谱范围、结构紧凑等优势。其实验结果是通过傅里叶变换从空间域变换到频率域通过数学计算的方法得到。 多数傅里叶变换光谱仪是基于迈克尔逊干涉仪结构的。其借助于连续的移动其中的一个反射镜(动镜),干涉仪产生的两束相干光的光程差发生连续改变,干涉光强就会发生相应改变。在改变光程差的同时,记录下光强接收器输出中的变化部分,得到干涉光强随光程差的变化曲线,即干涉图函数。在获得干涉图后,算出干涉图的傅里叶余弦变换,即得光源的光谱分布。 2. 运用傅里叶变换得到相干光束的光谱分布 若有两束单色光,波数都为σ,传播方向和偏振方向相同,光强均为I' ,两光束间光程差为Δ,两束光相互叠加产生干涉,得到的光强为 在整个光谱范围内的干涉总光强为: 上式右方第一项为常数项,第二项为光程差Δ的函数,故以 I(Δ 表示第二项为: 2cos( (2 (2?+=πσσσσσd I d I dI ??∞∞?+=00 2cos( ( (σπσσσσd I c d I c I ? ∞?=?0 2cos( ( (σπσσd I c I 由于傅里叶余弦变换可逆,故: 上式需要测量的光程差范围是0到∞,但实际测量范围无法如此精确,存在较大误差。理论分析得到:光程差测量范围大小决定了傅里叶变换光谱的光谱分辨率,即傅里叶变换光谱仪的光谱分辨率由最大光程差决定;同时上式要求测量干涉光强是随光程差变化的连续变化曲线,实际测量中亦无法实现,只能采用间隔一定距离离散采样的方法。 3. 如何实现高精度的等光程差,并采取间隔的选取是实验的关键

Nexus-870傅立叶变换红外光谱仪使用说明解析

附录三 Nexus-870傅立叶变换红外光谱仪使用说明 附图2 Nexus - 870傅立叶变换红外光谱仪外形图 一、仪器构造 1.光源 傅立叶变换红外光谱仪中所用的光源通常是一种惰性固体,用电加热使之发射高强度连续红外辐射,如空冷陶瓷光源。随着科技的发展,一种黑体空腔光源被研制出来。它的输出能量远远高于空冷陶瓷光源,可达到60%以上。Nicolet公司生产的Nexus–870傅立叶变换红外光谱仪用硅碳棒作为红外光源。 2.迈克尔逊干涉仪 其作用是将光源发出的红外辐射转变成干涉光,特点是输出能量大、分辨率高、波数精度高(它采用激光干涉条纹准确测定光差,故使其测定的波数更为精确)、且扫描平稳、重线性好。 3.检测器 其作用是将光信号转变为电信号,特点是扫描速度快(一般在1s内可完成全谱扫描)、灵敏度高。 4.计算机

特点是各种数据处理快,且具有色散型红外光谱仪所不具备的多种功能。 5.样品池 通常用能透过红外光的透光材料如KBr或NaCl制作样品池的窗片。 二、傅立叶变换红外光谱仪的工作原理 FTIR是基于光相干性原理而设计的干涉型红外光谱仪。它不同于依据光的折射和衍射而设计的色散型红外光谱仪。与棱镜和光栅的红外光谱仪比较,称为第三代红外光谱仪。但由于干涉仪不能得到人们业已习惯并熟知的光源的光谱图,而是光源的干涉图。为此可根据数学上的傅立叶变换函数的特性,利用电子计算机将其光源的干涉图转换成光源的光谱图。亦即是将以光程差为函数的干涉图变换成以波长为函数的光谱图,故将这种干涉型红外光谱仪称为傅立叶变换红外光谱仪。确切地说,即光源发出的红外辐射经干涉仪转变成干涉光,通过试样后得到含试样信息的干涉图,由电子计算机采集,并经过快速傅立叶变换,得到吸收强度或透光度随频率或波数变化的红外光谱图。其工作原理如下图所示: 附图3 FTIR工作原理 三、Nexus–870傅立叶变换红外光谱仪使用方法 1.制样 (1)空白溴化钾压片:将少许溴化钾置于玛瑙研钵中研磨至粉状,然后装入压片机模具中,压成均匀透明的薄片,压力为8~10 kg/cm2。

岛津傅立叶变换红外光谱仪

岛津傅立叶变换红外光谱仪 FTIR-8400S 安装准备条件 岛津制作所 分析计测事业部

1?前言 非常感谢您购买岛津傅立叶变换红外光谱仪FTIR-8400S ? 为了能够顺利地安装FTIR-8400S,本资料归纳了必须由用户安装前进行准备的事宜。 敬请客户留意本书内容,以实现长期稳定的高可靠性分析。 2?安装条件 2.1 使用温度 15~30℃ (应避开受到阳光直射、空调机风直吹的场所?) 2.2 使用湿度 70%以下 (必须绝对避免在产生结露的条件下使用?) 《注》装置的温度发生了急剧的变化时,因装置内部有可能发生结露,应使装置适应环境1小时以上后再使用? 2.3 安装场所 安装时请注意以下安装条件? ?远离发生强磁场?电场?高频的装置? ?避免有振动的场所? ?避开灰尘多的场所、发生腐蚀性气体的场所?可能淋水的场所? ?FTIR主机、操作用PC的合计重量约80 kg?请准备可充分负载此重量的平坦牢固的安装台?同时安装附件时,应加上附件的重量? ?为使装置正常运转,必须水平安装?请确认安装台是水平的? ?避免与发生脉冲噪声的装置共用电源? (重要)?如果二氟甲烷、二氯甲烷、氯仿、四氯化碳等卤化物进入干渉仪内,则因受光源热量而产生分解,产生强腐蚀性卤化氢(氢氟酸、盐酸等),有可能使干渉仪内反射镜、 螺丝等金属部件生锈。测定含挥发性卤化物的样品时,请在FTIR的样品室部分安装 局部排气或向干渉仪内通入干燥空气或N2 气等吹扫气体,以防止干渉仪内进入卤 化物。 同样,在仪器周围的空气中含有卤化物时,应向干渉仪通入不含卤化物的干燥空气 或N2 气等吹扫气体,以防止干渉仪内进入卤化物。 2.4 安装面积 请准备长1800㎜×宽600㎜左右的牢固的安装台? 为进行电缆类的配线以及风扇排气,装置背面应保证150~200mm的空间? (配置参照图1~3) 《注》如购买了SSU-8000、AIM-8800等外部附件,安装面积不同,特请注意?

傅里叶变换.光谱仪由迈克耳逊干涉仪和数据处理系统解析

傅里叶变换红外光谱仪由迈克耳逊干涉仪和数据处理系统组合而成,它的工作原理就是迈克耳逊干涉仪的原理。 迈克耳逊干涉仪的光路如图所示,图中已调到M2与M1垂直。∑是面光源(由被单色光或白光照亮的一块毛玻璃充当),面上每一点都向各个方向射出光线,又称扩展光源,图中只画出由S点射出光线中的一条来说明光路。这条光线进入分束板G1后,在半透膜上被分成两条光线,反射光线①和透射光线②,分别射向M1和M2又被反射回来。反射后,光线①再次进入G1并穿出,光线②再次穿过补偿板G2并被G1上的半透膜反射,最后两条光线平行射向探测器的透镜E,会聚于焦平面上的一点,探测器也可以是观测者的眼睛。由于光线①和光线②是用分振幅法获得的相干光,故可产生干涉。光路中加补偿板G2的作用是使分束后的光线①和光线②都以相等的光程分别通过G1、G2两次,补偿了只有G1而产生的附加光程差。M2′是M2被G1上半透膜反射所成的虚象,在观测者看来好象M2位于M2′的位置并与M1平行,在它们之间形成了一个空气薄膜。移动M1即可改变空气膜的厚度,当M1接近M2′时厚度减小,直至二者重合时厚度为零,继续同向移动,M1还可穿越M2′的另一测形成空气膜。最后通过观测干涉条纹的分布情况就可以获得我们所要的信息。 如果是傅里叶变换红外光谱仪,那还要加上对干涉信息的数据处理系统而最终获得我们的数据图表。 二.紫外—可见分光光度计定量分析法的依据是什么? 比耳(Beer)确定了吸光度与溶液浓度及液层厚度之间的关系,建立了光吸收的基本定律。 ○1. 朗伯定律 当溶液浓度一定时,入射光强度与透射光强度之比的对数,即透光率倒数的对数与液层厚度成正比。人们定义:溶液对单色光的吸收程度为吸光度。公式表示为A=Lg(I0/It) ○2.比耳定律 当一束单色光通过液层厚度一定的均匀溶液时,溶液中的吸光物质的浓度增大dC,则透 射光强度将减弱dI,-dI与入射光光强度I与dc的积成正比。∴?dI ∝I?dc -dI/I=k3?dc A=Lg(I0/It)=K4 ?C 这是吸光度与浓度的定量关系,是紫外—可见分光光度分析的定量依据,称Beer定律, k4——与入射光波长、溶液性质、液层厚度及温度有关,故当上述条件一定时,吸光度与溶液浓度成正比. 3.朗伯--比耳定律 若同时考虑液层厚度和溶液浓度对吸光度的影响,即把朗伯定律和比耳定律合并起来得:A = k b C K——与入射光波长、溶液性质及温度有关的常数 当一束波长为λ的单色光通过均匀溶液时,其吸光度与溶液浓度和光线通过的液层厚度的乘积成正比。即为朗伯——比耳定律。 其中K的取值与C、b的单位不同而不同。若C以g/L表示,b以cm表示。则K以a表示,,称吸光系数,单位L/g.cm ∴A = a b C 三.红外光谱分析中固体式样的常用制样方法有哪些? 1.压片法。在研钵中研磨成细粉末与干燥的溴化钾粉末混合均匀,装入模具,在压片机上压制成片测试。 2. 糊状法 在研钵中,将干燥的样品研磨成细粉末。然后滴入1~2滴液体石蜡混研成糊状,涂于KBr 或NaCl晶片上测试。 四.双光束分光光度计与单光束分光光度计比有哪些优点? 双光束分光光度计比单光束分光光度计结构复杂,可实现吸收光谱的自动扫描,扩大波长的

傅里叶变换光谱解析

傅立叶变换光谱实验报告 姓名:学号:专业:光电子 一、实验目的 (1 自组傅里叶变换光谱仪,掌握傅里叶变换光谱的原理; (2 测量常用光源的光谱分布。 二、实验原理 傅里叶变换光谱仪是基于迈克尔逊干涉仪结构。使两束相干光的光程差发生连续改变,干涉光强相应发生变化,记录下光强接收器输出中连续的变化部分,得到干涉光强随光程差的变化曲线,即干涉图函数。然后计算出干涉图的傅里叶余弦变换,即可得到光源的光谱分布。这样得到的光谱就被称为傅里叶变换光谱。 1、干涉光强的计算 根据光波叠加原理,若有两束单色光,它们的波数都是σ,具有Δ的光程差,传播方向和偏振方向相同,光强都是I ’,这两束光相互叠加产生干涉,得到光强为: I =4I ' cos (πσ? =2I ' +2I ' cos(2πσ? 2 从上式看,单色光的干涉图像包含一个直流分量和一个余弦函数分量,余 弦函数分量的周期就是单色光的波长。 若光源不是单色光,光强随波长的分布为I(σ, 在光谱间隔d σ内光强是(σ)I d σ将此光源发出的光等强分成两束,相互干涉后光强是: dI =2I (σ d σ+2I (σ d σcos(2πσ? 在整个光谱范围内的干涉总光强为:

I =c òI (s d s+c òI (scos(2psD d s 00¥¥ 其中为常数,上式右侧第一项为常数,与光程差Δ无关;右边第二项是光程差的函数,将第二项单独写出: I (D =c òI (scos(2psD d s 0¥ 两束光干涉所得光强是光束光谱分布的傅立叶余弦变换。傅立叶余弦变换是可逆的,则有: ∞ I (σ =c ' ?I (? cos(2πσ? d ? 只要测出相干光束的干涉光强随光程差变化的干涉图函数曲线I(σ 进行傅立叶变换就可以得到相干光束的光谱分布。 2、实际应用的相关讨论 将上述公式用于实际还需进行一下讨论: 1. 公式中要求光程差测量范围为0到∞,但实际中光程差的测量范围有限。理论上,光程差测量范围的大小(最大光程差X )决定了傅里叶变换光谱的光谱分辨率,其波束分辨率为1/(2X, 但由实际条件X 只能为有限值; 2. 公式中要求干涉光强随光程差连续变化曲线I(Δ 。但实际中采用间隔一定距离离散采样的方法,光程差的采样间隔的大小决定了傅里叶变换光谱的光谱范围。避免光谱线混淆的条件是采样间隔小于或等于最小波长的二分之一。

相关主题
文本预览
相关文档 最新文档