当前位置:文档之家› 冶金原理超全面总结

冶金原理超全面总结

冶金原理超全面总结
冶金原理超全面总结

活度:引入修正后的浓度值。其中的修正系数成活度系数。活度测定方法;1、蒸汽压法,2、分配定律法,3、化学平衡法,4、电动势法。理想溶液:在全部浓度范围内服从拉乌尔定律的溶液。稀溶液:溶质的蒸汽压服从亨利定律,溶剂的蒸汽压服从拉乌尔定律的溶液。正规溶液:混合焓不为零,但混合熵等于理想溶液的混合熵的溶液。实际溶液:实际存在的溶液。标准溶解自由能:由纯物质转变为

溶解标准态的吉布斯自由能变。宏观动力学:环节:多相反应发生在体系的相界面上。三个环节:1、反应物对流扩散到反应界面上,2、在反应界面上进行化学反应,3、反应产物离开反应界面向相内扩散。串联过程:反应过程是由物质的扩散和界面化学反应诸环节组成的。限制环节:当串联反应有一个或多个环节进行较快,而仅有一个环节最慢时,则这个环节为整个反应过程的限制者。分子扩散:由浓度梯度引起的扩散。扩散系数:是浓度梯度的扩散通量。对流扩散:扩散分子的运动和流体的对流运动同时发生,使物质从一个地区迁移到另一个地区的协同作用。传质系数:流体中扩散物质的浓

度是c而其在凝聚相表面上的浓度(界面浓度)是c*则该组分的扩散通量与此浓度差成正比即J=β(c+c*),β为比例系数称传值系数。速度边界层:贴近相界面有速度梯度出现的流体薄层。有效浓度边界层:x=0处作浓度分布曲线的切线其与相内浓度c线的延长线的交点到界面的距离δ。区域化学反应:这种沿固体内部出现的相界面附近区域发展的反应称。双模模型:这种两相间反应界面两侧都存在着表征扩散阻力的浓度边界层的模型称双模理论。克努生扩散:气体在多孔介质孔隙中的扩散系数和孔隙的直径有关,当孔隙很小气体分子的平均自由程比孔隙的直径大得多时气体分子直接与孔隙壁碰撞

的机会就会比分子之间的相互碰撞的机会多,致使其内气体扩散的速率减少。未反应核模型:当固相反应物致密时,化学反应从固相物表面开始逐渐向矿中心推进,反应物和产物层之间有较明显的界面存在,反应在层间的相界面附近区域进行,因此形成的固相产物层则出现在原来固相反应物处,而原固相物内部则是未反应的部分。过热度:高出熔点的温度。间隙式固溶体:是组分的原子占据了本体晶格的空隙位两种原子的半径相差很大。固溶体:当有其他固体原子溶入某种固体时称。表面活性(非活性)物质:溶解组分在表面上出现(不出现)过剩浓度称正(负)吸附,它使溶液的表面张力降

低(保持不变或有所提高)这种组分称(非)表面活性物质。熔渣的作用:离或吸收杂质,除去粗金属中有害于金属产品性能的杂质,富集有用金属氧化物及精炼金属的作用,并能保护金属不受环境的玷污及减少金属的热损失。浓度三角形:三角形的顶点代表纯组分,每一边是由两顶角代表的祖坟所构成的二元系的浓度坐标线,三角形内的点则表示由3顶角代表的祖坟所构成的三元系的浓度值。背向规则:当等比例线上物系点的组成点,再背离其所在顶角的方向上移动时,体系将不断析出成分C,而其内组分C的浓度不断减少,但其他两组分的浓度比则保持不变,这称。重心规则:在浓度三角

形中,组成为M1,M2,M3,的物系或相点,其质量分别为m1,m1,m3,混合形成一质量m0的新物系点O是,此新物系点则位于此3个物系点练成的三角形M1,M2,M3的重心上。碱度:碱性氧化物的质量分数与酸性氧化物的质量分数之比称炉渣的碱度R。光学碱度:某氧化物施放电子的能力与CaO施放电子的能力的比为该氧化物的光学碱度Λ。碱性氧化物:渣中能解离出氧离子的氧化物。酸性氧化物:转变为络离子的氧化物。相:有共同物理化学性质的均匀部分。组元:表述平衡所需最少物种数。自由度:描述一平衡所需最少变量数。容量:称熔渣吸纳有害分子等能力称为“某”容量。

溶化温度:熔渣中固相完全消失的温度。溶化性温度:熔渣的熔点是熔渣中固相完全消失的温度。但此时熔渣的黏度是比较高的,甚至在相当广阔的温度范围内还处于半流体状态,而为了使高炉冶炼顺行,应使熔渣溶化后的温度能保证熔渣达到自由的流动。这个最低温度称。长渣:(偏酸性渣,玻璃渣)渣中大分子多,黏度随温度变化迟缓。短渣:(石头渣)渣中大分子少,黏度随温度变化敏感。分解压:一定温度下某化合物生成离解反应达平衡产生的气相平衡分压PB(平)称化合物的分解压。影响分解压:T,P,固相相变,固体分散度,形成溶体。分解的开始温度:PB分解压和=PB'下开始并继

续分解的温度。T开=A/(lgPB-B)。T沸=A/(lgP-B)(P=P'/Pθ),P'=100kPa,P=1。分解的沸腾温度:化合物被加热,分解压达到体系的总压,使化合物将剧烈的分解,这时化合物的分解温度称。氧势递增原理:氧化物的氧势是随其金属元素价数的增高而逐渐递增的。间接还原:可用气体做还原剂的间接还原法。直接还原:用固体做还原剂的直接还原法。特点:均强吸热。歧化反应:低价化合物在一定温度发生分解,转变为其相邻的高价氧化物,并析出金属的反应。碳化物的碳势πc=RTlnac。气相碳势>碳化物的碳势,则发生渗碳,相反金属内的碳气化,发生脱碳。熔渣脱硫的条件:必须在能消除炉

渣中的(FeO)或减低铁液氧势的条件进行。氧势图横坐标T,纵坐标氧势π0=RTlnP O2/kj/mol,截距△rH mθ,斜率-△rS mθ,会有不同的P CO/P CO2等一系列氧势线交于T=0轴的一点c,斜率不同取决于P CO/P CO2,P CO/P CO2=1氧势线是RTlnP O2=△rG mθ即反应处于标准态的氧势线,其余为非标态。特点:绝大多数氧化物向右上倾斜,水平S气》Sl>Ss,向右下倾斜2C(S)+O2=2CO,作用判明氧化物稳定性,其中位置越低者越稳定,越被氧化。得到氧化物分解压。氧化物相对稳定性及氧化还原反应的平衡温度。CO及H2还原氧化物反应的平衡常数及还原开始温度。Po2<1,△rGm>△rG mθ绕C点逆时针旋

转,氧势线向上移,氧化物更不稳定。氧势图作用:1、确定氧化物稳定性,2、确定氧化物分解压,3、确定氧化物稳定性及氧化还原反应的平衡温度,4、确定碳吸氢气还原氧化物反应的平衡常数及平衡温度。脱氧:向钢液中加入氧亲和力比铁大的元素,使溶解于钢液中的氧转变为不溶解的氧化物,自钢液中排出称。脱氧3种方法:沉淀脱氧:钢液中加入脱氧剂而形成脱氧产物能借自身的浮力或钢液的对流运动排出。扩散脱氧:利用氧化铁很低的熔渣处理钢液,使钢液中氧经扩散进入熔渣中,而不断降低。真空脱氧:利用真空的作用降低与钢液平衡的Pco,从而降低了钢液的氧和碳的含量。回磷:在熔炼脱氧合金化及浇铸过程中,能形成酸性氧化物的元素,大量进入钢液中及炉渣碱度降低,均能破坏渣中的磷酸盐,(P2O5)发生还原,钢液中的磷量增加称。影响脱磷因素:高氧化铁、高碱度即磷容量大的熔渣及时形成,是加强脱离的必要条件,低温有利于脱磷,金属熔池某些能提高磷活度系数的与元素存在。影响脱硫的因素:炉渣的组成,金属液的组成,温度。脱硫的条件:温度:高温,熔渣碱度:高碱度,炉缸的氧势:低氧势。脱磷反应:氧化脱磷:氧化法是利用氧化剂使铁液中(P)氧化成PO,再与加入能降低其活度系数的脱磷剂,结合成稳定的复合化合物,而存于熔渣中。氧化性渣表面张力主要取决于?表面O2-和正离子的作用,正离子静电势大的碱性氧化物表面张力较大(MnO2,FeO,CaO)。FeO熔体表面活性物质有?CaF2,P2O5,TiO2。泡沫渣?形成其必要条件?进入渣内的不溶解气体被分散在其中形成无数小气泡时,熔渣的体积膨胀,形成为液膜的密集排列的孔状结构称。其形成与熔渣的起泡能力及泡沫的稳定性有关。熔渣的组员扩散?系数比在金属液内的低一个数量级,10-10~10-11m2s-1因此,高温冶金反应过程的限制环节大都在熔渣内。了解CO钢液内均相形核是否可能?为什么?当钢液中碳氧化形成的CO气泡核大于其临界核时,才能稳定形成、长大和排出,对于表面张力一定的钢液,临界核的半径与钢液的w[C]、w[O]过饱和有关。过饱和度越大,则临界半径就越小,新相核就易于形成。一般认为,钢液这种饱和度不高,由此形成的气泡核的半径却比较大,为了能形成如此大的临界气泡,需要在临界气泡内瞬时积累由碳氧化形成的CO分子数107~1010个。这样大数目的分子数十难于靠局部浓度的起伏完成的。为什么说“碳”是万能的还原剂:C的氧势图走向右下方,且与大多数金属氧化物的氧势线有交点。判定氧化物稳定性的热力学方法:随着温度的升高,高价氧化物分解放出氧,转变为低温下稳定存在的相邻的高价的氧化物。渣的氧化还原性取决于什么?是氧离子的活度么?不是,取决于渣中氧的化学势和金属液中氧的化学势的相对大小。在T一定,渣及金属液组成一定时,只能FeO在渣中分配,(Fe2+)的伴随下,(O2-)才能有效进入金属液中用(FeO)的浓度或活度表示渣的氧化性。钢水用高压气搅拌,搅拌剧烈(eσ/ex)x=0,dc↓传质效率?提高有效边界层内,尽管可用稳态扩散理论处理对流传质问题,但并不意味此层只有静止分子扩散,实际此层仍有紊流流动应该以等效观点理解dc有效边界层内传质结果和其个数值的分子扩散相当。氧化物分解(还原)的逐级转变原则(会写反应):1、高价氧化物只能依次分解成为能与之平衡共存的次级低价氧化物2、在给定条件下,只有和金属平衡的氧化物才能分解出金属,3、不相邻的氧化物则不能平衡共存,不能用平衡常数来表述其关系。有了铁为什么还要炼钢:以生铁为主要原料的氧化熔炼中,需要去除的元素和杂质,分为3类,1、高炉中过多还原的元素,如Si Mn 极特别是溶解的,2、有害于产品性能的杂质,如Ps及气体H N,3、在氧化过程中,由氧化作用引入的氧及其伴生的夹杂物,因此炼钢过程的主要反应式元素(Si Mn C P)的氧化,脱磷去气体(H N),脱氧剂调整钢液的成分,最后把化学成分合格的钢液浇铸成钢锭或连铸坯,便于轧钢。炼钢的方法主要有哪些:以高炉铁水或铁浴融化还原铁水为主要原料的氧气炼钢法和以废钢为主要原料的电弧炼钢法,在氧气转炉炼钢法中,按照氧气吹入转炉内方式的不同,分别有顶吹氧气转炉炼钢和底炉吹氧气炼钢以及顶底复合吹氧炼钢。试述影响元素氧化的热力学条件及影响因素:当熔池中多种元素共存时,一般是形成氧化物,MxOy氧势最小的元素首先氧化,而其氧化强度随温度的升高而减弱,元素的氧化顺序还将受活度变化的影响,因为(Po2(MxOy)=Kθ(a2/3 MxOy /a2x/y m)πo(MxOy)=△rG mθ+2/yRTln0MxOy-2x/yRTln m),故元素的浓度相同时,氧势较小的先氧化或者强烈氧化,而元素浓度不相同时,浓度高的其氧势较小,最先氧化。了解CO熔池内异相形核是否可能?为什么?:脱碳反应CO气泡的生成要经过异相形核阶段所以碳的氧化是在钢液-炉底耐火材料界面上发生的。与钢液接触的耐火材料炉底,常不易为钢液所湿润,其表面有气体填充的微孔,他们的尺寸远大于钢液过饱和度相当得临界气泡核(r*)时,就能成为气派的现成核,碳氧化形成的CO进入其内,使气泡长大,脱离微孔上浮。残余在微孔内的气体,则成为下次气泡形成的核源。因此,不能为钢液所湿润的耐火材料表面的微孔,当其具有不为钢液填充的最大半径时,就能成为气泡的形成核。试述复合脱氧提高强脱氧剂脱氧能力的原因:利用两种或两种以上的脱氧元素组成的脱氧剂使钢液脱氧,称为复合脱氧,即两种脱氧元素同时参加脱氧,耦合形成的产物则结合成复杂的化合物,因而能使他们分别脱氧形成的产物的活度降低从而平衡的w【O】降低。其次他们的脱氧产物形成了低熔点的复杂化合物,而使之分解。与钢液中w[O]平衡的弱脱氧元素的百分含量要比与此w[O]平衡的强脱氧元素的百分数高得多。故弱脱氧元素百分数仅能控制自身反应的w[O],而强脱氧元素百分数则控制了整个钢液的氧浓度,他比强脱氧元素单独脱氧时的低,所以若脱氧剂能提高强脱氧剂的脱氧能力。液-液相反应及动力学模型—双模理论 3 要点1、反应物分别在各自相内向两相界面扩散传质2、反应物在两反应界面进行反应3、反应产物离开反应界面向各自向内扩散传质。熔渣的结构理论:分子结构假说和离子结构理论要点1、分子结构假说:它把熔渣看成是各种分子状指点组成的理想溶液。2、离子机构理论:熔渣是有简单阳离子和复杂阴离子组成,其正负电荷数相等熔渣为电中性3、熔渣有微观不均匀性,以至熔渣会出现分层现象即出现强或弱“离时”离子的静电势I=E/Y。完全离子熔渣模型:主要内容1、熔渣完全由离子构成,其内不出现电中性质点。2、和晶体中的相同,理智最邻近者仅是异号离子。并且,搜有同号离子不管其大小及电荷是否相同与周围异号离子的静电作用里都是相等的。因此,他们在熔渣中的分开完全是统计无序状态。3、完全离子溶液形成时混合焓为0,△Hm=0;离子完全混合时,虽然异号离子不能彼此交换位置,但不同阳(阴)离子之间相互混合,出现不同的组态使溶液的熵增加。一次完全离子溶液可视为由正负离子分别组成的两个理想溶液的混合溶液。有效边界层(扩散边界层)与扩散阻力关系:扩散边界层内存在着边界差,表征物质通过此层受到了扩散阻力。因而可以认为物质是在整个液体内及向相界面或离开界面儿扩散时,所受到的阻力主要集中在此边界层内。边界层越厚,则扩散阻力也就越大,而传质系数也就越小。但是相界面附近的浓度梯度( )Z=0越大(或切线的斜率越大),则边界层的厚度就越厚,而传质系数越大,提高液体的速度可使浓度梯度变大,从而可降低边界层的厚度。当流速增大到使边界层的厚度趋近于0时,扩散阻力就不再存在了,这是的流速被称为临界流速。一次,保持临界流速的体系内,可以不用考虑这种扩散阻力的存在。反应过程速率影响因素:1、温度2、固体物空隙度3、固体物的粒度及形状4、流体速度结论:当不同因素发生变化时将会对比二环节不同程度的增大或减弱作用,相应的能使过程控制环节发生改变,如果有实验来研究化学反应机理时,则必须在实验中创造条件,使整个过程位于动力学范围内。分解压的影响因素:1、温度2、压力3、固有物的相变4、固体的分散度5、固相物的溶解RTlnpb=-△rGmΘ(AB)+RTlna(AB)-RTlna[A] 因此分解压不进与温度有关,而且与固体在溶液中活度有关,提高a(AB)及降低a(A)可使分解压增大,反之则分解压减小,如AB(s)与分解出的A(s)发生互溶,则在未形成饱和浓度的组成范围内,分解压与熔体的组成有关,而在形成互为饱和的二相区内,分解压则与熔体的组成无关,保持定值,这是因为此时a(AB)=a[A]=1,此外当AB及A溶于溶剂,或与其他物质形成复杂化合物是也使他们的活度改变,从而改变分解压,实际上复杂化合物的分解比简单呼和无分解要吸收较多的热量,而其分解温度也要高很多影响脱硫的因素:1,炉渣的组成,低氧化铁,碱性渣有利于脱硫,碱度高也有利于脱硫。2,金属液的组成,金属液中得硅,碳,等元素能提高fs,促进s向炉渣中转移,3,温度,脱硫反应是吸热,温度提高对脱硫有利,炉渣熔体结构的分子理论要点1,组成炉渣的氧化物及其他化合物的基本组成单元均是离子,2,炉渣是离子导电的,3,炉渣能被电解,在阴极析出金属,4,二氧化硅浓度高的熔渣有较高的粘度。反应速录影响因素:温度,固相物空隙度,固相物的粒度及形状,流体速度。离子反应式书写规则:1,渣中组元用其对应离子形式表示,2,离子反应式代表一对流金属液反应,3,氧合负离子转移时,其中氧价不变。固体的分散度:固体物的分散度增加,其面积增加,其化学势增大,因而分解压发生。固相物的溶解:分解呀与固相物再溶液中得火毒有关。脱硫剂主要有:苏打,石灰粉,碳化钙等一石灰为主要成分的复合硫化剂。碳氧积:压强在100KPa的M=W[C]*W[o]位于0.002-0.003,一半多取0.0025,过剩氧:W[o]&s的减小而降低,但W[o]始终高于W[o]平,因为熔池中有促使氧扩散的浓度差存在,故W[o]ΔW[o]称为钢液中的过剩氧。试分析元素脱氧反应的热力学条件:1,图中曲线位置越低的元素,产物越稳定。该元素的脱氧能力越强2,脱氧产物的组成与温度及脱氧元素的平衡浓度有关,3,脱氧反应式强放热的随着温度的降低,脱氧能力增强。气固相反应的三个环节:1,气体再固体物外的扩散,2,气体与固体物的界面反应,3,气体通过固相产物层的内扩散。熔渣在活度过程中的作用,分离或吸收杂质,除去相金属中有溶于金属产品性能的杂质,富集有用金属氧化物及精炼金属的作用,并能保护金属不受环境的玷污及减少金属的热损失。炉渣的来源:还原熔炼中未能还原的氧化物。氧化熔炼中氧化形成的氧化物。氧势递增原理:氧化物的氧势是随其金属元素价数的增高而逐渐递增的。氧化物的稳定性1,比较氧化物用热力学稳定性取no2==1,ΔfQmθ越小,MxOy越稳定,稳定性大于C,S化合物2,氧化物分解压Po2(平)越低,越稳定。碳酸盐分解法特点:1,分解温度不高,2,加热即分解3,常用热分析法及差热透析法测定他的分解呀温度。试分析元素脱氧反应的热力学条件1,曲线位置越低的元素,脱氧产物越稳定,而该元素的脱氧能力越强,与相同量的各元素平衡的氧浓度就越低,成为了达到相同的氧浓度,增强氧元素的平衡,浓度就越低2,脱氧产物的组成与温度,与温度及脱氧元素的平衡浓度有关,W[M]低及W【O】高时,则形成FeMxOy形成复杂化合物,W[M] 高及W【O】低时,则形成氧化物MxOy,如其熔点高过钢液的温度,则形成向存在,仅位于曲线上区域的钢液能发生脱氧反应,曲线上的黑点为脱氧产物的转变点,3,脱氧反应式强放热的,随着温度的降低,脱氧元素的脱氧能力增强。二元体系,组元数2,,自由度2-p+1,共存相数,最多3,最少1,自由度数,最多2,最少0,图形为二维平面。三元体系,组元数3,,自由度3-p+1,共存相数,最多4,最少1,自由度数,最多3,最少0,图形为三维平面或等温截面图

重庆大学(自动控制原理)课后答案,考研的必备

第一章绪论 重点: 1.自动控制系统的工作原理; 2.如何抽象实际控制系统的各个组成环节; 3.反馈控制的基本概念; 4.线性系统(线性定常系统、线性时变系统)非线性系统的定义和区别; 5.自动控制理论的三个基本要求:稳定性、准确性和快速性。 第二章控制系统的数学模型 重点: 1.时域数学模型--微分方程; 2.拉氏变换; 3.复域数学模型--传递函数; 4.建立环节传递函数的基本方法; 5.控制系统的动态结构图与传递函数; 6.动态结构图的运算规则及其等效变换; 7.信号流图与梅逊公式。 难点与成因分析: 1.建立物理对象的微分方程 由于自动化专业的本科学生普遍缺乏对机械、热力、化工、冶金等过程的深入了解,面对这类对象建立微分方程是个难题,讲述时 2.动态结构图的等效变换 由于动态结构图的等效变换与简化普遍只总结了一般原则,而没有具体可操作的步骤,面对变化多端的结构图,初学者难于下手。应引导学生明确等效简化的目的是解除反馈回路的交叉,理清结构图的层次。如图1中右图所示系统存在复杂的交叉回路,若将a点移至b点,同时将c点移至d点,同理,另一条交叉支路也作类似的移动,得到右图的简化结构图。

图1 解除回路的交叉是简化结构图的目的 3. 梅逊公式的理解 梅逊公式中前向通道的增益K P 、系统特征式?及第K 条前向通路的余子式K ?之间的关系仅靠文字讲述,难于理解清楚。需要辅以变化的图形帮助理解。如下图所示。 图中红线表示第一条前向通道,它与所有的回路皆接触,不存在不接触回路,故11=?。 第二条前向通道与一个回路不接触,回路增益44H G L -=,故 4421H G +=?。 第三条前向通道与所有回路皆接触,故13=?。 第三章 时域分析法 重点: 1. 一、二阶系统的模型典型化及其阶跃响应的特点; 2. 二阶典型化系统的特征参数、极点位置和动态性能三者间的相互关

_冶金原理_精品课程建设

中国冶金教育2009年第6 期 “冶金原理”是材料成型及控制工程专业的基础课。为了培养高水平复合型人才,国内相关高校均十分重视该课程的建设,比如西安建筑科技大学和武汉科技大学均将“冶金原理”作为校级教改重点课题,并分别成功申报为陕西省和湖北省精品课程。笔者结合南昌大学材料成型及控制工程专业的实际和江西省对冶金人才的需求,从“冶金原理”的课程体系、教学内容、教材建设、教学方法和手段等多方面进行了探讨。 一、坚持“以人为本”,以培养创新型、复合型人才为目标 (一)完善课程体系 过去南昌大学材料成型及控制工程专业没有开设 “物理化学”课程,而“物理化学”是“冶金原理”课程的基础,用物理化学的基本原理分析解决冶金问题,是冶金原理所要解决的问题。“物理化学”理论性较强,学习难度较大。为加强物理化学基础知识的理解,本课程安排了冶金物理化学基础部分的内容,将物理化学知识要点如热力学基础、动力学基础集中强化。考虑到相图知识在冶金分析中的重要性,拿出一章来专门回顾二元相图和三元相图的基础知识,并重点分析了在冶金领域应用的典型相图。冶金分为火法冶金和湿法冶金,在介绍完物理化学和相图知识后,专门安排了火法冶金原理和湿法冶金原理这两大部分知识的介绍。在对基础知识介绍的同时 穿插一些冶金企业生产实践的常识,让学生对冶金行业有初步的了解。使用的教材参考西北工业大学出版社出版的《冶金原理》,结合南昌大学服务江西省地方经济的要求,编写了具有地方特色的课程讲义。 (二)活跃课堂教学 以往“冶金原理”的教学重点是传授理论知识而忽视课堂互动环节。单纯的理论介绍,无法引起学生的兴趣,教学效果差。因此,在教学方法上,改变“一言堂”传统教学模式,大胆实施互动式、研究型、创新型教学方法,提高学生学习的主动性,增强学生对知识的理解、吸收与创新。在课堂教学中提出一些思考题,让学生们进行讨论,并让他们踊跃地说出自己的观点。 由于“冶金原理”中需要进行一些计算,在课堂上布置一些计算题,让学生们发挥自己的才智,通过查找资料,培养学生解决实际问题的能力。通过对计算题的讲解,让学生了解工程计算的一些常用方法,如拟合、插值等。 (三)将现代科学技术融入到课堂教学中一是全程采用多媒体教学手段,精心制作全套的多媒体课件,并融入部分Flash动画效果,穿插视频、声音等提高教学效果。对于一些计算和公式推导,则使用黑板进行,让学生有充分的时间来理解推导过程。 二是利用网络资源,实现教与学的互动。建设“冶金原理”课程网站,将课程介绍、教学大纲、多 摘 要:坚持“以人为本”,以培养创新型、复合型人才为目标,坚持理论联系实际原则探讨“冶金原 理”精品课程建设。从课程体系、课堂教学和实践教学三个方面进行全面分析,并探讨了如何充分利用现代网络技术开通课程网站,实现课后师生网络互动,提高学生的学习主动性。关键词:冶金原理;精品课程;课程建设 课题项目:江西省高校教改课题资助项目(项目编号:JXJG-08-1-50) 朱政强 陈燕君 (南昌大学,江西南昌 330031) 31第页

(机械)(焊接)焊接冶金学(基本原理)习题

焊接冶金学(基本原理)习题 绪论 1.试述焊接、钎焊和粘接在本质上有何区别? 2.怎样才能实现焊接,应有什么外界条件? 3.能实现焊接的能源大致哪几种?它们各自的特点是什么? 4.焊接电弧加热区的特点及其热分布? 5.焊接接头的形成及其经历的过程,它们对焊接质量有何影响? 6.试述提高焊缝金属强韧性的途径? 7.什么是焊接,其物理本质是什么? 8.焊接冶金研究的内容有哪些 第一章焊接化学冶金 1.焊接化学冶金与炼钢相比,在原材料方面和反应条件方面主要有哪些不同? 2.调控焊缝化学成分有哪两种手段?它们怎样影响焊缝化学成分? 3.焊接区内气体的主要来源是什么?它们是怎样产生的? 4为什么电弧焊时熔化金属的含氮量高于它的正常溶解度? 5.氮对焊接质量有哪些影响?控制焊缝含氮量的主要措施是什么? 6.手弧焊时,氢通过哪些途径向液态铁中溶解?写出溶解反应及规律? 7.氢对焊接质量有哪些影响? 8既然随着碱度的增加水蒸气在熔渣中的溶解度增大,为什么在低氢型焊条熔敷金属中的含氢量反而比酸性焊条少? 9. 综合分析各种因素对手工电弧焊时焊缝含氢量的影响。 10.今欲制造超低氢焊条([H]<1cm3/100g),问设计药皮配方时应采取什么措施? 11. 氧对焊接质量有哪些影响?应采取什么措施减少焊缝含氧量? 12.保护焊焊接低合金钢时,应采用什么焊丝?为什么? 13.在焊接过程中熔渣起哪些作用?设计焊条、焊剂时应主要调控熔渣的哪些物化性质?为什么? 14.测得熔渣的化学成分为:CaO41.94%、28.34%、23.76%、FeO5.78%、7.23%、3.57%、MnO3.74%、4.25%,计算熔渣的碱度和,并判断该渣的酸碱性。 15.已知在碱性渣和酸性渣中各含有15%的FeO,熔池的平均温度为1700℃,问在该温度下平衡时分配到熔池中的FeO量各为多少?为什么在两种情况下分配到熔池中的FeO量不同?为什么焊缝中实际含FeO量远小于平衡时的含量? 16.既然熔渣的碱度越高,其中的自由氧越多,为什么碱性焊条焊缝含氧量比酸性焊条焊缝含氧量低? 17.为什么焊接高铝钢时,即使焊条药皮中不含,只是由于用水玻璃作粘结剂,焊缝还会严重增硅? 18. 综合分析熔渣中的CaF2在焊接化学冶金过程是所起的作用。 19.综合分析熔渣的碱度对金属的氧化、脱氧、脱硫、脱磷、合金过渡的影响。 20.什么是焊接化学冶金过程,手工电弧焊冶金过程分几个阶段,各阶段反应条件有何不同,主要进行哪些物理 化学反应? 21.什么是熔合比,其影响因素有哪些,研究熔合比在实际生产中有什么意义?

钢铁的重要作用

钢铁的重要作用 摘要 钢铁是国民经济的中流砥柱,是国家的命脉,是国家生存和发展的物质保障。钢铁工业是国民经济的重要基础产业,是国家经济水平和综合国力的重要标志。随着国际产业的转移和我国国民经济的快速发展,我国钢铁工业取得了巨大成就。我国钢铁工业不仅为我国国民经济的快速发展做出了重大贡献,也为世界经济的繁荣和世界钢铁工业的发展起到积极的促进作用。 关键词:钢铁材料国民经济 目录 1、中国钢铁发展历史与现状 2、中国钢铁产业在国民经济中的地位 一、中国钢铁发展历史与现状 中国的钢铁工业历经50年的发展,特别是改革开放30年以来有了巨大的进步,取得了举世瞩目的成就。钢铁工业的钢产量增加速度加快、技术水平得到明显提高,产品结构不断调整,成为名副其实的钢铁大国。1996年我国钢产量首次超过1亿吨大关,跃居世界第一位,此后我国产量一直保持世界排名第一的位置。2002年实现钢产量 1.8亿吨,到2003年钢产量突破2亿吨,达到22234万吨,2004年全国共产钢27279万吨,比上年增长22.7%,生铁、钢材的产量分别达到创记录的25185万吨与29723万吨(含重复材),同比增长均在20%以上。在钢材品种和质量方面,已经逐步形成能冶铁包括高温合金、精密合金再内的1000多个钢材品种,轧制和加工包括板、带、管、型、线等各种形状的4万多个品种规格的钢材;各项技术经济指标明显提高。但是,由于钢铁企业之间一些内部原因,导致钢铁产量迅速增加,产量质量含金又低,国内钢铁出现供过于求的局面。2004年对钢铁工业而言是具有突破意义的一年,粗铁产量首次突破10亿吨,许多钢铁企业称其利润达到前所未有的高水平。 二、中国钢铁产业在国民经济中的地位 1、我国钢铁工业为保证国民经济快速发展做出了巨大贡献 近几年,我国国民经济的快速增长主要是靠固定资产投资和进出口的超常增长拉动的,我国钢铁工业的快速发展,已使我国彻底告别了钢材短缺年代,能够满足国民经济各行业用钢基本需要。如果没有我国钢铁工业的快速发展,使我国从2003的净进口3462万吨的钢坯材到2006年净出口3317万吨的钢坯材,就很难有我国GDP的连续10%的快速增长,特别是钢铁工业的快速发展,有力地支了我国工业化进程和城市化进程,为

关于湿法冶金的概念

1 关于湿法冶金的概念,阐述正确的是(C)。 A.湿法冶金是指原料含水,或过程需要水的,或者是过程能够产生水的金属生产过程 B.湿法冶金是指以水为反应介质,但水不能参与冶金反应的金属生产过程 C.在常温(或低于100℃)常压或高温(100~300℃)高压下,用溶剂处理矿石、精矿或含金属物料,使所要提取的金属溶解于溶液中,而尽量抑制其他杂质不溶解,然后再从溶液中将金属或其化合物提取和分离出来的过程 D.指在金属生产的所有环节中温度都不超过300℃并且以水为反应介质的过程 2 湿法冶金通常又可称为(BD)。 A. 常温冶金 B. 水法冶金 C. 干法冶金 D. 化工冶金 E. 溶剂冶金 3 湿法冶金的优点包括( B、C、D). A.处理规模大,生产效率高 B.湿法冶金过程有较强的选择性,即在水溶液中控制适当条件使不同元素能有效地进行选择性分离 C.有利于综合回收有价元素 D.劳动条件好、无高温及粉尘危害。一般有毒气体排放较少 E.一般没有大量废气、废渣产生 4 湿法冶金的优势很多,包括(A、B)。 A. 对许多矿物原料的处理而言,湿法冶金的成本较低,这些与其高选择性、宜处理价廉的低品位复杂矿有关 B. 采用湿法冶金的方法制备各种新型材料或其原料更有其突出的优点 C. 能够通过极简单的工艺一步实现脉石及杂质元素的分离 D. 不涉及任何高温、高压过程,完全是在常温和常压下操作,对设备结构、材质、操作要求极低 5 目前,多数的(B)、少数的(D)、全部的(E)都是用湿法冶金的方法生产的。 A. 铅 B. 锌 C. 铁 D. 铜 E. 氧化铝 F. 钢 6 几乎所有(B )矿物原料的处理及其纯化合物的制备、(D)的提取等也都是用湿法冶金的方法完成的。 A. 轻金属 B. 稀有金属 C. 黑色金属 D. 贵金属 E. 重金属 F. 钢铁

华东理工大学化工原理自测题

华东理工大学化工原理自测题 (根据其精品课程网站下载,网站无第三章、第七章内容) 第一章流体流动 1 .量纲分析法的目的在于 ______ 。 A 得到各变量间的确切定量关系; B 得到各无量纲数群的确切定量关系; C 用无量纲数群代替变量,使实验与关联工作简化; D 用无量纲数群代替变量,使实验结果更可靠。 2 .某物体的质量为 1000kg ,则其重量为 ____________ 。 A)1000N B)9810N C)9810kgf D)1000/9.81kgfB 3 . 4 ℃ 水在 SI 制中密度为 ________ 。 A)1000kgf/m 3 B) 1000kg /m 3 C)102kgf · s 2 /m 4 D)9810N/m 3 4 .用标准孔板流量计测量管中的流量,采用如图所示三种装置,两测压孔距离 h 相等,其读数分别为 R 1 , R 2 , R 3 。则___。( d 1 = d 2 = d 3 ,流速相等) A)R 2 < R 1 < R 3 B)R 1 < R 2 = R 3 C )R 1 < R 2 < R 3 D)R 1 = R 2 = R 3 E)R 1 > R 2 = R 3 5 .一敞口容器 , 底部有一进水管 ( 如图示 ) 。容器内水面保持恒定 , 管内水流动的速度头为 0.5m 水柱 ( 流速 u= 3.132m /s) 。水由水管进入容器 , 则 2 点的表压 p 2 =( ) 水柱。 A) 2.0m ; B) 1.5m ; C) 1.0m ; D) 0.75m

6 .层流与湍流的本质区别是: ________ 。 A) 湍流流速 > 层流流速; B) 流道截面大的为湍流,截面小的为层流; C) 层流的雷诺数 < 湍流的雷诺数; D) 层流无径向脉动,而湍流有径向脉动。 7 .转子流量计的主要特点是 ________ 。 A) 恒截面、恒压差; B) 变截面、变压差;C) 恒流速、恒压差; D) 变流速、恒压差。 8 .①层流底层越薄 __________ 。 A) 近壁面速度梯度越小 B) 流动阻力越小 C) 流动阻力越大 D) 流体湍动程度越小 ②双液体U形差压计要求指示液的密度差 __________ 。 A) 大 B) 中等 C) 小 D) 越大越好 本章自测题答案:1.c;2.b;3.b;4.d;5.b;6.d;7.c;8.c c 第二章流体输送机械 1 .将 1000m 3 /h 的各车间回水送往水冷却塔 , 宜选用 ( ) A) 离心泵 B) 往复泵 C) 齿轮泵 D) 喷射泵。 2 .某泵在运行1年后发现有气缚现象,应() A)停泵,向泵内灌液B)降低泵的安装高度 C)检查进口管路有否泄漏现象D)检查出口管路阻力是否过大。 3 .离心泵的性能曲线中的 H-- q v 线是在 ( ) 情况下测定的。 (A) 效率一定 ; (B) 功率一定 ;(C) 转速一定 ; (D) 管路 (l+ S l e )) 一定。 4 .离心泵最常用的调节方法是 ( ) (A)改变吸入管路中阀门开度(B)改变压出管路中阀门的开度 (C)安置回流支路,改变循环量的大小(D)车削离心泵的叶轮

湿法冶金工艺中的除油技术

湿法冶金工艺中的除油技术 摘要:湿法冶金生产过程中,通常都会使用混合澄清槽、离心萃取器、萃取塔 等设备来实施大规模连续萃取及两相的混合与分离。这种生产工艺通过设备分离 后的水相溶液会含有一定量的油相,因为普通的萃取剂有着一定的亲水性,所以 不仅会导致大颗粒油无法及时澄清,而且也会有少量油以稳定的乳化态或者是溶 解态留在料液中。如果不能及时有效的清除水相中夹杂的油,就会增加萃取剂的 浪费,甚至也会影响到后续工艺的正常生产,从而影响冶金产品的质量。另外残 留在水相中的油也会在废水中积累,最终会给污水处理工作带来不利影响,鉴于此,笔者从油相组成及形成原因出发,针对湿法冶金工艺中的出油技术进行研究 分析,以供参考。 关键词:湿法冶金;溶剂萃取;除油技术 1油相组成及形成原因 溶剂萃取水相中的油相组分更加复杂,水相夹带的油不是单纯的萃取剂油相 残留,而是含有多种萃合物的复杂有机成分,所以萃取体系除油需要从油相的组 成着手进行研究。 湿法冶金中常用的萃取剂按酸碱性可分为酸性、碱性及中性萃取剂。在酸性 萃取体系中,酸性磷类萃取剂、螯合类萃取剂和羧酸型萃取剂的萃取都是通过萃 取剂中活性基团上的阳离子与料液中的金属阳离子发生交换实现的,萃合物为含 金属阳离子的萃取剂大分子。萃取体系水相中夹带的油相的主要成分是未萃取的 萃取剂分子、稀释剂、极性改性剂及萃合物。萃取剂在长期使用后会存在一定程 度的降解,所以水相夹带的油相组分中还有微量的长碳链有机物分子。其中,酸 性磷类萃取剂的功能基团是以P为中心原子的基团,按路易斯酸碱理论属于硬酸,而H?0属于硬碱,二者具有一定亲和力,容易形成配合物,所以萃取剂具有一定 的亲水性。该体系中的溶解油含量不容忽视。 中性萃取剂的萃合物都以中性分子形式与萃取剂结合。萃取过程是金属阳离 子与配体阴离子生成配合物大分子,再与萃取剂分子结合生成萃合物。该萃取体 系中夹带的油相中所含的是配合物大分子、萃取剂、少量稀释剂及改性剂。 碱性萃取剂的萃取是以离子缔合形式实现。萃取时金属以配阴离子形式存在 于溶液中,萃取剂与质子或水合成质子形成大阳离子,两者构成疏水性离子缔合体。常用的该类萃取剂以N263、N235为代表,其功能基团是以N为中心原子的 基团,属于硬酸,也会与属于硬碱的H?O形成配合物。同样会有相当一部分萃取 剂以溶解油形式存在于水相中。 2常用除油方法 2.1生化处理法 生化处理法是一种新兴的末端除油方法,是利用微生物的代谢作用分解有机 污染物使油相降解实现除油。 目前比较成熟的生物处理法有活性污泥法和生物膜法。活性污泥法是利用活 性污泥中的微生物对有机物的富集作用实现深度除油,但生物处理法对进水水质 要求较高,要求水质、水量稳定,波动小。生物膜法是利用膜反应器比表面积较 大的原理将微生物附着于填充料表面,在废水流经填充物时,利用微生物富集水 中的有机物并使其降解而实现除油。生物膜法处理效率较高、基建费用稍低,但

(完整word版)焊接冶金学(基本原理)习题总结

焊接冶金学(基本原理) 部分习题及答案 绪论 一、什么是焊接,其物理本质是什么? 1、定义:焊接通过加热或加压;或两者并用,使焊件达到原子结合,从而形成永久性连接工艺。 2、物理本质:焊接的物理本质是使两个独立的工件实现了原子间结合,对于金属而言,既实现了金属键结合。 二、怎样才能实现焊接,应有什么外界条件? 1、对被焊接的材质施加压力:目的是破坏接触表面的氧化膜,使结合处增加有效的接触面积,从而达到紧密接触。 2、对被焊材料加热(局部或整体):对金属来讲,使结合处达到塑性或熔化状态,此时接触面的氧化膜迅速破坏,降低金属变形的阻力,加热也会增加原于的振动能,促进扩散、再结晶、化学反应和结晶过程的进行。 三、试述熔焊、钎焊在本质上有何区别? 钎焊母材不溶化,熔焊母材溶化。 1. 温度场定义,分类及其影响因素。 1、定义:焊接接头上某一瞬间各点的温度分布状态。 2、分类: 1) 稳定温度场——温度场各点温度不随时间而变动; 2) 非稳定温度场——温度场各点随时间而变动; 3) 准稳定温度场——温度随时间暂时不变动,热饱和状态;或随热源一起移动。 3、影响因素: 1) 热源的性质 2) 焊接线能量 3) 被焊金属的热物理性质 a. 热导率 b. 比热容 c. 容积比热容 d. 热扩散率 e. 热焓 f. 表面散热系数 4) 焊件厚板及形状

第一章 二、焊接化学冶金分为哪几个反应区,各区有何特点? 1、药皮反应区:指焊条受热后,直到焊条药皮熔点前发生的一些反应。(100-1200℃) 1) 水分蒸发:100 ℃吸附水的蒸发,200-400 ℃结晶水的去除,化合水在更高温度下析出 2) 某些物质分解:形成Co ,CO2,H2O ,O2等气体 3) 铁合金氧化 :先期氧化,降低气相的氧化性 2、熔滴反应区:指熔滴形成、长大、脱离焊条、过渡到整个熔池 1) 温度高:1800-2400℃ 2) 与气体、熔渣的接触面积大 :1000-10000 cm2/kg 3) 时间短速度快:0.01-0.1s ;0.0001-0.001s 4) 熔渣和熔滴金属进行强烈的搅拌,混合. 3、熔池反应区 1) 反应速度低 熔池T 1600~1900℃低于熔滴T ;比表面积,接触面积小300~1300cm2/kg ;时间长,手工焊3~8秒埋弧焊6~25s 2) 熔池温度不均匀的突出特点 熔池前斗部分发生金属熔化和气体的吸收,利于吸热反应熔池后斗部分发生金属凝固和气体的析出,利于放热反应 3) 具有一定的搅拌作用 促进焊缝成分的均匀化,有助于加快反应速度,有益于气体和夹渣物的排除。然而,没有熔滴阶段激烈。 三、焊接区内有那些气体?它们是怎样产生的? 1、种类: 金属及熔渣蒸气 2、来源: 1) 焊接材料 2) 气体介质 3) 焊丝和母材表面上的油锈等杂质 4) 金属和熔渣的蒸发产生的气体 3、供给途径:一部分是直接输入或侵入的原始气体;另一部分是通过物化反应所生成的气体。 1) 有机物的分解和燃烧:纤维素的氧化分解 2) 碳酸盐和高价氧化物的分解 四、为什么电弧焊时熔化金属的含氮量高于它的正常溶解度? 电弧中受激的氮分子,特别是氮原子的溶解速度比没受激的氮分子要快得多;电弧中的氮离子N +在氧化性电弧气氛中形成NO ,遇到温度较低的液态金属它分解为N 和O ,N 迅速溶于金属。 五、氮对焊接质量有哪些影响?控制焊缝含氮量的主要措施是什么? 61052222()71210m C H O mO mCO mH +=+23lg (/)8920/7.54 p CO CaCO T =-+32CaCO CaO CO =+32MgCO MgO CO =+23lg (/)5785/ 6.27p CO MgCO T =-+22222N O O H H CO CO 、、、、、

冶金原理名词解释

Mingcijieshi 第一章 冶金溶液热力学基础—重点内容 本章重要内容可概括为三大点:有溶液参与反应的θG Δ、G Δ、溶液中组分B 活度 一、名词解释 生铁 钢 工业纯铁 熟铁 提取冶金 理想溶液 稀溶液 正规溶液 偏摩尔量X B 化学势μB 活度 活度系数 无限稀活度系数r B 0 一级活度相互作用系数e i j 一级活度相互作用系数εi j 标准溶解吉布斯自由能 θB S G ? 溶液的超额函数 生铁: 钢: 工业纯铁: 熟铁: 提取冶金: 理想溶液: 稀溶液: 正规溶液是指混合焓不等于0,混合熵等于理想溶液混合熵的溶液称为正规溶液。 偏摩尔量X B 是指指在恒温、恒压、其它组分摩尔量保持不变条件下,溶液的广度性质X (G 、S 、H 、U 、V )对组分B 摩尔量的偏导值。)(,,)/(B k n p T B B k n X X ≠??=。 化学势μB 是指在恒温、恒压、其它组分摩尔量保持不变条件下,溶液的吉布斯能对组分B 摩尔量的偏导值。)(,,)/(B k n p T B B B k n G G ≠??==μ。(P27) 活度是指实际溶液按拉乌尔定律或亨利定律修正的浓度。 活度系数是指实际溶液按拉乌尔定律或亨利定律修正的浓度时引入的系数。 无限稀活度系数r B 0是指稀溶液中溶质组分以纯物质为标准态下的活度系数。 无限稀活度系数r B 0大小意义 是组元B 在服从亨利定律浓度段内以纯物质i 为标准态的活度系数 是纯物质为标准态的活度与以假想纯物质为标准态的活度相互转换的转换系数 是计算元素标准溶解吉布斯能的计算参数 一级活度相互作用系数e i j 是指以假想1%溶液为标准态,稀溶液中溶质组分i 的 活度系数的lg f i 对溶质组分j 的ωj (%)偏导值,即:0)/lg ((%)→??=A j i j i f e ωω。 (P106) 一级活度相互作用系数εi j 是指以纯物质为标准态,稀溶液中溶质组分i 的活度系

焊接冶金学(基本原理)

绪论 一、焊接过程的物理本质 1.焊接:被焊工件的材质(同种或异种),通过加热或加压或二者并用,并且用或不用填充材料,使工件的材质达到原子问的结合而形成永久性连接的工艺过程称为焊接。 物理本质:1)宏观:焊接接头破坏需要外加能量和焊接的的不可拆卸性(永久性)2)微观:焊接是在焊件之间实现原子间结合。 2.怎样才能实现焊接,应有什么外界条件? 从理论来讲,就是当两个被焊好的固体金属表面接近到相距原子平衡距离时,就可以在接触表面上进行扩散、再结晶等物理化学过程,从而形成金属键,达到焊接的目的。然而,这只是理论上的条件,事实上即使是经过精细加工的表面,在微观上也会存在凹凸不平之处,更何况在一般金属的表面上还常常带有氮化膜、油污和水分等吸附层。这样,就会阻碍金属表面的紧密接触。 为了克服阻碍金属表面紧密接触的各种因素,在焊接工艺上采取以下两种措施: 1)对被焊接的材质施加压力目的是破坏接触表面的氧化膜,使结合处增加有效的接触面积,从而达到紧密接触。 2)对被焊材料加热(局部或整体) 对金属来讲,使结合处达到塑性或熔化状态,此时接触面的氧化膜迅速破坏,降低金属变形的阻力,加热也会增加原于的振动能,促进扩散、再结晶、化学反应和结晶过程的进行。 二、焊接热源的种类及其特征 1)电弧热:利用气体介质放电过程所产生的热能作为焊接热源。 2)化学热:利用可燃和助燃气体或铝、镁热剂进行化学反应时所产生的热能作为热源。3)电阻热:利用电流通过导体时产生的电阻热作为热源。 4)高频感应热:对于有磁性的金属材料可利用高频感应所产生的二次电流作为热源,在局部集中加热,实现高速焊接。如高频焊管等。 5)摩擦热:由机械摩擦而产生的热能作为热源。 6)等离子焰:电弧放电或高频放电产生高度电离的离子流,它本身携带大量的热能和动能,利用这种能量进行焊接。 7)电子束:利用高压高速运动的电子在真空中猛烈轰击金属局部表面,使这种动能转化为热能作为热源。 8)激光束:通过受激辐射而使放射增强的光即激光,经过聚焦产生能量高度集中的激光束作为热源。 三、熔焊加热特点及焊接接头的形成 (一)焊件上加热区的能量分布 热源把热能传给焊件是通过焊件上一定的作用面积进行的。对于电弧焊来讲,这个作用面积称为加热区,加热区又可分为加热斑点区和活性斑点区; 1)活性斑点区活性斑点区是带电质点(电子和离于)集中轰击的部位,并把电能转为热能; 2)加热斑点区在加热斑点区焊件受热是通过电弧的辐射和周围介质的对流进行的。在该区内热量的分布是不均匀的,中心高,边缘低,如同立体高斯锥体. (二)焊接接头的形成: 熔焊时焊接接头的形成,一般都要经历加热、熔化、冶金反应、凝固结晶、固态相变,直至形成焊接接头。 (l)焊接热过程:熔焊时被焊金属在热源作用下发生局部受热和熔化,使整个焊接过程自始至终都是在焊接热过程中发生和发展的。它与冶金反应、凝固结晶和固态相变、焊接温度场和应力变形等均有密切的关系。

第七章 - 大连理工大学化工原理及实验精品课程

第七章 1.已知101.3kPa,25℃时,100g水中溶有1g氨,其平衡分压为0.987kPa,在此浓度范围内气液平衡关系服从亨利定律。试求:亨利系数E,以kPa表示;H以kPa.m3/kmol表示;以及相平衡常数m值。 2.在20℃时,氧溶解于水中的平衡关系为p e=4.06×106x。式中p e为氧的平衡分压,kPa; x为氧在水中的摩尔分数。试求: (1)与101.325kPa之大气充分接触的20℃水中最大溶氧浓度为多少?分别以摩尔分数和质量比表示。 (2)若将20℃的饱和含氧水加热至95℃,则最大溶氧浓度又为多少?分别以摩尔分数和质量比表示。 3.常压、30℃条件下,于填料塔中用清水逆流吸收空气-SO2混合气中的SO2。已知入塔混合气中含SO2为5%(体积分数),出塔气中SO2为0.2%(体积分数);出塔吸收液中每100g 含SO2为0.356g。若操作条件下气液平衡关系为y e=47.87x,试求塔底和塔顶处的吸收推动力,分别以Δy、Δx、Δp、Δc表示。 4.在1.1768Mpa、20℃条件下,用清水于填料塔内逆流吸收H2-CO2混合气中的CO2。已知入塔混合气中含CO2为30%(体积分数),假若出塔吸收液中CO2达到饱和,那么1kg水可吸收多少千克CO2。假定此吸收和解吸的平衡关系服从亨利定律。 5.在0℃、101.3kPa下,Cl2在空气中进行稳态分子扩散。若已知相距50mm两截面上Cl2的分压分别为26.66kPa和6.666kPa,试计算以下两种情况Cl2通过单位横截面积传递的摩尔流量。 (1)Cl2与空气作等分子反向扩散; (2)Cl2通过静止的空气作单向扩散。

冶金原理名词解释

Mingcijieshi 第一章 冶金溶液热力学基础—重点内容 本章重要内容可概括为三大点:有溶液参与反应的θG Δ、G Δ、溶液中组分B 活度 一、名词解释 生铁 钢 工业纯铁 熟铁 提取冶金 理想溶液 稀溶液 正规溶液 偏摩尔量X B 化学势μB 活度 活度系数 无限稀活度系数r B 0 一级活度相互作用系数e i j 一级活度相互作用系数εi j 标准溶解吉布斯自由能 θB S G ? 溶液的超额函数 生铁: 钢: 工业纯铁: 熟铁: 提取冶金: 理想溶液: 稀溶液: 正规溶液是指混合焓不等于0,混合熵等于理想溶液混合熵的溶液称为正规溶液。 偏摩尔量X B 是指指在恒温、恒压、其它组分摩尔量保持不变条件下,溶液的广度性质X (G 、S 、H 、U 、V )对组分B 摩尔量的偏导值。)(,,)/(B k n p T B B k n X X ≠??=。 化学势μB 是指在恒温、恒压、其它组分摩尔量保持不变条件下,溶液的吉布斯能对组分B 摩尔量的偏导值。)(,,)/(B k n p T B B B k n G G ≠??==μ。(P27) 活度是指实际溶液按拉乌尔定律或亨利定律修正的浓度。 活度系数是指实际溶液按拉乌尔定律或亨利定律修正的浓度时引入的系数。 无限稀活度系数r B 0是指稀溶液中溶质组分以纯物质为标准态下的活度系数。 无限稀活度系数r B 0大小意义 *0B H B P K =γ 是组元B 在服从亨利定律浓度段内以纯物质i 为标准态的活度系数 是纯物质为标准态的活度与以假想纯物质为标准态的活度相互转换的转换系数 是计算元素标准溶解吉布斯能的计算参数

600多个精品课程课件网络资源

600多个精品课程课件网络资源 收录日期: 2007-03-16 (部分内容已严重陈旧或已淘汰) 1 2005食品卫生检验教案讲稿 2 2005最新国家食品卫生标准贯彻实施手册 3 Catalysts for Fine Chemical Synthesis 4 FDA农药分析手册 5 FDA食品法规(2001版) 6 Food Additives Date Book 7 Food Outlook 英文版 8 HACCP原理与实施第二版 9 Instrumental Analysis 10 Molecular Components of Cells 11 WTO法律专题 12 安徽建筑工程学院大学物理实验精品课程 13 安徽建筑工程学院无机与分析化学精品课程 14 安徽科技学院精品课程 15 白兰地工艺学 16 包装技术课件 17 保健食品检验与评价技术规范实施手册 18 保健食品原料手册 19 贝类油脂化学与工艺学 20 病理学实验指导-大连医科大学 21 仓储与配送管理-天津开发区职业技术学院 22 长春工业大学精品课程 23 长春师范学院教学课件 24 长效酸奶技术 25 常见中毒急救手册 26 常用分子生物学软件中文说明 27 常用天然提取物质量标准参考手册2003 28 常用药物辅料手册 29 成都大学精品课程建设 30 成都中医药大学中药学精品课程 31 成都中医药大学中药药理学精品课程 32 成都中医药大学中医方剂学精品课程 33 成都中医药大学中医药统计学精品课程 34 大连水产学院大学.物理精品课程 35 大连水产学院精品课程 36 大连水产学院水产动物生理学精品课程 37 大连水产学院水生生物学精品课程 38 大连水产学院养殖水环境化学精品课程 39 大学基础化学 40 大学物理 41 大学物理

冶金原理实验报告

冶金原理 实验报告 专业班级 学号姓名 同组成员

电极过程动力学 一、实验目的 通过对铜电极的阳极极化曲线和阴极极化曲线的测定,绘制出极化曲线图,从而进一步加深对电极极化原理以及有关极化曲线理论知识的理解。通过本实验,熟悉用恒电流法测定极化曲线。 二、实验原理 当电池中由某金属和其金属离子组成的电极处于平衡状态时,金属原子失去电子变成离子获得电子变成原子的速度是相等的,在这种情况下的电极称为平衡电极电位。 电解时,由于外电源的作用,电极上有电流通过,电极电位偏高了平衡位,反应以一定的速度进行,以铜电极Cu|Cu2+为例,它的标准平衡电极电位是+0.337V,若电位比这个数值更负一些,就会使Cu2+获得电子的速度速度增加,Cu失去电子的速度减小,平衡被破坏,电极上总的反应是Cu2+析出; 反之,若电位比这个数值更正一些,就会使Cu失去电子的速度增加,Cu2+获得电子的速度减小,电极上总的反应是Cu溶解。这种由于电极上有电流通过而导致电极离开其平衡状态,电极电位偏离其平衡的现象称为极化,如果电位比平衡值更负,因而电极进行还原反应,这种极化称为阴极极化,反之,若电位比平衡值更正,因而电极进行氧化反应,这种极化称为阳极极化。 对于电极过程,常用电流密度来表示反应速度,电流密度愈大,反应速度愈快。电流密度的单位常用安培/厘米2,安培/米2。 由于电极电位是影响影响电流密度的主要因素,故通常用测定极化曲线的方法来研究电极的极化与电流密度的关系。 一、实验方法及装置 本实验电解液为CuSO4溶液(溶液中CuSO4.5H2O浓度为165g/l,H2SO4 180g/l);电极用φ=0.5mm铜丝作为工作电极,铂片电极作为辅助电极。为了测得不同电流密度下的电极电位,以一个甘汞电极与被测电极组成电池,甘汞电极通过盐桥与被测电极相通,用CHI660B电化学工作站测得不同电流密度下对应的阴极或阳极极化曲线。

化工原理试题 答案

化工原理考试题及答案 第三章非均相分离 姓名____________班级____________学号_____________成绩______________ 一、填空题: 1.(2分)悬浮液属液态非均相物系,其中分散内相是指_____________;分散外相是指______________________________。 ***答案*** 固体微粒,包围在微粒周围的液体 2.(3分)悬浮在静止流体中的固体微粒在重力作用下,沿重力方向作自由沿降时,会受到_____________三个力的作用。当此三个力的______________时,微粒即作匀速沉降运动。此时微粒相对于流体的运动速度,称为____________ 。 ***答案*** 重力、阻力、浮力代数和为零沉降速度 3.(2分)自由沉降是 ___________________________________ 。 ***答案*** 沉降过程颗粒互不干扰的沉降 4.(2分)当微粒在介质中作自由沉降时,若粒子沉降的Rep相同时,球形度越大的微粒,介质阻力系数越________ 。球形粒子的球形度为_________ 。 ***答案*** 小 1 5.(2分)沉降操作是使悬浮在流体中的固体微粒,在 _________力或__________力的作用下,沿受力方向发生运动而___________ ,从而与流体分离的过程。 ***答案*** 重离心沉积 6.(3分)球形粒子在介质中自由沉降时,匀速沉降的条件是_______________ 。滞流沉降时,其阻力系数=____________. ***答案*** 粒子所受合力的代数和为零 24/ Rep 7.(2分)降尘宝做成多层的目的是____________________________________ 。 ***答案*** 增大沉降面积,提高生产能力。 8.(3分)气体的净制按操作原理可分为_____________________________________ ___________________.旋风分离器属_________________ 。 ***答案*** 重力沉降、离心沉降、过滤离心沉降 9.(2分)过滤是一种分离悬浮在____________________的操作。 ***答案*** 液体或气体中固体微粒 10.(2分)过滤速率是指___________________________ 。在恒压过滤时,过滤速率将随操作的进行而逐渐__________ 。 ***答案*** 单位时间内通过单位面积的滤液体积变慢 11.(2分)悬浮液中加入助滤剂进行过滤的目的是___________________________ ___________________________________________________。 ***答案*** 在滤饼中形成骨架,使滤渣疏松,孔隙率加大,滤液得以畅流 12.(2分)过滤阻力由两方面因素决定:一方面是滤液本身的性质,即其_________;另一方面是滤渣层本身的性质,即_______ 。 ***答案*** μγL 13.(2分)板框压滤机每个操作循环由______________________________________五个阶段组成。 ***答案*** 装合板框、过滤、洗涤、卸渣、整理 14.(4分)板框压滤机主要由____________________________________________,三种板按 ________________的顺序排列组成。 ***答案*** 滤板、滤框、主梁(或支架)压紧装置等组成

化工原理试卷1

化工原理试卷 一. 计算(69分): 1(20分). 每小时将2×104kg 、45℃氯苯用泵从反应器A 输送到高位槽B (如图所示), 管出口处距反应器液面的垂直高度为15m ,反应器液面上方维持26.7kPa 的绝压,高位槽液面上方为大气压,管子为?76mm ×4mm 、长26.6m 的不锈钢管,管壁绝对粗糙度为0.3mm 。管线上有两个全开的闸阀、5个90°标准弯头。45℃氯苯的密度为1075 kg ?m -3,粘度为 6.5×10-4 Pa·s 。泵的效率为70%,求泵的轴功率。附:各局部阻力系数 全开闸阀 ζ1 = 0.17 90℃标准弯头 ζ2 = 0.75 摩擦系数计算式 λ = 0.1( εd + 68 Re )0.23 2(16分). 质量流量为7000kg ·h -1的常压 空气,要求将其由20℃加热到85℃,选用108℃的饱和蒸汽作加热介质。若水蒸气的对流传热系数为1×10 4W·(m 2·K)-1,空气在平均温度下的物性数据如下: 比热容为1kJ·(kg·K)-1,导热系数为2.85×10 -2W(m·K)-1 粘度为1.98×10-5Pa·s ,普兰特准数为0.7 。 现有一单程列管式换热器,装有?25mm×2.5mm 钢管200根,长2m ,此换热器能否完成上述传热任务? 3(14分). 某厂填料吸收塔,填料高10m ,用清水洗去尾气中有害组分。在正常情况下,测得原料气中含有害组分0.02(比摩尔分数,下同),尾气中含有害组分0.004,吸收液含有害组分0.008。在工作范围内相平衡关系为 A A X Y 5.1=* 。问: ⑴ 该工况下气相总传质单元高度H OG 为多少? ⑵ 因法定排放浓度Y A,2=0.002,计划将塔加高,若液气比不变,填料层需加高多少? 4(19分).某一常压连续精馏塔内对苯-甲苯的混合液进行分离。原料液组成为0.35(mol%,下同),该物系的平均相对挥发度为2.5,饱和蒸汽进料。塔

冶金原理超全面总结

活度:引入修正后的浓度值。其中的修正系数成活度系数。活度测定方法;1、蒸汽压法,2、分配定律法,3、化学平衡法,4、电动势法。理想溶液:在全部浓度范围内服从拉乌尔定律的溶液。稀溶液:溶质的蒸汽压服从亨利定律,溶剂的蒸汽压服从拉乌尔定律的溶液。正规溶液:混合焓不为零,但混合熵等于理想溶液的混合熵的溶液。实际溶液:实际存在的溶液。标准溶解自由能:由纯物质转变为 溶解标准态的吉布斯自由能变。宏观动力学:环节:多相反应发生在体系的相界面上。三个环节:1、反应物对流扩散到反应界面上,2、在反应界面上进行化学反应,3、反应产物离开反应界面向相内扩散。串联过程:反应过程是由物质的扩散和界面化学反应诸环节组成的。限制环节:当串联反应有一个或多个环节进行较快,而仅有一个环节最慢时,则这个环节为整个反应过程的限制者。分子扩散:由浓度梯度引起的扩散。扩散系数:是浓度梯度的扩散通量。对流扩散:扩散分子的运动和流体的对流运动同时发生,使物质从一个地区迁移到另一个地区的协同作用。传质系数:流体中扩散物质的浓 度是c而其在凝聚相表面上的浓度(界面浓度)是c*则该组分的扩散通量与此浓度差成正比即J=β(c+c*),β为比例系数称传值系数。速度边界层:贴近相界面有速度梯度出现的流体薄层。有效浓度边界层:x=0处作浓度分布曲线的切线其与相内浓度c线的延长线的交点到界面的距离δ。区域化学反应:这种沿固体内部出现的相界面附近区域发展的反应称。双模模型:这种两相间反应界面两侧都存在着表征扩散阻力的浓度边界层的模型称双模理论。克努生扩散:气体在多孔介质孔隙中的扩散系数和孔隙的直径有关,当孔隙很小气体分子的平均自由程比孔隙的直径大得多时气体分子直接与孔隙壁碰撞 的机会就会比分子之间的相互碰撞的机会多,致使其内气体扩散的速率减少。未反应核模型:当固相反应物致密时,化学反应从固相物表面开始逐渐向矿中心推进,反应物和产物层之间有较明显的界面存在,反应在层间的相界面附近区域进行,因此形成的固相产物层则出现在原来固相反应物处,而原固相物内部则是未反应的部分。过热度:高出熔点的温度。间隙式固溶体:是组分的原子占据了本体晶格的空隙位两种原子的半径相差很大。固溶体:当有其他固体原子溶入某种固体时称。表面活性(非活性)物质:溶解组分在表面上出现(不出现)过剩浓度称正(负)吸附,它使溶液的表面张力降 低(保持不变或有所提高)这种组分称(非)表面活性物质。熔渣的作用:离或吸收杂质,除去粗金属中有害于金属产品性能的杂质,富集有用金属氧化物及精炼金属的作用,并能保护金属不受环境的玷污及减少金属的热损失。浓度三角形:三角形的顶点代表纯组分,每一边是由两顶角代表的祖坟所构成的二元系的浓度坐标线,三角形内的点则表示由3顶角代表的祖坟所构成的三元系的浓度值。背向规则:当等比例线上物系点的组成点,再背离其所在顶角的方向上移动时,体系将不断析出成分C,而其内组分C的浓度不断减少,但其他两组分的浓度比则保持不变,这称。重心规则:在浓度三角 形中,组成为M1,M2,M3,的物系或相点,其质量分别为m1,m1,m3,混合形成一质量m0的新物系点O是,此新物系点则位于此3个物系点练成的三角形M1,M2,M3的重心上。碱度:碱性氧化物的质量分数与酸性氧化物的质量分数之比称炉渣的碱度R。光学碱度:某氧化物施放电子的能力与CaO施放电子的能力的比为该氧化物的光学碱度Λ。碱性氧化物:渣中能解离出氧离子的氧化物。酸性氧化物:转变为络离子的氧化物。相:有共同物理化学性质的均匀部分。组元:表述平衡所需最少物种数。自由度:描述一平衡所需最少变量数。容量:称熔渣吸纳有害分子等能力称为“某”容量。 溶化温度:熔渣中固相完全消失的温度。溶化性温度:熔渣的熔点是熔渣中固相完全消失的温度。但此时熔渣的黏度是比较高的,甚至在相当广阔的温度范围内还处于半流体状态,而为了使高炉冶炼顺行,应使熔渣溶化后的温度能保证熔渣达到自由的流动。这个最低温度称。长渣:(偏酸性渣,玻璃渣)渣中大分子多,黏度随温度变化迟缓。短渣:(石头渣)渣中大分子少,黏度随温度变化敏感。分解压:一定温度下某化合物生成离解反应达平衡产生的气相平衡分压PB(平)称化合物的分解压。影响分解压:T,P,固相相变,固体分散度,形成溶体。分解的开始温度:PB分解压和=PB'下开始并继 续分解的温度。T开=A/(lgPB-B)。T沸=A/(lgP-B)(P=P'/Pθ),P'=100kPa,P=1。分解的沸腾温度:化合物被加热,分解压达到体系的总压,使化合物将剧烈的分解,这时化合物的分解温度称。氧势递增原理:氧化物的氧势是随其金属元素价数的增高而逐渐递增的。间接还原:可用气体做还原剂的间接还原法。直接还原:用固体做还原剂的直接还原法。特点:均强吸热。歧化反应:低价化合物在一定温度发生分解,转变为其相邻的高价氧化物,并析出金属的反应。碳化物的碳势πc=RTlnac。气相碳势>碳化物的碳势,则发生渗碳,相反金属内的碳气化,发生脱碳。熔渣脱硫的条件:必须在能消除炉 渣中的(FeO)或减低铁液氧势的条件进行。氧势图横坐标T,纵坐标氧势π0=RTlnP O2/kj/mol,截距△rH mθ,斜率-△rS mθ,会有不同的P CO/P CO2等一系列氧势线交于T=0轴的一点c,斜率不同取决于P CO/P CO2,P CO/P CO2=1氧势线是RTlnP O2=△rG mθ即反应处于标准态的氧势线,其余为非标态。特点:绝大多数氧化物向右上倾斜,水平S气》Sl>Ss,向右下倾斜2C(S)+O2=2CO,作用判明氧化物稳定性,其中位置越低者越稳定,越被氧化。得到氧化物分解压。氧化物相对稳定性及氧化还原反应的平衡温度。CO及H2还原氧化物反应的平衡常数及还原开始温度。Po2<1,△rGm>△rG mθ绕C点逆时针旋 转,氧势线向上移,氧化物更不稳定。氧势图作用:1、确定氧化物稳定性,2、确定氧化物分解压,3、确定氧化物稳定性及氧化还原反应的平衡温度,4、确定碳吸氢气还原氧化物反应的平衡常数及平衡温度。脱氧:向钢液中加入氧亲和力比铁大的元素,使溶解于钢液中的氧转变为不溶解的氧化物,自钢液中排出称。脱氧3种方法:沉淀脱氧:钢液中加入脱氧剂而形成脱氧产物能借自身的浮力或钢液的对流运动排出。扩散脱氧:利用氧化铁很低的熔渣处理钢液,使钢液中氧经扩散进入熔渣中,而不断降低。真空脱氧:利用真空的作用降低与钢液平衡的Pco,从而降低了钢液的氧和碳的含量。回磷:在熔炼脱氧合金化及浇铸过程中,能形成酸性氧化物的元素,大量进入钢液中及炉渣碱度降低,均能破坏渣中的磷酸盐,(P2O5)发生还原,钢液中的磷量增加称。影响脱磷因素:高氧化铁、高碱度即磷容量大的熔渣及时形成,是加强脱离的必要条件,低温有利于脱磷,金属熔池某些能提高磷活度系数的与元素存在。影响脱硫的因素:炉渣的组成,金属液的组成,温度。脱硫的条件:温度:高温,熔渣碱度:高碱度,炉缸的氧势:低氧势。脱磷反应:氧化脱磷:氧化法是利用氧化剂使铁液中(P)氧化成PO,再与加入能降低其活度系数的脱磷剂,结合成稳定的复合化合物,而存于熔渣中。氧化性渣表面张力主要取决于?表面O2-和正离子的作用,正离子静电势大的碱性氧化物表面张力较大(MnO2,FeO,CaO)。FeO熔体表面活性物质有?CaF2,P2O5,TiO2。泡沫渣?形成其必要条件?进入渣内的不溶解气体被分散在其中形成无数小气泡时,熔渣的体积膨胀,形成为液膜的密集排列的孔状结构称。其形成与熔渣的起泡能力及泡沫的稳定性有关。熔渣的组员扩散?系数比在金属液内的低一个数量级,10-10~10-11m2s-1因此,高温冶金反应过程的限制环节大都在熔渣内。了解CO钢液内均相形核是否可能?为什么?当钢液中碳氧化形成的CO气泡核大于其临界核时,才能稳定形成、长大和排出,对于表面张力一定的钢液,临界核的半径与钢液的w[C]、w[O]过饱和有关。过饱和度越大,则临界半径就越小,新相核就易于形成。一般认为,钢液这种饱和度不高,由此形成的气泡核的半径却比较大,为了能形成如此大的临界气泡,需要在临界气泡内瞬时积累由碳氧化形成的CO分子数107~1010个。这样大数目的分子数十难于靠局部浓度的起伏完成的。为什么说“碳”是万能的还原剂:C的氧势图走向右下方,且与大多数金属氧化物的氧势线有交点。判定氧化物稳定性的热力学方法:随着温度的升高,高价氧化物分解放出氧,转变为低温下稳定存在的相邻的高价的氧化物。渣的氧化还原性取决于什么?是氧离子的活度么?不是,取决于渣中氧的化学势和金属液中氧的化学势的相对大小。在T一定,渣及金属液组成一定时,只能FeO在渣中分配,(Fe2+)的伴随下,(O2-)才能有效进入金属液中用(FeO)的浓度或活度表示渣的氧化性。钢水用高压气搅拌,搅拌剧烈(eσ/ex)x=0,dc↓传质效率?提高有效边界层内,尽管可用稳态扩散理论处理对流传质问题,但并不意味此层只有静止分子扩散,实际此层仍有紊流流动应该以等效观点理解dc有效边界层内传质结果和其个数值的分子扩散相当。氧化物分解(还原)的逐级转变原则(会写反应):1、高价氧化物只能依次分解成为能与之平衡共存的次级低价氧化物2、在给定条件下,只有和金属平衡的氧化物才能分解出金属,3、不相邻的氧化物则不能平衡共存,不能用平衡常数来表述其关系。有了铁为什么还要炼钢:以生铁为主要原料的氧化熔炼中,需要去除的元素和杂质,分为3类,1、高炉中过多还原的元素,如Si Mn 极特别是溶解的,2、有害于产品性能的杂质,如Ps及气体H N,3、在氧化过程中,由氧化作用引入的氧及其伴生的夹杂物,因此炼钢过程的主要反应式元素(Si Mn C P)的氧化,脱磷去气体(H N),脱氧剂调整钢液的成分,最后把化学成分合格的钢液浇铸成钢锭或连铸坯,便于轧钢。炼钢的方法主要有哪些:以高炉铁水或铁浴融化还原铁水为主要原料的氧气炼钢法和以废钢为主要原料的电弧炼钢法,在氧气转炉炼钢法中,按照氧气吹入转炉内方式的不同,分别有顶吹氧气转炉炼钢和底炉吹氧气炼钢以及顶底复合吹氧炼钢。试述影响元素氧化的热力学条件及影响因素:当熔池中多种元素共存时,一般是形成氧化物,MxOy氧势最小的元素首先氧化,而其氧化强度随温度的升高而减弱,元素的氧化顺序还将受活度变化的影响,因为(Po2(MxOy)=Kθ(a2/3 MxOy /a2x/y m)πo(MxOy)=△rG mθ+2/yRTln0MxOy-2x/yRTln m),故元素的浓度相同时,氧势较小的先氧化或者强烈氧化,而元素浓度不相同时,浓度高的其氧势较小,最先氧化。了解CO熔池内异相形核是否可能?为什么?:脱碳反应CO气泡的生成要经过异相形核阶段所以碳的氧化是在钢液-炉底耐火材料界面上发生的。与钢液接触的耐火材料炉底,常不易为钢液所湿润,其表面有气体填充的微孔,他们的尺寸远大于钢液过饱和度相当得临界气泡核(r*)时,就能成为气派的现成核,碳氧化形成的CO进入其内,使气泡长大,脱离微孔上浮。残余在微孔内的气体,则成为下次气泡形成的核源。因此,不能为钢液所湿润的耐火材料表面的微孔,当其具有不为钢液填充的最大半径时,就能成为气泡的形成核。试述复合脱氧提高强脱氧剂脱氧能力的原因:利用两种或两种以上的脱氧元素组成的脱氧剂使钢液脱氧,称为复合脱氧,即两种脱氧元素同时参加脱氧,耦合形成的产物则结合成复杂的化合物,因而能使他们分别脱氧形成的产物的活度降低从而平衡的w【O】降低。其次他们的脱氧产物形成了低熔点的复杂化合物,而使之分解。与钢液中w[O]平衡的弱脱氧元素的百分含量要比与此w[O]平衡的强脱氧元素的百分数高得多。故弱脱氧元素百分数仅能控制自身反应的w[O],而强脱氧元素百分数则控制了整个钢液的氧浓度,他比强脱氧元素单独脱氧时的低,所以若脱氧剂能提高强脱氧剂的脱氧能力。液-液相反应及动力学模型—双模理论 3 要点1、反应物分别在各自相内向两相界面扩散传质2、反应物在两反应界面进行反应3、反应产物离开反应界面向各自向内扩散传质。熔渣的结构理论:分子结构假说和离子结构理论要点1、分子结构假说:它把熔渣看成是各种分子状指点组成的理想溶液。2、离子机构理论:熔渣是有简单阳离子和复杂阴离子组成,其正负电荷数相等熔渣为电中性3、熔渣有微观不均匀性,以至熔渣会出现分层现象即出现强或弱“离时”离子的静电势I=E/Y。完全离子熔渣模型:主要内容1、熔渣完全由离子构成,其内不出现电中性质点。2、和晶体中的相同,理智最邻近者仅是异号离子。并且,搜有同号离子不管其大小及电荷是否相同与周围异号离子的静电作用里都是相等的。因此,他们在熔渣中的分开完全是统计无序状态。3、完全离子溶液形成时混合焓为0,△Hm=0;离子完全混合时,虽然异号离子不能彼此交换位置,但不同阳(阴)离子之间相互混合,出现不同的组态使溶液的熵增加。一次完全离子溶液可视为由正负离子分别组成的两个理想溶液的混合溶液。有效边界层(扩散边界层)与扩散阻力关系:扩散边界层内存在着边界差,表征物质通过此层受到了扩散阻力。因而可以认为物质是在整个液体内及向相界面或离开界面儿扩散时,所受到的阻力主要集中在此边界层内。边界层越厚,则扩散阻力也就越大,而传质系数也就越小。但是相界面附近的浓度梯度( )Z=0越大(或切线的斜率越大),则边界层的厚度就越厚,而传质系数越大,提高液体的速度可使浓度梯度变大,从而可降低边界层的厚度。当流速增大到使边界层的厚度趋近于0时,扩散阻力就不再存在了,这是的流速被称为临界流速。一次,保持临界流速的体系内,可以不用考虑这种扩散阻力的存在。反应过程速率影响因素:1、温度2、固体物空隙度3、固体物的粒度及形状4、流体速度结论:当不同因素发生变化时将会对比二环节不同程度的增大或减弱作用,相应的能使过程控制环节发生改变,如果有实验来研究化学反应机理时,则必须在实验中创造条件,使整个过程位于动力学范围内。分解压的影响因素:1、温度2、压力3、固有物的相变4、固体的分散度5、固相物的溶解RTlnpb=-△rGmΘ(AB)+RTlna(AB)-RTlna[A] 因此分解压不进与温度有关,而且与固体在溶液中活度有关,提高a(AB)及降低a(A)可使分解压增大,反之则分解压减小,如AB(s)与分解出的A(s)发生互溶,则在未形成饱和浓度的组成范围内,分解压与熔体的组成有关,而在形成互为饱和的二相区内,分解压则与熔体的组成无关,保持定值,这是因为此时a(AB)=a[A]=1,此外当AB及A溶于溶剂,或与其他物质形成复杂化合物是也使他们的活度改变,从而改变分解压,实际上复杂化合物的分解比简单呼和无分解要吸收较多的热量,而其分解温度也要高很多影响脱硫的因素:1,炉渣的组成,低氧化铁,碱性渣有利于脱硫,碱度高也有利于脱硫。2,金属液的组成,金属液中得硅,碳,等元素能提高fs,促进s向炉渣中转移,3,温度,脱硫反应是吸热,温度提高对脱硫有利,炉渣熔体结构的分子理论要点1,组成炉渣的氧化物及其他化合物的基本组成单元均是离子,2,炉渣是离子导电的,3,炉渣能被电解,在阴极析出金属,4,二氧化硅浓度高的熔渣有较高的粘度。反应速录影响因素:温度,固相物空隙度,固相物的粒度及形状,流体速度。离子反应式书写规则:1,渣中组元用其对应离子形式表示,2,离子反应式代表一对流金属液反应,3,氧合负离子转移时,其中氧价不变。固体的分散度:固体物的分散度增加,其面积增加,其化学势增大,因而分解压发生。固相物的溶解:分解呀与固相物再溶液中得火毒有关。脱硫剂主要有:苏打,石灰粉,碳化钙等一石灰为主要成分的复合硫化剂。碳氧积:压强在100KPa的M=W[C]*W[o]位于0.002-0.003,一半多取0.0025,过剩氧:W[o]&s的减小而降低,但W[o]始终高于W[o]平,因为熔池中有促使氧扩散的浓度差存在,故W[o]ΔW[o]称为钢液中的过剩氧。试分析元素脱氧反应的热力学条件:1,图中曲线位置越低的元素,产物越稳定。该元素的脱氧能力越强2,脱氧产物的组成与温度及脱氧元素的平衡浓度有关,3,脱氧反应式强放热的随着温度的降低,脱氧能力增强。气固相反应的三个环节:1,气体再固体物外的扩散,2,气体与固体物的界面反应,3,气体通过固相产物层的内扩散。熔渣在活度过程中的作用,分离或吸收杂质,除去相金属中有溶于金属产品性能的杂质,富集有用金属氧化物及精炼金属的作用,并能保护金属不受环境的玷污及减少金属的热损失。炉渣的来源:还原熔炼中未能还原的氧化物。氧化熔炼中氧化形成的氧化物。氧势递增原理:氧化物的氧势是随其金属元素价数的增高而逐渐递增的。氧化物的稳定性1,比较氧化物用热力学稳定性取no2==1,ΔfQmθ越小,MxOy越稳定,稳定性大于C,S化合物2,氧化物分解压Po2(平)越低,越稳定。碳酸盐分解法特点:1,分解温度不高,2,加热即分解3,常用热分析法及差热透析法测定他的分解呀温度。试分析元素脱氧反应的热力学条件1,曲线位置越低的元素,脱氧产物越稳定,而该元素的脱氧能力越强,与相同量的各元素平衡的氧浓度就越低,成为了达到相同的氧浓度,增强氧元素的平衡,浓度就越低2,脱氧产物的组成与温度,与温度及脱氧元素的平衡浓度有关,W[M]低及W【O】高时,则形成FeMxOy形成复杂化合物,W[M] 高及W【O】低时,则形成氧化物MxOy,如其熔点高过钢液的温度,则形成向存在,仅位于曲线上区域的钢液能发生脱氧反应,曲线上的黑点为脱氧产物的转变点,3,脱氧反应式强放热的,随着温度的降低,脱氧元素的脱氧能力增强。二元体系,组元数2,,自由度2-p+1,共存相数,最多3,最少1,自由度数,最多2,最少0,图形为二维平面。三元体系,组元数3,,自由度3-p+1,共存相数,最多4,最少1,自由度数,最多3,最少0,图形为三维平面或等温截面图

相关主题
文本预览
相关文档 最新文档