当前位置:文档之家› 典型二阶有源滤波电路的分析

典型二阶有源滤波电路的分析

典型二阶有源滤波电路的分析
典型二阶有源滤波电路的分析

生物医学工程学院2013年级生物医学工程(医疗器械方向)

课程论文

课程名称:自动化控制

论文名称:典型二阶有源滤波电路的分析

指导教师:甘平

姓名:

学号:

班级:生物医学工程

2016年6月1日

典型二阶有源滤波电路的分析

摘要:二阶系统的分析在自动控制原理中具有着普遍意义。本文用时域法分析讨论典型的二阶有源滤波电路,由二阶有源滤波电路满足的关系式,得出该系统的动态结构图。通过设定系统参数,求出标准参数ξ和n ω,分析了该系统的稳定性及其动态性能,并且利用MATLAB 软件完成系统的输出响应分析等工作。

关键词:有源滤波,时域分析,系统性能分析,二阶

1、引言

滤波技术在通讯和测量等领域有着广泛的应用[1]

。滤波器是一种使有用信号通过而同时抑制无用频率信号的电子装置,在信息处理、数据传送和抑制干扰等自动控制中应用广泛[2]

。滤波一般可分为有源滤波和无源滤波,有源滤波可以使幅频特性比较陡峭,而无源滤波设计简单易行,但幅频特性不如有源滤波器。滤波器阶数可分为一阶和高阶,阶数越高,幅频特性越陡峭。为了降低成本,提高效率和扩大容量,有源滤波器与LC 无源滤波器的组合型有源滤波系统得到广泛应用

[3, 4]

;为了适应有源滤波器多功能复杂控制的需求,在有源滤波器走

向实用化的道路上,一些先进的控制策略包括变结构和智能控制将得到真正的应用以获得更好而控制性能和效果。本文将用时域分析法分析典型二阶有源滤波器的稳定性与动态性能。时域分析是直接在时间域中对系统进行分析的方法,所以时域分析具有直观和准确的优点

[5,

6]

。系统达到稳态过程之前的过程称为瞬态过程,瞬态分析是分析瞬态过程中输出响应的各

种运动特性。理论上说,只有当时间趋于无穷大时,才进入稳态过程,但这在工程上显然是无法进行的。在工程上只讨论输入作用加入一段时间里的瞬态过程,在这段时间里,反映了主要的瞬态性能指标[7-9]

2、电路原理及分析

2.1 二阶有源滤波电路

二阶有源滤波电路的原理图如图1—1所示:采用拉普拉斯复频域运算法分析电路。设流经元件)(s R in 的电流为1I ,方向向右;流经电阻RQ 与电容1C 的电流之和为2I ,方向向上;流经电阻2R 的电流为3I ,方向向左[2]

图1—1 二阶有源滤波电路原理图

由基尔霍夫电流定理得:

0321=++I I I (1)

由基尔霍夫电压定理可知:

)()(1s R I s V in in = (2) 1

212111//

)(C R s R I C s R I s V Q Q Q o ?+=

??= (3)

232)(R I s V O = (4)

又由积分电路可得:2112)

()(C R s s V s V O O ?= (5)

由(1)—(5)得动态结构图如图1—2所示:

图1—2 系统动态结构图

由动态结构图化简的该系统闭环传递函数为:2

121122

1111

)(C C R R C R s s C C R R s G Q in +

+=

2.2 系统性能分析

设系统的参数为:F C C K R K R R K R in Q μ10,4,1,22112====== 将参数代入闭环传递函数表达式有:2500

502500

)(2++=s s s G

2.2.1 稳态性能分析

首先,对系统进行稳定性分析:

根据闭环传递函数得特征方程为:02500502

=++s s ,解得特征根

i s i s 4325,43-2521--=+=,处于s 左半平面,故系统是稳定的。

2.2.2 动态性能分析 对照二阶方程的标准形式有:???

?==2500

50

22

n n ωξωn ω=50,ξ=0.5 (式中:ξ称为阻尼比;n ω称为无阻尼自然振荡频率,均为系统参数。) 此时0<ξ<1,系统为欠阻尼状态,可求得单位阶跃响应的动态性能指标为:

(1)上升时间r t :由公式21ξωβπωβπ--=

-=n d r t ,

)1a r c t a n (2ξξβ-=得: s t r 0418.0=

)

(1s I )

(2s I 1

1C SR R Q Q +1

O V 2

11

C R S ?2

O V

(2)峰值时间p t :由公式21ξ

ωπ

ωπ-=

=

n d p t 得: s t p 0837.0=

(3)超调量: 得:

%

32.12%=σ

(4)调节时间: 3

n

s t ξω≈ (±5%的误差带) 得:

s t s 12.0=

n

s t ξω4

(±2%的误差带) 得:

s t s 16.0≈

若输入为单位斜坡信号,即21)(s s R =

,由公式 n

t ss t e e ωξ

2)(lim ==∞→ 可求得: 02.0=ss e

3、系统分析结论

上升时间r t 定义为系统输出响应从零开始,第一次上升到稳态值所需的时间,反应系统的快速性。r t 越小,系统初始响应越快。该系统的上升时间为0.0418s ,表明本系统初始响应迅速。

峰值时间p t 为系统输出响应由零开始,第一次达到峰值所需的时间。求得该系统峰值时间为0.0837s ,表明系统能快速达到峰值时间。

超调量%σ为系统输出响应超出稳态值的最大偏离量占稳态值的百分比。反应的是系统的平稳性,%σ小,说明系统响应比较平稳。该系统的超调量达12.32%,表明系统系统平稳性稍差。

%

100%2

1?=--ξξπ

σe

调节时间s t 为输出响应进入并保持在稳态值的±5%(或±2%)误差带Δ之内所需的时间。s t 小,表明系统动态响应过程短,快速性好。该系统调节时间是0.12s 或0.16s ,表明系统快速性一般。

稳态误差为系统输入量)(t r 与反馈量)(t b 之偏差的稳态值,ss e 小,说明系统稳态精度高。本系统稳态误差为0.02s ,说明系统精度挺高的。

从以上分析来看,在一定条件下,系统是稳定的,各项指标基本符合工程要求。若适当选择系统参数,则可基本保持或盖上动态性能。若使 =0.7左右,此时系统被设计为最佳二阶系统,超调量也相对减少。

用MATLAB 软件得出系统的单位阶跃响应曲线如图3—1:

图3—1 系统单位响应曲线

MATLAB 程序如下: t=0:0.01:2; num=[2500]; den=[1,50,2500];

[y,x,t]=step(num,den,t); plot(t,y) %求超调量 maxy=max(y); yss=y(length(t));

pos=100*(maxy-yss)/yss %求峰值时间

for i=1:1:201

if y(i)==maxy;n=i;end

end

tp=(n-1)*0.01

%求调节时间

for i=1:1:201

if(y(i)<1.05 & y(i)>0.95),m=i;end

end

ts=(m-1)*0.01

参考文献

1 戴志宏, 王同喜, 李树超, 等. 一种基于有源滤波的谐波电流火灾抑制方法[J]. 消防科学与技

术, 2013,32:294-296, 309.

2 尹凯华, 潘万欣, 郭小俊. 两种典型二阶有源滤波电路的分析与运用[J]. 上海船舶运输科学

研究所学报, 2015,38:47-53.

3 桂静宜. 二阶有源低通滤波电路的设计与分析[J]. 电子科技, 2010,23:15-17, 21.

4 伍刚, 张小平. 有源低通二阶滤波器的设计[J]. 兵工自动化, 2005,24:85, 88.

5 赵华, 周鹏展, 张亢, 等. 风力机叶片气动噪声时域分析方法研究[J]. 河北科技大学学报,

2015,36:203-209.

6 肖成, 于敏, 王丹. 基于时域分析的风电机组电控系统故障诊断[J]. 北华航天工业学院学报,

2015,25:20-22.

7 杨文敏, 窦丽民, 刘鸣, 等. 二阶有源滤波电路设计实验的研究[J]. 实验室科学, 2005:42-45.

8 邵毅全, 马耀庭. 二阶有源低通滤波器设计与仿真研究[J]. 激光杂志, 2009,30:22-23.

9 翁建华. 用有源器件设计二阶电流型滤波器[J]. 大连轻工业学院学报, 2003,22:218-221.

RC 有源滤波器

实验19RC 有源滤波器 一、实验目的 1.深刻理解RC 有源滤波器的工作原理。 2.掌握有源滤波器的测量和调试技术。 二、实验原理 滤波器是一种能使有用频率的信号通过而同时能对无用频率的信号进行抑制或衰减的电子装置。在工程上,滤波器常被用在信号的处理、数据的传送和干扰的抑制等方面。滤波器按照组成的元件,可分为有源滤波器和无源滤波器两大类。凡是只由电阻、电容、电感等无源元件组成的滤波器称为无源滤波器。凡是由放大器等有源元件和无源元件组成的滤波器称为有源滤波器。由运算放大器和电阻、电容(不含电感)组成的滤波器称为RC 有源滤波器。本实验只研究RC 无源滤波器和RC 有源滤波器的特性以及它们之间的关系。 RC 有源滤波器按照它所实现的传递函数的次数分,可分为一阶、二阶和高阶RC 有源滤波器。从电路结构上看,一阶RC 有源滤波器含有一个电阻和一个电容。二阶RC 有源滤波器含有二个电阻和二个电容。一般的高阶RC 有源滤波器可以由一阶和二阶的滤波器通过级联来实现。所以本实验只研究一阶和二阶滤波器。重点研究二阶RC 有源滤波器。 滤波器按照所允许通过的信号的频率范围可分为低通滤波器、高通滤波器、带通滤波器、带阻滤波器等。其中,低通滤波器只允许低于某一频率的信号通过,而不允许高于该频率的信号通过。高通滤波器只允许高于某一频率的信号通过而不允许低于该频率的信号通过。带通滤波器只允许某一频率范围内的信号通过而不允许该频率范围以外的信号通过。带阻滤波器不允许(阻止)某一频率范围(频带)内的信号通过而只允许该频率范围以外的信号通过。本实验重点研究RC 有源低通滤波器和带通滤波器。 1.一阶低通滤波器 图1.19.1(a )中虚线框内的电路是一个RC 组成的一阶低通滤波器。 它的传递函数为 其中,ω0=1/RC。 为了提高增益并提高带负载能力,可以将上述滤波电路接到由运算放大器组成的放大电路中, 图1.19.1一阶RC 低通滤波器及其幅频特性 (1.19.1)

二阶有源带阻滤波器课程设计汇总

二阶有源带阻滤波器 设计报告 目录 1、设计要求………………………..P1 2、设计作用及目的………………..P1 3、设计的具体实现 ⑴系统概述……………………...P1-P8 ⑵单元电路设计及仿真分析…...P9-P22 ⑶PCB版电路制作……………..P 4、心得体会及建议………………...P 5、附录……………………………...P 6、参考文献………………………...P

一、设计要求 ⑴、设计一个二阶有源带阻滤波器电路,要求中心频率0f=50Hz,Q=10; ⑵、设计时要综合考虑实用、经济并满足性能要求指标; ⑶、合理选用元器件。 二、设计的作用、目的 ⑴、掌握二阶有源带阻滤波器电路的设计方法 ⑵、了解二阶有源带阻滤波器的性能特点 ⑶、掌握二阶有源带阻滤波器的安装与调试方法 ⑷、掌握滤波器有关参数的测量、计算方法 ⑸、理论应用于实践,增强动手能力 三、设计的具体实现 1、系统概述 ⑴、相关知识了解 由有源器件(晶体管或集成运放)和电阻、电容构成的滤波器称为RC有源滤波器。滤波器分为一阶、二阶和高阶滤波器。阶数越高,其幅频特性越接近于理想特性,滤波器的性能就越好。滤波器的功能是让一定频率范围内的信号通过,抑制或急剧衰减此频率范围以外的信号。可用在信号处理、数据传输、抑制干扰等方面。这类滤波器主要优点是:小型,价廉;不需要阻抗匹配且可具有一定的增益;抗干扰能力强;截止频率低(可低至10-3Hz)。因受运算放大器的频带限制,主要用在超低频至几百千赫的频率范围。根据滤波器所能通过信号的频率范围或阻止信号频率范围的不同,滤波器可分为低通、高通、带通与带阻等四种滤波器。 这里专门对二阶有源带阻滤波器进行研究。常用的二阶有源带阻滤波器电路有两种形式,一种是无限增益多路负反馈(MFA)有源二阶带阻滤波器电路,另一种是电压控制电压源(VcVs)有源二阶带阻滤波器电路。 电压控制电压源电路,它的运放为同相输入,具有高输入阻抗、低输出阻抗

二阶有源滤波器参数计算

二阶有源滤波器设计 一.滤波器类型 按照在附近的频率特性,可将滤波器分为以下三种: 1.巴特沃兹响应 优点:巴特沃兹滤波器提供了最大的通带幅度响应平坦度,具有良好的综合性能,其脉冲响应优于切比雪夫,衰减速度优于贝塞尔。 缺点:阶跃响应存在一定的过冲和振荡。 2.切比雪夫响应 优点:与巴特沃兹相比,切比雪夫滤波器具有更良好的通带外衰减。 缺点:通带内纹波令人不满,阶跃响应的振铃较严重。 3.贝塞尔响应 优点:贝塞尔滤波器具有最优的阶跃响应——非常小的过冲及振铃。 缺点:与巴特沃兹相比,贝塞尔滤波器的通带外衰减较为缓慢。 (注意: 巴特沃兹及贝塞尔响应的3dB衰减位于截止频率处。 而切比雪夫响应的截止频率定义为响应下降至低于纹波带的频点频率。 对于偶数阶滤波器而言,所有纹波均高于0dB的直流响应,因此截止频点位于0dB衰减处;而对于奇数阶滤波器而言,所有纹波均低于 0dB的直流响应,因此截止频点定义为低于纹波带最大衰减点。)

二.最常用的有源极点对电路拓扑 1.MFB拓扑 也称为无限增益拓扑或Rauch拓扑; 适用于高Q值高增益电路; 其对元件值的改变敏感度较低。 2.Sallen-Key拓扑 下列情况时,使用效果更佳: 对增益精度要求较高; 采用了单位增益滤波器; 极点对Q值较低(如:Q<3); (特例:某些高Q值高频率滤波器若采用MFB拓扑,则C1值须很小以得到合适的电阻值。而由于寄生电容干扰使得低容值将导致极大干 扰)。 (注意: MFB拓扑不能用于电流反馈型运放,而S-K拓扑电压、电流反馈型运放均可; 差分放大器只能采用MFB拓扑; S-K拓扑的运放输出阻抗随频率增加而增加,故通带外衰减能力受限,而MFB拓扑则无此问题。)

二阶压控型低通滤波器设计

二阶压控型低通滤波器设计 1. 设计要求 设计一个二阶压控型低通滤波器,要求通带增益为2,截止频率为2KHz ,可以选择0.01uF 电容器,阻值尽量接近实际计算值,电路设计完后,画出频率响应曲线,并采用Multisim 软件进行仿真分析。 2. 设计目的 (1) 进一步掌握滤波器电路的工作原理和参数计算。 (2) 熟练使用Multisim 进行简单的电路设计和仿真。 3. 问题分析与参量计算 3.1 问题的简单分析 二阶压控型低通LPF 电路基本原理图可参照教材P345页(如下) 而题目中已经给出了电容的值,故我们所要做的只是确定电阻阻值以及进行电路合理的相关改善。 实验所选取的运放器是a741,实验是在Multisim 环境仿真完成的。 3.2 计算电路相关参数 (1) 低通滤波器在通带将内电容视为开路,给电路引入负反馈从而满足“虚短”、“虚断”,通带增益 3412up R A R =+ =,则34R R =,取34R R == 10k Ω。 (2) 传递函数:为方便计算,取1212,R R R C C C ====,由“虚短”、“虚断”及叠 加定理,得()() ()()() ()()()677776/1()()[()]0up p p p i U s A U s U s U s sCR U s U s U s U s U s U s sC R R ==+-----= 得到传递函数:62()1()()1(3)()u up i up U s A s A U s A sCR sCR ==+-+ 令s j ω=,取012f RC π=,2f ωπ=,2 001(3)()up u up A A f f j A f f ?=+-- (3) 当f 为截止频率时,200|1(3)()|2up f f j A f f +--=,令0f x f =,则得方程 4210x x --=,解得x ,因为2f kHz =,取0.01C F μ=可解得10.1224R k ≈Ω电阻,由于实际试验中难以的到10.1224k Ω的电阻,故实际试验中用10k Ω的电阻代替之 (4)入10,1p V mv f kHz ==的信号源 最终得到的电路图: 3.3二阶压控电压源低通滤波器(LPF )的幅频特性 Q=13-Aup =13-2 =1 ,所以Q=1的曲线即为此二阶压控电压源低通滤波器(LPF )的幅频特性。

有源电力滤波器设计

1 引言 近年来,公用电网受到谐波电流和谐波电压的严重污染,而电力电子装置是其主要的谐波污染源。随着电力电子装置的日益广泛应用,电网中的谐波污染也日益严重,谐波污染影响到供电质量和用户使用的安全性,因此电网谐波污染的治理越来越受到关注。 滤波器在本质上是一种频率选择电路,通常用幅频响应和相位响应来表征一个滤波电路的特性。理想滤波电路在通带内应具有零衰减的幅频响应和线性的相位响应,而在阻带内应具有无限大的幅度衰减。按照通带和阻带的相互位置不同,滤波器可分为低通、高通、带通、带阻、全通5类。有源滤波器采用有源器件需要使用电源,加上功耗较大且集成运放的带宽有限,因此目前有源滤波电路的工作频率难以做得很高,一般不能用于高频场合。但总的来讲有源滤波器在低频(低于1MHz)场合中使用有较无源滤波器更优的性能,因而目前在音频处理、工业测控等领域广泛应用。有源电力滤波器是一种用于动态抑制谐波、补偿无功功率的新型电力电子装置,能对大小和频率都变化的谐波及无功功率进行补偿。和传统的无源滤波器相比,有以下几点突出的优点: (1)对各次谐波和分数谐波均能有效地抑制,且可提高功率因数; (2)系统阻抗和频率发生波动时,不会影响补偿效果。并能对频率和幅值都变化的谐波进行跟踪补偿,且补偿特性不受电网阻抗的影响; (3)不会产生谐振现象,且能抑制由于外电路的谐振产生的谐波电流的变化; (4)用一台装置就可以实现对各次谐波和基波无功功率的补偿; (5)不存在过载问题,即当系统中谐波较大时,装置仍可运行,无需断开。 由以上可看出,它克服了传统的无源滤波器的缺点,具有良好的调节性能,因而有很大的发展前途。

有源滤波器实验报告

有源滤波器实验报告文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

实验七集成运算放大器的基本应用(Ⅱ)—有源滤波器 一、实验目的 1、熟悉用运放、电阻和电容组成有源低通滤波、高通滤波和带通、带阻滤波器。 2、学会测量有源滤波器的幅频特性。 二、实验原理 (a)低通(b)高通 (c) 带通(d)带阻 图7-1 四种滤波电路的幅频特性示意图 由RC元件与运算放大器组成的滤波器称为RC有源滤波器,其功能是让一定频率范围内的信号通过,抑制或急剧衰减此频率范围以外的信号。可用在信息处理、数据传输、抑制干扰等方面,但因受运算放大器频带限制,这类滤波器主要用于低频范围。根据对频率范围的选择不同,可分为低通(LPF)、高通(HPF)、带通(BPF)与带阻(BEF)等四种滤波器,它们的幅频特性如图7-1所示。 具有理想幅频特性的滤波器是很难实现的,只能用实际的幅频特性去逼近理想的。一般来说,滤波器的幅频特性越好,其相频特性越差,反之亦然。滤波器的阶数越高,幅频特性衰减的速率越快,但RC网络的节数越多,元件参数计算越繁琐,电路调试越困难。任何高阶滤波器均可以用较低的二阶RC有滤波器级联实现。 1、低通滤波器(LPF) 低通滤波器是用来通过低频信号衰减或抑制高频信号。

如图7-2(a )所示,为典型的二阶有源低通滤波器。它由两级RC 滤波环节与同相比例运算电路组成,其中第一级电容C 接至输出端,引入适量的正反馈,以改善幅频特性。图7-2(b )为二阶低通滤波器幅频特性曲线。 (a)电路图 (b)频率特性 图7-2 二阶低通滤波器 电路性能参数 1 f uP R R 1A + = 二阶低通滤波器的通带增益 RC 2π1 f O = 截止频率,它是二阶低通滤波器通带与阻带的界限频率。 uP A 31 Q -= 品质因数,它的大小影响低通滤波器在截止频率处幅频特性的形状。 2、高通滤波器(HPF ) 与低通滤波器相反,高通滤波器用来通过高频信号,衰减或抑制低频信号。 只要将图7-2低通滤波电路中起滤波作用的电阻、电容互换,即可变成二阶有源高通滤波器,如图7-3(a)所示。高通滤波器性能与低通滤波器相反,其频率响应和低通滤波器是“镜象”关系,仿照LPH 分析方法,不难求得HPF 的幅频特性。

二阶有源低通滤波器

设计题题目 二阶有源低通滤波器 设计一个有源低通滤波器的截止频率为kHz f 10 。 方案论证 (1):对信号进行分析与处理时, 常常会遇到有用信号叠加上无用噪声的问题, 这些噪声有的是与信号同时产生的, 有的是传输过程中混入的。因此, 从接收的信号中消除或减弱干扰噪声, 就成为信号传输与处理中十分重要的问题。根据有用信号与噪声的不同特性, 消除或减弱噪声,提取有用信号的过程称为滤波, 实现滤波功能的系统称为滤波器。 滤波器分为无源滤波器与有源滤波器两种 工作原理: 二阶有源滤波器是一种信号检测及传递系统中常用的基本电路, 也是高阶虑波器的基本组成单元。常用二阶有源低通滤波器的电路型式有压控电压源型、无限增益多路反馈型和双二次型。本次课程设计采用压控电压源型设计课题。 有源二阶滤波器基础电路如图1所示: 图1 二阶有源低通滤波基础电路 它由两节RC 滤波电路和同相比例放大电路组成,在集成运放输出到集成运放同相输入之间引入一个负反馈,在不同的频段,反馈的极性不相同,当信号频率f >>f0时(f0 为截止频率),电路的每级RC 电路的相移趋于-90o,两级RC 电路的移相到-180o,电路的输出电压与输入电压的相位相反,故此时通过电容c 引到集成运放同相端的反馈是负反馈,反馈信号将起着削弱输入信号的作用,使电压放大倍数减小,所以该反馈将使二阶有源低通滤波器的幅频特性高频端迅速衰减,只允许低频端信号通过。其特点是输入阻抗高,

输出阻抗低。 传输函数为: )()()(i o s V s V s A = 2F F ) ()-(31sCR sCR A A V V ++= 当f=0或者频率很小时,各电容可视为开路 F 0V A A ==1+(A vf\-1)R1/R1 称为通带增益 F 31V A Q -=称为等效品质因数 RC 1c = ω 称为特征角频率 则2c n 22c 0)(ωωω++= s Q s A s A 上式为二节低通滤波电路传递函数的典型表达式 注:当Q =0.707时的3dB 截止角频率,当30≥=VF A A 电路将自激振荡。 当jw s =代入 2220222)(c c c c c c VF w s Q w s w A w s Q w s w A s A ++=++= (式11) 则 2220 )(])(1[1lg 20)(lg 20Q w w w w A jw A c c +-= (式12) 2)(1)(arctan )(c c w Q w w w --=? (式13)

二阶有源低通滤波器

二阶有源低通滤波器 一、芯片介绍 UA741集成运放管脚图及作用 图1-1 UA741管脚图 UA741管脚图为图1-1,U运算放A741芯片是高增益大器,常用于军事,工业和商业应用.这类单片硅集成电路器件提供输出短路保护和闭锁自由运作。 第2管脚是负输入端; 第3管脚是同相端输入端; 第4和第7管脚分别为负直流源和正直流源输入端; 第6管脚为输出端;第8管脚是悬空端; 第1管脚和第5管脚是为提高运算精度。 在运算前,应首先对直流输出电位进行调零,即保证输入为零时,输出也为零。当运放有外接调零端子时,可按组件要求接入调零电位器,调零时,将输入端接地,调零端接入电位器,用直流电压表测量输出电压Uo,细心调节调零电位器,使Uo为零(即失调电压为零)。如果一个运放如不能调零,大致有如下原因: (1)组件正常,接线有错误; (2)组件正常,但负反馈不够强,为此可将其短路,观察是否能调零。; (3)组件正常,但由于它所允许的共模输入电压太低,可能出现自锁现象,因而不能调零。为此可将电源断开后,再重新接通,如能恢复正常,则属于这种情况; (4)组件正常,但电路有自激现象,应进行消振; (5)组件内部损坏,应更换好的集成块。 二、滤波器简介 滤波器是一种对信号有处理作用的器件或电路。主要作用是:让有用信号尽可能无衰减的通过,对无用信号尽可能大的衰减。 滤波器按照所处理的信号,可以分为:模拟滤波器和数字滤波器;按照信号的频段,可以分为:低通、高通、带通和带阻滤波器四种;按照所采用的原件,也可以分为:无源滤波器和有源滤波器。用来说明滤波器性能的技术指标主要有:中心频率f0,即工作频带的中心;带宽BW;通带衰减,即通带内的最大衰减阻带衰减等。 常用的低通有源滤波电路有三种,巴特沃思、切比雪夫和贝塞尔滤波电路。巴特沃思滤波电路的幅频响应在带通中具有最平幅度特性,但从通带到阻带衰减较缓慢。

7.有源滤波器设计实验

电气工程学院 实验名称:有源滤波器设计实验课程:电路与电子技术实验2 课程号:101C0330 学期:2018春夏学期 任课教师:沈连丰

课程名称:电路与电子技术实验2 指导老师:沈连丰成绩:__________________ 实验名称:有源滤波器设计实验实验类型:练习型 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.掌握有源滤波器的分析和设计方法。 2.学习有源滤波器的调试、幅频特性的测量方法。 3.了解滤波器的结构和参数对滤波器性能的影响。 4.用EDA仿真的方法来研究滤波电路,了解元件参数对滤波效果的影响。 二、实验内容和原理 实验原理: 1.传递函数A v(s) :反映滤波器增益随频率的变化关系,也称为电路的频率响应、频率特性。 2.通带增益A v p:为一个实数。(针对LPF)、(针对HPF)、(针对BPF)、(针对BEF)。 3.固有频率f0:也称自然频率、特征频率,其值由电路元件的参数决定。 4.通带截止频率f p:滤波器增益下降到其通带增益A v p 的0.707倍时所对应的频率(也称–3dB 频率、半功率点、上限频率(ωH 、f H )或下限频率(ωL 、f L )。 5.品质因数Q:反映滤波器频率特性的一项重要指标,不同类型滤波器的定义不同。例如,在低通和高通滤波器中,定义为当时增益的模与通带增益之比。 实验内容: 1.设计一个简单的二阶、有源、低通滤波器(LPF,同相型),并测量其幅频特性。 2.设计一个简单的有源、低通滤波器(LPF,同相型),并测量其幅频特性。 3.设计一个二阶、有源、压控型(单一正反馈支路)、低通滤波器(LPF,同相型),并测量其幅频特性。 4.设计一个二阶、有源、多路负反馈型、低通滤波器(LPF,反相型),并测量其幅频特性。 三、主要仪器设备 1.集成运算放大器LM358 2.电阻电容等元器件 3.MY61数字万用表 4.示波器 5.函数信号发生器

(整理)二阶高通滤波器的设计.

模拟电路课程设计报告设计课题:二阶高通滤波器的设计 专业班级:电信本 学生姓名: 学号:69 指导教师: 设计时间:1月3日

题目:二阶高通滤波器的设计 一、设计任务与要求 ① 分别用压控电压源和无限增益多路反馈二种方法设计电路; ② 截止频率f c =200Hz ; ③ 增益A V =2; ④ 用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V )。 二、方案设计与论证 二阶高通滤波器是容许高频信号通过、但减弱(或减少)频率低于截止频率信号通过的滤波器。高通滤波器有综合滤波功能,它可以滤掉若干次高次谐波,并可减少滤波回路数。对于不同滤波器而言,每个频率的信号的减弱程度不同。其在音频应用中也使用低音消除滤波器或者噪声滤波器。本设计为分别使用压控电压源和无限增益多路反馈两种方法设计二阶高通滤波器。二者电路都是基于芯片ua741设计而成。将信号源接入电路板后,调整函数信号发生器的频率,通过观察示波器可以看到信号放大了2倍。现在工厂对于谐波的治理,应用最多的仍然是高压无源滤波器,高压无源滤波器有多种接线方式,其中单调谐滤波器及二阶高通滤波器使用最为广泛,无源滤波器具有结构简单、设备投资较少、运行可靠性较高、运行费用较低等优点, 2.1设计一、用压控电压源设计二阶高通滤波电路 与LPF 有对偶性,将LPF 的电阻和电容互换,就可得一阶HPF 、简单二阶HPF 、压控电压源二阶HPF 电路采用压控电压源二阶高通滤波电路。 电路如图2-1所示,参数计算为: 通带增益: 3 4 1R R Aup + = Aup 表示二阶高通滤波器的通带电压放大倍数 截止频率: RC f π210=

二阶有源带通滤波器设计及参数计算

滤波器是一种只传输指定频段信号,抑制其它频段信号的电路。 滤波器分为无源滤波器与有源滤波器两种: ①无源滤波器: 由电感L、电容C及电阻R等无源元件组成 ②有源滤波器: 一般由集成运放与RC网络构成,它具有体积小、性能稳定等优点,同时,由于集成运放的增益和输入阻抗都很高,输出阻抗很低,故有源滤波器还兼有放大与缓冲作用。 利用有源滤波器可以突出有用频率的信号,衰减无用频率的信号,抑制干扰和噪声,以达到提高信噪比或选频的目的,因而有源滤波器被广泛应用于通信、测量及控制技术中的小信号处理。 从功能来上有源滤波器分为: 低通滤波器(LPF)、高通滤波器(HPF)、 带通滤波器(BPF)、带阻滤波器(BEF)、 全通滤波器(APF)。 其中前四种滤波器间互有联系,LPF与HPF间互为对偶关系。当LPF的通带截止频率高于HPF的通带截止频率时,将LPF与HPF相串联,就构成了BPF,而LPF与HPF并联,就构成BEF。在实用电子电路中,还可能同时采用几种不同型式的滤波电路。滤波电路的主要性能指标有通带电压放大倍数AVP、通带截止频率fP及阻尼系数Q等。 带通滤波器(BPF) (a)电路图(b)幅频特性 图1 压控电压源二阶带通滤波器 工作原理:这种滤波器的作用是只允许在某一个通频带范围内的信号通过,而比通频带下限频率低和比上限频率高的信号均加以衰减或抑制。典型的带通滤波器可以从二阶低通滤波器中将其中一级改成高通而成。如图1(a)所示。 电路性能参数 通带增益 中心频率 通带宽度

选择性 此电路的优点是改变Rf和R4的比例就可改变频宽而不影响中心频率。例.要求设计一个有源二阶带通滤波器,指标要求为: 通带中心频率 通带中心频率处的电压放大倍数: 带宽: 设计步骤: 1)选用图2电路。 2)该电路的传输函数: 品质因数: 通带的中心角频率: 通带中心角频率处的电压放大倍数: 取,则:

二阶滤波器

二阶低通滤波电路设计:  无线增益多路反馈二阶低通滤波电路  注解:(1)图中第一个运放为滤波器,第二个运放只是起放大作用,如不需要,可以省略第二个运放。 (2)滤波电路的运放芯片的最高频率必须是滤波器要求的10倍以上,如:滤波要求为10KHz,则芯片的工作频率需要10MHz以上。 (3)运放中的R6(反馈电阻),可以设为可调电阻+固定电阻,如果放大的比例为0.5-3倍的话,则可以设置R5为2K,R6为560Ω+5K(可调)。 (4)切记:要设计放大倍数可调的滤波电路不可以直接在第一个运放的反馈电阻直接改为可调电阻,因为这样会使得增加了回路道路,使得滤波效果受到很大的影响。要想要放大倍数可调就按上图所示增加一个比例放大器。 对于截止频率f 0,其计算如下所示: 参数设计方法:

(1)对于给定的截至频率,通过表一,选择电容C1。 f/Hz <100 100 ~ 1000 (1 ~ 10)k (10 ~ 100)k >100k C1/uF 10 ~ 0.1 0.1 ~ 0.01 0.01 ~ 0.001 (1000 ~ 100) ×10-6 (100 ~ 10) ×10-6 表1 电容参数表 (2)根据选取的C1的数值,计算电阻模系数K K = 100 / (f * C1) (3)确定C2及查表二得到确定r1,r2,r3,最后将电阻乘以电阻模系数K,得到电阻参数R1,R2,R3。 Kp(放大倍数) 1 2 6 10 r1/kΩ 3.111 2.565 1.697 1.625 r2/kΩ 4.072 3.292 4.977 4.723 r3/kΩ 3.111 5.130 10.180 16.252 C2/C1 0.2 0.15 0.05 0.033 表2 电阻参数表 计算示例:如设计一个放大倍数为2倍的100KHz的低通滤波器滤波: (1)由表格1选定电容C1的参数为100pF(即为100×10-6 uF),因为取整数100便于计算。 (2) 根据选取的C1的数值,计算电阻模系数K K = 100 / (f * C1) = 100/(100000*100*10-6) = 10 (3)选定增益倍数 如:本题设计放大倍数为2倍 查看表格2可得相应的R1 = 2.565 kΩ R2 = 3.292 kΩ R3 = 5.130 kΩ 最后再乘以电阻模系数K = 10 ,得到 R1 = 25.65 kΩ R2 = 32.92 kΩR3 = 51.30 kΩ。而对于电容C2 有表格三得知:C2/C1 =0.15,所以 C2 = 0.15* 100pF = 15 pF(电容不需要乘以电阻模系数K)

巴特沃斯二阶低通滤波器

MEMS 陀螺的带宽为30HZ ,从采样频率100HZ 的数据序列中消除掉30HZ 以上的噪声。巴特沃斯函数只是在ω=0处精确地逼近理想低通特性,在通带内随着ω增加,误差愈来愈大,在通带边界上误差最大,逼近特性并不很好,但是陀螺仪的有用输出信号本就在低频段,对通带边界的滤波要求不高,因此巴特沃斯滤波器就可以满足要求。要求巴特沃斯滤波器通带上限截止频率fc=30HZ ,阻带下限截止频率fs=80HZ ,通带最大衰减3max =A db ,阻带最小衰减为 15min =A db 。由式(1)-(4)可得巴特沃斯低通滤波器为二阶。 1110max 1.0≈-=A ε (1) 49.1995.0622.30lg 110110lg 110110lg 3.05.11.01.0max min =??? ??=???? ??--=? ?? ? ??--A A (2) 85.01.7lg 302802lg lg 2 ==??? ??????=??? ? ??ππc s w w (3) 75.185.049.1lg 110110lg lg max min 1.01.0==??? ? ?????? ??-->c s A A w w n (4) 用 30 2??πs 代替1 21)(2 ++= s s s H 中的s 得到去归一化后的滤波器传递函 数为式(5)所示。 6.35494 4.2666 .35494)(2++= s s s H (5) 采用的低通滤波电路如图2所示,滤波增益为1,此电路传递函数如式(6)所示,只需将巴特沃斯滤波器的传递函数与此传递函数的系数一一对应即可以整定出滤波电路的参数。

二阶高通滤波器的设计_(2)要点

模拟电路课程设计任务书 20 10 -20 11 学年第 2 学期第 1 周- 2 周

摘要 二阶高通滤波器是容许高频信号通过、但减弱(或减少)频率低于截止频率信号通过的滤波器。高通滤波器有综合滤波功能,它可以滤掉若干次高次谐波,并可减少滤波回路数。对于不同滤波器而言,每个频率的信号的减弱程度不同。其在音频应用中也使用低音消除滤波器或者噪声滤波器。本设计为分别使用压控电压源和无限增益多路反馈两种方法设计二阶高通滤波器。二者电路都是基于芯片LM324设计而成。将信号源接入电路板后,调整函数信号发生器的频率,通过观察示波器可以看到信号放大了5倍。现在工厂对于谐波的治理,应用最多的仍然是高压无源滤波器,高压无源滤波器有多种接线方式,其中单调谐滤波器及二阶高通滤波器使用最为广泛,无源滤波器具有结构简单、设备投资较少、运行可靠性较高、运行费用较低等优点, 关键字:高通滤波器;二阶;有源;

目录 前言 (4) 第一章设计内容 (5) 1.1设计任务和要求 (5) 1.2设计目的 (5) 第二章滤波器的基本理论 (6) 2.1滤波器的有关参数 (6) 2.2有源滤波和无源滤波 (7) 2.3巴特沃斯响应 (8) 第三章滤波系统中高通滤波器模块设计 (11) 3.1压控电压源二阶高通滤波电路 (11) 3.2无限增益多路反馈高通滤波电路 (12) 第四章二阶高通滤波器电路仿真 (13) 第五章系统调试 (16) 第六章结论 (17) 5.2对本设计优缺点的分析 (17) 5.1结论结论与心得 (17) 附录一LM324引脚图 (18) 附录二元件清单 (19) 附录三参考文献 (20)

(完整版)有源滤波器的设计

有 源 滤 波 器 姓名:xxx 班级:XXX 学号: xxx

目录 一、基本介绍 二、工作原理 三、有源滤波器的功能作用 四、有源滤波器分类 五、有源低通滤波器的设计 六、总结

一、基本介绍 滤波器是一种能使有用信号通过而大幅抑制无用信号的电子装置。在电子电路中常用来进行信号处理、数据传输和抑制噪声等。在运算放大器广泛应用以前滤波电路主要采用无源电子元件一电阻、电容、电感连接而成,由于电感体积大而且笨重导致整个滤波器功能模块体积大而且笨重。本文介绍由集成运算放大器、电阻和电容设计有源滤波器,着重讲解低通、高通、带通滤波电路。 二、工作原理 有源滤波器工作原理是:用电流互感器采集直流线路上的电流,经A/D 采样,将所得的电流信号进行谐波分离算法的处理,得到谐波参考信号,作为PWM的调制信号,与三角波相比,从而得到开关信号,用此开关信号去控制IGBT单相桥,根据PWM技术的原理,将上下桥臂的开关信号反接,就可得到与线上谐波信号大小相等、方向相反的谐波电流,将线上的谐波电流抵消掉。这是前馈控制部分。再将有源滤波器接入点后的线上电流的谐波分量反馈回来,作为调节器的输入,调整前馈控制的误差。 三、有源滤波器的具体功能及作用 1、滤除电流谐波 可以高效的滤除负荷电流中2~25次的各次谐波,从而使得配电网清洁高效,满足国标对配电网谐波的要求。该产品真正做到自适应跟踪补偿,可以自动识别负荷整体变化及负荷谐波含量的变化而迅速跟踪补偿,80us响应负荷变化,20ms实现完全跟踪补偿。 2、改善系统不平衡状况 可完全消除因谐波引起的系统不平衡,在设备容量许可的情况下,可根

简单二阶低通滤波器设计与仿真

二阶低通滤波器部分 1、设计任务 信号放大后,需要进行滤波,滤除干扰,温度信号是一个缓慢变化的信号,在此需要设计出一个截止频率为10Hz 左右的低通放大器。因二阶低通滤波器的频率特性比一阶低通滤波器好,故决定采用由型号为OP07的运算放大器组成的二阶低通滤波器,OP07运放特点:OP07具有非常低的输入失调电压,所以OP07在很多应用场合不需要额外的调零措施,具有低温度漂移特性。另外,需要求滤波电路的幅频特性在通带内有最大平坦度,要求品质因数Q=0.707. 2、电路元件参数计算和电路设计: 根据二阶低通滤波器的基础电路进行设计,如图3.1所示。 图3.1二阶低通滤波器的基础电路 该电路(1)、传输函数为:)()()(i o s V s V s A =2 F F )()-(31sCR sCR A A V V ++= (2)、通带增益 :F 0V A A = (3)、截止频率:RC f c π21=其中RC 1c =ω称为特征角频率 (4)品质因数:O A Q -= 31, Q 是f=fc 时放大倍数与通带内放大倍数之比 注: 时,即当 3 03 F F <>-V V A A 滤波电路才能稳定工作。 由O A Q -=31=0.707得放大倍数586.1==O VF A A 一般来说,滤波器中电容容量要小于F μ,电阻器的阻值至少要Ωk 级。 由RC f c π21==10Hz,取C=0.5F μ,计算得R ≈31.8Ωk 又因为集成运放要求两个输入端的外接电阻对称,可得:R R R A VF 2//)1(11=-

求得:Ω=k R 1.1721 电路仿真与分析: (1)采用EDA 仿真软件multisim 13.0对有源二阶低通滤波器进行仿真分析、调试,从而对电路进行优化。Multisim 仿真电路图如图3.2所示 图3.2二阶低通滤波器仿真电路图 (2)通过仿真软件中的万用表验证电路是否符合要求: 设输入电压有效值为1V 当f=1Hz 时,输出如图3.3所示。 图3.3 由图可知,在通带内有增益585.1==VF O A A ,与理论值1.586相近 当Hz f f c 10==时,输出如图3.4所示。

二阶有源低通滤波器

课程设计说明书 课程设计名称:模拟电路课程设计 课程设计题目:二阶有源低通滤波器 学院名称:信息工程学院 专业:电子信息工程班级: 090412 学号: 05 姓名:吴平 评分:教师:彭嵩 20 11 年 04 月 07 日

《模拟电路》课程设计任务书20 10 -20 11 学年第 2 学期第 1 周- 2 周

低通滤波器是一种典型的选频电路,在给定的频段内,理论上它能让信号无衰减地通过电路,这一段称为通带外的其他信号将受到很大的衰减,具有很大衰减的频段称为阻带,通带与阻带的交界频率称为截止频率,对滤波器的基本要求是:(1)通带内信号的衰减要小,阻带内信号的衰减要大,由通带过渡到阻带的衰减特性陡直上升;(2)通带内的特性阻抗要恒为常数,以便于阻抗匹配。 在制作过程中运用到了multisim这款软件,用来设计仿真计算等. 经过一系列的分析、准备、电路焊接、检查。本次课题设计除在美观方面和结果不理想(存在误差)外。本次电路设计完成了设计要求。 关键字:低通;集成运放;滤波;截止频率;

第一章设计任务 (5) 第二章系统组成及工作原理 2.1 电路图及仿真效果图 电路一(电压控电压源) (6) 电路二(无限增益多路反馈) (6) 2.2 电路组成及各部分工作原理 电路组成 (7) 各部分工作原理 (7) 第三章电路参数计算、器件选择 截止频率f·····························`9 增益Av (10) 第四章实验、调试及测试结果与分析 (11) 结论与体会 (13) 参考文献 (14) 附录一 (15) 附录二 (16)

无源滤波电路和有源滤波电路word版本

三、无源滤波电路和有源滤波电路 无源滤波电路:若滤波电路仅由无源元件(电阻、电容、电感)组成。 有源滤波电路:若滤波电路不仅由无源元件,还由有源元件(双极型管、单极型管、集成运放)组成。 1. 无源低通滤波器 如图所示为RC低通滤波器及其幅频特性,当信号频率趋于零时,电容的容抗趋于无穷大,故低频信号顺利通过。 带负载后,通带放大倍数的数值减小,通带截止频率升高。可见,无源滤波电路的通带放大倍数及其截止频率都随负载而变化,这一缺点不符合信号处理的要求,因而产生有源滤波器。 2.有源滤波电路 为了使负载不影响 滤波特性,可在无源滤波 电路和负载之间加一个 高输入电阻低输出电阻 的隔离电路,最简单的方 法是加一个电压跟随器, 如右图所示,这样就构成 了有源滤波电路。 在理想运放的条件下,由于电压跟随器的输入电阻为无穷大,输出电阻为零,因而仅决定于RC的取值。输出电压=,负载变化,输出不变。

有源滤波必须在合适的直流电源供电的情况下才能起作用,还可以放大,只适合于信号处理,不适合高电压大电流的负载。 RC低通滤波器的响应特性 曲电阻(R)和电容(C)构成的RC电路是电子电路中使用最多的电路。首先,研究简单的RC电路的特性,针对在CMOS数字电路中的应用进行实验。 图1是各使用一个电阻、一个电容的RC电路。这种电路从频率轴来看,可作为1次低通滤波器处理。所谓低通滤波器是指低频率时通过、高频率时截止,能除去噪声等不需要的高频率的滤波器。 图1 RC电路的频率一增益/相位特性 使用比RC常数所决定的频率f,(称截止频率)低的输人频率时,信号的衰减小;相反地,高频时,因电容C的阻抗(IhoC)与电阻R相比变小,故衰减将变大,并与频率成反比。 一般将低通滤波器上增益为-3dB()处的频率称为截止频率,表示为: 超过截止频率fc的高频域的衰减特性,是以-GdB/oct(频率为2倍时衰减6dB)或-20dB/dec(频率为10倍时衰减20dB,变为1/10)特性的倾率使增益下降。 另外,输入输出间的相位特性也与输人频率f有关。随着频率f的上升,相位延迟角θ变大,在截止频率fc处,变为如下关系: 高频处可接近-90°。

简单二阶有源低通滤波器电路及幅频特性

简单二阶有源低通滤波器电路及幅频特性 ? 为了使输出电压在高频段以更快的速率下降,以改善滤波效果,再加一节RC 低通滤波环节,称为二阶有源滤波电路。它比一阶低通滤波器的滤波效果更好。二阶LPF的电路图如图6所示,幅频特性曲线如图7所示。 ?? 图6 二阶低通电路(LPF)?图7 二阶低通电路幅频特性曲线 (1)通带增益 ? 当f = 0时,各电容器可视为开路,通带内的增益为 ? (2)二阶低通有源滤波器传递函数 根据图可以写出 ? 通常有,联立求解以上三式,可得滤波器的传递函数 (3)通带截止频率 ? 将s换成jω,令ω 0=2πf =1/(RC)可得 ? ? 当f=fp 时,上式分母的模 解得截止频率: ? ? 与理想的二阶波特图相比,在超过f0以后,幅频特性以-40 dB/dec的速率下降,比一阶的下降快。但在通带截止频率fp→f0之间幅频特性下降的还不够快。 摘要设计一种压控电压源型二阶有源低通滤波电路,并利用Multisim10仿真软件对电路的频率特性、特征参量等进行了仿真分析,仿真结果与理论设计一致,为有源滤波器的电路设计提供了EDA手段和依据。 关键词二阶有源低通滤波器;电路设计自动化;仿真分析;Multisim10 滤波器是一种使用信号通过而同时抑制无用频率信号的电子装置,在信息处理、数据传送和抑制干扰等自动控制、通信及其它电子系统中应用广泛。滤波一般可分为有源滤波和无源滤波,有源滤波可以使幅频特性比较陡峭,而无源滤波设计简单易行,但幅频特性不如有源滤波器,而且体积较大。从滤波器阶数可分为一阶和高阶,阶数越高,幅频特性越陡峭。高阶滤波器通常可由一阶和二阶滤波器级联而成。采用集成运放构成的RC有源滤波器具有输入阻抗高,输出阻抗低,可提供一定增益,截止频率可调等特点。压控电压源型二阶低通滤波电路是有源滤波电路的重要一种,适合作为多级放大器的级联。本文根据实际要求设计一种压控电压源型二阶有源低通滤波电路,采用EDA仿真软件Multisim1O对压控电压源型二阶有源低通滤波电路进行仿真分析、调试,从而实现电路的优化设计。 1 设计分析

二阶压控低通滤波器

Harbin Institute of Technology 模电课程大作业(二) 设计题目:二阶压控型低通滤波器设计与仿真院系: 班级: 设计者: 学号: 设计时间:2012.6.28

二阶压控型低通滤波器的设计与仿真 摘要:低通滤波器是一种典型的选频电路。本文详细介绍二阶压控电压源低通滤波器的设计方法,给出了其通用电路图。在给定的频段内,理论上它能让信号无衰减地通过电路,这一段称为通带,通带外的其他信号将受到很大的衰减,具有很大衰减的频段称为阻带,通带与阻带的交界频率称为截止频率。本设计用Multisim12对其进行仿真观察,得出实验结论. 关键词:二阶压控 低通滤波器 频率特性 设计题目及要求 设计一个二阶压控型低通滤波器,要求通带增益为2,截止频率为2KHz ,可以选择0.01μF 电容器,阻值尽量接近实际计算值。电路设计完成后,画出频率响应曲线,并采用Multisim 然间进行仿真。 一、 二阶压控低通滤波器电路的设计 (1)求出电路相关数据 已知通带截止频率的2KHz ,即f=R 2R 1 ,f=1 2ΠRC =2KHz ,而电容值题目要求取0.01uF (即10nF ),故可以求出;原理图中电阻R3=R4=7.9577K Ω≈8K Ω;又通带增益为Aup=2,电路采取的是同相输入,则Aup=1+R f R 1 =1+R 2 R 1=2,故R1=R2,为使集成运放两个输入端对地 的电阻平衡,应使R1//R2=2R=16k Ω,则R1=R2=32 k Ω,根据元件库可选R1=R2=32k Ω。 (2)电路中使用741运放,并用正负12V 直流电源供电。交流电压源发出幅值为1V 的正 弦波,两个8k Ω的电阻R1、R2及两个10nF 的电容C1、C2构成低通环节。R3、R4构成放大环节,即构成二阶压控低通滤器。 (3)二阶压控电压源低通滤波器(LPF )的幅频特性

完整的有源滤波器设计

一.项目意义与目标 意义:本项目通过一个比较综合的、能覆盖《模拟电子技术》这门课程的大部分内容的三级项目,使我们能将整个课程的内容串联起来,实现一个系统的功能,巩固整个课程的学习内容,为以后学习和设计提供良好的模拟电子线路知识。本次有源滤波器设计主要注重的是电子电路的设计、仿真,意在培养学生正确的设计思想方法以及思路,理论联系实际的工作作风,在加深对知识的理解基础上,进一步培养学生综合运用所学知识与生产实践经验,分析和解决工程技术问题的能力。 目标:掌握有源滤波器的分析和设计方法,学习有源滤波器的调试、幅频特性的测量方法,通过仿真的方法来研究滤波电路,了解元件参数对滤波效果的影响,尝试着制作实物来验证理论以及仿真求得的结果并比较三者之间的差距。 二.项目内容与要求 内容:滤波器是一种能够使有用频率信号通过,而同时抑制(或衰减)无用频率信号的电子电路或装置,在工程上常用它来进行信号处理、数据传送或抑制干扰等。有源滤波器是由集成运放、R、C组成,其开环电压增益和输入阻抗都很高,输出阻抗又低,构成有源滤波电路后还具有一定的电压放大和缓冲作用,但因受运算放大器频限制,这种滤波器主要用于低频范围。 要求:在模电课程对有源滤波器所学到的知识的基础上,设计出一阶低通有源滤波电路,一阶高通滤波电路,二阶低通滤波电路,二阶高通滤波电路,二阶带通滤波电路,二阶带阻滤波电路。研究和设计其电路结构、传递函数,并对有关参数进行计算,再利用multisim 软件进行仿真,组装和调试各种有源滤波器,探究其幅频特性。经过仿真和调试,观察效果。由滤波电路的曲线可以看出通带的电压放大倍数、通带上限截止频率,下限截止频率,特征角频率等的实际值,与计算出的理论值相比较,分析误差

OTA-C二阶有源滤波器设计

3.1 Multisim元件库中OTA模块的创建 3.1.1 Multisim简介 Multisim 10是加拿大Interactive Image Technologies公司推出的Multisim版本,是该公司电子线路仿真软件EWB(Electronics Workbench,虚拟电子工作台)的升级版。 Multisim10用软件的方法虚拟电子与电工元器件,虚拟电子与电工仪器和仪表,实现“软件即元器件”和“软件即仪器”。Multisim 10是一个原理电路设计、电路功能测试的虚拟仿真软件。 Multisim10的虚拟测试仪器仪表种类齐全,有一般实验用的通用仪器,如万用表、函数信号发生器、双踪示波器、直流电源;还有一般实验室少有或没有的仪器,如波特图仪、字信号发生器、逻辑分析仪、逻辑转换器、失真仪、频谱分析仪和网络分析仪。 Multisim 10具有较为详细的电路分析功能,可以完成电路的瞬态分析和稳态分析、时域和频域分析、器件的线性和非线性分析、电路的噪声分析和失真分析、离散傅立叶分析、电路零极点分析、交直流灵敏度分析等电路分析方法,以帮助设计人员分析电路的性能。 Multisim 10可以设计、测试和演示各种电子电路,包括电工电路、模拟电路、数字电路、射频电路、及部分微机接口电路等。可以对被仿真的电路中的元器件设置各种故障,如开路、短路和不同程度的漏电等,从而观察不同故障情况下的电路工作状况。在进行仿真的同时,软件还可以存储测试点的所有数据,列出被仿真电路的所有元器件清单,以及存储测试仪器的工作状态、显示波形和具体数据等。 利用Multisim10可以实现计算机仿真设计与虚拟试验,与传统的电子电路设计与实验方法相比,具有如下特点:设计与实验可以同步进行,可以边设计边试验,修改调试方便;设计和实验用的元器件及测试仪器仪表齐全,可以完成各种类型的电路设计与实验;可方便的对电路参数进行测试和分析;可直接打印输出实验数据、测试参数、曲线和电路原理图;实验中不消耗实际的元器件,实验所

相关主题
文本预览
相关文档 最新文档