当前位置:文档之家› 高考复习——《电磁感应》典型例题复习

高考复习——《电磁感应》典型例题复习

高考复习——《电磁感应》典型例题复习
高考复习——《电磁感应》典型例题复习

十五、电磁感应

1、磁通量

设在匀强磁场中有一个与磁场方向垂直的平面,磁场的磁感应强度为B ,平面的面积为S ,如图所示。

一、知识网络

二、画龙点睛

概念

(1)定义:在匀强磁场中,磁感应强B与垂直磁场方向的面积S的乘积,叫做穿过这个面的磁通量,简称磁通。

(2)公式:Φ=BS

当平面与磁场方向不垂直时,如图所示。

Φ=BS⊥=BScosθ

(3)物理意义

物理学中规定:穿过垂直于磁感应强度方向的单位面积的磁感线条数等于磁感应强度B。所以,穿过某个面的磁感线条数表示穿过这个面的磁通量。

(4)单位:在国际单位制中,磁通量的单位是韦伯,简称韦,符号是Wb。

1Wb=1T·1m2=1V·s。

(5) 磁通密度:B=Φ

S⊥

磁感应强度B为垂直磁场方向单位面积的磁通量,故又叫磁通密度。

2、电磁感应现象

(1)电磁感应现象:利用磁场产生电流的现象,叫做电磁感应现象。

(2)感应电流:在电磁感应现象中产生的电流,叫做感应电流。

(3)产生电磁感应现象的条件

①产生感应电流条件的两种不同表述

a.闭合电路中的一部分导体与磁场发生相对运动

b.穿过闭合电路的磁场发生变化

②两种表述的比较和统一

a.两种情况产生感应电流的根本原因不同

闭合电路中的一部分导体与磁场发生相对运动时,是导体中的自由电子随导体一起运动,受到的洛伦兹力的一个分力使自由电子发生定向移动形成电流,这种情况产生的电流有时称为动生电流。

穿过闭合电路的磁场发生变化时,根据电磁场理论,变化的磁场周围产生电场,电场使导体中的自由电子定向移动形成电流,这种情况产生的电流有时称为感生电流。

b.两种表述的统一

两种表述可统一为穿过闭合电路的磁通量发生变化。

③产生电磁感应现象的条件

不论用什么方法,只要穿过闭合电路的磁通量发生变化,闭合电路中就有电流产生。

条件:a.闭合电路;b.磁通量变化

3、电磁感应现象中能量的转化

能的转化守恒定律是自然界普遍规律,同样也适用于电磁感应现象。

3、感应电动势

(1)定义:在电磁感应现象中产生的电动势,叫做感应电动势。从低电势位置指向高电

势位置。

(2)产生感应电动势的条件:穿过回路的磁通量发生变化。

(3)物理意义:感应电动势是反映电磁感应现象本质的物理量。 (4)方向规定:内电路中的感应电流方向,为感应电动势方向。

1、法拉第电磁感应定律

(1) 磁通量变化率:单位时间内磁通量的变化量,即ΔΦΔt

反映磁通量变化的快慢。 (2)法拉第电磁感应定律

①内容:电路中感应电动势的大小,跟穿过这一电路的磁通量变化率成正比。这就是法

拉第电磁感应定律。

②公式:

设t 1时刻磁通量为

Φ1,t 2时刻磁通量为Φ2。在Δt =t 2-t 1时间内磁通量变化量ΔΦ=

Φ2-Φ1。Δt 内磁通量的变化率为ΔΦΔt

。设感应电动势为E ,则有 E =k ΔΦΔt

其中k 为比例常数。在国际单位制中,上式中各量的单位都已确定:E 的单位是伏特(V ),Φ的单位是韦伯(Wb ),t 的单位是秒(s )。同学们可以自己证明1V =1Wb/s ,上式中的k =1,所以

E =ΔΦΔt

设闭合电路是一个n 匝线圈,可以看作是由n 个单匝线圈串联而成,因此整个线圈中的感应电动势是单匝线圈的n 倍,即

E =n ΔΦΔt

磁通量改变的方式:①线圈跟磁体之间发生相对运动,这种改变方式是S 不变而相当于B 发生变化;②线圈不动,线圈所围面积也不变,但穿过线圈面积的磁感应强度是时间的函数;③线圈所围面积发生变化,线圈中的一部分导体做切割磁感线运动,其实质也是B 不变而S 增大或减小;④线圈所围面积不变,磁感应强度也不变,但二者之间夹角发生变化,如匀强磁场中转动的矩形线圈就是典型例子.

3.关于磁通量变化

在匀强磁场中,磁通量Φ=B ?S ?sin α(α是B 与S 的夹角),磁通量的变化ΔΦ=Φ2-Φ1有多种形式,主要有:

①S 、α不变,B 改变,这时ΔΦ=ΔB ?S sin α

②B 、α不变,S 改变,这时ΔΦ=ΔS ?B sin α

③B 、S 不变,α改变,这时ΔΦ=BS (sin α2-sin α1)

当B 、S 、α中有两个或三个一起变化时,就要分别计算Φ1、Φ2,再求Φ2-Φ1了。 在非匀强磁场中,磁通量变化比较复杂。有几种情况需要特别注意:

①如图所示,矩形线圈沿a →b →c 在条形磁铁附近移动,试判断穿过线圈的磁通量如何变化?如果线圈M 沿条形磁铁轴

规律

线向右移动,穿过该线圈的磁通量如何变化?

(穿过上边线圈的磁通量由方向向上减小到零,再变为方向向下增大;右边线圈的磁通量由方向向下减小到零,再变为方向向上增大)

②如图所示,环形导线a 中有顺时针方向的电流,a 环外有两个同心导线圈b 、

c ,与环形导线a 在同一平面内。当a 中的电流增大时,穿过线圈b 、c 的磁通量各如何变化?在相同时间内哪一个变化更大?

(b 、c 线圈所围面积内的磁通量有向里的也有向外的,但向里的更多,所以总

磁通量向里,a 中的电流增大时,总磁通量也向里增大。由于穿过b 线圈向外的磁通量比穿过c 线圈的少,所以穿过b 线圈的磁通量更大,变化也更大。)

③如图所示,虚线圆a 内有垂直于纸面向里的匀强磁场,虚线圆a 外是无磁场

空间。环外有两个同心导线圈b 、c ,与虚线圆a 在同一平面内。当虚线圆a 中的

磁通量增大时,穿过线圈b 、c 的磁通量各如何变化?在相同时间内哪一个变化更大?

(与②的情况不同,b 、c 线圈所围面积内都只有向里的磁通量,且大小相同。因此穿过它们的磁通量和磁通量变化都始终是相同的。)

2、导体做切割磁感线运动时的感应电动势

(1)导体切割磁感线的速度方向与磁场方向垂直

如图所示,闭合线圈中一部分导体ab 处于匀强磁场中,磁感应强度是B ,ab 以速度v 匀速切割磁力线,求产生的感应电动势。

在Δt 时间内,线框的面积变化量:ΔS =Lv Δt

穿过闭合电路的的磁通量的变化量:ΔΦ=B ΔS

代入公式E =t

?φ?中,得到 E =BLv

(2)导体切割磁感线的速度方向与磁场方向有一个夹角θ

当导体运动方向与磁感线方向有一个夹角θ时,可以把速度分解为两个分量:垂直于磁感线的分量v ⊥=vsinθ和平行于磁感线的分量v ∥=vcosθ。

后者不切割磁感线,不产生感应电动势。前者切割磁感线,产生感应电动势。感应电动势的表达式为:

E =BLv ⊥=BLvsinθ

例题:如图所示固定于水平面上的金属框cdef ,处在竖直向下的匀强磁场中,金属棒ab 搁在框架上,可无摩擦滑动。此时abed 构成一个边长L 的正方形,棒电阻r ,其余电阻a b c b c

不计。开始时磁感应强度为B 。

(1)若以t =0时起,磁感应强度均匀增加,每秒增加量为k ,同时保持棒静止,求棒中的感应电流I ;

(2)在上述情况中,棒始终保持静止,当t =t 1时需加垂直于棒的水平外力F =?

(3)若从t =0时起,磁感应强度逐渐减小,当棒以恒定速度v 向右匀速运动,可使棒中不产生感应电流,则磁感应强度怎样随时间变化?

解析:(1)E =2

B L t

???=kL 2 I =E r =2

kL r ,逆时针方向。 (2)F 外=BIL =(B +kt)2

kL r

·L ,方向向右。 (3)没有感应电流,故ΔΦ=0,则有

B 0L 2=BL(L +v t)

所以B =2

0B L L vt

+ 例题: 如图所示,长L 1宽L 2的矩形线圈电阻为R ,处于磁感应强度为B 的匀强磁场边缘,线圈与磁感线垂直。求:将线圈以向右的速度v 匀速拉出磁场的过程中,⑴拉力的大小F ; ⑵拉力的功率P ; ⑶拉力做的功W ; ⑷线圈中产生的电热Q ;⑸通过线圈某一截面的电荷量q 。

解:这是一道基本练习题,要注意计算中所用的边长是L 1还是L 2 ,还应该思考一下这些物理量与速度v 之间有什么关系。

⑴v R

v L B F BIL F R E I v BL E ∝=∴===22222,,, ⑵22222v R v L B Fv P ∝== ⑶v R v L L B FL W ∝==12

221 ⑷v W Q ∝= ⑸ R

t R E t I q ?Φ==?=与v 无关 特别要注意电热Q 和电荷q 的区别,其中R q ?Φ=与速度无关!

例题:如图所示,竖直放置的U 形导轨宽为L ,上端串有电阻R (其余导体部分的电阻都忽略不计)。磁感应强度为B 的匀强磁场方向垂直于纸面向外。金属棒ab 的质量为m ,与导轨接触良好,不计摩擦。从静止释放后ab 保持水平而下滑。试求ab 下滑的最大速度v m

解:释放瞬间ab 只受重力,开始向下加速运动。随着速度的增大,感应电动势E 、感应电流I 、安培力F 都随之增大,加速度随之减小。当F 增大到F=mg 时,加速度变为零,这时ab 达到最大速度。

由mg R v L B F m ==22,可得22L

B mgR v m = 这道题也是一个典型的习题。要注意该过程中的功能关系:重

力做功的过程是重力势能向动能和电能转化的过程;安培力做功的

过程是机械能向电能转化的过程;合外力(重力和安培力)做功的

过程是动能增加的过程;电流做功的过程是电能向内能转化的过程。

达到稳定速度后,重力势能的减小全部转化为电能,电流做功又使

电能全部转化为内能。这时重力的功率等于电功率也等于热功率。

进一步讨论:如果在该图上端电阻的右边串联接一只电键,让ab 下落一段距离后再闭合电键,那么闭合电键后ab 的运动情况又将如何?(无论何时闭合电键,ab 可能先加速后匀速,也可能先减速后匀速,还可能闭合电键后就开始匀速运动,但最终稳定后的速度总是一样的)。

(3)说明

①根据E =

t

?φ?求出的一般是Δt 时间内的平均感应电动势。只有当Δt →0时,求出的才是瞬时感应电动势。

②根据E =BLv ⊥=BL vsinθ,如果用平均量代入,求出的平均感应电动势。用对应的瞬时量代入,求出的是瞬时感应电动势。

③在B 、L 、v 中如果有任意两个量平行,都不会切割磁感线,感应电动势都等于零。

3、楞次定律──感应电流的方向

(1)楞次定律

①内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。这就是楞次定律。

②“阻碍”和“变化”的含义

感应电流的磁场总是要阻碍引起感应电流的磁通量的变化,而不是阻碍引起感应电流的磁场。因此,不能认为感应电流的磁场的方向和引起感应电流的磁场方向相反。

磁通量变化

感应电流

感应电流的磁场

发生电磁感应现象的这部分电路就相当于电源,在电源的内部,电流的方向是从低电势流向高电势。 (2) 利用楞次定律判定感应电流方向的一般步骤是:

①明确闭合回路中引起感应电流的原磁场方向;

②确定原磁场穿过闭合回路中的磁通量如何变化(是增大还是减小);

产生 产生 阻碍

③根据楞次定律确定感应电流的磁场方向.注意“阻碍”不是阻止,阻碍磁通量变化指:磁通量增加时,阻碍增加(感应电流的磁场和原磁场方向相反,起抵消作用);磁通量减少时,阻碍减少(感应电流的磁场和原磁场方向一致,起补偿作用),简称“增反减同”.

④利用安培定则确定感应电流方向.

例题:如图所示,有两个同心导体圆环。内环中通有顺时针方向的电流,外环中原来无电流。当内环中电流逐渐增大时,外环中有无感应电流?方向如何?

解:由于磁感线是闭合曲线,内环内部向里的磁感线条数和内环外部向外的所有磁感线条数相等,所以外环所围面积内(这里指包括内环圆面积在内的总面积,而不只是环形区域的面积)的总磁通向里、增大,所以外环中感应电流磁场的方向为向外,由安培定则,外环中感应电流方向为逆时针。

例题:如图所示,闭合导体环固定。条形磁铁S极向下以初速度v0沿过导体环圆心的竖直线下落过程,导体环中的感应电流方向如何?

解:从“阻碍磁通量变化”来看,当条形磁铁的中心恰好位于线圈M所在的水平面时,磁铁内部向上的磁感线都穿过了线圈,而磁铁外部向下穿过线圈的磁通量最少,所以此时刻穿过线圈M的磁通量最大。因此全过程中原磁场方向向上,先增后减,感应电流磁场方向先下后上,感应电流先顺时针后逆时针。

从“阻碍相对运动”来看,线圈对应该是先排斥(靠近阶段)后吸引(远离阶段),把条形磁铁等效为螺线管,该螺线管中的电流是从上向下看逆时针方向的,根据“同向电流互相吸引,反向电流互相排斥”,感应电流方向应该是先顺时针后逆时针的,与前一种方法的结论相同。

例题:如图所示,O1O2是矩形导线框abcd的对称轴,其左方有垂直于纸面向外的匀强磁场。以下哪些情况下abcd中有感应电流产生?方向如何?

A.将abcd 向纸外平移

B.将abcd向右平移

C.将abcd以ab为轴转动60°

D.将abcd以cd为轴转动60°

解:A、C两种情况下穿过abcd的磁通量没有发生变化,无感应电流产生。B、D两种情况下原磁通向外,减少,感应电流磁场向外,感应电流方向为abcd。

(3)楞次定律的多种表述

①从磁通量变化的角度:感应电流的磁场总是阻碍引起感应电流的磁通量的变化。

②从导体和磁场的相对运动:导体和磁体发生相对运动时,感应电流的磁场总是阻碍相对

运动。

③从感应电流的磁场和原磁场:感应电流的磁场总是阻碍原磁场的变化。(增反、减同)

④楞次定律的特例──右手定则

伸开右手让拇指跟其余四指垂直,并且都跟手掌在一个平面内,让磁感线垂直众手心进入,拇指指向导体的运动方向,其余四指指的方向就是感应电流的方向。

应用右手定则时应注意:

①右手定则仅在导体切割磁感线时使用,应用时要注意磁场方向、运动方向、感应电流方向三者互相垂直.

②当导体的运动方向与磁场方向不垂直时,拇指应指向切割磁感线的分速度方向.

③若形成闭合回路,四指指向感应电流方向;若未形成闭合回路,四指指向高电势.

④“因电而动”用左手定则.“因动而电”用右手定则.

导体切割磁感线产生感应电流是磁通量发生变化引起感应电流的特例,所以判定电流方向的右手定则也是楞次定律的一个特例.用右手定则能判定的,一定也能用楞次定律判定,只是对导体在磁场中切割磁感线而产生感应电流方向的判定用右手定则更为简便.

例题:如图所示装置中,cd杆原来静止。当ab杆做如下那些运动时,cd杆将向右移动?

A.向右匀速运动

B.向右加速运动

C.向左加速运动

D.向左减速运动

解:.ab 匀速运动时,ab中感应电流恒定,L1中磁通量不变,穿过L2的磁通量不变化,L2中无感应电流产生,cd保持静止,A不正确;ab向右加速

运动时,L2中的磁通量向下,增大,通过cd的电流方向向下,cd向右移动,B正确;同理可得C不正确,D正确。选B、D

例题:如图所示,当磁铁绕O1O2轴匀速转动时,矩形导线框(不考虑重力)将如何运动?解:本题分析方法很多,最简单的方法是:从“阻碍相对运动”的角度来看,导线框一定会跟随条形磁铁同方向转动起来。如果不计一切摩擦阻力,最终导线框将和磁铁转动速度无限接近到可以认为相同;如果考虑摩擦阻力,则导线框的转速总比条形磁铁转速小些(线框始终受到安培力矩的作用,大小和摩擦力的阻力矩相等)。如果用“阻碍磁通量变化”来分析,结论是一样的,但是叙述要复杂得多。可见这类定性判断的题要灵活运用楞次定律的各种表达方式。

例题:如图所示,水平面上有两根平行导轨,上面放两根金属棒a、b。

当条形磁铁如图向下移动时(不到达导轨平面),a、b将如何移动?

解:若按常规用“阻碍磁通量变化”判断,则需要根据下端磁极的极性分别进行讨论,比较繁琐。而且在判定a、b所受磁场力时。应该以磁极对它们的磁场力为主,不能以a、b间的磁场力为主(因为它们的移动方向由所受的合磁场的磁场力决定,而磁铁的磁场显然是起主要作用的)。如果注意到:磁铁向下插,通过闭合回路的磁通量增大,由Φ=BS可知磁通量有增大的趋势,因此S的相应变化应该是阻碍磁通量的增加,所以a、b将互相靠近。这样判定比较起来就简便得多。

例题:如图所示,绝缘水平面上有两个离得很近的导体环a、b。将条形磁铁沿它们的正中向下移动(不到达该平面),a、b将如何移动?

解:根据Φ=BS,磁铁向下移动过程中,B增大,所以穿过每个环中的磁通量都有增大的趋势,由于S不可改变,为阻碍增大,导体环应该尽量远离磁铁,所以a、b将相互远离。

例题:如图所示,在条形磁铁从图示位置绕O1O2轴转动90°的过程中,放在导轨右端附近的金属棒ab将如何移动?

解:无论条形磁铁的哪个极为N极,也无论是顺时针转动还是逆时针

转动,在转动90°过程中,穿过闭合电路的磁通量总是增大的(条形磁铁内、外的磁感线条数相同但方向相反,在线框所围面积内的总磁通量和磁铁内部的磁感线方向相同且增大。而该位置闭合电路所围面积越大,总磁通量越小,所以为阻碍磁通量增大金属棒ab将向右移动。

4、楞次定律是能量守恒定律在电磁感应现象中的具体表现

能量转化与守恒定律是自然界普遍适用的定律,在电磁感应现象中同样遵循这条规律。 例题:如图所示,用丝线将一个闭合金属环悬于O 点,虚线左边有垂直于纸面向外的匀强磁场,而右边没有磁场。金属环的摆动会很快停下来。试解释这一现象。若整个空间都有垂直于纸面向外的匀强磁场,会有这种现象吗?

解:只有左边有匀强磁场,金属环在穿越磁场边界时(无论是进入还是穿出),由于磁通量发生变化,环内一定有感应电流产生。根据楞次定律,感应电流将会阻碍相对运动,所以摆动会很快停下来,这就是电磁阻尼现象。还可以用能量守恒来解释:有电流产生, 磁通量不变化,无感应电流,不会阻碍相对运动,摆动就不会很快停下来。

就一定有机械能向电能转化,摆的机械能将不断减小。若空间都有匀强磁场,穿过金属环的

5、(1)自感现象:这种由于导体本身的电流发生变化而产生的电磁感应现象,叫做自感现象。

(2)自感电动势

①概念:在自感现象中产生的感应电动势,叫做自感电动势。

②公式

自感电动势也遵从法拉第电磁感应定律。

对于线圈,Φ=BS ,Φ∝B ,B ∝I ,得出

Φt ??∝I t

?? 由法拉第电磁感应定律E =N

Φt ?? E =L I t

?? 所以,自感电动势的大小与线圈中电流变化的快慢有关。

③自感电动势方向

由楞次定律得,自感电动势的方向要阻碍原电流的变化。

(3)自感

对于同一个线圈来说,电流变化得快,穿过线圈的磁通量也就变化得快,线圈中产生的自感电动势就大。对于不同的线圈,在电流变化快慢相同的情况下,产生的自感电动势是不同的。

①概念:电学中用自感系数来表示线圈的这种特性,自感系数简称自感或电感。

②意义:L 的大小表明了线圈对电流变化的阻碍作用大小,反映了线圈对电流变化的延时作用的强弱。

③单位:自感系数的单位是亨利,简称亨,符号是H 。如果通过线圈的电流在1s 内改变1A 时,产生的自感电动势是1V ,这个线圈的自感系数就是1H 。

亨利这个单位较大,常用的较小单位有毫亨(mH )和微亨(μH )。

1mH =10-3H

1μH =10-6H

④决定因素

线圈的自感系数跟线圈的形状、长短、匝数等因素有关系。线圈的横截面积越大,线圈

越长,匝数越密,它的自感系数就越大。另外,有铁芯的线圈的自感系数比没有铁芯时大得多。

例题:如图所示,a、b灯分别标有“36V 40W”和“36V 25W”,闭合电键,调节R,使a、b 都正常发光。这时断开电键后重做实验:电键闭合后看到的现象是什么?稳定后那只灯较亮?再断开电键,又将看到什么现象?

解:重新闭合瞬间,由于电感线圈对电流增大的阻碍作用,a将慢慢亮起来,而b立即变亮。这时L的作用相当于一个大电阻;稳定后两灯都正常发光,a的额定功率大,所以较亮。这时L的作用相当于一只普通的电阻(就是该线圈的内阻);断开瞬间,由于电感线圈对电流减小的阻碍作用,通过a的电流将逐渐减小,a渐渐变暗到熄灭,而abRL组成同一个闭合回路,所以b灯也将逐渐变暗到熄灭,而且开始还会闪亮一下(因为原来有I a>I b),并且通过b的电流方向与原来的电流方向相反。这时L的作用相当于一个电源。(若将a灯的额定功率小于b灯,则断开电键后b灯不会出现“闪亮”现象。)

3、自感的应用和防止

(1)应用

自感现象在各种电器设备和无线电设备中有着广泛的应用。自感线圈是交变电流路中的重要元件。在无线电设备中,用它和电容器组成振荡电路,以发射电磁波。日光灯电路中的镇流器,也是利用自感现象制成的。

(2)防止

自感现象也有不利的一面。自感系数很大而电流又很强的电路(如大型电动机的定子绕组)中,在切断电路的瞬间,由于电流在很短时间内发生很大变化,会产生很高的自感电动势,使开关的闸刀和固定的夹片之间的空气电离而变成导体,形成电弧。这会烧坏开关,甚至危及工作人员的安全。因此,切断这类电路时必须采取特制的安全开关。常见的安全开关是将开关放在绝缘性能良好的油中,防止电弧的产生,保证安全。

制造精密电阻时,为了消除使用过程中因电流变化引起的自感现象,往

往采用双线绕法,如图所示。由于两根平行导线的电流方向相反,它们的电

流相互抵消,从而可以使自感现象的影响减弱到可以忽略的程度。

6、电磁感应规律的综合应用

(1)电磁感应规律与电路

在电磁感应现象中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,将它们接上电容器,便可使电容器充电,将它们接上电阻等用电器,便可对用电器供电,在回路中形成电流.因此电磁感应问题又往往跟电路问题联系起来,解决这类问题,一方面要考虑电磁学中的有关规律,另一方面又要考虑电路中的有关规律,一般解此类问题的基本思路是:

①明确哪一部分电路产生电磁感应,则这部分电路就是电源.

②正确分析电路的结构,画出等效电路图.

③结合有关的电路规律建立方程求解.

(2)电磁感应和力学

电磁感应与力学综合中,又分为两种情况:

①与动力学、运动学结合的动态分析,思考方法是:电磁感应现象中感应电动势→感应电流→通电导线受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……周而复始地循环,循环结束时,加速度等于零,导体达到稳定状态.

②与功、能、动量守恒的综合应用.从能量转化的观点求解此类问题可使解题简化.例:闭合电路的部分导体做切割磁感线运动引起的电磁感应现象中,都有安培力做功.正是导体通过克服安培力做功将机械能转化为电能,这个功值总是与做功过程中转化为电能的数值相等.在无摩擦的情况下,又与机械能的减少数值相等,在只有电阻的电路中,电能又在电流流动的过程中克服电阻转化为电热Q 热,这样可得到关系式ΔE 机=ΔE 电=Q 热,按照这个关系式解题,常常带来很大方便.

例题:如图所示,U 形导线框固定在水平面上,右端放有质量为m 的金属棒ab ,ab 与导轨间的动摩擦因数为μ,它们围成的矩形边长分别为L 1、L 2,回路的总电阻为R 。从t =0时刻起,在竖直向上方向加一个随时间均匀变化的匀强磁场B =kt ,(k >0)那么在t 为多大时,金属棒开始移动?

解:由t

E ??Φ== kL 1L 2可知,回路中感应电动势是恒定的,电流大小也是恒定的,但由于安 培力F=BIL ∝B =kt ∝t ,所以安培力将随时间而增大。当安培力增大到等于最大静摩擦力时,ab 将开始向左移动。这时有:2

212211,L L k mgR t mg R L kL L kt μμ==?? 例题:如图所示,xoy 坐标系y 轴左侧和右侧分别有垂直于纸面向 ⑵线圈的转动轴与磁感线垂直。如图,矩形线圈的长、宽分别为L 1、L 2,所围面积为S ,向右的匀强磁场的磁感应强度为B ,线圈绕图示的轴以角速度ω匀速转动。线圈的ab 、cd 两边切割磁感线,产生的感应电动势相加可得E=BSω。如果线圈由n 匝导线绕制而成,则E=nBSω。从图示位置开始计时,则感应电动势的瞬时值为e=nBSωcos ωt 。该结论与线圈的形状和转动轴的具体位置无关(但是轴必须与B 垂直)。

实际上,这就是交流发电机发出的交流电的瞬时电动势公式。

例题: 如图所示,矩形线圈abcd 质量为m ,宽为d ,在竖直平面内由静止自由下落。其下方有如图方向的匀强磁场,磁场上、下边界水平,宽度也为d ,线圈ab 边刚进入磁场就开始做匀速运动,那么在线圈穿越磁场的全过程,产生了多少电热?

解:ab 刚进入磁场就做匀速运动,说明安培力与重力刚好平衡,在下落2d 的过程中,重力势能全部转化为电能,电能又全部转化为电热,所以产生电热Q =2mgd 。

例题: 如图所示,水平面上固定有平行导轨,磁感应强度为B 的匀强磁场方向竖直向下。同种合金做的导体棒ab 、cd 横截面积之比为2∶1,长度和导轨的宽均为L ,ab 的质量为m ,电阻为r ,开始时ab 、cd 都垂直于导轨静止,不计摩擦。给ab 一个向右的瞬时冲量I ,在以后的运动中,cd 的最大速度v m 、最大加速度a m 、

产生的电热各是多少?

解:给ab 冲量后,ab 获得速度向右运动,回路中产生感应电流,cd 受安培力作用而加速,ab 受安培力而减速;当两者速度相等时,都开始做匀速运动。所以开始时cd 的加速度最大,最终cd 的速度最大。全过程系统动能的损失都转化为电能,电能又转化为内能。由于ab 、cd 横截面积之比为2∶1,所以电阻之比为1∶2,根据Q=I 2Rt ∝R ,所以cd 上产生的电热应该是回路中产生的全部电热的2/3。又根据已知得ab 的初速度为v 1=I/m ,因此有:

2

/,,2,1m F a BLI F r r E I BLv E m ==+== ,解得r m I L B a m 22232=。最后的共同速度为v m =2I/3m ,系统动能损失为ΔE K =I 2/ 6m ,其中cd 上产生电热Q=I 2/ 9m

例题: 如图所示,水平的平行虚线间距为d =50cm ,其间有B=1.0T 的匀强磁场。一个正方形线圈边长为l =10cm ,线圈质量m=100g ,电阻为R =0.020Ω。开始时,线圈的下边缘到磁场上边缘的距离为h =80cm 。将线圈由静止释放,其下边缘刚进入磁场和刚穿出磁场时的速

R v l B F 22 度相等。取g =10m/s 2,求:⑴线圈进入磁场过程中产生的电热Q 。⑵线圈下边缘穿越磁场过程中的最小速度v 。⑶线圈下边缘穿越磁场过程中加速度的最小值a 。

解:⑴由于线圈完全处于磁场中时不产生电热,所以线圈进入磁场过

程中产生的电热Q 就是线圈从图中2位置到4位置产生的电热,而2、4位置动能相同,由能量守恒Q =mgd=0.50J

⑵3位置时线圈速度一定最小,而3到4线圈是自由落体运动因此有

v 02-v 2=2g (d-l ),得v =22m/s

⑶2到3是减速过程,因此安培力 减小,由F -mg =ma 知加速度减小,到3位置时加速度最小,a=4.1m/s 2

小学数学总复习经典习题解析

小学数学总复习经典好题解析 提前练习一道:分数的加减法单元习题 李林喝了一杯牛奶的1/6,然后加满水,又喝了一杯的1/3,再倒满水后又喝了半杯,又加满了水,最后把一杯都喝了。李林喝的牛奶多,还是水多? 解答题 1、甲、乙两个修路队同时合修一条1875米的公路,用25天。完工时乙队比甲队少修125米,乙队平均每天修35米,甲队平均每天修多少米? 2、快车从甲站到达乙站需要8小时,慢车从乙站到达甲站需要12小时,如果快、慢两车同时从甲、乙两站相对开出,相遇是快车比慢车多行180千米,甲、乙两站相遇多少千米? 3、电影门票20元一张,降价后观众增加一倍,收入增加五分之一,那么一张门票降价多少元? 4、甲、乙两列火车同时从A、B两城相对开出,行了3.2小时后,两列还相距全程的5/8, 两车还需要几小时才能相遇? 5、加工一批零件,甲独做30小时完成,乙独做20小时完成,现在两人同时加工,完成任务时,乙给甲87个,两人零件个数就相等,这批零件共多少个?

6、修一条路3天修完。第一天修全长的37%,第二天和第三天修的米数的比是4:5,第二天修了64米,这条路全长多少米? 7、红星鞋厂生产一批儿童鞋准备装箱。如果每箱装70双,5箱装不满,如果每箱装44双,7箱又装不完,最后决定每箱装A双,这是恰好装满A箱而没有剩余,这批儿童鞋共有多少双? 8、有两桶油,第一桶用去1/4后,余下的与第二桶的质量比是3:5,第一桶原来有油18千克,第二桶原来有油多少千克? 9、客车从甲地,货车从乙地同时相对开出。一段时间后,客车行了全程的7/8,货车行的超过中点54千米,已知客车比货车多行了90千米,甲、乙两地相距多少千米? 10、甲、乙两车分别从A、B两地同时出发,当甲车行到全程的7/11时与乙车相遇,乙车继续以每小时40千米的速度前进,又行驶了154千米到达A地。甲车出发到相遇用了多少小时? 11、生产一批零件,甲每小时可以生产70个,乙单独做要10小时完成,现在由甲、乙两个人同时合做完成,甲、乙生产零件数量的比是4:3,甲一共生产理解多少个? 12、一个商店以每双6.5双的价格购进一批布鞋,以每双8.7元的价格售出,当卖出这批布鞋的3/4时,不仅收回原来的成本,而且还盈利20元,购进这批布鞋是多少双?

电磁感应典型例题和练习

电磁感应 课标导航 课程容标准: 1.收集资料,了解电磁感应现象的发现过程,体会人类探索自然规律的科学态度和科学精神。 2.通过实验,理解感应电流的产生条件,举例说明电磁感应在生活和生产中的应用。 3.通过探究,理解楞次定律。理解法拉第电磁感应定律。 4.通过实验,了解自感现象和涡流现象。举例说明自感现象和涡流现象在生活和生产中的应用。 复习导航 本章容是两年来高考的重点和热点,所占分值比重较大,复习时注意把握: 1.磁通量、磁通量的变化量、磁通量的变化率的区别与联系。 2.楞次定律的应用和右手定则的应用,理解楞次定律中“阻碍”的具体含义。 3.感应电动势的定量计算,以及与电磁感应现象相联系的电路计算题(如电流、电压、功 率等问题)。 4.滑轨类问题是电磁感应的综合问题,涉及力与运动、静电场、电路结构、磁场及能量、 动量等知识、要花大力气重点复习。 5.电磁感应中图像分析、要理解E-t、I-t等图像的物理意义和应用。 第1课时电磁感应现象、楞次定律 1、高考解读 真题品析 知识:安培力的大小与方向 例1. (09年物理)13.如图,金属棒ab置于水平放置的U形光滑导轨上,在ef右侧存在有界匀强磁场B,磁场方向垂直导轨平面向下,在ef左侧的无磁场区域cdef有一半径很小的金属圆环L,圆环与导轨在同一平面当金属棒ab在水平恒力F作用下从磁场左边界ef处由静止开始向右运动后,圆环L有__________(填收缩、扩)趋势,圆环产生的感应电流_______________(填变大、变小、不变)。 解析:由于金属棒ab在恒力F的作用下向右运动,则abcd回路中产生逆时针方向的感应电

七年级数学上册期末复习典型例题讲析(人教版)

七年级数学上册典型例题 例1. 已知方程2x m-3+3x=5是一元一次方程,则m= . 解:由一元一次方程的定义可知m-3=1,解得m=4.或m-3=0,解得m=3 所以m=4或m=3 警示:很多同学做到这种题型时就想到指数是1,从而写成m=1,这里一定要注意x的指数是(m-3). 例2. 已知2 x=-是方程ax2-(2a-3)x+5=0的解,求a的值. 解:∵x=-2是方程ax2-(2a-3)x+5=0的解 ∴将x=-2代入方程, 得a·(-2)2-(2a-3)·(-2)+5=0 化简,得4a+4a-6+5=0 ∴ a=8 1 点拨:要想解决这道题目,应该从方程的解的定义入手,方程的解就是使方程左右两边值相等的未知数的值,这样把x=-2代入方程,然后再解关于a的一元一次方程就可以了. 例3. 解方程2(x+1)-3(4x-3)=9(1-x). 解:去括号,得2x+2-12x+9=9-9x, 移项,得2+9-9=12x-2x-9x. 合并同类项,得2=x,即x=2. 点拨:此题的一般解法是去括号后将所有的未知项移到方程的左边,已知项移到方程的右边,其实,我们在去括号后发现所有的未知项移到方程的左边合并同类项后系数不为正,为了减少计算的难度,我们可以根据等式的对称性,把所有的未知项移到右边去,已知项移到方程的左边,最后再写成x=a的形式. 例4. 解方程 1 7 5 3 2 1 4 1 6 1 8 1 = ? ? ? ? ? ? + ? ? ? ? ? ? + ? ? ? ? ? + - x . 解析:方程两边乘以8,再移项合并同类项,得111 351 642 x ?-? ?? ++= ? ?? ?? ?? 同样,方程两边乘以6,再移项合并同类项,得11 31 42 x- ?? += ? ??

(最新原创)2021年高考二轮复习物理学案- 电磁感应附答案

(最新原创)2021高考二轮复习物理学案(6)电磁感应一.典例精析 题型1.(楞次定律的应用和图像)如图甲所示,存在有界匀强磁场,磁感应强度大小均为B,师雪清方向分别垂直纸面向里和向外,磁场宽度均为L,在磁场区域的左侧相距为L处,有一边长为L的正方形导体线框,总电阻为R,且线框平面与磁场方向垂直. 现使线框以速度v匀速穿过师雪清磁场区域. 以初始位置为计时起点,规定电流逆时针方向时的电流和电动势方向为正,B垂直纸面向里时为正,则以下关于线框中的感应电动势、磁通量、感应电流、和电功率的四个图师雪清象描述不正确的是() 师雪清 师雪清

解析:在第一段时间内,磁通量等于零,感应电动势为零,感应电流为零,电功率为零。 在第二段时间内,BLvt BS ==Φ,BLv E =,R BLv R E I ==,R BLv P 2)(=。 在第三段时间内, BLvt BS 2==Φ,BLv E 2=,R BLv R E I 2==,R BLv P 2)2(= 师雪清 在第四段时间内, BLvt BS ==Φ,BLv E =,R E I =,R BLv P 2)(=。此题 选B 。师雪清 规律总结:对应线圈穿过磁场产生感应电流的图像问题,应该注意以下几点:师雪清 ⑴要划分每个不同的阶段,对每一过程采用楞次定律和法拉第电磁感应定律进行分析。 ⑵要根据有关物理规律找到物理量间的函数关系式,以便确定图像的形状。师雪清 ⑶线圈穿越方向相反的两磁场时,要注意有两条边都切割磁感线产生感应电动势。 师雪清 题型2.(电磁感应中的动力学分析)如图所示,固定在绝缘水平面上的的金属框架cdef 处于竖直向下的匀强磁场中,金属棒ab 电阻为r ,跨在框架上,可以无摩擦地滑动,其余电阻不计.在t=0时刻,磁感应强度为B d c a b e f

2021年新人教版七年级数学下期末复习资料 知识归纳与典型例题

七年级数学 下学期期末复习知识归纳总结与典型例题 【本讲教育信息】 一. 教学内容: 期末几何复习 二. 知识归纳总结(知识清单) 知识点(1)同一平面两直线的位置关系 知识点(2)三角形的性质 三角形的分类 <1>按边分 <2>按角分 ???? ???三角形 三角形锐角三角形)9()8(

知识点(3)平面直角坐标系 <1>有序实数对 有顺序的两个实数a和b组成的实数对叫做有序实数对,利用有序实数对可以很准确地表示(18) 的位置。 <2>平面直角坐标系 在平面内两条互相垂直且有公共原点的数轴,组成平面直角坐标系,水平的数轴叫做x 轴或横轴,取向右为正方向;竖直的数轴叫做y轴或纵轴,取向上为正方向,两坐标轴的交点O为平面直角坐标系的(19) 三、中考考点分析 平面图形及其位置关系是初中平面几何的基础知识,相交点与平行线更是历年中考常见的考点,通常以填空题和选择题的形式考查,其中角平分线的定义及其性质,平行线的性质与判定,利用“垂线段最短”解决实际问题是重点;平面直角坐标系的考查重点是在直角坐标系中表示点及直角坐标系中点的特征,分值为3分左右,考查难度不大;三角形是最基本的几何图形,三角形的有关知识是学习其它图形的工具和基础,是中考重点,考查题型主要集中在选择题和解答题。 【典型例题】 相交线与平行线 例一、如图:直线a∥b,直线AC分别交a、b于点B、C,直线AD交a于点D 若∠1=20°,∠2=65°

则∠3=___ 解析:∵a∥b(已知) ∴∠2=∠DBC=65°(两直线平行,内错角相等) ∵∠DBC=∠1+∠3(三角形的一个外角等于与它不相邻的两个内角之和) ∴∠3=∠DBC-∠1 =65°-20° =45° 本题考查平行线性质和三角形的外角性质的应用 例二.将一副三角板如图放置,已知AE∥BC,则∠AFD的度数是【】A.45°B.50°C.60°D.75° 解析:∵AE∥BC(已知) ∴∠C=∠CAE=30°(两直线平行,内错角相等) ∵∠AFD=∠E+∠CAE(三角形的一个外角等于与它不相邻的两个内角之和) =45°+30°=75°故选D 本题解答时应抓住一副三角板各个角的度数 例三.如图,∠1+∠3=180°,CD⊥AD,CM平分∠DCE,求∠4的度数 解析:∵∠3=∠5(对顶角相等)∠1+∠3=180°(已知) ∴∠1+∠5=180°(等量代换) ∴AD∥BE(同旁内角互补,两直线平行) ∵CD⊥AD(已知) ∴∠6=90°(垂直定义) 又∵AD∥BE(已证) ∴∠6+∠DCE=180°(两直线平行,同旁内角互补) ∴∠DCE=90° 又∵CM平分∠DCE(已知)

高中4-8电磁感应中的能量问题学案及练习题教案

h h 电磁感应中的能量问题 编写:吴昌领 审核:陶海林 【知识要点】 1、从功能关系看, ,表示将有多少其它形式能(如机械能)转化为电能 2、从能量转化和守恒的角度看,电磁感应的过程是 , 能量在转化的过程中是 的 3、无论是使闭合回路的磁通量发生变化,还是使闭合回路的部分导体切割磁感线,都要消耗其它形式的能量,转化为回路中的 。这个过程不仅体现了能量的 ,而且保持 ,使我们认识到包含电和磁在内的能量的转化和守恒定律的普遍性。 4、分析问题时,应当牢牢抓住能量守恒这一基本规律,分析清楚有哪些力做功,就可知道有哪些形式的能量参与了相互转化,如有摩擦力做功,必然有内能出现;重力做功,就可能有机械能参与转化;安培力做负功就将其它形式能转化为电能,做正功将电能转化为其它形式的能;然后利用能量守恒列出方程求解。 【典型例题】 例1、矩形线圈从垂直于线圈平面的匀强磁场中匀速拉出,第一次速度为v 1,第二次速度为v 2=2 v 1,则两次拉力所做功之比为 ;两次拉力功率之比为 ;两次通过线圈截面电量之比为 . 例2、如图所示,质量为m ,高度为h 的矩形导体线框在竖直面内由静止开始自由下落.它的上下两边始终保持水平,途中恰好匀速通过一个有理想边界的匀强磁场区域,则线框在此过程中产生的热量为( ) C.大于mgh ,小于2mgh D.大于2mgh 例3、如图所示,虚线框abcd 内为一矩形匀强磁场区域,ab =2bc ,磁场方向垂直于纸面;实线框a ′b ′c ′d ′是一正方形导线框,a ′b ′边与ab 边平行.若将导线框匀速地拉离磁场区域,以W 1表示沿平行于ab 的方向拉出过程中外力所做的功,W 2表示以同样速率沿平行于b c 的方向拉出过程中外力所做的功,则( ) A .W 1=W 2 B .W 2=2W 1 C .W 1=2W 2 D .W 2=4W 1 例4、长L 1宽L 2的矩形线圈电阻为R ,处于磁感应强度为B 的匀强磁场边缘,线圈与磁感线垂直。将线圈以向右的速度v 匀速拉出磁场的过程中,求⑴拉力F 大小; ⑵拉力的功率P ; ⑶拉力做的功W ; ⑷线圈中产生的电热Q ;⑸通过线圈某一截面的电荷量q 。 【课堂检测】 1、如图所示,闭合金属环从高h 的曲面左侧自由滚下,又滚上曲面的右侧,环平面与运动方向均垂直于非匀强磁场,摩擦不计,则( ) A 、环滚上的高度小于h B 、环滚上的高度等于h C 、运动过程中环内无感应电流 D 、运动过程中安培力对环一定做负功

管理统计学期末复习典型例题

统计学是一门收集、整理和分析数据的方法科学,其目的是探索数据的内在数量规律性,以达到对客观事物的科学认识。包括:1.数据搜集:例如,调查与试验;2.数据整理:例如,分组;3.数据展示:例如,图和表;4.数据分析:例如,回归分析。 统计学的分科:按内容分为描述统计学(描述数据特征;找出数据的基本规律)和推断统计学(对总体特征作出推断);按性质分为理论统计学(统计学的一般理论和数学原理)和应用统计学(在各领域的具体应用)。 一、描述统计学的典型例题 【例3.3】某生产车间50名工人日加工零件数如下(单位:个) 117 122 124 129 139 107 117 130 122 125 108 131 125 117 122 133 126 122 118 108 110 118 123 126 133 134 127 123 118 112 112 134 127 123 119 113 120 123 127 135 137 114 120 128 124 115 139 128 124 121 要求:请对上述数据进行分组,编制频数分布表;绘制直方图,并对该情况进行简要的分析说明 可以按Sturges 提出的经验公式来确定组数K=1+lgn/lg2 确定各组的组距:组距=( 最大值- 最小值)÷组数 等距分组表(上下组限重叠——不重不漏:左闭右开)(上下组限间断)

面积来表示各组的频数分布;在直角坐标中,用横轴表示数据分组,纵轴表示频数或频率,各组与相应的频数就形成了一个矩形,即直方图(Histogram);直方图下的总面积等于1。 分组数据—直方图(直方图的绘制) 对该情况进行简要的分析说明(略) 【例3.4】在某地区调查120名刚毕业参加工作的研究生月工资收入,进行分组

(浙江选考)高考物理二轮复习专题四电磁感应和电路第2讲电磁感应的综合问题学案

第2讲电磁感应的综合问题[历次选考考情分析] 章知识内容 考试要求历次选考统计 必考加试2015/102016/042016/102017/042017/112018/04 电磁感应电磁感应现象 b 楞次定律 c 法拉第电磁感 应定律 d 22 23 22 22 22 23 电磁感应现象 的两类情况 b 互感和自感 b 涡流、电磁阻 尼和电磁驱动 b

考点一电磁感应基本概念和规律的理解 1.解决图象问题的一般步骤 (1)明确图象的种类,即是B-t图象还是Φ-t图象,或者是E-t图象、I-t图象等. (2)分析电磁感应的具体过程; (3)用右手定则或楞次定律确定方向对应关系; (4)结合法拉第电磁感应定律、闭合电路欧姆定律、牛顿运动定律等规律写出函数关系式; (5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等; (6)画出图象或判断图象. 2.电磁感应中图象类选择题的两个常见解法 (1)排除法:定性地分析电磁感应过程中物理量的变化趋势(增大还是减小)、变化快慢(均匀变化还是非均匀变化),特别是物理量的正负,排除错误的选项. (2)函数法:根据题目所给条件定量地写出两个物理量之间的函数关系,然后由函数关系对图象作出分析和判断,这未必是最简捷的方法,但却是最有效的办法. 1.[感应电流的产生](多选)下列各图所描述的物理情境中,有感应电流产生的是( ) 答案BCD 解析A中电键S闭合稳定后,穿过线圈的磁通量保持不变,线圈中不产生感应电流;B中磁

铁向铝环A 靠近,穿过铝环的磁通量在增大,铝环中产生感应电流;C 中金属框从A 向B 运动,穿过金属框的磁通量时刻在变化,金属框中产生感应电流;D 中铜盘在磁场中按题图所示方向转动,铜盘的一部分切割磁感线,电阻R 中产生感应电流. 2.[感应电流的大小和方向](多选)如图1,一根长为l 、横截面积为S 的闭合软导线置于光滑水平面上,其材料的电阻率为ρ,导线内单位体积的自由电子数为n ,电子的电荷量为e ,空间存在垂直纸面向里的磁场.某时刻起磁场开始减弱,磁感应强度随时间的变化规律是B =B 0-kt ,当软导线形状稳定时,磁场方向仍然垂直纸面向里,此时( ) 图1 A .软导线将围成一个圆形 B .软导线将围成一个正方形 C .导线中产生逆时针方向的电流 D .导线中的电流为klS 4πρ 答案 AD 解析 当磁场的磁感应强度减弱时,由楞次定律可知,导线中产生顺时针方向的电流,软导线围成的图形的面积有扩大的趋势,结合周长相等时,圆的面积最大可知,最终软导线围成一个圆形.设软导线围成的圆形半径为r ,则有:l =2πr ,圆形的面积为S 1=πr 2 ,软导线 的电阻为R =ρl S ,软导线中产生的感应电动势为E =ΔB Δt S 1=k l 24π,感应电流为I =E R =klS 4πρ . 3.[感应电流的图象](多选)如图2甲所示,正六边形导线框abcdef 放在磁场中静止不动,磁场方向与导线框平面垂直,磁感应强度B 随时间t 的变化关系如图乙所示.t =0时刻,磁感应强度B 的方向垂直纸面向里,设产生的感应电流顺时针方向为正,竖直边cd 所受安培力的方向水平向左为正.则下面关于感应电流i 和cd 边所受安培力F 随时间t 变化的图象正确的是( )

完整版电磁感应综合典型例题

电磁感应综合典型例题 【例11电阻为R的矩形线框abed,边长ab=L, ad=h,质量为m 自某一高度自由落下,通过一匀强磁场,磁场方向垂直纸面向里,磁 场区域的宽度为h,如图所示,若线框恰好以恒定速度通过磁场,线 框中产生的焦耳热是 _________ ?(不考虑空气阻力) 【分析】线框通过磁场的过程中,动能不变。根据能的转化和守恒,重力对线框所做的功全部转化为线框中感应电流的电能,最后又全部转化为焦耳热?所以,线框通过磁场过程中产生的焦耳热为 Q=W=mg- 2h=2mgh 【解答1 2mgh

【说明】本题也可以直接从焦耳热公式Q=l2Rt进行推算: 设线框以恒定速度v通过磁场,运动时间 从线框的cd边进入磁场到ab边离开磁场的过程中,因切割磁感 线产生的感应电流的大小为 cd边进入磁场时的电流从d到c, cd边离开磁场后的电流方向从a到b.整个下落过程中磁场对感应电流产生的安培力方向始终向上, 大小恒为 据匀速下落的条件,有 因线框通过磁场的时间,也就是线框中产生电流的时间,所以据 焦耳定律,联立(I )、(2)、(3)三式,即得线框中产生的焦耳热 为

Q=2mgh 两种解法相比较,由于用能的转化和守恒的观点,只需从全过程 考虑,不需涉及电流的产生等过程,计算更为简捷. 【例2】一个质量m=0.016kg、长L=0.5m,宽d=0.1m、电阻R=0.1 Q的矩形线圈,从离匀强磁场上边缘高h i=5m处由静止自由下落.进 入磁场后,由于受到磁场力的作用,线圈恰能做匀速运动(设整个运 动过程中线框保持平动),测得线圈下边通过磁场的时间△t=0.15s,取g=10m/s,求: (1)匀强磁场的磁感强度B; (2)磁场区域的高度h2;

外研英语七年级下学期期末复习题典型例题

初一英语Revision 2外研社(初中起点) 【本讲教育信息】 一. 教学内容: Revision 2 二. 教学重点 1. 重点的词汇和语法 2. 考点例题 三. 内容的讲解与分析 1. like的句型有如下的两种. (1)Would you like sth. 此句型表示委婉地征求对方的意见。意为“你想要某物吗” 肯定回答为:Yes, please . / /否定回答为 :No, thanks . 如: Would you like some apples to eat Yes, please . 你想要些苹果吗好的,来点吧。 Would you like some fish No ,thanks . 你想要些鱼肉吗不,谢谢。 (2)Would you like to do sth. 此句表示委婉地提出邀请,意为:你愿意做某事吗 肯定回答为:I would like/love to. / I’d like to .(缩写形式) 否定回答为:Sorry, I am afraid not./ Sorry, I can’t. But … Would you like to come to my party Yes ,I’d like to. 你想来我的晚会吗是的,很愿意。 Would you like to fly kites with me Yes, I’d like to. 你想和我一起去放风筝吗很愿意。 Would you like to wear white shirtSorry, I am afraid not. 你想穿白上衣吗不想。 2. 我们来具体看看 can的用法. (1)表示某种能力时,意为“能,会”如: This boy can speak English. 这个男孩会说英语。 (2)表示允许或请求许可时,意为“可以,允许”,相当于may。若要表示更委婉,客气,可用 could来代替。如: You can /may go home now. 你现在可以回家了。 Can /Could I borrow two books at a time 我可以一次借两本书吗 Yes, you can .可以。 (3)表示可能性时,意为“可能”,具有怀疑或不肯定的意味,仅用于否定句或疑问句中. can的否定式can’t 的意思是“不可能”。如: I think you are a good student, you can’t do that thing. 我认为你是好学生,不可能做那样的事。 Can he be a bad man 他可能是坏人吗 3. must 是情态动词,它的用法如下: (1)表示命令,义务或要求时,意为“必须,应该”,其否定式mustn’t意为“不应

届物理一轮复习教学案-法拉第电磁感应定律-互感-自感

法拉第电磁感应定律互感自感 一.考点整理基本概念 1.感应电动势:在电磁感应现象中产生的电动势叫做感应电动; ⑴产生条件:穿过回路的磁通量发生,与电路是否闭合无关. ⑵方向判断:感应电动势的方向用或右手定则判断. 2.法拉第电磁感应定律:感应电动势的大小跟穿过这一电路的磁通量的变化率成正比;E= ,其中n为线圈匝数. ⑴感应电流与感应电动势的关系:遵守闭合电路欧姆定律,即I= . ⑵导体切割磁感线时的感应电动势:①导体垂直切割磁感线时,感应电动势可用E =求出, 式中l为导体切割磁感线的;②导体棒在磁场中转动时,导体棒以端点为轴,在匀强磁场中垂直于磁感线方向匀速转动产生感应电动势E = =Blv中点(棒中点位置的线速度lω/2). 3.互感现象:两个相互靠近的线圈,当一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生,这种现象叫互感. ⑴应用;利用互感现象可以把由一个线圈传递到另一个线圈,如变压器、收音机的磁性天线. ⑵危害;互感现象能发生在任何两个相互靠近的电路之间,电力工程和电子电路中,有时会影响电路正 常工作. 4.自感现象:由于导体本身的变化而产生的电磁感应现象称为自感.自感电动势:在自感现象中产生的感应电动势叫做自感电动势;E=(其中L叫做自感系数,L与线圈的、、匝数以及有关,单位:亨利H,1mH = H,1μH=H).自感电动势的方向:自感电动势总是______原来导体中电流的变化.当回路中的电流增加时,自感电动势和原来电流的方向_______;当回路中的电流减小时,自感电动势和原来电流的方向_______.自感对电路中的电流变化有____________作用,使电流不能________. ⑴自感现象的应用:如日光灯电路中的镇流器,无线电设备中和电容器一起组成的振荡电路等.日光 灯电路是由启动器、镇流器和灯管组成的.______在日光灯启动时起到开关作用,正常工作时断开;镇流器的作用是在灯开始点亮时起___________的作用,在日光灯正常发光时起__________作用. ⑵防止:制作精密电阻时,采用________绕法,防止自感现象的发生,减小因自感而造成的误差.5.涡流:块状金属在磁场中运动,或者处在变化的磁场中,金属块内部会产生感应电流,这种电流在整块金属内部自成闭合回路,叫做________. 二.思考与练习思维启动 1.将闭合多匝线圈置于仅随时间变化的磁场中,线圈平面与磁场方向垂直,关于线圈中产生的感应电动势和 感应电流,下列表述正确的是( ) A.感应电动势的大小与线圈的匝数无关 B.穿过线圈的磁通量越大,感应电动势越大 C.穿过线圈的磁通量变化越快,感应电动势越大 D.感应电流产生的磁场方向与原磁场方向始终相同 2.在如图所示的电路中,A1和A2是两个相同的灯泡,线圈L的自感系数足够大, 电阻可以忽略不计.下列说法中正确的是( ) A.合上开关S时,A2先亮,A1后亮,最后一样亮 B.断开开关S时,A1和A2都要过一会儿才熄灭 C.断开开关S时,A2闪亮一下再熄灭 D.断开开关S时,流过A2的电流方向向右3.如图所示,A、B为大小、形状均相同且内壁光滑,但用不同材料制成的圆管,竖直固定在相同高度.两个相同的磁性小球,同时从A、B管上端的管口无初速度释放,穿过A管的小球比穿过 B 管的小球先落到地面,下面对于两管的描述中可能正确的是( ) A.A管是用塑料制成的,B 管是用铜制成的 B.A 管是用铝制成的,B管是用胶木制成的 C.A管是用胶木制成的,B 管是用塑料制成的 D.A 管是用胶木制成的,B 管是用铝制成的 三.考点分类探讨典型问题 〖考点1〗法拉第电磁感应定律的应用 【例1】如图所示,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆 直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强 度大小为B0.使该线框从静止开始绕过圆心O、垂直于半圆面的轴以 角速度ω匀速转动半周,在线框中产生感应电流.现使线框保持图中所示位置,磁感应强度大小随时间线性变化.为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间的变化率ΔB/Δt的大小应为( ) A.4ωB0/π B.2ωB0/πC.ωB0/π D.ωB0/2π 【变式跟踪1】一矩形线框置于匀强磁场中,线框平面与磁场方向垂直.先保持线框的面积不变,将磁感应强度在1s时间内均匀地增大到原来的两倍.接着保持增大后的磁感应强度不变,在1s时间内,再将线框的面积均匀地减小到原来的一半.先后两个过程中,线框中感应电动势的比值为() A.0.5B.1 C.2D.4 〖考点2〗导体切割磁感线产生感应电动势的计算 【例2】半径为a右端开小口的导体圆环和长为2a的导体直杆,单位长度电阻均为R0.圆环水平固定放置,整个内部区域分布着竖直向下的匀强磁场,磁感应强度为B.杆在圆环上以速度v平行于直径CD向右做匀速直线运动,杆始终有两点与圆环良好接触,从圆环中心O开始,杆的位置由θ确定,如图所示.则() A.θ = 0时,杆产生的电动势为2Ba v B.θ = 错误!时,杆产生的电动势为错误!Ba v C.θ= 0时,杆受的安培力大小为2B2a v/[(π +2)R0] D.θ = π 3时,杆受的安培力大小为3B 2a v/[(5π+3)R0] 【变式跟踪2】如图所示,水平放置的U形框架上接一个阻值为R0的电阻,放在垂直纸面向里的、磁感应强度大小为B的匀强磁场中,一个半径为L、质量为m的半圆形硬导体AC在水平向右的恒定拉力F作用下,由静止开始运动距离d后速度达到v,半圆形硬导体AC的电阻为r,其余电阻不计.下列说法正确的是( ) A.此时AC两端电压为U AC= 2BL v B.此时AC两端电压为UAC=2BLv R0/(R0+r) C.此过程中电路产生的电热为Q = Fd–m v2/2 D.此过程中通过电阻R0的电荷量为q= 2BLd/(R0+r) 〖考点3〗自感和涡流 【例3】如图所示的电路中,L1、L2为完全相同的灯泡,线圈L的电阻忽略不计.下

(完整版)电磁感应经典例题

电磁感应 考点清单 1 电磁感应现象 感应电流方向 (一)磁通量 1.磁通量:穿过磁场中某个面的磁感线的条数叫做穿过这一面积的磁能量.磁通量简称磁通,符号为Φ,单位是韦伯(Wb ). 2.磁通量的计算 (1)公式Φ=BS 此式的适用条件是:○1匀强磁场;○2磁感线与平面垂直. (2)如果磁感线与平面不垂直,上式中的S 为平面在垂直于磁感线方向上的投影面积. θsin S B ?=Φ 其中θ为磁场与面积之间的夹角,我们称之为“有效面积”或“正对面积”. (3)磁通量的方向性 磁通量正向穿过某平面和反向穿过该平面时,磁通量的正负关系不同.求合磁通时应注意相反方向抵消以后所剩余的磁通量. (4)磁通量的变化 12Φ-Φ=?Φ ?Φ可能是B 发生变化而引起,也可能是S 发生变化而引起,还有可能是B 和S 同时发生变化而引起的,在确定磁通量的变化时应注意. (二)电磁感应现象的产生条件 1.产生感应电流的条件:穿过闭合电路的磁通量发生变化. 2.感应电动势的产生条件:无论电路是否闭合,只要穿过电路的磁通量发生变化, 这部分电路就会产生感应电动势.这部分电路或导体相当于电源. [例1] (2004上海,4)两圆环A 、B 置于同一水平面上,其中A 为均匀带电绝缘环,B 为导体环.当A 以如图13-36所示的方向绕中心转动的角速度发生变化时,B 中产生如图所示方向的感应电流.则( ) 图13-36 A.A 可能带正电且转速减小 B.A 可能带正电且转速增大 C.A 可能带负电且转速减小 D.A 可能带负电且转速增大 [解析] 由题目所给的条件可以判断,感应电流的磁场方向垂直于纸面向外,根据楞次定律,原磁场的方向与感应电流的磁场相同时是减少的,环A 应该做减速运动,产生逆时针方向的电流,故应该带负电,故选项C 是正确的,同理可得B 是正确的.

人教版数学七年级下册期末复习典型例题解析

1.(2020?岐山县二模)将直角三角板ABC 按如图所示的方式放置,直线a 经过点A ,且直线a ∥BC ,若∠1=60°,则∠2的度数为( ) A .35° B .30° C .60° D .50° 【考点】平行线的性质. 【专题】线段、角、相交线与平行线;推理能力. 【分析】先根据平行线的性质求出∠3的度数,再根据平角的定义求出∠2的度数. 【解答】解:如图. ∵直线a ∥BC , ∴∠3=∠1=60°, ∵∠CAB=90°, ∴∠2=180°-∠CAB-∠3=30°, 故选:B . 【点评】本题主要考查了平行线的性质,解题的关键是掌握两直线平行,内错角相等.

2.(2020?邢台一模)若a表示正整数,且 a,则a << 的值是() A.3 B.4 C.15 D.16 【考点】实数与数轴;估算无理数的大小. 【专题】二次根式;数感. 【分析】直接利用a的取值范围得出符合题意的答案. 【解答】解:∵<< a << ∴正整数a=4, 故选:B. 【点评】此题主要考查了估算无理数的大小,正确得出接近无理数的整数是解题关键.

≤≤≤,则的3.(2020?鼓楼区一模)已知57,4 整数部分可以是() A.9 B.10 C.11 D.12 【考点】估算无理数的大小.无理数的整数部分与小数部分【专题】实数;运算能力. 【分析】根据估算无理数的大小的方法即可得 分. ≤≤≤, 【解答】解:∵57,4 ∴25≤a≤49,16≤b≤36, ∴41≤a+b≤85, 则 的整数部分可以是6,7,8,9. 故选:A. 【点评】本题考查了估算无理数的大小,解决本题的关键是掌握估算的方法.

高中物理电磁感应经典例题总结

1.如图,金属棒ab 置于水平放置的U 形光滑导轨上,在ef 右侧存在有界匀强磁场B ,磁场方向垂直导轨平面向下,在ef 左侧的无磁场区域cdef 内有一半径很小的金属圆环L ,圆环与导轨在同一平面内。当金属棒ab 在水平恒力F 作用下从磁场左边界ef 处由静止开始向右运动后,圆环L 有__________(填收缩、扩张)趋势,圆环内产生的感应电流_______________(填变大、变小、不变)。 答案:收缩,变小 解析:由于金属棒ab 在恒力F 的作用下向右运动,则abcd 回路中产生逆时针方向的感应电流,则在圆环处产生垂直于只面向外的磁场,随着金属棒向右加速运动,圆环的磁通量将增大,依据楞次定律可知,圆环将有收缩的趋势以阻碍圆环的磁通量将增大;又由于金属棒向右运动的加速度减小,单位时间内磁通量的变化率减小,所以在圆环中产生的感应电流不断减小。 2.如图所示,固定位置在同一水平面内的两根平行长直金属导轨的间距为d ,其右端接有阻值为R 的电阻,整个装置处在竖直向上磁感应强度大小为B 的匀强磁场中。一质量为m (质量分布均匀)的导体杆ab 垂直于导轨放置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为u 。现杆在水平向左、垂直于杆的恒力F 作用下从静止开始沿导轨运动距离L 时,速度恰好达到最大(运动过程中杆始终与导轨保持垂直)。设杆接入电路的电阻为r ,导轨电阻不计,重力加速度大小为g 。则此过程 ( BD ) A.杆的速度最大值为 B.流过电阻R 的电量为 C.恒力F 做的功与摩擦力做的功之和等于杆动能的变化量 D.恒力F 做的功与安倍力做的功之和大于杆动能的变化量 解析:当杆达到最大速度v m 时,022=+- -r R v d B mg F m μ得()()22d B r R mg F v m +-=μ,A 错;由公式 () ()r R BdL r R S B r R q +=+= += ??Φ ,B 对;在棒从开始到达到最大速度的过程中由动能定理有: K f F E W W W ?=++安,其中mg W f μ-=,Q W -=安,恒力F 做的功与摩擦力做的功之和等于杆动能的变 化量与回路产生的焦耳热之和,C 错;恒力F 做的功与安倍力做的功之和等于于杆动能的变化量与克服摩擦力做的功之和,D 对。 3.(09·浙江·17)如图所示,在磁感应强度大小为B 、方向竖直向上的匀强磁场中,有一质量为m 、阻值为R 的闭合矩形金属线框abcd 用绝缘轻质细杆悬挂在O 点,并可绕O 点摆动。金属线框从右侧某一位置静止开始释放,在摆动到左侧最

初三数学上学期期末复习知识点总结加经典例题讲解

初三数学上册期末复习资料加经典例题 第一章、图形与证明(二) (一)、知识框架 (二)知识详解 2.1、等腰三角形的判定、性质及推论 性质:等腰三角形的两个底角相等(等边对等角) 判定:有两个角相等的三角形是等腰三角形(等角对等边) 推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”) 2.2、等边三角形的性质及判定定理 性质定理:等边三角形的三个角都相等,并且每个角都等于60度;等边三角形的三条边都满足“三 2.直角三角形全等的判定:HL 4.等腰梯形的性质和判定 5.中位线 三角形的中位线 梯形的中位线 注意:若等边三角形的边长为a ,则:其高为: ,面积为: 。 1.等腰三角形 等边三角形的性质和判定 等腰三角形的性质和判定 线段的垂直平分线的性质和判定 角的平分线的性质和判定 3.平行四边形 平行四边形的性质和判定:4个判定定理 矩形的性质和判定 菱形的性质和判定:3个判定定理 正方形的性质和判定:2个判定定理 注注意:(1)中点四边形 ①顺次连接任意四边形各边中点,所得的新四边形是 ; ②顺次连接对角线相等的四边形各边中点,所得的新四边形是 ; ③顺次连接对角线互相垂直的四边形各边中点,所得的新四边形是 ; ④顺次连接对角线互相垂直且相等的四边形各边中点,所得的新四边形是 。 ab S 2 1=注意:(1)解决梯形问题的基本思路:通过分割和拼接转化成三角形和平行四边形进行解决。 即需要掌握常作的辅助线。 (2)梯形的面积公式:()lh h b a S =+=2 1 (l -中位线长)

线合一”的性质;等边三角形是轴对称图形,有3条对称轴。 判定定理:有一个角是60度的等腰三角形是等边三角形。或者三个角都相等的三角形是等边三角形。 2.3、线段的垂直平分线 (1)线段垂直平分线的性质及判定 性质:线段垂直平分线上的点到这条线段两个端点的距离相等。 判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上。 (2)三角形三边的垂直平分线的性质 三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。 (3)如何用尺规作图法作线段的垂直平分线 分别以线段的两个端点A、B为圆心,以大于AB的一半长为半径作弧,两弧交于点M、N;作直线MN,则直线MN就是线段AB的垂直平分线。 2.4、角平分线 (1)角平分线的性质及判定定理 性质:角平分线上的点到这个角的两边的距离相等; 判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上。 (2)三角形三条角平分线的性质定理 性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等。 (3)如何用尺规作图法作出角平分线 2.5、直角三角形 (1)勾股定理及其逆定理 定理:直角三角形的两条直角边的平方和等于斜边的平方。 逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。 (2)直角三角形全等的判定定理 定理:斜边和一条直角边对应相等的两个直角三角形全等(HL) 2.6、几种特殊四边形的性质

高中物理专题九电磁感应复习学案新人教

九、电磁感应(2) 【考点分析】 考点一:电磁感应中的电路问题 在电磁感应中,切割磁感线的导体或磁通量变化的回路将产生感应电动势,该导体或回路相当于电源. 解决电路问题的基本方法: ①用法拉第电磁感应定律或楞次定律确定感应电动势的____和_____ ②画出等效电路图. ③运用闭合电路欧姆定律、串并联电路性质,电功率等公式进行求解. 例1、如图,匀强磁场的磁感应强度方向垂直于纸面向里,大小随时间的变化率B k t ?=?,k 为负的常量。 用电阻率为ρ、横截面积为S 的硬导线做成一边长为l 的方框。将方框固定于纸面内,其右半部位于磁场区域中。求 (1)导线中感应电流的大小; (2)磁场对方框作用力的大小随时间的变化。 考点二:电磁感应中的能量问题 电磁感应过程中产生的感应电流在磁场中必定受到______作用,要维持感应电流的存在,必须有“外力”克服安培力做功,此过程中,其它形式的能量转化为电能,“外力”克服安培力做了多少功,就有多少其它形式的能转化为______.当感应电流通过用电器时,电能又转化为其它形式的能量,安培力做功的过程,是_______转化为_______的过程,安培力做了多少功,就有多少电能转化为其它形式的能量. 例2、如图所示,相距为L 的两条足够长的光滑平行金属导轨与水平面的夹角为?,上端接有定值电阻,匀强磁场垂直于导轨平面,磁感应强度为B 。将质量为m 的导体棒由静止释放,当速度达到v 时开始匀速运动,此时对导体棒施加一平行于导轨向下的拉力,并保持拉力的功率为P ,导体棒最终以2v 的速度匀速运动。导体棒始终与导轨垂直且接触良好,不计导轨和导体棒的电阻,重力加速度为g ,下列选项正确的是( ) A .2mgsin ? B .3mgsin ? C .当导体棒速度达到v/2时加速度为 0.5gsin ? D .在速度达到2v 以后匀速运动的过程中,R 上产生的焦耳热等于拉力所做的功 考点三:电磁感应中的综合问题 例3、如图所示,电阻不计的光滑金属导轨ac 、bd 水平平行放置,处在方向竖直向下、磁感应强度为B 的匀强磁场中,导轨左侧接有阻值为R=2r 的定值电阻,导轨间距为L. 一质量为m 、电阻为r 、长度也为L 的金属导体棒MN 垂直导轨放置在导轨上,在水平向右的拉力作用下向右匀速运动,速度为v 。 (1)R 中电流的大小是多少?方向如何? (2)M 、N 两点哪点电势高?M 、N 两点间电势差是多少? (3)水平拉力是多大? 请继续思考: R

电磁感应典型例题

典型例题——电磁感应与电路、电场相结合 1.如图所示,螺线管的导线的两端与两平行金属板相接,一个带负电的通草球用丝线悬挂在 两金属板间,并处于静止状态,若条形磁铁突然插入线圈时,通草球的运动情况是( ) A 、向左摆动 B 、向右摆动 C 、保持静止 D 、无法确定 解:当磁铁插入时,穿过线圈的磁通量向左且增加,线圈产生感应电动势,因此线圈是一个产生感应电动势的电路,相当于一个电源,其等效电路图如图,因此A 板带正电,B 板带负电,故小球受电场力向左 答案:A 3.如图所示,匀强磁场B=,金属棒AB 长0.4m ,与框架宽度相同,电阻为R=1/3Ω,框架电阻不计,电阻R 1=2Ω,R 2=1Ω当金属棒以5m/s 的速度匀速向左运动时,求: (1)流过金属棒的感应电流多大 (2)若图中电容器C 为μF,则充电量多少(1),(2)4×10-8C 解:(1)金属棒AB 以5m/s 的速度匀速向左运动时,切割磁感线,产生的感应电动势为Blv E =,得V V E 2.054.01.0=??=, 由串并联知识可得Ω=3 2外R ,Ω=1总R , 所以电流 A I 2.0= (2)电容器C 并联在外电路上, V U 3 4 .0= 外 由公式 N

C CU Q 3 4 .0103.06? ?==-C 8104-?= 4.(2003上海)粗细均习的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行。 现使线框以同样大小的速度沿四个不同方向平移出磁场,如图100-1所示,则在移出过程中线框的一边a 、b 两点间电势差绝对值最大的是( ) 解:沿四个不同方向移出线框的感应电动势都是Blv E =,而a 、b 两点在电路中的位置不同,其等效电路如图100-2所示,显然图B’的Uab 最大,选B 。 5.(2004年东北三校联合考试)粗细均匀的电阻丝围成如图12-8所示的线框abcd e (ab =bc )置于正方形有界匀强磁场中,磁场方向垂直于线框平面.现使线框以同样大小的速度匀速地沿四个不同方向平动进入磁场,并且速度方向始终与线框先进入磁场的那条边垂直,则在通过图示位置时,线框ab 边两端点间的电势差绝对值最大的是

最新高中物理选修-2第四章《电磁感应》复习学案精品版

2020年高中物理选修-2第四章《电磁感应》复习学案精品版

新人教版高中物理选修-2第四章《电磁感应》复习学案§X4.1 划时代的发现探究电磁感应的产生条件 [学习目标] 1.了解电磁感应现象的发现过程 2.了解奥斯特、法拉第等科学家的科学思维方法 3.理解磁通量的概念,会用公式?Skip Record If...?计算穿过某一面积的磁通量和该公式中每一个物理量的物理意义 4.知道穿过某一面积的磁通量大小也可以用穿过这一面积的磁感线多少来表示,且与磁感线怎样穿过(垂直该面或倾斜该面穿过)无关,如果有一条磁感线穿过某一面积但又穿过来一条,则穿过这一面积的磁通量为零。 5.知道磁通量的变化?Skip Record If...?等于末磁通量?Skip Record If...?与初磁通量?Skip Record If...?的差,即?Skip Record If...? 6.理解产生感应电流的条件:穿过闭合电路的磁通量发生变化。 穿过闭合电路的磁通量发生变化,有两个要点,一是闭合电路,二 是磁通量变化;与穿过闭合电路的磁通量有无,多少无关,只要磁通量 变化,闭合电路中就有感应电流,不变就没有。如图1所示,闭合线圈 在匀强磁场中绕垂直磁场方向的轴转动,当线圈平面与磁场垂直时,穿 过线圈平面的磁通量最大,但此时磁通量不变,线圈中无感应电流(可 用示波器观察)。 [自主学习] 仅供学习与交流,如有侵权请联系网站删除谢谢15

1、定义:的现象称为电磁感应现象。在电磁感应现象中 所产生的电流称为。 2、到了18世纪末,人们开始思考不同自然现象之间的联系,一些科学家相信电与磁之间存在着某种联系,经过艰苦细致地分析、试验, 发现了电生磁,即电流的磁效应;发现了磁生电,即电磁感应现象。 3、在电磁感应现象中产生的电动势称为,产生感应电动势的那段导体相当于; 4、产生感应电流的条件是:。 5、判断感应电流的方向利用或,但前者应用于闭合电路的一部分导体在磁场中做切割磁感线运动,后者可应用于一切情况。[典型例题] 例1 如图2所示,两个同心圆形线圈a、b在同一水平面内,圆半径?Skip Record If...?,一条形磁铁穿过圆心垂直于圆面,穿过两个线圈的磁通量分别为?Skip Record If...?和?Skip Record If...?,则: 仅供学习与交流,如有侵权请联系网站删除谢谢15

相关主题
文本预览
相关文档 最新文档