当前位置:文档之家› 达朗贝尔原理

达朗贝尔原理

达朗贝尔原理
达朗贝尔原理

达朗贝尔原理

达朗贝尔原理,是法国物理学家与数学家达朗贝尔发现的。由J.le R.达朗贝尔于1743年提出而得名,达朗贝尔原理阐明,在一个系统内,如果,所有约束力因为虚位移而做的虚功,总合是零,则这系统内的每一个粒子,所受到的外力与惯性力的矢量合,与虚位移的点积,总合起来是零。

达朗贝尔原理因其发现者法国物理学家与数学家J·达朗贝尔而命名。达朗贝尔原理阐明,对于任意物理系统,所有惯性力或施加的外力,经过符合约束条件的虚位移,所作的虚功的总和等于零。

或者说,作用于一个物体的外力与动力的反作用之和等于零。

受约束的非自由质点受有主动力F及约束力FN,如果再加上虚构的惯性力FI=-ma,则下式成立:

F+FN+FI=0 (1)

即在质点运动的任一时刻,主动力、约束力与惯性力构成平衡力系。上式为质点的达朗贝尔原理。对质点系,如果在每个质点上都加上虚构的惯性力FIi=-miai,则质系中每个质点均处于平衡,即:Fi+FNi+FIi=0(i=1,2,…,n) (2)

达朗贝尔最初提出的原理与式(1)不同。把主动力F分为两部分:F使质点产生加速度,F=ma,称为有效力;F=F-F克服

约束力。

对改变质点的运动状态不起作用,称为损失力。损失力与约束力平衡:

F+FN=0

这就是达朗贝尔原理,它与质点静止时的平衡方程F+FN=0形式上一致。如果将前面F、F的表达式代入达朗贝尔原理,就得到:

F+FN+(-ma)=0

与式(1)相同,它们均与牛顿第二运动定律等价。

折叠编辑本段原理的意义

达朗贝尔原理是研究有约束的质点系动力学问题的原理。对于质点系内任一个质点,此原理的表达式为: F+FN+(-ma)=0

从形式上看,上式与从牛顿运动方程F+FN=ma中把ma移项所得结果相同。于是把-ma看作惯性力而把达朗贝尔原理表述为:在质点受力运动的任何时刻,作用于质点的主动力、约束力和惯性力互相平衡。

从数学上看,达朗贝尔原理只是牛顿第二运动定律的移项,但原理中却含有深刻的意义。这就

达朗贝尔原理简化公式是通过加惯性力的办法将动力学问题转化为静力学问题。亦即所有动力学中的定理通过引入惯性力的概念转化成静力学中的平衡关系,而且求解过程

中可充分使用静力学的各种解题技巧。一些动力学现象亦可从静力学的观点作出简洁的解释。这就形成了求解动力学的静力学方法,简称动静法。这种方法在工程技术中获得了广泛的应用。此外,在分析力学中,将被称为静力学普遍方程的虚功原理与达朗贝尔原理相结合,就得到动力学普遍方程,它是处理非自由质点系的最基本方程,是分析动力学的基础。

把-miai看成惯性力并把式(1)看成平衡(实际不平衡)的观点所引入的动静法和机械学中的动平衡,对力学的发展则发生积极的影响。事实上,在跟着质点运动的非惯性坐标系的观察者认为,惯性力是存在的,而且可以测量。例如在垂直方向加速上升的火箭中的宇航员,他对座位压力大于重力。

爱因斯坦创立的广义相对论认为惯性力完全与万有引力等价;爱因斯坦用升降机说明两者是不能区分的。因此,从广义相对论的角度看,惯性力是真实的力。

达朗贝尔原理习题解答~14293

6-2. 图示系统由匀质圆盘与匀质细杆铰接而成。已知:圆盘半径为 r 、质量为M ,杆长为L 、质量为 m 。在图示位置杆的角速度为ω、角加速度为ε,圆盘的角速度、角加速度均为零,试求系统惯性力系向定轴O 简化的主矢与主矩。 解:∵圆盘作平动,相当一质点作用在A 点。 ετ τ ?+==∑)2/(ML mL a m F Ci i gR 2 )2/(ω?+==∑ML mL a m F n Ci i n gR ε ε?+==)3 1(2 200 ML mL J M g 6-3. 图示系统位于铅直面内,由鼓轮C 与重物A 组成。已知鼓轮质量为m ,小半径为r ,大半径R = 2r ,对过C 且垂直于鼓轮平面的轴的回转半径ρ = 1.5r ,重物A 质量为2m 。试求(1)鼓轮中心C 的加速度;(2)AB 段绳与DE 段绳的张力。 解:设鼓轮的角加速度为α, 在系统上加惯性力如图(a )所示, 则其惯性力分别为: αmr F C =I ;αr m F A ?=2I ααρα2 2 2 I 5.1mr m J M C C === ∑=0)(F D M ; 0)2(I I I =+-++C A C M r mg F F mg g g r a C 21 45 .132 = += =α ∑ =0y F ;02I I =--+-mg mg F F F A C DE ;mg mr mg F DE 21 593= -=α 取重物A 为研究对象,受力如图(b )所示, ∑=0y F ;02I =-+mg F F A AB ;mg mg mr mg F AB 21 34)21 41(222= - =-=α a A M I g I A (b )

达朗贝尔原理及虚位移原理知识点总结

达朗贝尔原理 知识总结 1.质点的惯性力。 ?设质点的质量为m ,加速度为,则质点的惯性力定义为 2.质点的达朗贝尔原理。 ?质点的达朗贝尔原理:质点上除了作用有主动力和约束力外,如 果假想地认为还作用有该质点的惯性力,则这些力在形式上形成一个平衡力系,即 3.质点系的达朗贝尔原理。 ?质点系的达朗贝尔原理:在质点系中每个质点上都假想地加上各自的惯 性力,则质点系的所以外力和惯性力,在形式上形成一个平衡力系,可以表示为 4.刚体惯性力系的简化结果 (1)刚体平移,惯性力系向质心C 简化,主矢与主矩为 (2)刚体绕定轴转动,惯性力系向转轴上一点O 简化,主矢与主矩为 其中

如果刚体有质量对称平面,且此平面与转轴z 垂直,则惯性力系向此质量对称平面与转轴z 的交点O 简化,主矢与主矩为 (3)刚体作平面运动,若此刚体有一质量对称平面且此平面作同一平面运动,惯性力系向质心C简化,主矢和主矩为 式中为过质心且与质量对称平面垂直的轴的转动惯量。 5.消除动约束力的条件。 刚体绕定轴转动,消除动约束力的条件是,此转轴是中心惯性主轴(转轴过质心且对此轴的惯性积为零);质心在转轴上,刚体可以在任意位置静止不动,称为静平衡;转轴为中心惯性主轴,不出现轴承动约束力,成为动平衡。 常见问题 问题一在惯性系中,惯性力是假想的(虚加的),达朗贝尔原理也是数学形式上的,物体一般并不是真的处于平衡。 问题二惯性力系一般都是向定点或者质心简化,因此这时惯性力系的主矩,而向其它的点简化,一般上是不成立的。如果一定要向某一任意点A简化,那么要先向定点或质心简化,之后将其移至A点(注意力在平移时将会有附加力偶)。惯性力系的主失是与简化中心无关的。 问题三用达朗贝尔原理解题时,加上惯性力系后就完全转化成静力学问题,其求解方法与精力学完全相同。 问题四物体系问题。每个物体都有惯性力系,因此每个物体的惯性力系向质心(或定点)简化都得到一个力与一个力偶。 虚位移原理 知识点总结 1.虚位移·虚功·理想约束。 在某瞬时,质点系在约束允许的条件下,人所假想的任何无限小位移称为虚位移。虚位移可以是线位移,也可以是角位移。 力在虚位移中所作的功称为虚功。

达朗贝尔原理

达朗贝尔原理 达朗贝尔原理,是法国物理学家与数学家达朗贝尔发现的。由J.le R.达朗贝尔于1743年提出而得名,达朗贝尔原理阐明,在一个系统内,如果,所有约束力因为虚位移而做的虚功,总合是零,则这系统内的每一个粒子,所受到的外力与惯性力的矢量合,与虚位移的点积,总合起来是零。 达朗贝尔原理因其发现者法国物理学家与数学家J·达朗贝尔而命名。达朗贝尔原理阐明,对于任意物理系统,所有惯性力或施加的外力,经过符合约束条件的虚位移,所作的虚功的总和等于零。 或者说,作用于一个物体的外力与动力的反作用之和等于零。 受约束的非自由质点受有主动力F及约束力FN,如果再加上虚构的惯性力FI=-ma,则下式成立: F+FN+FI=0 (1) 即在质点运动的任一时刻,主动力、约束力与惯性力构成平衡力系。上式为质点的达朗贝尔原理。对质点系,如果在每个质点上都加上虚构的惯性力FIi=-miai,则质系中每个质点均处于平衡,即:Fi+FNi+FIi=0(i=1,2,…,n) (2) 达朗贝尔最初提出的原理与式(1)不同。把主动力F分为两部分:F使质点产生加速度,F=ma,称为有效力;F=F-F克服

约束力。 对改变质点的运动状态不起作用,称为损失力。损失力与约束力平衡: F+FN=0 这就是达朗贝尔原理,它与质点静止时的平衡方程F+FN=0形式上一致。如果将前面F、F的表达式代入达朗贝尔原理,就得到: F+FN+(-ma)=0 与式(1)相同,它们均与牛顿第二运动定律等价。 折叠编辑本段原理的意义 达朗贝尔原理是研究有约束的质点系动力学问题的原理。对于质点系内任一个质点,此原理的表达式为: F+FN+(-ma)=0 从形式上看,上式与从牛顿运动方程F+FN=ma中把ma移项所得结果相同。于是把-ma看作惯性力而把达朗贝尔原理表述为:在质点受力运动的任何时刻,作用于质点的主动力、约束力和惯性力互相平衡。 从数学上看,达朗贝尔原理只是牛顿第二运动定律的移项,但原理中却含有深刻的意义。这就 达朗贝尔原理简化公式是通过加惯性力的办法将动力学问题转化为静力学问题。亦即所有动力学中的定理通过引入惯性力的概念转化成静力学中的平衡关系,而且求解过程

理论力学课后习题答案 第11章 达朗贝尔原理及其应用

(a ) 习题11-1图 第11章 达朗贝尔原理及其应用 11-1 均质圆盘作定轴转动,其中图(a ),图(c )的转动角速度为常数,而图(b ),图(d )的角速度不为常量。试对图示四种情形进行惯性力的简化。 解:设圆盘的质量为m ,半径为r ,则如习题11-1解图: (a )2I ωmr F =,0I =O M (b )2n I ωmr F =,αmr F =t I ,αα2 I 2 3mr J M O O = = (c )0I =F ,0I =O M (d )0I =F ,αα2 I 2 1mr J M O O = = 11-2矩形均质平板尺寸如图,质量27kg ,由两个销子 A 、B 悬挂。若突然撤去销子B ,求在撤去的瞬时平板的角加 速度和销子A 的约束力。 解:如图(a ):设平板的质量为m ,长和宽分别为a 、b 。 αα375.3I =?=AC m F ααα5625.0])(12 1 [222I =?++==AC m b a m J M A A ∑=0)(F A M ;01.0I =-mg M A ;2rad/s 04.47=α ∑=0x F ;0sin I =-Ax F F θ;其中:6.05 3sin ==θ N 26.956.004.47375.3=??=Ax F ∑=0y F ;0cos I =-+mg F F Ay θ;8.05 4sin ==θ 习题11-2图 习题11-1解图 (a ) (a )

N 6.1378.004.47375.38.927=??-?=Ay F 11-3在均质直角构件ABC 中,AB 、BC 两部分的质量各为3.0kg ,用连杆AD 、DE 以及绳子AE 保持在图示位置。若突然剪断绳子,求此瞬时连杆AD 、BE 所受的力。连杆的质量忽略不计,已知l = 1.0m ,φ = 30o。 解:如图(a ):设AB 、BC 两部分的质量各为m = 3.0kg 直角构件ABC 作平移,其加速度为a = a A ,质心在O 处。 ma F 2I = ∑=0)(F O M ; 04 sin )(43cos 4cos =+--l F F l F l F B A A B ??? (1) ∑=0AD F ; cos 2=-+?mg F F B A (2) 联立式(1)和式(2),得:A B F mg F 3+= N 38.5)13(4 1 =-=mg F A ; N 5.4538.53=?+=mg F B 11-4 两种情形的定滑轮质量均为m ,半径均为 r 。图a 中的绳所受拉力为W ;图b 中块重力为W 。 试分析两种情形下定滑轮的角加速度、绳中拉力和定滑轮轴承处的约束反力是否相同。 解:1、图(a ): ① Wr J O =a α Wr mr =a 22 1α mr W 2a =α (1) ②绳中拉力为W (2) ③∑=0x F ,0=Ox F (3) ∑=0y F ,W F Oy = (4) 2、图(b ): ① b 2I 2 1 αmr M O = (5) b I αr g W a g W F == (6) ∑=0O M ,0I I =-+W r r F M O (5)、(6)代入,得 ) 2(2b W mg r Wg +=α (7) ②绳中拉力(图c ): ∑=0y F ,W F T =+I b W W mg mg a g W W T 2b +=- = (8) ③轴承反力: ∑=0x F ,0=Ox F (9) ∑=0y F ,0I =-+W F F Oy W mg mgW F Oy 2+= (10) 习题11-3图 (a ) a I F (a) 习题11-4图 αa F Oy F Ox F Oy F Ox αb M I O F I W a

达朗贝尔原理

.达朗贝尔原理 内容简介) ——作用于一个物体的外力与动力的反作用之和等于零。 发展历程) (提出)达朗贝尔在其物理学著作《动力学》一书中,提出了达朗贝尔原理,把动力学问题转化为静力学问题处理,可以用平面静力的方法分析刚体的平面运动,这一原理使一些力学问题的分析简单化,而且为分析力学的创立打下了基础。 达朗贝尔,J.L.R.(‘AlembDert Jean Le Rond)1717年 11月17日生于法国巴黎;1783年10月29日卒于巴黎。 是多产科学家,他对力学、数学和天文学的大量课题进 行了研究;论文和专著很多,还有大量学术通信。仅 1805年和1821年在巴黎出版的达朗贝尔《文集》 (Oeuvres)就有23卷。 达朗贝尔作为数学家,同18世纪其他数学家一样,认为求解物理(主要是力学,包括天体力学)问题是数学的目标。正如他在《百科全书》序言中所说:科学处于从17世纪的数学时代到18世纪的力学时代的转变,力学应该是数学家的主要兴趣。他对力学的发展作出了重大贡献,也是数学分析中一些重要分支的开拓者。 重要意义) 与牛顿的运动第二定律一致,只是进行了移项。但这是概念上的变化,重要意义:

①用F-Ma=0式表达的是平衡关系,可以把动力学问题转化为静力学问题来处理。 ②在有约束情况下,用F+(-Ma)+N=0式非常有利;它与虚功原理结合后,可列出动力学的普遍方程。 ③用于刚体的平面运动时,可利用平面静力学方法,使问题简化。 实际上,达朗贝尔原理还为不久后创立的分析力学打下了基础。 研究有约束的质点系动力学问题的一个原理。由J.le R.达朗贝尔于1743年提出而得名。对于质点系内任一个质点,此原理的表达式为F+N-ma=0,式中F为作用于质量为m的某一质点上的主动力,N为质点系作用于质点的约束力,a为该质点的加速度。从形式上看,上式与从牛顿运动方程F+N=ma中把ma移项所得结果相同。于是,后人把-ma 看作惯性力而把达朗贝尔原理表述为:在质点受力运动的任何时刻,作用于质点的主动力、约束力和惯性力互相平衡。利用达朗贝尔原理,可将质点系动力学问题化为静力学问题来解决,这种动静法的观点对力学的发展产生了积极的影响。

达朗贝尔原理

达朗贝尔原理 静力学研究物体在力系的作用下的平衡条件,动力学则研究物体的机械运动与作用力之间的关系,两者研究对象的性质不同,似乎没有什么共同之处。然而让·勒龙一达朗贝尔在1743年提出了一个研究动力学问题的新的普遍方法,即用静力学研究平衡的方法来研究动力学问题,这就是达朗贝尔原理,也称为动静法。达朗贝尔原理像一座桥梁一样把静力学和动力学连接起来。达朗贝尔(Jean le Rond d’Alembert,1717—1783),诞生于1717年11月17日,是18世纪法国启蒙运动的领袖人物之一,法国数学家、力学家、哲学家。他出生后即被遗弃在巴黎的一座教堂附近,后被一玻璃匠夫妻收养。达朗贝尔于1738年获得法学学位,但并未从事法律职业,相反他潜心研究科学并很快在事业上取得了成功。在力学方面,他于1743年发表了《论动力学》,提出了著名的“达朗贝尔原理”,作为牛顿第二定律的另一种表述形式,把动力学简化为静力学问题。他运用这种方法研究了天体力学中的三体问题,并把它推广到流体动力学中。在数学和天文学方面,他是偏微分方程论的创始人之一。提出用极限的概念代替牛顿的“最初和最终比”。他运用偏微分方程研究弦振动问题,解释了天文学上岁差和章动的原因。并于1761 1780年间陆续出版了《数学论丛》共8卷。在哲学方面,他是百科全书派的代表之一。1746年,他与著名哲学家D.狄德罗一起编撰法国《百科全书》,负责撰写数学与自然科学及部分音乐方面的条目。1754年,他被选为法兰西学院院士,1772年任学院终身秘书,对法兰西学院的发展有巨大

影响。13.1惯性力·质点的达朗贝尔原理 设一质点的质量为m,加速度为a,作用在质点上的主动力为F,约束力为FN,如图13—1所示。由牛顿第二定律,有 具有力的量纲,称为质点的惯性力,它的方向与质点加速度的方向相反。式(13—2)可以解释为:作用在质点上的主动力、约束力和虚加的惯性力组成平衡力系。这就是达朗贝尔原理在质点动力学的运用。 【例13—1】图13—2(a)所示是一种调节器。已知调节器上重球B、D的质量均为m,,平衡重锤C的质量为rn z,可沿转轴滑动,摩擦忽略不计。各杆的长度均为z,通过铰链连接,重量忽略不计。若轴以匀角速度叫转动,试求两臂夹角口与角速度叫之间的关系。 【解】当轴匀速转动时,重球B、D在水平面内作匀速圆周运动,因此D球的惯性力和其法向加速度方向相反,大小为

相关主题
文本预览
相关文档 最新文档