当前位置:文档之家› 第一章 函数与极限知识点

第一章 函数与极限知识点

第一章 函数与极限知识点
第一章 函数与极限知识点

第一章函数与极限

区间

[a,+∞):表示不小于a的实数的全体,也可记为:a≤x<+∞;

(-∞,b):表示小于b的实数的全体,也可记为:-∞<x<b;

(-∞,+∞):表示全体实数R,也可记为:-∞<x<+∞

注:其中-∞和+∞,分别读作"负无穷大"和"正无穷大",它们不是数,仅仅是记号。

邻域

设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。

函数

x (D为非空实数集)

函数y=f(x)、y=F(x) D

D为函数的定义域。通常x叫做自变量,y叫做因变量。

函数的有界性

如果对属于某一区间I的所有x值总有│f(x)│≤M成立,其中M是一个与x无关的常数,那么我们就称f(x)在区间I有界,否则便称无界。

注意:一个函数,如果在其整个定义域内有界,则称为有界函数

例题:函数cosx在(-∞,+∞)内是有界的.

函数的单调性

如果函数在区间(a,b)内随着x增大而增大,即:对于(a,b)内任意两点x1及x2,当x1<x2时,有

则称函数在区间(a,b)内是单调增加的。

如果函数在区间(a,b)内随着x增大而减小,即:对于(a,b)内任意两点x1及x2,当x1<x2时,有

则称函数在区间(a,b)内是单调减小的。

函数的奇偶性

如果函数对于定义域内的任意x都满足=,则叫做偶函数;

如果函数对于定义域内的任意x都满足=-,则叫做奇函数。注意:偶函数的图形关于y轴对称,奇函数的图形关于原点对称,若奇函数定义

域中含有0,则F(0)=0。f(0)=-f(0),2f(0)=0,所以f(0)=0。

函数的周期性 对于函数,若存在一个不为零的数l ,使得关系式

对于定义域内任何x 值都成立,则叫做周期函数,l 是的周期。

注:我们说的周期函数的周期是指最小正周期。 反函数

反函数的定义: 设函数)(x f y =,其定义域为D ,值域为M. 如果对于每一个M y ∈,有惟一的一个D x ∈与之对应,并使)(x f y =成立,则得到一个以y 为自变量,x 为因变量的函数,称此函数为y=f(x)的反函数,记作

)(1y f x -=

显然,)(1

y f x -=的定义域为M ,值域为D. 由于习惯上自变量用x 表示,因变量用y 表示,

所以)(x f y =的反函数可表示为 )(1x f y -=

反函数的存在定理

若在(a ,b)上严格增(减),其值域为 R ,则它的反函数必然在R 上确定,且严格增(减).

注:严格增(减)即是单调增(减) 反函数的性质 在同一坐标平面内,

)(1

x f y -=的图形是关于直线y=x 对称。 关于直线y=x 对称的。如右图所示:

复合函数的定义 若y 是u 的函数:

,而u 又是x 的函数:

,且

的函数值的全部或部分在

的定义域内,那末,y 通过u 的联系也是x 的函数,我们称后一个函数是由函数

复合而成的函数,简称复合函数,记作,其中u 叫做中间变量。

注:并不是任意两个函数就能复合;复合函数还可以由更多函数构成。 分段函数:????

a为任意实数

(正弦函数)

(反正弦函

初等函数

由基本初等函数与常数经过有限次的有理运算及有限次的函数复合所产生并且能用一个解析式表出的函数称为初等函数.

反双曲函数

双曲函数的反函数称为反双曲函数. a):反双曲正弦函数 其定义域为:(-∞,+∞); b):反双曲余弦函数 其定义域为:[1,+∞); c):反双曲正切函数 其定义域为:(-1,+1);

数列的极限 数列

通项入公式:

函数的极限

定义:设函数)(x f y =在0x 的某去心邻域N (δ,0Λ

x )内有定义,如果当x 无限趋近于0

x 时,)(x f 无限接近于一个确定的常数A ,则称常数A 为当0

x x →时函数)(x f 的极限,记作

()A

x f x x =→0

lim 或当

x x →,)(x f →A

定义:设函数)(x f y =在(00,x x δ-)(或(δ+00,x x ))内有定义,若当自变量x 从0

x 的左(右)近旁无限接近于0x ,记作-

→0x x (+

→0x x )时,函数)(x f y =无限接近于一

个确定的常数A ,则称常数A 为

0x x →时的左(右)极限,记作

A

x f x x =-

→)(lim 0或A

x f =-)0(0,(

A

x f x x =+

→)(l

i m 0或

A x f =+)0(0).

极限与左、右极限之间有以下结论: A

x f x x =→)(lim 0

的充要条件是

=-

→)(lim 0x f x x A x f x x =+

→)(lim 0

.

渐近线:??????? 函数极限的运算规则 若已知x →x 0(或x →∞)时,.

则:

推论:

在求函数的极限时,利用上述规则就可把一个复杂的函数化为若干个简单的函数来求极限。 注:通过此例题我们可以发现:当分式的分子和分母都没有极限时就不能运用商的极限的运算,应先把分式的分子分母转化为存在极限的情形,然后运用规则求之。

无穷大量和无穷小量 无穷大量 记为:

或(表示为无穷大量,实际它是没有极限的) 无穷小量

以零为极限的变量称为无穷小量。 记作:

(或

注意:无穷大量与无穷小量都是一个变化不定的量,不是常量,只有0可作为无穷小量的唯一常量。

无穷大量与无穷小量的区别是:前者无界,后者有界,前者发散,后者收敛于0. 无穷大量与无穷小量是互为倒数关系的. 关于无穷小量的两个定理 定理一:如果函数在

(或x →∞)时有极限A ,则差

是当(或x →∞)时的无穷小量,反之亦成立。 定理二:无穷小量的有利运算定理

a):有限个无穷小量的代数和仍是无穷小量; b):有限个无穷小量的积仍是无穷小量; c):常数与无穷小量的积也是无穷小量. d): 有限个无穷小的乘积也是无穷小。 无穷小与无穷大的关系:

在自变量的同一变化过程中,若)(x f 为无穷大,则)(1

x f 为无穷小;反之,若)(x f 为无

穷小,则

)(1

x f 为无穷大且f(x)等于零。

无穷小量的比较 定义:设α,β都是

时的无穷小量,且β在x 0的去心领域内不为零,

a):如果,则称α是β的高阶无穷小或β是α的低阶无穷小;

b):如果,则称α和β是同阶无穷小;

c):如果,则称α和β是等价无穷小,记作:α∽β(α与β等价)

注:这个性质表明:求两个无穷小之比的极限时,分子及分母都可用等价无穷小来代替,因此

我们可以利用这个性质来简化求极限问题。

两个重要极限

1sin lim

0=→x x x e

x x x =+∞→)1

1(lim

函数的一重要性质——连续性 函数连续性的定义: 设函数

在点x 0的某个邻域内有定义,如果有

称函数在点x 0处连续,且称x 0为函数的的连续点.

函数左、右连续的概念: 函数在区间()b a ,内的连续性:

若函数

()x f y =在开区间()b a ,内的每一点处都连续,则称函数()x f y =在开区间

()b a ,内连续

若函数()x f y =

在(]00,x x δ-有定义,且()()00

lim x f x f x x =→-,则称函数()x f y =在0x 处

左连续. 若函数()x f y =在[)δ+0

0,x x 有定义,且()()00

lim x f x f x x =→+,则称函数()x f y =在0x 处

右连续.

显然函数()x f 在0x x =处连续的充要条件是:函数在该点既是左连续,又是右连续.

若函数()x f 在开区间()b a ,内连续,且在a x =右连续,在b x =左连续,则称函数()x f 在

闭区间[]b a ,上连续.

函数的间断点

定义:我们把不满足函数连续性的点称之为间断点.

它包括三种情形:a):在x=x0无定义;

b):有定义,但在x→x0时

()x f

x

x0

lim

→不存;

c):在x=x0有定义,且

()x f

x

x0

lim

→存在,但

()x f

x

x0

lim

→不等于

间断点的分类

我们通常把间断点分成两类:如果x0是函数的间断点,且其左、右极限都存在,我们把

x0称为函数的第一类间断点;不是第一类间断点的任何间断点,称为第二类间断点.

分类:无穷间断点、可去间断点、跳跃间断点。

可去间断点

若x0是函数的间断点,但极限存在,那末x0是函数的第一类间断点。此时函数不连续原因是:不存在或者是存在但≠。我们令

,则可使函数在点x0处连续,故这种间断点x0称为可去间断点

连续函数的性质及初等函数的连续性

连续函数的性质

函数的和、积、商的连续性

我们通过函数在某点连续的定义和极限的四则运算法则,可得出以下结论:

a):有限个在某点连续的函数的和是一个在该点连续的函数;

b):有限个在某点连续的函数的乘积是一个在该点连续的函数;

c):两个在某点连续的函数的商是一个在该点连续的函数(分母在该点不为零);

反函数的连续性

若函数在某区间上单调增(或单调减)且连续,那末它的反函数也在对应的区间上单调增(单调减)且连续

复合函数的连续性

设函数当x→x0时的极限存在且等于a,即:.而函数在点u=a连续,那末复合函数当x→x0时的极限也存在且等于.

即:

初等函数的连续性

基本初等函数在它们的定义域内都是连续的;一切初等函数在其定义域内也都是连续的.

闭区间上连续函数的性质

最大值最小值定理:(最大值、最小值定理)若函数()x f

在闭区间

[]b a,

上连续,则函数

()x f

在区间[]b a,

上必然存在最大值与最小值.

介值定理

在闭区间上连续的函数一定取得介于区间两端点的函数值间的任何值。即:

,μ在α、β之间,则在[a,b]间一定有一个ξ,使

推论:

在闭区间连续的函数必取得介于最大值最小值之间的任何值。

重点:

极限的运算:1、运用极限运算法则及四则运算;

若B x g A x f ==)(lim ,)(lim ,则)]()(lim[x g x f ±存在,且)(lim )(lim )]()(lim[x g x f B A x g x f ±=±=±

若B x g A x f ==)(lim ,)(lim ,则)()(lim x g x f ?存在,且

)(lim )(lim )()(lim x g x f AB x g x f ?==。 推论1:)(lim )](lim[x f c x cf =(c 为常数)。

推论2:n

n x f x f )]([lim )](lim[=(n 为正整数)。

定理3:设0)(lim ,)(lim ≠==B x g A x f ,则

)(lim )

(lim )()(lim

x g x f B A x g x f =

=

2、利用无穷小与无穷大性质;

3、利用两个重要极限;

4、利用无穷小的比较,等价无穷小的代替;

5、利用复合函数公式:[]0

000lim li ()(()lim ()m ())x x u x u x u f f u f x g f g x →→→===

[]00

0lim ()()l ()im ()x x x x f g x f f u g x →→==;

6、利用洛必达法则:注意条件。 注:不同条件下极限的运用:

a).一般情况下时,用四则运算;

b).当分子分母都为0时, )

00(型 先想法约去趋于零的因子,再利用四则运算;

c).当分子分母都为无穷大时 )

(型∞∞

,则先用x^n 次方同时除以分子分母,分出

无穷小,再求极限;

d).当其中一个是无穷小、分子为其它,分母为无穷大或者无穷小是,利用无穷小的性质; e).当有复合函数时,如根号,对数,指数时,考虑用复合函数公式。 f).必要情况下可用洛必达法则。

第一章函数与极限复习提纲

第一章函数与极限复习提纲 一、函数 知识点:1、函数的定义域、性质的判断(有界性、奇偶性、单调性、周期性) 2、基本初等函数的表示形式 3、复合函数的分解必须会!! 4、函数关系的建立 如1、下列函数中属于偶函数的是( D. ) A. x x y sin +=; B. x x y sin 2+=; C . x x y cos +=; D. x x y cos 2+=。 2、下列复合函数由哪些基本初等函数构成? (1)x x f 2ln )(= 解:u y ln =,x u 2= (2)x y 2cos = 解:2u y = ,x u cos = (3)5)13(+=x y 解:5u y =, 13+=x u (4)3 2 1-= x y 解:3 1u y =,12-=x u (5)x y 2cos ln = 解:u y ln =,v u cos =,x v 2= 3、旅客乘坐火车时,随身携带物品,不超过20公斤免费;超过20公斤部分,每公斤收费0.20元;超过50公斤部分再加收50%。试列出收费与物品重量的函数关系式。 解 0, 0.2(20), 2050 0.3(50)6, 50 x y x x x x ≤≤?? =-<≤??-+>? 4、某公司生产某种产品,总成本为C 元,其中固定成本为200元,每多生产一单位产品,成本增加10元,又设该产品价格P 与需求量x 之间的关系为2 25x P -=,求x 为多少时公司总利润最大? 解 成本函数C (x )=固定成本+可变成本 所以x x C 10200)(+= 收入函数x x x x x p x R 2521 )225()(2+-=?- =?= 利润函数200152 1)10200(2521)()()(2 2-+-=+-+-=-=x x x x x x C x R x L 令015)('=+-=x x L 得15=x 因为驻点唯一,又根据01)("<-=x L 可知函数最大值存在,所以当15=x 时,() L x

第一章 函数、极限与连续

第一章 函数、极限与连续 (一) 1.区间[)+∞,a 表示不等式( ) A .+∞<

高考数学常考知识点之极限

高考数学常考知识点之极限 考试内容: 教学归纳法.数学归纳法应用. 数列的极限. 函数的极限.根限的四则运算.函数的连续性. 考试要求: (1)理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题. (2)了解数列极限和函数极限的概念. (3)掌握极限的四则运算法则;会求某些数列与函数的极限. (4)了解函数连续的意义,了解闭区间上连续函数有最大值和最小值的性质. §13. 极 限 知识要点 1. ⑴第一数学归纳法:①证明当n 取第一个0n 时结论正确;②假设当k n =(0,n k N k ≥∈+)时,结论正确,证明当1+=k n 时,结论成立. ⑵第二数学归纳法:设)(n P 是一个与正整数n 有关的命题,如果 ①当0n n =(+∈N n 0)时,)(n P 成立; ②假设当k n ≤(0,n k N k ≥∈+)时,)(n P 成立,推得1+=k n 时,)(n P 也成立. 那么,根据①②对一切自然数0n n ≥时,)(n P 都成立. 2. ⑴数列极限的表示方法: ①a a n n =∞ →lim ②当∞→n 时,a a n →. ⑵几个常用极限: ①C C n =∞ →lim (C 为常数) ②),(01 lim 是常数k N k n k n ∈=∞→ ③对于任意实常数, 当1|| a 时,0lim =∞ →n n a 当1=a 时,若a = 1,则1lim =∞→n n a ;若1-=a ,则n n n n a )1(lim lim -=∞ →∞→不存在 当1 a 时,n n a ∞ →lim 不存在 ⑶数列极限的四则运算法则: 如果b b a a b n n n ==∞ →∞→lim ,lim ,那么 ①b a b a n n n ±=±∞ →)(lim

同济第六版《高等数学》教案WORD版-第01章 函数与极限

第一章函数与极限 教学目的: 1、理解函数的概念,掌握函数的表示方法,并会建立简单应用问题中的函数关系式。 2、了解函数的奇偶性、单调性、周期性和有界性。 3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。 4、掌握基本初等函数的性质及其图形。 5、理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左、右极限 之间的关系。 6、掌握极限的性质及四则运算法则。 7、了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限 的方法。 8、理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。 9、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。 10、了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有 界性、最大值和最小值定理、介值定理),并会应用这些性质。 教学重点: 1、复合函数及分段函数的概念; 2、基本初等函数的性质及其图形; 3、极限的概念极限的性质及四则运算法则; 4、两个重要极限; 5、无穷小及无穷小的比较; 6、函数连续性及初等函数的连续性; 7、区间上连续函数的性质。 教学难点: 1、分段函数的建立与性质; 2、左极限与右极限概念及应用; 3、极限存在的两个准则的应用; 4、间断点及其分类; 5、闭区间上连续函数性质的应用。 §1. 1 映射与函数 一、集合 1. 集合概念 集合(简称集): 集合是指具有某种特定性质的事物的总体. 用A, B, C….等表示. 元素: 组成集合的事物称为集合的元素. a是集合M的元素表示为a?M. 集合的表示: 列举法: 把集合的全体元素一一列举出来. 例如A?{a, b, c, d, e, f, g}. 描述法: 若集合M是由元素具有某种性质P的元素x的全体所组成, 则M可表示为

高等数学函数的极限与连续习题及答案

1、函数 ()12 ++=x x x f 与函数()11 3--=x x x g 相同. 错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。 ∴ ()12 ++=x x x f 与()113--=x x x g 函数关系相同,但定义域不同,所以()x f 与() x g 是不同的函数。 2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。 3、如果数列有界,则极限存在. 错误 如:数列()n n x 1-=是有界数列,但极限不存在 4、a a n n =∞ →lim ,a a n n =∞ →lim . 错误 如:数列()n n a 1-=,1) 1(lim =-∞ →n n ,但n n )1(lim -∞ →不存在。 5、如果()A x f x =∞ →lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。 6、如果α~β,则()α=β-αo . 正确 ∵1lim =α β ,是 ∴01lim lim =?? ? ??-=-αβαβα,即βα-是α的高阶无穷小量。 7、当0→x 时,x cos 1-与2 x 是同阶无穷小. 正确 ∵2122sin 412lim 2sin 2lim cos 1lim 2 02 2020=????? ? ????==-→→→x x x x x x x x x 8、 01 sin lim lim 1sin lim 000=?=→→→x x x x x x x . 错误 ∵x x 1 sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。 9、 e x x x =?? ? ??+→11lim 0 . 错误 ∵e x x x =?? ? ??+∞ →11lim 10、点0=x 是函数x x y =的无穷间断点. 错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→x x x ∴点0=x 是函数x x y =的第一类间断点. 11、函数()x f x 1 =必在闭区间[]b a ,内取得最大值、最小值.

第一章 函数与极限的练习解答

一、P21:1;5 1.设),(),(∞+∞=55--A ,) ,【310-B =,写出 B A B A B A -=\,A B ,及)()\(\B A A B A A --=的表达式。 解:),5()3,(+∞-∞= B A )5,10[-=B A ),5)10,(\+∞--∞=-=( B A B A )5,10[)()\(\--=--=B A A B A A 5.下列各题中,函数)(x f 和)x g (是否相同?为什么? (1) x x g x x f lg 2)(,lg )(2== 解:不同。定义域不同,),0()0,(+∞-∞= f D ),0(+∞=g D 。 (2) 2 )(,)(x x g x x f == 解:不同。对应法则不同,即:值域不同。),0[,+∞==g f R R R 。 (3) 3 3 4 )(x x x f -=, 3 1)(-?=x x x g 解:相同。因为定义域和对应法(或值域)则相同。 (4) x x x g x f 2 2tan sec )(,1)(-== 解:不同。定义域不同,R D f = },1,0,2 { ±=+ ≠=k k x x D g π π。 二、P21:4(1)、(3)、(5)、(7)、(9);6;7(2); P22:10(1)、(4)、(5);11(1)、(3)、(5);15(1)、(3);16. 4.求下列函数的自然定义域:

(1) 23+=x y ; 解:32023-≥?≥+x x 。即:),3 2 [+∞-=D 。 (3)211x x y --=; 解:???≤≤-≠????≥-≠1 10 0102 x x x x 。即:]1,0()0,1[ -=D 。 (5) x y sin =; 解:0≥x 。即:),0[+∞=D (7))3arcsin(-=x y ; 解:42131≤≤?≤-≤-x x 。即:]4,2[=D 。 (9))1ln(+=x y 解:101->?>+x x 。即:),1(+∞-=D 6.设,3 ,3,0,sin )(ππ?≥

函数极限与连续

函 数 1.1.1 函数及其性质 1.函数的概念 引例 汽车以60千米/小时的速度均速行驶,那么行驶里程与时间有什么关系 设行驶路程为s 千米,行驶时间为t 小时,依题意可得()600s t t =<<+∞.变量s 和t 的这种对应关系,即是函数概念的实质. 定义 设x 和y 是两个变量,D 是一个非空实数集,如果对于数集D 中的每一个数x 按照一定的对应法则f 都有唯一确定的实数y 与之对应,则称f 是定义在数集D 上的函数,记作)(x f y =,其中D 称为函数的定义域,x 称为自变量,y 称为因变量. 如果对于确定的0x D ∈,通过对应法则f ,有唯一确定的实数0y 与之对应,则称0y 为)(x f y =在0x 处的函数值,记作00()y f x =.集合{} (),Y y y f x x D ==∈称为函数的值域. 2.函数的表示法 (1)解析法:用一个等式来表示两个变量的函数关系.如一次函数y kx b =+ (,k b 为常数,且0k ≠). (2)列表法:列出表格来表示两个变量的函数关系.如三角函数表. (3)图像法:用函数图像表示两个变量之间的函数关系.如二次函数图像. 3.函数的两个要素 函数的对应法则和定义域称为函数的两个要素.函数的对应法则通常由函数的解析式给出,函数的值域由定义域和对应法则确定.函数的定义域是使函数表达式有意义的自变量取值的全体.在实际问题中,函数的定义域要由问题的实际意义确定.在求函数的定义域时,应注意:分式函数的分母不能为零;偶次根式的被开方式必须大于等于零;对数函数的真数必须大于零;反正弦函数与反余弦函数的定义域为[]1,1-等,如果函数表达式中含有上述几种函数,则应取各部分定义域的交集. 两个函数只有当定义域和对应法则都相同时,才是同一个函数. 例如函数 y =y x =是相同的函数;而函数()2lg f x x =与()2lg f x x =因定义域不

高等数学(同济五版)第一章 函数与极限知识点

第一章函数与极限 一、对于函数概念要注意以下几点: (1) 函数概念的本质特征是确定函数的两个要素:定义域和对应法则。定义域是自变量和因变量能相互联系构成函数关系的条件,无此条件,函数就没意义。对应法则是正确理解函数概念的关键。函数关系不同于一般的依赖关系,“y是x的函数”并不意味着y随x的变化而变化。函数关系也不同于因果关系。例如一昼夜的气温变化与时间变化是函数关系,但时间变化并不是气温变化的实际原因。y=f(x)中的“f”表示从x到y的对应法则,“f”是一个记号,不是一个数,不能把f(x)看作f乘以x。如果函数是用公式给出的,则“f”表示公式里的全部运算。 (2) 函数与函数表达式不同。函数表达式是表示函数的一种形式,表示函数还可以用其他的形式,不要以为函数就是式子。 (3) f(x)与f(a)是有区别的。f(x)是函数的记号,f(a)是函数值的记号,是f(x)当x=a时的函数值。 (4)两个函数,当其定义域相同,对应法则一样时,此二函数才是相同的。 二、函数的有界性、单调性、周期性和奇偶性: 对函数的有界性、单调性、周期性和奇偶性的学习应注意以下几点: (1) 并不是函数都具有这些特性,而是在研究函数时,常要研究函数是否具有这些特性。 (2) 函数是否“有界”或“单调”,与所论区间有关系。 (3) 具有奇、偶性的函数,其定义域是关于原点对称的。如果f(x)是奇函数,则f(0)=0。存在着既是奇函数,又是偶函数的函数,例f(x)=0。f(x)+f(-x)=0是判别f(x)是否为奇函数的有效方法。 (4) 周期函数的周期通常是指其最小正周期,但不是任何周期函数都有最小周期。

1第一章 函数与极限答案

第一章 函数与极限 第一节 映射与函数 1.填空题: (1)函数)(x f y =与其反函数)(x y ?=的图形关于 x y = 对称. (2 )函数 2 1 ()1f x x = +-的定义域为__________________________; (3)若)(x f 的定义域是[0,1],则)1(2+x f 的定义域是 {0} . (4)设b ax x f +=)(,则=-+= h x f h x f x ) ()()(? a . (5)若,11)(x x f -=则=)]([x f f x x 1- ,=)]}([{x f f f x . (6)函数2 x x e e y --=的反函数为 。 (7 )函数y =: x ≥0,值域: 0≤y <1 ,反函数: x =-ln(1-y 2), 0≤y <1 2. 选择题: (1)下列正确的是:(B ,C ) A.2 lg )(x x f =与x x g lg 2)(=是同一函数. B.设)(x f 为定义在],[a a -上的任意函数,则)()(x f x f -+必为偶函数,)()(x f x f --必为奇函数. C.?? ? ??<-=>==0,10,00,1sgn x x x x y 是x 的奇函数. D.由任意的)(u f y =及)(x g u =必定可以复合成y 为x 的函数. . (2))sin()(2 x x x f -=是( A ). A.有界函数; B. 周期函数; C. 奇函数; D. 偶函数. (3)设54)(2 ++=bx x x f ,若38)()1(+=-+x x f x f ,则b 为( B ). A.1; B.–1; C.2; D.–2. (4)函数 2 1 arccos 1++-=x x y 的定义域是( )

(完整版)大一高数第一章函数、极限与连续

第一章 函数、极限与连续 由于社会和科学发展的需要,到了17世纪,对物体运动的研究成为自然科学的中心问题.与之相适应,数学在经历了两千多年的发展之后进入了一个被称为“高等数学时期”的新时代,这一时代集中的特点是超越了希腊数学传统的观点,认识到“数”的研究比“形”更重要,以积极的态度开展对“无限”的研究,由常量数学发展为变量数学,微积分的创立更是这一时期最突出的成就之一.微积分研究的基本对象是定义在实数集上的函数. 极限是研究函数的一种基本方法,而连续性则是函数的一种重要属性.因此,本章内容是整个微积分学的基础.本章将简要地介绍高等数学的一些基本概念,其中重点介绍极限的概念、性质和运算性质,以及与极限概念密切相关的,并且在微积分运算中起重要作用的无穷小量的概念和性质.此外,还给出了两个极其重要的极限.随后,运用极限的概念引入函数的连续性概念,它是客观世界中广泛存在的连续变化这一现象的数学描述. 第一节 变量与函数 一、变量及其变化范围的常用表示法 在自然现象或工程技术中,常常会遇到各种各样的量.有一种量,在考察过程中是不断变化的,可以取得各种不同的数值,我们把这一类量叫做变量;另一类量在考察过程中保持不变,它取同样的数值,我们把这一类量叫做常量.变量的变化有跳跃性的,如自然数由小到大变化、数列的变化等,而更多的则是在某个范围内变化,即该变量的取值可以是某个范围内的任何一个数.变量取值范围常用区间来表示.满足不等式a x b ≤≤的实数的全体组成的集合叫做闭区间,记为,a b ????,即 ,{|}a b x a x b =≤≤????; 满足不等式a x b <<的实数的全体组成的集合叫做开区间,记为(,)a b ,即 (,){|}a b x a x b =<<; 满足不等式a x b <≤(或a x b ≤<)的实数的全体组成的集合叫做左(右)开右(左)闭区间,记为 (,a b ?? (或),a b ??),即 (,{|}a b x a x b =<≤?? (或),{|}a b x a x b =≤

极限知识点(2020年10月整理).pdf

高中数学第十三章-极 限 考试内容: 教学归纳法.数学归纳法应用. 数列的极限. 函数的极限.根限的四则运算.函数的连续性. 考试要求: (1)理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题. (2)了解数列极限和函数极限的概念. (3)掌握极限的四则运算法则;会求某些数列与函数的极限. (4)了解函数连续的意义,了解闭区间上连续函数有最大值和最小值的性质. §13. 极 限 知识要点 1. ⑴第一数学归纳法:①证明当n 取第一个0n 时结论正确;②假设当k n =(0,n k N k ≥∈+)时,结论正确,证明当1+=k n 时,结论成立. ⑵第二数学归纳法:设)(n P 是一个与正整数n 有关的命题,如果 ①当0n n =(+∈N n 0)时,)(n P 成立; ②假设当k n ≤(0,n k N k ≥∈+)时,)(n P 成立,推得1+=k n 时,)(n P 也成立. 那么,根据①②对一切自然数0n n ≥时,)(n P 都成立. 2. ⑴数列极限的表示方法: ①a a n n =∞ →lim ②当∞→n 时,a a n →. ⑵几个常用极限: ①C C n =∞ →lim (C 为常数) ②),(01 lim 是常数k N k n k n ∈=∞→ ③对于任意实常数, 当1|| a 时,0lim =∞ →n n a 当1=a 时,若a = 1,则1lim =∞→n n a ;若1?=a ,则n n n n a )1(lim lim ?=∞ →∞→不存在 当1 a 时,n n a ∞ →lim 不存在 ⑶数列极限的四则运算法则: 如果b b a a b n n n ==∞ →∞→lim ,lim ,那么 ①b a b a n n n ±=±∞ →)(lim ②b a b a n n n ?=?∞ →)(lim

函数极限与连续知识梳理

知识梳理函数极限内容网络图 内容提要与释疑解难内容提要与释疑解难

一、函数极限的概念 1. 。 2. 把1中“”换成“”。 3.把1中“”换成“”。 定理且 4.设在的某空心邻域内有定义,若存在一个常数A, ,都有。 5.设在的某左半邻域内有定义,若存在一个常数A, 时,都有。 此时也可用记号或表示左极限值A,因此可写成 6. 设在的某右半邻域内有定义,若存在一个常数 ,当时,都有。此时也可用或 表示右极限。因此可写成。 定理且 该定理是求分界点两侧表达式不同的分段函数在该分界点极限是否存在的方法,而如果在的左右极限存在且相等,则在该点的极限存在,否则不存在。 7.时,都有。此时称 时,是无穷大量。 而,只要把公式中“”改成“”,,只要把上式中“”改成“”。 8.。当时,都有。

读者同理可给出定义。 注:(常数)与的区别,前者是表明函数极限存在,后者指函数极限不存在,但还是有个趋于无穷大的趋势。因此,给它一个记号,但还是属于极限不存在之列,以后,我们说函数极限存在,指的是函数极限值是个常数。 9.。称当是无穷小量。这里的可以是常数,也可以是。 定理。 其中。 10.若时,都有,称时是有界量。 二、无穷小量阶的比较,无穷小量与无穷大量关系 设, (这里可以是常数,也可以是,以后我们不指出都是指的这个意思) (1)若,称当时是的高阶无穷小量,记作 。 (2)若,称时是的同价无穷小量。 (3)若,称时是的等价无穷小量,记作,此时(2)式也可记作。 (4)若,称时是的k阶无穷小量。 由等价无穷量在求极限过程中起到非常重要的作用,因此,引入 若。记作, 如果均是无穷小量,称为等价无穷小量;如果均是无穷大量,称为等价无穷大量;如

成人高考数学知识点之函数

成人高考数学知识点之函数 (一)函数 1、知识范围 (1)函数的概念 函数的定义、函数的表示法、分段函数、隐函数 (2)函数的性质 单调性、奇偶性、有界性、周期性 (3)反函数 反函数的定义、反函数的图像 (4)基本初等函数 幂函数、指数函数、对数函数、三角函数、反三角函数 (5)函数的四则运算与复合运算 (6)初等函数 2、要求 (1)理解函数的概念,会求函数的表达式、定义域及函数值,会求分段函数的定义域、函数值,会作出简单的分段函数的图像。 (2)理解函数的单调性、奇偶性、有界性和周期性。 (3)了解函数与其反函数之间的关系(定义域、值域、图像),会求单调函数的反函数。 (4)熟练掌握函数的四则运算与复合运算。 (5)掌握基本初等函数的性质及其图像。 (6)了解初等函数的概念。 (7)会建立简单实际问题的函数关系式。

(二)极限 1、知识范围 (1)数列极限的概念 数列、数列极限的定义 (2)数列极限的性质 唯一性、有界性、四则运算法则、夹通定理、单调有界数列极限存在定理 (3)函数极限的概念 函数在一点处极限的定义、左、右极限及其与极限的关系趋于无穷时函数的极限、函数极限的几何意义 (4)函数极限的性质 唯一性、四则运算法则、夹通定理 (5)无穷小量与无穷大量 无穷小量与无穷大量的定义、无穷小量与无穷大量的关系、无穷小量的性质、无穷小量的阶 (6)两个重要极限 2、要求 (1)理解极限的概念,会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。 (2)了解极限的有关性质,掌握极限的四则运算法则。 (3)理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。会运用等价无穷小量代换求极限。 (4)熟练掌握用两个重要极限求极限的方法。

【高一数学函数相关知识点分析】函数极限的相关知识点总结

【高一数学函数相关知识点分析】函数极限的相关知识点总结 一、增函数和减函数 一般地,设函数f(x)的定义域为I: 如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1<x2时都有f(x1)<f(x2).那么就说f(x)在这个区间上是增函数。 如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1<x2时都有f(x1)>f(x2).那么就是f(x)在这个区间上是减函数。 二、单调区间 单调区间是指函数在某一区间内的函数值Y,随自变量X增大而增大(或减小)恒成立。如果函数y=f(x)在某个区间是增函数或减函数。那么就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做y= f(x)的单调区间。 一、指数函数的定义 指数函数的一般形式为y=a(a0且≠1) (x∈R). 二、指数函数的性质 1.曲线沿x轴方向向左无限延展〈=〉函数的定义域为(-∞,+∞) 2.曲线在x轴上方,而且向左或向右随着x值的减小或增大无限靠近X轴(x轴是曲线的渐近线)〈=〉函数的值域为(0,+∞) 一、对数与对数函数定义 1.对数:一般地,如果a(a大于0,且a不等于1)的b次幂等于N,那么数b叫做以a为底N的对数,记作log aN=b,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。 2.对数函数:一般地,函数y=log(a)X,(其中a是常数,a0且a不等于1)叫做对数函数,它实际上就是指数函数的反函数,因此指数函数里对于a的规定,同样适用于对数函数。 二、方法点拨 在解决函数的综合性问题时,要根据题目的具体情况把问题分解为若干小问题一次解决,然后再整合解决的结果[标签:内容] 感谢您的阅读!

答案高等数学第一章函数与极限试题

答案: 一.选择题 1.A 【分析】 本题可直接推证,但最简便的方法还是通过反例用排除法找到答案. 【详解】 方法一:任一原函数可表示为 ?+=x C dt t f x F 0 )()(,且).()(x f x F =' 当F(x)为偶函数时,有)()(x F x F =-,于是)()1()(x F x F '=-?-',即 )()(x f x f =--,也即)()(x f x f -=-,可见 f(x)为奇函数; 反过来,若f(x)为奇函数,则? x dt t f 0 )(为偶函数,从而 ?+=x C dt t f x F 0 )()(为偶函数,可见(A)为正确选项. 方法二:令f(x)=1, 则取F(x)=x+1, 排除(B)、(C); 令f(x)=x, 则取F(x)=2 2 1x , 排除(D); 故应选(A). 【评注】 函数f(x)与其原函数F(x)的奇偶性、周期性和单调性已多次考查过. 请读者思考f(x)与其原函数F(x)的有界性之间有何关系? 2. D 【分析】 显然x=0,x=1为间断点,其分类主要考虑左右极限. 【详解】 由于函数f(x)在x=0,x=1点处无定义,因此是间断点. 且 ∞=→)(lim 0 x f x ,所以 x=0为第二类间断点; 0)(lim 1=+ →x f x ,1)(lim 1 -=- →x f x ,所以x=1为第一类间断点,故 应选(D).

【评注】 应特别注意:+∞=-+ →1 lim 1x x x ,.1 lim 1-∞=-- →x x x 从而 +∞=-→+ 1 1lim x x x e ,.0lim 1 1 =-→- x x x e 3 C 4 A 5 C 6 C 7 A 8 C ∵x →∞时,分母极限为令,不能直接用商的极限法则。先恒等变形,将函数“有理化”: 原式 = 2 1111lim )11() 11)(11(lim 0 =++=++++-+→→x x x x x x x . (有理化法) 9 D 10 C 解 原式 16 1821lim )2()cos 1(tan lim 32 030=?=-=→→x x x x x x x x . ▌ 注 等价无穷小替换仅适用于求乘积或商的极 的每项作等价替换,则 原式0)2(l i m 3 =-=→x x x x .

考研数学函数极限连续知识点回顾

考研数学:函数极限连续知识点回顾 进入暑假,考研复习日益紧张起来。对于考研数学的备考复习也进入了强化阶段。它意味着考研时间已过三分之一之多,复习的脚步还要继续马不停蹄,继续前进。凯程考研数学老师提醒广大考生在进行有效复习的同时不要忘了对前面复习的内容进行回顾,不要让努力输给记忆。 第一点函数。函数的概念和性质这些都是高中已经学过的内容,这里主要是以复习的形式来回顾一下,但要提醒考生注意函数的有界性和复合函数运算,要认真理解,因为函数的有界性是新知识,并且对后面知识点的学习起到铺垫的作用,复合函数运算对后面函数的求导、积分等都一定的关系,所以请同学们认真理解。 第二点极限。说起极限,大家都会想起什么呢?是不是想起现阶段极限计算有几种,我们来复习一下: 1)四则运算。在这里要强调一点:什么时候运用四则运算,四则运算要求每个极限都存在,才能有两个函数的极限等于分别求极限之和,否则不能应用四则运算。 2)等价无穷小替换。等价无穷小替换公式可以将极限的计算化简,使得我们更快的求解结果,但这要注意几个问题,第一,什么情况下可以应用等价无穷小替换公式,并不是任何情况下都可以等价替换的,只有在乘法和除法时可以应用的,这一点请同学们注意,有很多同学不记得这一点,上来就替换,最后算错了。第二,牢记等价无穷小替换公式,掌握它的广义化形式,不要记错公式和没有任何前提的应用广义化形式。 3)洛必达法则。说起这个法则,大家应该都很熟悉,没事“导”两下,但是这个可不是什么情况都能使用洛必达法则的,它是有条件的,三条,你还记得么?另外,洛必达法则并不是上来一个极限就用的,一般情况下是先利用等价无穷替换公式和四则运算等将极限表达式化简,最后再用洛必达法则,前提要验证是不是满足洛必达法则的三个条件,只要是想利用,就必须验证条件,而且这三个条件在历年考研真题中也考察过,请同学们注意。 4)重要极限。重要极限两个公式要牢记,也要掌握它们的广义化形式,灵活应用,会计算幂指函数极限的计算处理方法。 5)单侧极限。单侧极限这里要求在什么情况下要分侧求极限,比如分段函数,指数函数,反正切函数等这都是要分测计算极限的。 6)夹逼准则。一阶复习只需要掌握夹逼准则的内容,会简单的应用。 7)单调有界收敛定理。这个定理直接就说明了定理的内容,多是应用对数列极限存在的证明中,数一的部分题目中也会应用到。这里要掌握数列极限存在的证明思路:在草稿纸上,

函数极限与连续知识梳理

知识梳理? ? ? ? 函数极限内容网络图 内容提要与释疑解难内容提要与释疑解难 一、函数极限的概念

1. 。 2. 把1中“”换成“”。 3.把1中“”换成“”。 定理且 4.设在的某空心邻域内有定义,若存在一个常数A, ,都有。 5.设在的某左半邻域内有定义,若存在一个常数A, 时,都有。 此时也可用记号或表示左极限值A,因此可写成 6. 设在的某右半邻域内有定义,若存在一个常数 ,当时,都有。此时也可用或 表示右极限。因此可写成。 定理且 该定理是求分界点两侧表达式不同的分段函数在该分界点极限是否存在的方法,而如果在的左右极限存在且相等,则在该点的极限存在,否则不存在。 7.时,都有。此时称 时,是无穷大量。 而,只要把公式中“”改成“”,,只要把上式中“”改成“”。 8.。当时,都有。

读者同理可给出定义。 注:(常数)与的区别,前者是表明函数极限存在,后者指函数极限不存在,但还是有个趋于无穷大的趋势。因此,给它一个记号,但还是属于极限不存在之列,以后,我们说函数极限存在,指的是函数极限值是个常数。 9.。称当是无穷小量。这里的可以是常数,也可以是。 定理。 其中。 10.若时,都有,称时是有界量。 二、无穷小量阶的比较,无穷小量与无穷大量关系 设, (这里可以是常数,也可以是,以后我们不指出都是指的这个意思) (1)若,称当时是的高阶无穷小量,记作 。 (2)若,称时是的同价无穷小量。 (3)若,称时是的等价无穷小量,记作,此时(2)式也可记作。 (4)若,称时是的k阶无穷小量。 由等价无穷量在求极限过程中起到非常重要的作用,因此,引入 若。记作, 如果均是无穷小量,称为等价无穷小量;如果均是无穷大量,称为等价无穷大量;如

函数与极限重点知识归纳

常量与变量 变量的定义 我们在观察某一现象的过程时,常常会遇到各种不同的量,其中有的量在过程中不起变化,我们把其称之为常量;有的量在过程中是变化的,也就是可以取不同的数值,我们则把其称之为变量。 注:在过程中还有一种量,它虽然是变化的,但是它的变化相对于所研究的对象是极其微小的,我们则把它看作常量。 变量的表示 如果变量的变化是连续的,则常用区间来表示其变化范围。 在数轴上来说,区间是指介于某两点之间的线段上点的全体。 以上我们所述的都是有限区间,除此之外,还有无限区间: [a,+∞):表示不小于a的实数的全体,也可记为:a≤x<+∞; (-∞,b):表示小于b的实数的全体,也可记为:-∞<x<b; (-∞,+∞):表示全体实数R,也可记为:-∞<x<+∞ 注:其中-∞和+∞,分别读作"负无穷大"和"正无穷大",它们不是数,仅仅是记号。 邻域 设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。 函数 函数的定义 如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则总有确定的数值与它对应,则称y是x的函数。变量x的变化范围叫做这个函数的定义域。通常x叫做自变量,y叫做因变量。 注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示.这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的. 注:如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。这里我们只讨论单值函数。 函数的有界性 如果对属于某一区间I的所有x值总有│f(x)│≤M成立,其中M是一个与x无关的常数,那么我们就称f(x)在区间I有界,否则便称无界。 注意:一个函数,如果在其整个定义域内有界,则称为有界函数 例题:函数cosx在(-∞,+∞)内是有界的. 函数的单调性

第一章函数和极限答案

第一章 函数与极限 一 函数(见§1.1) Ⅰ 内容要求 (ⅰ)在中学已有函数知识的基础上,加深对函数概念的理解和函数性质(奇偶性、单调 性、周期性和有界性)的了解。 (ⅱ)理解复合函数的概念,了解反函数的概念,了解分段函数的概念。 (ⅲ)记忆基本初等函数的图象,了解初等函数的概念,自学双曲函数及反双曲函数。 (ⅳ)学会建立简单实际问题中的函数关系式。 Ⅱ 基本题型 (ⅰ)有关确定函数定义域的题型 1.(4分)1 )2ln()(+-= x x x f 的定义域为 21<<-x 2.(4分)) 2ln(1 )(x x x f -+= 的定义域为 [))2,1(1,1Y - 3.(4分))32arcsin(-=x y 的定义域为--------------- ( D ) A )2,1( B )2,1[ C ]2,1( D ]2,1[ 4.设)(x f 的定义域D = ]1,0[,求下列各函数的定义域: (1)(6分))(2 x f []1,1-∈x (2)(6分))2(x f (]0,∞-∈x (3)(7分))31 ()31(-++x f x f ?? ????∈32,31x (ⅱ)有关确定函数(反函数)表达式的题型 5.(4分)已知: x x f cos 1)2 (sin +=,则)(x f =)1(22 x - 6.(4分)设???????>=<-=0,10,00,1)(x x x x f ,则=)]([x f f ??? ? ???>=<-=0,10,00,1)(x x x x f 7.求下列函数的反函数 (1)(4分)31+=x y 1,13 3-=-=x y y x (2)(4分)x x y +-= 11 x x y y y x +-=+-=11,11 )1(-≠x

(完整版)函数极限与连续习题含答案

基本初等函数是实变量或复变量的指数函数、对数函数、幂函数、三角函数和反三角函数经过有限次四则运算及有限次复合后所构成的函数类。 函数的极限与连续训练题 1、 已知四个命题:(1)若)(x f 在0x 点连续,则)(x f 在0x x →点必有极限 (2)若)(x f 在0x x →点有极限,则)(x f 在0x 点必连续 (3)若)(x f 在0x x →点无极限,则)(x f 在0x x =点一定不连续 (4)若)(x f 在0x x =点不连续,则)(x f 在0x x →点一定无极限。 其中正确的命题个数是( B ) A 、1 B 、2 C 、3 D 、4 2、若a x f x x =→)(lim 0 ,则下列说法正确的是( C ) A 、)(x f 在0x x =处有意义 B 、a x f =)(0 C 、)(x f 在0x x =处可以无意义 D 、x 可以只从一侧无限趋近于0x 3、下列命题错误的是( D ) A 、函数在点0x 处连续的充要条件是在点0x 左、右连续 B 、函数)(x f 在点0x 处连续,则)lim ()(lim 0 0x f x f x x x x →→= C 、初等函数在其定义区间上是连续的 D 、对于函数)(x f 有)()(lim 00 x f x f x x =→ 4、已知x x f 1)(=,则x x f x x f x ?-?+→?)()(lim 0的值是( C ) A 、21x B 、x C 、21x - D 、x - 5、下列式子中,正确的是( B ) A 、1lim 0=→x x x B 、1)1(21lim 21=--→x x x C 、111lim 1=---→x x x D 、0lim 0=→x x x 6、51lim 21=-++→x b ax x x ,则b a 、的值分别为( A ) A 、67和- B 、67-和 C 、67--和 D 、67和 7、已知,2)3(,2)3(-='=f f 则3 )(32lim 3--→x x f x x 的值是( C ) A 、4- B 、0 C 、8 D 、不存在 8、=--→33lim a x a x a x ( D )

函数的极限与连续

第一章 函数的极限与连续 极限是微积分学中最基本、最重要的概念之一,极限的思想与理论,是整个高等数学的基础,连续、微分、积分等重要概念都归结于极限. 因此掌握极限的思想与方法是学好高等数学的前提条件. 本章将在初等数学的基础上,介绍极限与连续的概念. §1-1函数 一、函数的概念 定义1.1 设有一非空实数集D ,如果存在一个对应法则f ,使得对于每一个D x ∈,都有一个惟一的实数y 与之对应,则称对应法则f 是定义在D 上的一个函数. 记作y=f(x),其中x 为自变量,y 为因变量,习惯上称y 是x 的函数,D 称为定义域. 当自变量x 取定义域D 内的某一定值0x 时,按对应法则f 所得的对应值y 0, 称为函数y=f(x)在x =x 0时的函数值,记作f(x 0),即 y 0=f(x 0). 当自变量x 取遍D 中的数,所有对应的函数值y 构成的集合称为函数的值域,记作M ,即 {} D x x f y y M ∈==),( 例1 已知1)(2 --=x x x f ,求)0(f ,)1(f ,)(x f - 解 1100)0(2 -=--=f 1111)1(2 -=--=f 11)()()(22-+=----=-x x x x x f 例2 求下列函数的定义域. (1)142 -= x y (2))1ln(62 ++-+=x x x y 解(1)1,012 ±≠≠-x x ,所以定义域为),1()1,1()1,(+∞---∞∈Y Y x (2)? ???+≥-+01062x x x ?? ?-?≤≤-?132x x ,所以定义域为(]3,1-∈x 由函数定义可知,定义域与对应法则一旦确定,则函数随之惟一确定. 因此,我们把函数的定义域和对应法则称为函数的两个要素. 如果两个函数的定义域、对应法则均相同,那么可以认为这两个函数是同一函数. 反之,如果两要素中有一个不同,则这两个函数就不是同一函数. 例如:x x x f 2 2 cos sin )(+= 与1)(=x ?,因为1cos sin 2 2=+x x ,即这两个函数的对应法 则相同,而且定义域均为R ,所以它们是相同的函数. 又如1 1)(2--=x x x f 与1)(+=x x ?,虽然11 2--x x 1+=x ,但由于这两个函数的定义域不同, 所以这两个函数不是同一函数. 通常函数可以用三种不同的形式来表示:表格法、图形法和解析法(或称公式法).三种形式各有其优点和不足,实际问题中往往把三种形式结合起来使用. 二、函数的性质 1、 单调性 设函数)(x f y =在(b a ,)内有定义,若对(b a ,)内的任意两点21,x x ,当21x x ?时,有 )()(21x f x f ?,则称)(x f y =在(b a ,)内单调增加;若当21x x ?时,有)()(21x f x f ?,则称) (x f 在(b a ,)内单调减少,区间(b a ,)称为单调区间. 2、 奇偶性

相关主题
文本预览
相关文档 最新文档